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Abstract

Some basic properties of elementary edge-cuts of benzenoid systems are established.
If r; is the number of edges intersected by the i-th elementary edge-cut. i = 1,2...., s
then [ry,72,....7,] is the edge—cut sequence (ECS) of the respective henzenoid systen.
It is shown that a number of properties of a benzenoid system can be reconstructed from
its ECS. We examine the conditions under which a sequence of integers is an 19C'S. and
in the case of catacondensed benzenoids find a complete solution of this problen .

Introduction

Edge-cuts were introduced into the theory of benzenoid systems by Horst Sachs [1].
in connection with efforts to find necessary and sufficient conditions for the existence of
Kekulé structures. These conditions were eventually discovered [2. 3] and. indeed. involve
edge-cuts. Eventually, edge- cuts were used for recognizing and designing concealed non
Kekuléan benzenoids [1, 5]. For review of research on non-Keknléan henzenoid systems
(in which edge cuts play an outstanding role) sce [6].

Edge cuts have recently re-emerged in the theory of distance-related topological

T

indices. It has been demonstrated that the Szeged (Sz) [7] and the Wiener {117} ]
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numbers of benzenoid hydrocarbons conform to the relations:

Sz= Zr, n'(C) n"(C) {1
=
and
W= 3T () n(C) (2)
=1

i which €7 stands for the i-th elementary edge cut, dividing the henzenoid system
into fragments with »/(€7) and 2"(C}) vertices, and intersecting r; edges: 1he snm-
mations go over all elementary edge-cuts. The algebraic similarity hetween formmlas
(1) and (2) 18 remarkable. Eqgs. (1) and (2) enable one to better understand the
structure dependency of Sz and W [9, 10].

In spite of all these applications in the theory of benzenoid hydrocarbons, edge
cuts were until now not subject of any systematic study. The aim of the present work
is to contribute towards filling this gap.

In this paper we are concerned only with elementary edge culs. Vhese are defined
as follows.

For our purposes henzenoid systems are viewed as geometric objects. obtained by
arranging regular hexagons in the plane: for more details see [11], for an illusirative
example see Fig. 1.

An elementary edge-cut is a straight line segment, drawn orthogonal to certain
cdges and passing through their centers. Fach elementary edge—cut starts and ends
ab the perimeter, and must not have more than two points in connnon with the
perimeter.

In Fig. | is depicted a benzenoid system and three of its elementary edee cuts. In
diagrant I the perimeter is indicated by heavy line. Tn diagram 2 the clementary edge-
ents are drawn strictly according to the above definition, with their ends indicated

by he

¢ dots. In diagram 3 the same cuts are slightly extended: this is usually done
in order to make their labeling casier.
Recall that the number of edges intersected by the elementary edge cui €, (in-

cluding the two edges Iyving on the perimeter) is denoted by ;. Thus. for the three
g ges Iyimng I A

ents shown in Fig. 1Ly =4, 1 =2 and ry
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Fig. 1

Consider a benzenoid system B. Let (,(',.. ., (', be its elementary edge cuts.
Suppose that they are labeled so that r; <, <--- <7, . Then the ordered (5 )-tuple
r(B) = r = [ry, 75, ...,7] will be called the edge cut-sequence and abbreviated by
ECS.

In Fig. 2 are shown the elementary edge-cuts of benzo[a]pyrenc. There are nine

such cuts, hence v = 8. The respective ECS is (2.2,2,2,3,3,3.3.4].

W\

Fig. 2
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In this paper we arve interested in the following two questions:
Problem 1. Given r(B). what can he said about B 7

Problem 2. Is a given sequence of integers an ECS of some henzenoid system?

Some Elementary Results

We use the following notation [L1]:

1 = number of vertices = number of carbon atoms,

m = number of edges = number of carbon carbon bonds,
h = number of hexagons,

n; = number of internal vertices,

1, = number of external vertices = size ol perimeter.

n3 = number of vertices of degree three,

ny = muuber of vertices of degree two = number of hydrogen-atoms.
Proposition 1. All the above listed quantities can be deduced from the 1BCS.

Proof. The above listed quantities can be calculated by means of the below given
Eqs. (3) -(9).
First of all, the number of edges is evidently equal to the sum of the elements of
the ECS: .
m= Zr, . (3)
=1
If an clementary edge-cut intersects r; edges, then it intersects v, — | lexagons.
Bearing in mind that each hexagon is intersected by three elementary edge-cuts, we

conclude that
.

S — 1) = 3h

i=1

ki R
h::l— Zﬂ‘*’r PRk €]
3 =l 3

21rom the well known Euler formula [L1] e = n + h — L, and using Eqs. (3) and (1)
we now readily get
= ] +1. (5)
3
Fach elementary edge cut intersects exactly two edges that helong to the perime-

ter. Therefore 25 is equal to the munber of edges of the perimeter. Since the perimeter
¥ | F I
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possesses equal number of vertices and cdges, it follows that
A 2 (6)

Because n; = n — n,, by combining Eqs. (5) and (6) we arrive at

2m — 5y
—+1. T
ek (7)

n, =

The remaining two quantities from the above list are also readily caleulated [11]:

2m — 27

3

ny=2h -2
ng=n-ny=7+3 ()
by which the proof is completed. 0O

It is simple to see thai for catacondensed benzenoids, for which n; = 0 [L1], the

below statements are valid.

Proposition 2. If B is a catacondensed benzenoid system with A hexagons. then B

has 2k + | elementary edge-cuts, i.c., v = 2h + 1. Furthermore,

n=n,=2y
_ 5y -3
==
n3:—y—3
ne=7v+3.

