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Abstract

The method of elermentary edge—cuts (outlined in the preceeding paper [?]) is applied 1o
explain the finding that within families of isomeric phenylenes, the points obtained by
plotting the Szeged numbers of phenylenes vs. the Szeged numbers of the corresponding
hexagonal squeezes lic on several parallel straight lines, having slopes equal 1o 3.

Introduction

This paper reports some applications of the method of elementary edge cuts. whose
theoretical details are outlined in the preceding paper [?].

In this paper we are concerned with phenylenes (PH) and their heragonal squeezes
(HS). The fact that a variety of topological properties of phenylenes and of the corre-
sponding hexagonal squeczes is intimately related and/or correlated has heen established
in a number of previous investigations [1]-[10]. The quantities for which such connections
have been established so far are the Kekulé structure count [1], total m-electron energy
[2, 3], HOMO LUMO separation [3], cyclic conjugation [4], local aromaticity [3]. Wiener
number [6]-[9] and spectral moments [10].

In a recent work [6] we calculated the Wiener numbers (W) of sels of isomeric
phenylenes and of the corresponding hexagonal squeezes, expecting to find some kind
of correlation between them. Instead of this we noticed a remarkable mathematical regu-

larity: the points obtained by plotting W (PH) vs. W(HS) lie on several paralle] straight
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lines, all having slopes equal to 9/1. A detailed analysis of the calculated ninnerical
values for W(PH) and W(H S) revealed that points pertaining to isomers with the same
inner dual lie on the same line. Morcover, even if the inner duals are different. bhut have
coinciding Wiener numbers, the corresponding points lie of the same line. [his led to the
relation [6)
(1) W(PIl) = %[I«V(HS) = (2h + )(4h + 1) + 16W (1 D))
the validity of which has eventually been verified in a mathematically satisfactory manner
(7. 8).

We mention in passing that relations other than Eq. (1), involving Wiener munbers

of PH and IIS, have also been discovered recently [8, 9].

PH

ID,

Fig. 1. A phenylene (PI1}), the corresponding hexagonal squeeze (H.5) and the
inner dual (10,); the construction of the inner dual is indicated
In formula (1) 7 is the number of hexagons of both PIT and HS whereas I D stands for
the respective inner dual. Because the formal definition and structural characterization of
PH | HS and D) were given in many previous papers (see, for instance, [1. 2, 6, 7, 11]),
we skip these details and give only a self-explanatory example, sce Fig. 1. References
to experimental chemistry of phenylenes and discussions on the chemical significance of

the relations between properties of PH and IS are outlined in due detail elsewhere
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gRa)

Motivated by the fortuitous finding of the identity (1), we have undertaken analogons
studies of Szeged numbers (52) of P and HS. Bearing in mind the numerous, previously
established [?]-[?]. similarities between Sz and W we hoped that it will he possible to
establish a relation analogous to (1). Thus, we calculated the Sz-values for families
of isomeric phenylenes (namely phenylenes having the same number of hexagons) and
plotted them vs. the Sz-values of the respective hexagonal squeezes. Also in this case
it was found that the points lie on several parallel straight lines which now have slopes
equal to 3. A typical result of this kind is depicted in Ifig. 2, with the structures of (he

respective hexagonal squeezes shown in IMig. 3.
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Fig. 2. Relation between the Szeged numbers of [6]phenylenes and their hexagonal
squeezes (depicted in Fig. 3): the points lie on nine parallel lines, the cqua-
tions of which read: Sz(PH) =3 Sz(HS) — 12 k —693 with k = 0.2,3.6,8.9,
10, 13 and 14 for lines 1,2,34,5.6,7,8 and 9, respectively: in order to make
these lines easier to distinguish, line 8 has been moved upwards hy 200 units.
line 7 by 100 units, linc 6 by 600 units. etc; note that the syst
have equal Sz( P H )-values and also equal Sz(HS)-values, i.c.. two points on
line 6 coincide; the same is the case with systems 16 and 19, 17 and 23, I8
and 24, 21 and 26, 27 and 31, 29 and 32, so only 12 points appear on line 7

