
Computable Structure Theory:

Within the arithmetic

Draft

Antonio Montalbán

Draft of Part 1 - Compiled on June 25, 2019

Saved: June, 2019
Compiled: June 25, 2019

I dedicate this book to my family back home: Manu, Facu, Mariana,
Javier, Patsy, and Nino.

Contents

Preface vii
Acknowledgements ix

Notation and Conventions xi
The computable functions xi
Sets and strings xiv
Reducibilities xv
Many-one reducibility xv
One-one reducibility xv
Turing reducibility xv
Enumeration reducibility xvii
Positive reducibility xvii
The Turing jump xvii
Vocabularies and languages xviii
Orderings xix
The arithmetic hierarchy xx

Chapter I. Structures 1
I.1. Presentations 1
I.1.1. Atomic diagrams 2
I.1.2. An example 2
I.1.3. Relaxing the domain 3
I.1.4. Relational vocabularies 4
I.1.5. Finite structures and approximations 4
I.1.6. Congruence structures 7
I.1.7. Enumerations 8
I.2. Presentations that code sets 9

Chapter II. Relations 11
II.1. Relatively intrinsic notions 11
II.1.1. R.i.c.e. relations 11
II.1.2. R.i. computability 13
II.1.3. A syntactic characterization 15
II.1.4. Coding sets of natural numbers 19
II.1.5. Joins 21

iii

iv CONTENTS

II.2. Complete relations 22
II.2.1. R.i.c.e. complete relations 22
II.2.2. Diagonalization 24
II.2.3. Structural versus binary information 25
II.3. Examples of r.i.c.e. complete relations 26
II.4. Superstructures 30
II.4.1. The hereditarily finite superstructure 31

Chapter III. Existentially-atomic models 35
III.1. Definition 35
III.2. Existentially algebraic structures 37
III.3. Cantor’s back-and-forth argument 39
III.4. Uniform computable categoricity 40
III.5. Existential atomicity in terms of types 43
III.6. Building structures and omitting types 44
III.7. Scott sentences of existentially atomic structures. 47
III.8. Turing degree and enumeration degree 49

Chapter IV. Generic presentations 55
IV.1. Cohen generic reals 56
IV.2. Generic enumerations of sets 61
IV.3. Generic enumerations of structures 62
IV.4. Relations on generic presentations 64

Chapter V. Degree spectra 67
V.1. The c.e. embeddability condition 67
V.2. Co-spectra 69
V.3. Degree spectra that are not possible 71
V.3.1. No two cones 72
V.3.2. Upward closure of Fσ 72
V.4. Some particular degree spectra 77
V.4.1. The Slaman–Wehner Family 77

Chapter VI. Comparing structures and classes of structures 81
VI.1. Muchnik and Medvedev reducibilities 81
VI.2. Turing-computable embeddings 88
VI.2.1. Examples 88
VI.3. Computable functors and effective interpretability 93
VI.3.1. Effective bi-interpretability 96
VI.3.2. Making structures into graphs 99
VI.4. Reducible via effective bi-interpretability 102

Chapter VII. Finite-injury constructions 105
VII.1. Priority constructions 105

CONTENTS v

VII.2. The method of true stages 108
VII.2.1. The increasing settling-time function 109
VII.2.2. Domination properties 110
VII.2.3. A couple of examples 112
VII.3. Approximating the settling-time function 115
VII.4. A construction of linear orderings 118

Chapter VIII. Computable categoricity 123
VIII.1. The basics 123
VIII.2. Relative computable categoricity 124
VIII.3. Categoricity on a cone 129
VIII.4. When relative and plain computable categoricity

coincide 131
VIII.5. When relative and plain computable categoricity

diverge 138

Chapter IX. The jump of a structure 147
IX.1. The jump-inversion theorems 148
IX.1.1. The first jump-inversion theorem 148
IX.1.2. An application of the first jump-inversion theorem 150
IX.1.3. The second jump-inversion theorem 151
IX.1.4. Application of the the second jump-inversion theorem 152
IX.2. The jump jumps — or does it? 154