Proposition 3. Consider a benzenoid system B possessing n vertices and £ hexagons.

Let 7 be an arbitrary element of r(B). Then r is an integer, salisving

n+42
<+

€r« y and 2<r<h+1.

Proof. Let C be an elementary edge-cut of B, intersecting r edges. Since (7 intersects
at least two edges (those helonging to the perimeter), it must be » = 2. Since
intersects 7 — 1 hexagous, it must be r —1 < h e, r<h+41.

We now show that B must possess al least 4r — 2 vertices. Really, the o — |
hexagons intersected by €' form a subgraph of B which is a linear polyacene. 1he
linear polyacene with i hexagons has 4h + 2 vertices [11]. Therefore the vespective
subgraph of B has 4(r — 1} + 2 = 4r — 2 vertices. which, of course. is a lower hound

for the vertex count of B. From 4r — 2 < u follows » < (n + 2)/4. O
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We mention in passing that the equality # = (0 4+ 2)/1 = + 1 is achieved il and

only if B itsellis a lincar polyacene.

Edge-Cut Sequences as Partitions

Suppose that the henzenoid system considered has A hexagons and », internal
vertices. ‘Then, because of Fqs. (4) and (7). its edge- cut sequence has 5 = 20+ 1 —n;
clements, the suniof which is e = 54+ 1 —n, . Bearing this in mind. we may consider
an edge cut sequence as a partition of the number w into 4 sumumands. cach being

an integer not. smaller than two.

Proposition 4. Not all partitions of the number 50 4 1 —n, into 2h + 1 - n;
summands., each being an integer not smaller than two, are edge cnt sequences of

benzenoid systems.

Proof. Tt is enough to consiruct a counterexample. Consider benzofalpyrene (see

D
Ly dyid

Ilig. 2), for which & = 5 and n; = 2 and r = | 33,34 The latter is a

2.2

partition of 24 into Y summands. Another such partition is [2.

8.

1f [2.2,2,2,2,2,2,2.8] would be the ECS of a benzenoid systein 7, then by Proposi-
tion | B* would possess 5 hexagons. On the other hand, by Proposition 3. 13" would

possess at least 7 hexagons, a contradiction. 0O

The finding formulated as Proposition 4 is no surprise whatsoever. Much more

unexpected is the following result.

Proposition 5. If n, = 0 then all partitions of the number 54 + 1 = w, = 5 + |
into 2h + 1 —n; = 2L 4 1 summands, each being an integer not smaller than two,

are edpge-ent sequences of benzenoid systems.

Proof. We demonstrate the validity of a somewhat stronger statement, namely that
for I > 1, every partition of 5h 41 into 2k + 1 iutegers not smaller than 2 is an
FCS of an unbranched catacoudensed benzeunoid system with b hexagons.

Let p = [pi-pos- ... ponga] be a partition of 5k + 1 into 2k -+ | integers not
smaller than two. We construct an unbranched catacondensed benzenoid svstem [11]
- with r hexagons. such that r(I7) = p.

It i = 1 then the unique partition of 6 into 3 integers not smaller than two is
[2.2.2], being the ECS of benzene. Hence Proposition 5 holds for /r = 1.

In what lollows we assume that i > 1.
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Denote by 7 the number of elements of p which are equal to 2. The case p =

impossible because 2(20 + 1) < 3h + 1. Therefore 7 < 20 + 1 ie.

Because 27 +3(26 + 1 —1) <5h + | it must be 7 > h + 2. Therefore,

h+2<1<2h. (10)

Denote by p,y the sequence consisting of 7 numbers which all ave egnal 1o 2. Let

p'=p\pz. (1)

T integers wot

Then p* is a partition of the number 5k + 1 — 25 into 2k 4 | —
smaller than three.

An unbranched catacondensed benzenoid system consists of a certain number of
angularly annelated (mode ;) hexagons, a certain number of lncarly annelated
{mode L;) hexagons and of two terminal {(mode £;) hexagons: for details see [11].

Denote by k4 the mumber of angularly annelated hexagons of 1.

For each hexagon of mode A, there is one elementary edge-cut with property
For other hexagons of U/ there are two such cuts. Thus. r({7) will contain

=2
T(U) = ha+2(h — hs) = 2h — hy elements equal to two.

=
]

For the remaining fy + 1 elementary edge-cuts of I/ we have i, > 3. These
correspond to the fis + 1 lincar segments of I/ (i.c.. maximal subgraphs that are
linear polyvacenes).

Choose {7 so that hy = 2h — 7(U/). This is feasible because from (10} it follows

that 0 < hy < h —2. Then r possesses exactly (1) elements equal to two.

Denote by wuy, g, ... 1y, 41 the elements of r which are greater than two. Except
'} At

that it must be
Dt
27 + Z w, =m(l) =5h+1
i=1
ie.,
20417
(12

w;=hh+1-=2r
i=1
and. of course, u; > 3, there is no restriction on the choice of the numbers a;

i=1,2,....ha+ |. In other words, any selection of integers not less than three,

satisfving Bq. (12) may occur in some unbranched catacondensed henzenoid svsteni.

This means that we always can find an unbranched catacondensed henzenoid

system I/, such that [sy,ua, ... 1, 41] is cqual to any given partition of the number
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Ah+ 1 =27 into 2h + | — 7 integers not smaller than three, lu paticalar, we may
always achieve that

[erpatigy. ..y up, 41| =P (13}

We know that r(t’) consists of [?tl‘  TE—— :J,;.A“} and additional 7 elements which
are equal to 2. Tu view of this, from Fqs. (11) and (13) one coneludes that p = r{{7].

By this Propoesition 5 has been verified also for > 1. O
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