ems 1 and 15




000 00 oo oo o oo
%%@&@n%aﬁ
oaﬁmsn 0G0

dﬁd%(%éﬂ@él%

o@%@%(ﬁx@%ﬁ@o@ﬁ
2% w2 5

Fig. 3. The 37 hexagonal squeezes, corresponding to the 37 isomeric phenylencs
with 6 hexagons [11]; the systems associated with the lines occurring in
Fig. 2 are: 1 (line 1), 2 (line 2), 3 (line 3), 4,5,6,7 (line 4), 8,9,10,11 (k-
ne 5), 12,13,14,15 (line 6), 16,17....,33 (line 7), 34 (line 8) and 35.36.37
(line 9)
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I'he analogy with the Wiener number ends here. For the Szeged nunber no velation
of the kind (1) may exist, simply hecause there are isomeric stroctures possessing 1he
same inner dual, but lving on different straight lines. [The smallest example of this
kind is provided by the PH/HS-pairs in which the hexagonal squeezes are tetracene and
tetraphene, namely four cyclic (A = 4) unbranched catacondensed henzenoid svstems.
The inner duals of both tetracene and tetraphene are isomorphic to the d-vertex path.]
In the case of the Szeged number the structural details determining which isomers lie on
the same straight line, and which do not are much less easy to recognize. In what follows

we use the method of clementary edge-cuts [?] to shed some light on this problem.

An Identity for the Szeged Numbers of PH and HS

In what follows we use the same notation and terminology and in [?]. where the
respective definitions can be found. Thus, bearing in mind that the hexagonal squeezes
are catacondensed benzenoid systems [11], the Wiener and Szeged numbers of a hexagonal

squeeze satisfy the relations

241
(2) Sz(HS) =Y r(Cy) n'(Cy) n(Cy)
=1
and
2h+1
(3) W(HS)= Y »'(C) n"(C})
=]

in which (% stands for the i-th elementary edge—cut, dividing HS into [ragnients with
n(C;) and n”(C;) vertices, and intersecting r(C;) edges; the summations go over all
2h + 1 elementary edge—cuts. (Recall [?] that the number of elementary edge cuts of
a catacondensed system with h hexagons is equal to 2k + 1)

Relations fully analogous to (2) and (3) hold also for phenylenes [?, ?]. 1t is easy to
verify (for instance, by mathematical induction) that a phenylene with h hexagons has 34
elementary cuts. Tor reasons which will become clear below, we denote the clementary
edge—cuts of PH by Dy, Dz, ... Dopyr, Bv Eae o Enoy . Thecuts Dy o= 120,20+
go through hexagons of PH . whereas cach cut £; intersects only a single d-membered
cycle of PH (and therefore r(E;) =2 for all 1 = 1.2,..., = 1). Anillustrative example

is given in Fig. 4.
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With this notation. in parallel with Fqs. (2) and (3) we have

2h+1 h—1
(h Sz(Pll) = Z (D) (D) (D) 4+ 23 n'(E) n"(15)
=1
Eilld
2t
(5) W(PH) = Z n'(D;) n"(D;) + Z'n ;) n"(E;) .
i=1

Combining (4) and (5) we readily obtain
20+
(6) Sz(PH) — 2W(PH) = Z [F(D3) — 2] v'(D;) n"(Dy) .
Now, between the edge-cuts Dy, Da,..., Dopyr of a phenylene and the edge cuts
', Cy, ..., Capgr of the hexagonal squeeze there exists an obvious one—to-one correspon-

dence, see Fig. 4. By elementary combinatorial reasoning we prove:
(7) r(D;) = 20(C;) — 2

(8) n'(D;) [n ©)y—=1 ; ") = g [n"(Ci) —1]
which substituted back into (6) yields

Sz(PH) = 2W(PH) = Z[T‘ (C3) = 2w/ (C) n(C) = '(C) —n"(C) + 1] .

i=1

Taking into account that [?]
n'(C;) + n”(€;) = number of vertices of HS = 4h +2

and

2h41
Z r(C;) = number of edges of HS = 5h + 1

1=1

and bearing in mind the formulas (2) and (3) we arrive at the identity

(9) Sz(PH) — 2W(PH) = g [Sz(HS) — 2W(HS) — (4h* —3h — 1)} .