Chapter X. Σ-small classes 159
X.1. Infinitary Π1 complete relations 160
X.2. A sufficient condition 164
X.3. The canonical structural jump 169
X.4. The low property 171
X.5. Listable classes 173
X.6. The copy-vs-diagonalize game 180
X.6.1. Low Boolean algebras 184

Bibliography 191

Preface

We all know that in mathematics there are proofs that are more
difficult than others, constructions that are more complicated than
others, and objects that are harder to describe than others. The objec-
tive of computable mathematics is to study this complexity, to measure
it, and to find out where it comes from. Among the many aspects
of mathematical practice, this book concentrates on the complexity of
structures. By structures, we mean objects like rings, graphs, or lin-
ear orderings, which consist of a domain on which we have relations,
functions, and constants.

Computable structure theory studies the interplay between com-
plexity and structure. By complexity, we mean descriptional or com-
putational complexity, in the sense of how difficult it is to describe
or compute a certain object. By structure, we refer to algebraic or
structural properties of mathematical structures. The setting of com-
putable structure theory is that of infinite countable structures and
thus, within the whole hierarchy of complexity levels developed by lo-
gicians, the appropriate tools come from computability theory: Turing
degrees, the arithmetic hierarchy, the hyperarithmetic hierarchy, etc.
These structures are like the ones studied in model theory, and we will
use a few basic tools from there too. The intention is not, however,
to effectivize model theory, and our motivations are very different that
those of model theory. Our motivations come from questions of the
following sort: Are there syntactical properties that explain why cer-
tain objects (like structures, relations, or isomorphisms) are easier or
harder to compute or to describe?

The objective of this book is to describe some of the main ideas
and techniques used in the field. Most of these ideas are old, but for
many of them, the style of the presentation is not. Over the last few
years, the author has developed new frameworks for dealing with these
old ideas — for instance, for forcing, r.i.c.e. relations, jumps, Scott
ranks, and back-and-forth types. One of the objectives of the book is
to present these frameworks in a concise and self-contained form.

vii

viii PREFACE

The modern state of the field, and also the author’s view of the sub-
ject, has been influenced greatly by the monograph by Ash and Knight
[AK00] published in 2000. There is, of course, some intersection be-
tween that book and this one. But even within that intersection, the
approach is different.

The intended readers are graduate students and researchers working
on mathematical logic. Basic background in computability and logic, as
is covered in standard undergraduate courses in logic and computabil-
ity, is assumed. The objective of this book is to describe some of the
main ideas and techniques of the field so that graduate students and
researchers can use it for their own research.

This book is part I of a monograph that actually consists of two
parts: within the arithmetic and beyond the arithmetic.

Part I, Within the arithmetic, is about the part of the theory that
can be developed below a single Turing jump. The first chapters in-
troduce what the author sees as the basic tools to develop the theory:
ω-presentations, relations, and D-atomic structures, as treated by the
author in [Mon09, Mon12, Mon13c, Mona]. Many of the topics
covered in Part I (like Scott sentences, 1-generics, the method of true
stages, categoricity, etc.) will then be generalized through the transfi-
nite in part II. Σ-small classes, covered in the last chapter, have been
a recurrent topic in the author’s work, as they touch on many as-
pects of the theory and help to explain previously observed behaviors
[HM12, HM, Mon10, Mon13b].

Part II, Beyond the arithmetic, moves into the realm of the hyper-
arithmetic and the infinitary languages. To fully analyze the complex-
ity of a structure, staying within the arithmetic is not enough. The
hyperarithmetic hierarchy goes far enough to capture the complexity
levels of relations in almost all structures, though we will see there are
some structures whose complexity goes just beyond. The first half of
Part II develops the basic theory of infinitary logic, Π1

1 sets, and the
hyperarithmetic hierarchy. In the second half, the main chapters are
those on forcing and the α-priority method. The exposition of forcing
is only aesthetically new (similar to that in [HTMM]). The presen-
tation of Ash’s α-priority method will be more than just aesthetically
different. It will use the method of α-true stages developed in [Mone].
We also draw connections with descriptive set theory, and some of
the more recent work from [Mon13a, Monb, MM]. The chapter on
comparability of classes treats old topics like Borel reducibility, but also

ACKNOWLEDGEMENTS ix

newer topics like effective reducibility of classes of computable struc-
tures [FF09, FFH`12, Monc] and the connections between functors
and interpretability [HTMMM, HTMM]. Here is the tentative list
of chapters of part II.

Table of contents of [MonP2]:

Chapter I: Ordinals
Chapter II: Infinitary Logic
Chapter III: Computably Infinitary Languages
Chapter IV: Pi-one-one Sets
Chapter V: Hyperarithmetic Sets
Chapter VI: Overspill
Chapter VII: Forcing
Chapter VIII: α-True-Stage Arguments
Chapter IX: Comparing Classes of Structures
Chapter X: Vaught’s Conjecture

Acknowledgements

Many people helped in different ways throughout the long process
that was writing this book, and I’m grateful to all of them even if it’d
be impossible to name them all. Many people sent me comments and
typos along the years. First, I’d like to thank James Walsh for proof
reading the whole book. Julia Knight, Peter Cholak, Richard A. Shore,
and Barbara Csima ran seminars in Notre Dame, Cornell, and Waterloo
following earlier drafts. They then sent my typos and comments, and
got their students to send me typos too — that was extremely useful.
In particular, Julia Knight game me lots of useful feedback. So did
my students Matthew Harrison-Trainor and Noah Schweber, and also
Asher Kach, Jonny Stephenson, and Dino Rossegger.

I learned the subject mostly from Julia Knight and from my Ph.D.
advisor Richard A. Shore. I also learned a lot form Ted Slaman, Rod
Downey, and Denis Hirschfeldt. I owe them all a great debt.

My work was partially supported by NSF grants DMS-1363310 and
DMS-1700361, by the Packard fellowship, and by the Simons fellowship
561299.

Notation and Conventions

The intention of this section is to refresh the basic concepts of com-
putability theory and structures and set up the basic notation we use
throughout the book. If the reader has not seen basic computabil-
ity theory before, this section would be too fast an introduction and
we recommend starting with other textbooks like Cutland [Cut80],
Cooper [Coo04], Enderton [End11], or Soare [Soa16].

The computable functions

A function is computable if there a purely mechanical process to
calculate its values. In today’s language, we would say that f : NÑ N
is computable if there is a computer program that, on input n, out-
puts fpnq. This might appear to be too informal a definition, but the
Turing–Church thesis tells us that it does not matter which method
of computation you choose, you always get the same class of functions
from N to N. The reader may choose to keep in mind whichever defi-
nition of computability feels intuitively more comfortable, be it Turing
machines, µ-recursive functions, lambda calculus, register machines,
Pascal, Basic, C++, Java, Haskel, or Python.˚ We will not use any
particular definition of computability, and instead, every time we need
to define a computable function, we will just describe the algorithm in
English and let the reader convince himself or herself that it can be
written in the programing language he or she has in mind.

The choice of N as the domain and image for the computable func-
tions is not as restrictive as it may sound. Every hereditarily finite
object: can be encoded by just a single natural number. Even if for-
mally we define computable functions as having domain N, we think
of them as using any kind of finitary object as inputs or outputs. This
should not be surprising. It is what computers do when they encode

˚For the reader with a computer science background, let us remark that we
do not impose any time or space bound on our computations — computations just
need to halt and return an answer after a finitely many steps using a finite amount
of memory.