Fig. 4. The elementary edge-cuts of P/l and HS, from Fig. 1; notice the
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A Condition for Slope 3

Suppose that we have two isomeric phenylenes — PH, and PHy, - andd thal the re-
spective hexagonal squeczes are HS, and HS;. The slope of the Sz(PH)/S=(HS)-line is
then

(16} _ S:(PH,) — S=(PIl)

7= GI(HS) ZS=(HS)
Suppose further that the inner duals of PH, and PH, coincide. If so. then [6. 7] the slope

of the W(PH)/W(HS)line is equal to 9/1, i.e.,

W(PH,) = W(PHy) 9

W(HS,) —W(HS,) 4
1e.,

(11 W(PH,) - W(PH,) = %1&1’(!—!5‘,,) —W(HS,)] -

Combining Eq. (10) with the identity (9), and using relation (11). we obtain after
simple calculation

(12) e 9 W(HS,) — W(HS,)

The remarkable property of expression (12) is that its right-hand side is independent of
the phenylene and is fully determined solely by the Sz- and W-values of the hexagonal
squeezes. From (12) it immediately follows that the slope o of the will be equal to 3 if
the below condition is obeyed:

(13) Sz(HS:) — 5z(HS,) 3
' W(HS,) —wW(Hs,)
It should be noted that not all PH/H S-pairs satisfy the condition that their Szeged
numbers lie on slope-3 straight lines (i.c., that their hexagonal squeezes obey Eq. (13).
The smallest. example of the violation of the slope-3 rule is provided by the linear and

angular [4]phenylenes, the hexagonal squeezes of which are tetracene and tetraphene,

respectively. The corresponding Sz(P1H)/S=z(HS)-line has slope 56/16 = 3.0
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Slope—3 Relations between Szeged Numbers of Isomeric

Phenylenes

[n this section we demonstrate that condition (13) is satislied for numerons pairs ol
isomeric phenylenes.  Because of relation (12) it is enough to examine (he hexagonal
squeezes.

Rule 1. I the hexagoual squeezes of the phenylene isomers PH, and P11, have the
structures shown in diagramns la and 1b in Fig. 5, where Q. R and & symbolize

arbitrary fragments (not all four of which need to be present in the molecule), then the

slope of the Sz(PH)/Sz(HS5)-lne is equal to 3.

3qa 3b

Fig. 5. llexagonal squeezes of pairs of 1someric phenylenes for which the
Sz(PH)/Sz(HS)-liue has slope equal to 3

Proof. With a single exception. to each elementary edge cut of 1a there corresponds a
cut of 1b with the same valuc of the parameters r. 2, n”. The only cuts which differ in
la and 1b arc those indicated in Fig. 5 by ), and (%,

Formulas (2) and (3) show that every elementary edge-cut has a distinet contribution

to the Szeged and Wiener numbers. Now, in the case of the isomeric pair 1a, Ib all such
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contributions are equal. excepl for the cuts (', and (5, . Consequently. the dilferences
Sz(HS,) — Sz(HS)  and  W(HS,) — W(HS,)
depend solely on ', and Cy . Because of v(C) = v((7) =3,
Sz(HE,) — Sz(HS) =3 n(C) n(CL) — 3 0 (Cy) n(Ch)

WHS,) — W(HS,) = w(C) n"(C) —n'(Cy) #((5)
aud we readily see that condition (3) is satisfied. O

Rule 1 is immediately generalized: If the two phenylene isomers differ in only one
clementary edge cut, and if this cut intersects r edges of the hexagonal squeeze. then the

slope of the Sz(IPH)/Sz(H{S)-line is equal to
9 1
de 1T

Rule 2. If the hexagonal squeezes of the phenylene isomers PH, and P, have the

&

structures shown in diagrams 2a and 2b in Fig. 5, where R symbolizes and arbitrary

[ragment, then the slope of the Sz(FH)/Sz(HS)-line is equal to 3.