:A hereditarily finite object consist of a finite set or tuple of hereditarily finite
objects.

xi

xii NOTATION AND CONVENTIONS

everything you see on the screen using finite binary strings, or equiva-
lently, natural numbers written in binary. For instance, we can encode
pairs of natural numbers by a single number using the Cantor pairing
function xx, yy ÞÑ ppx` yqpx` y ` 1q{2` yq, which is a bijection from
N2 to N whose inverse is easily computable too. One can then encode
triples by using pairs of pairs, and then encode n-tuples, and then tu-
ples of arbitrary size, and then tuples of tuples, etc. In the same way,
we can consider standard effective bijections between N and various
other sets like Z, Q, Vω, Lω,ω, etc. Given any finite object a, we use
Quine’s notation xay to denote the number coding a. Which method of
coding we use is immaterial for us so long as the method is sufficiently
effective. We will just assume these methods exist and hope the reader
can figure out how to define them.

Let

Φ0,Φ1,Φ2,Φ3, ...

be an enumeration of the computer programs ordered in some effective
way, say lexicographically. Given n, we write Φepnq for the output of
the eth program on input n. Each program Φe calculates the values
of a partial computable function N á N. Let us remark that, on some
inputs, Φepnq may run forever and never halt with an answer, in which
case Φepnq is undefined. If Φe returns an answer for all n, Φe is said
to be total — even if total, these functions are still included within the
class of partial computable functions. The computable functions are the
total functions among the partial computable ones. We write ΦepnqÓ to
mean that this computation converges, that is, that it halts after a finite
number of steps; and we write ΦepnqÒ to mean that it diverges, i.e.,
it never returns an answer. Computers, as Turing machines, run on a
step-by-step basis. We use Φe,spnq to denote the output of Φepnq after s
steps of computation, which can be either not converging yet (Φe,spnqÒ)
or converging to a number (Φe,spnqÓ “ m). Notice that, given e, s, n, we
can decide whether Φe,spnq converges or not, computably: All we have
to do is run Φepnq for s steps. If f and g are partial functions, we write
fpnq “ gpmq to mean that either both fpnq and gpmq are undefined,
or both are defined and have the same value. We write f “ g if
fpnq “ gpnq for all n. If fpnq “ Φepnq for all n, we say that e is an
index for f . The Padding Lemma states that every partial computable
function has infinitely many indices — just add dummy instructions at
the end of a program, getting essentially the same program, but with
a different index.

THE COMPUTABLE FUNCTIONS xiii

In his famous 1936 paper, Turing showed there is a partial com-
putable function U : N2 Ñ N that encodes all other computable func-
tions in the sense that, for every e, n,

Upe, nq “ Φepnq.

This function U is said to be a universal partial computable function.
It does essentially what computers do nowadays: You give them an
index for a program and an input, and they run it for you. We will not
use U explicitly throughout the book, but we will constantly use the
fact that we can computably list all programs and start running them
one at the time, using U implicitly.

We identify subsets of N with their characteristic functions in 2N,
and we will move from one viewpoint to the other without even men-
tioning it. For instance, a set A Ď N is said to be computable if its
characteristic function is.

An enumeration of a set A is nothing more than an onto function
g : N Ñ A. A set A is computably enumerable (c.e.) if it has an enu-
meration that is computable. The empty set is computably enumerable
too. Equivalently, a set is computably enumerable if it is the domain
of a partial computable function.; We denote

We “ tn P N : ΦepnqÓu and We,s “ tn P N : Φe,spnqÓu.

As a convention, we assume that We,s is finite, and furthermore, that
only on inputs less than s can Φe converge in less than s steps. One
way to make sense of this is that numbers larger than s should take
more than s steps to even be read from the input tape. We sometimes
use Lachlan’s notation: Werss instead of We,s. In general, if a is an
object built during a construction and whose value might change along
the stages of the construction, we use arss to denote its value at stage
s. A set is co-c.e. if its complement is c.e.

Recall that a set is computable if and only if it and its complement
are computably enumerable.

The recursion theorem gives us one of the most general ways of
using recursion when defining computable functions. It states that for
every computable function f : N2 Ñ N there is an index e P N such
that fpe, nq “ ϕepnq for all n P N. Thus, we can think of fpe, ¨q “ ϕep¨q
as a function of n which uses its own index, namely e, as a parameter
during its own computation, and in particular is allowed to call and

;If A “ rangepgq, then A is the domain of the partial function that, on input
m, outputs the first n with gpnq “ m if it exists.

xiv NOTATION AND CONVENTIONS

run itself.§ An equivalent formulation of this theorem is that, for every
computable function h : NÑ N, there is an e such that Whpeq “ We.

Sets and strings

The natural numbers are N “ t0, 1, 2,u. For n P N, we sometimes
use n to denote the set t0, ..., n ´ 1u. For instance, 2N is the set of
functions from N to t0, 1u, which we will sometimes refer to as infinite
binary sequences or infinite binary strings. For any set X, we use XăN

to denote the set of finite tuples of elements from X, which we call
strings when X “ 2 or X “ N. For σ P XăN and τ P XďN, we use
σaτ to denote the concatenation of these sequences. Similarly, for
x P X, σax is obtained by appending x to σ. We will often omit the
a symbol and just write στ and σx. We use σ Ď τ to denote that σ
is an initial segment of τ , that is, that |σ| ď |τ | and σpnq “ τpnq for
all n ă |σ|. This notation is consistent with the subset notation if we
think of a string σ as its graph txi, σpiqy : i ă |σ|u. We use xy to denote
the empty tuple. If Y is a subset of the domain of a function f , we use
f æ Y for the restriction of f to Y . Given f P XďN and n P N, we use
f æ n to denote the initial segment of f of length n. We use f ææ n for
the initial segment of length n` 1. For a tuple n̄ “ xn0, ..., nky P NăN,
we use f æ n̄ for the tuple xfpn0q,, fpnkqy. Given a nested sequence
of strings σ0 Ď σ1 Ď ¨ ¨ ¨ , we let

Ť

iPN σi be the possibly infinite string
f P XďN such that fpnq “ m if σipnq “ m for some i.

Given f, g P XN, we use f ‘ g for the function pf ‘ gqp2nq “ fpnq
and pf ‘ gqp2n` 1q “ gpnq. We can extend this to ω-sums and define
À

nPN fn to be the function defined by p
À

nPN fnqpxm, kyq “ fmpkq.
Conversely, we define f rns to be the nth column of f , that is, f rnspmq “
fpxn,myq. All these definitions work for sets if we think in terms of
their characteristic functions. So, for instance, we can encode countably
many sets tAn : n P Nu with one set A “ txn,my : m P Anu.

For a set A Ď N, the complement of A with respect to N is denoted
by Ac.

A tree on a set X is a subset T of XăN that is closed downward,
i.e., if σ P T and τ Ď σ, then τ P T too. A path through a tree T is
a function f P XN such that f æ n P T for all n P N. We use rT s to
denote the set of all paths through T . A tree is well-founded if it has
no paths.

§To prove the recursion theorem, for each i, let gpiq be an index for the par-
tial computable function ϕgpiqpnq “ fpϕipiq, nq. Let e0 be an index for the total
computable function g, and let e “ gpe0q. Then ϕepnq “ ϕgpe0q “ fpϕe0pe0q, nq “

fpgpe0q, nq “ fpe, nq.

REDUCIBILITIES xv

Reducibilities

There are various ways to compare the complexity of sets of natural
numbers. Depending on the context or application, some may be more
appropriate than others.

Many-one reducibility. Given sets A,B Ď N, we say that A is
many-one reducible (or m-reducible) to B, and write A ďm B, if there
is a computable function f : N Ñ N such that n P A ðñ fpnq P B
for all n P N. One should think of this reducibility as saying that all
the information in A can be decoded from B. Notice that the classes
of computable sets and of c.e. sets are both closed downwards under
ďm. A set B is said to be c.e. complete if it is c.e. and, for every other
c.e. set A, A ďm B.

Two sets are m-equivalent if they are m-reducible to each other,
denoted A ”m B. This is an equivalence relation, and the equivalence
classes are called m-degrees

There are, of course, various other ways to formalize the idea of one
set encoding the information from another set. Many-one reducibility
is somewhat restrictive in various ways: (1) to figure out if n P A, one is
allowed to ask only one question of the form “m P B?”; (2) the answer
to “n P A?” has to be the same as the answer to “fpnq P B?”. Turing
reducibility is much more flexible.