Proof. The isomers 2a and 2b differ in two elementary edge-cuts, indicated m Fig. 5

as C1.C7 CLL O 1f the number of vertices of the fragment R is denoted by 1. then by

direct counting we obtain:
r(C) =2 1 A(C)=np+d ; n"(C)=7
MO =4 5 WO =nn+3 5 w(CH) =T
() =3 ; W(C)=np+7 ; W"(Ci)=5
rCN =3 ; n(CH=na+3 ; 2"(C))=9.
When these relations are substituted back into the the expressions
So11S,) = S2HS) = r(C4) 1/ (CL) (€4 +r(C) () (€

r(C0) 0 (CL) n™(CF) — O R 1CY) 0"(CY)



and
WS, = W(HS) = a'(C0) n"(C) + ' (C) ()=
WG WG] — () ()

the validity of condition (13} is verificd after a tedious calculation. 0

Rule 3. The statement of Rule 2 holds also for the isomers 3a and 3b from [Fig. 5.

Proof. In the case of the isomers 3a, 3b we have to co

sider the (different ) contributions
of three pairs of elementary edge-cuts. indicated in Fig. 5. Otherwise the prool of Rule

3 is analogous to the prool of Rule 2. O

An Example

By means of Rules 1-3 it is possible to explain why some phenylenes helong to the
same slope-3 family (cf. TFig. 2). This will be illustrated on the phenylenes whose
hexagonal squeczes arc depicted in Fig. 3 as diagrams 16,17,....33. Tor these molecules
the relation

Sz(PH) =3 5z(HS) - 813

was found to hold.

The systems 16-30 are unbranched catacondensed benzenoids. Therefore their in-
ner duals coincide. It will be assumed that their hexagons are labeled consecutively by
1,2,34,5,6, starting with the left-hand side terminal hexagon. Further. the transforma-
tions 1la — 1b , 2a — 2b and 3a — 3b | occurring in Rules 1, 2 and 3 (¢[. Fig. 3)
will be ahbreviated by ), Ra and Ks, respectively. Clearly, if two hexagonal squeezes
are interconverted by either 1) or Ky or Ry, then they pertain to the same slope -3 line.

Now, the hexagonal squeezes 16-30 are all related by the transformations 7. /7,
and/or I¥5. To see this, start with the molecule 19:

Application of Rz to the hexagons 1,2.3.4 of 19 results in 16.
Application of Ry to the hexagons 3.4 of 16 results in 21,
Application of H» to the hexagons 4.5.6 of 19 results in 23.
Application of Ry to the hexagons 1,234 of 23 results in 17.

Application of 7y to the hexagons 4.5 of 17 results in I8,
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Application of By to the hexagons 3.1 of I8 results in 22
Application of Hy to the hexagons 1,2.3 of 22 results in 29.
Application of 15 1o the hexagons 1,23 of 18 results in 26.
Application of [ to the hexagons 3.4 of 26 vesults in 27.
Application of I, to the hexagons 3,4 of 27 results in 30.
Application of £y to the hexagons 3.4 of 1T results in 20.
Application of B, to the hexagons 1,23 of 20 results in 15.
Application of Ry to the hexagons 1,2.3 of 17 results in 28.
Application of Ry to the hexagons 1,5 of 23 results in 24

Therefore, by Rules 1, 2 and 3 the Sz(PH)/Sz(HS)-points of the phenylenes whose
hexagonal squeezes are [6-30 all ke on the same slope 3 line.

The hexagonal squeezes 31-33 are branched benzenoids; their inner duals are isomor-
phic and, of course, different from the inner duals of systems 16-30. The molecule 32 pos-
sesses two structural features to which the transformation Ry is applicable. One I7) trans-
forms 32 into 31, the other transforms 32 into 33. Consequently, the Sz(PH)/S:(115)-

points pertaining to molecules 31,32,33 lie on the same slope -3 line.

Concluding Remarks

Rules 1-3 sullice to recognize almost all members of families of phenylenes whose
Sz(PH)/Sz(HS)-points lie on the same straight line, and in the same time prove a
structural characterization of these families. However, Rules 1-3 are not complete.

TFor instance, the fact that the points corresponding to both the unbranched molecules
16-30 and the branched molecules 31-33 lie on one and the same slope 3 line cannot bhe
deduced by means of the present rules. The finding that phenylenes with nou isomorphic
inner duals may belong to the same family has, so far, found no satisfactory explanation.
Whereas the analogous W(PH)/W(HS) problem has been completely solved by the
discovery of Iiq. (1), no generally valid mathematical relation between the Szeged nmbers
of phenylenes and their hexagonal squeezes is known. Therefore further research in this

direction s desirable.
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