One-one reducibility. 1-reducibility is is like m-reducibility but
requiring the reduction to be one-to-one. The equivalence induced by
it, 1-equivalence, is one of the strongest notions of equivalence between
sets in computability theory — a computability theorist would view sets
that are 1-equivalent as being the same. Myhill’s theorem states that
two sets of natural numbers are 1-equivalent, i.e., each is 1-reducible
to the other, if and only if there is a computable bijection of N that
matches one set with the other.

Turing reducibility. Given a function f : N Ñ N, we say that a
partial function g : Ná N is partial f -computable if it can be computed
by a program that is allowed to use the function f as a primitive
function during its computation; that is, the program can ask questions
about the value of fpnq for different n’s and use the answers to make
decisions while the program is running. The function f is called the
oracle of this computation. If g and f are total, we write g ďT f
and say that g is Turing reducible to f , that f computes g, or that
g is f -computable. The class of partial f -computable functions can
be enumerated the same way as the class of the partial computable
functions. Programs that are allowed to query an oracle are called

xvi NOTATION AND CONVENTIONS

Turing operators or computable operators. We list them as Φ0, Φ1,...
and we write Φf

e pnq for the output of the eth Turing operator on input
n when it uses f as oracle. Notice that Φe represents a fixed program
that can be used with different oracles. When the oracle is the empty
set, we may write Φe for ΦHe matching the previous notation.

As we already mentioned, for a fixed input n, if Φf
e pnq converges, it

does so after a finite number of steps s. As a convention, let us assume
that in just s steps, it is only possible to read the first s entries from
the oracle. Thus, if σ is a finite substring of f of length greater than s,
we could calculate Φσ

e pnq without ever noticing that the oracle is not
an infinite string.

Convention: For σ P NăN, Φσ
e pnq is shorthand for

Φσ
e,|σ|pnq, which runs for at most |σ| stages.

Notice that given e, σ, n, it is computable to decide if Φσ
e pnqÓ.

As the class of partial computable functions, the class of partial
X-computable functions contains the basic functions; is closed under
composition, recursion, and minimization; can be listed in such a way
that we have a universal partial X-computable function (that satis-
fies the s-m-n theorem). In practice, with very few exceptions, those
are the only properties we use of computable functions. This is why
almost everything we can prove about computable functions, we can
also prove about X-computable functions. This translation is called
relativization. All notions whose definition are based on the notion of
partial computable function can be relativized by using the notion of
partial X-computable function instead. For instance, the notion of c.e.
set can be relativized to that of c.e. in X or X-c.e. set: These are the
sets which are the images of X-computable functions (or empty), or,
equivalently, the domains of partial X-computable functions. We use
WX
e to denote the domain of ΦX

e .
When two functions are Turing reducible to each other, we say that

they are Turing equivalent, which we denote by ”T . This is an equiv-
alence relation, and the equivalence classes are called Turing degrees.

Computable operators can be encoded by computable subsets of
NăN ˆ N ˆ N. Given Φ Ď NăN ˆ N ˆ N, σ P NăN, n, m, we write
Φσpnq “ m as shorthand for xσ, n,my P Φ. Then, given f P NN, we let

Φf
pnq “ m ðñ pDσ Ă fq Φσ

pnq “ m.

We then have that g is computable in f if and only if there is a c.e.
subset Φ Ď NăN ˆ N ˆ N such that Φf pnq “ gpnq for all n P N. A
standard assumption is that xσ, n,my P Φ only if n,m ă |σ|.

REDUCIBILITIES xvii

We can use the same idea to encode c.e. operators by computable
subsets of NăNˆN. Given W Ď NăNˆN, σ P NăN, and f P NN, we let

W σ
“ tn P N : xσ, ny P W u and W f

“
ď

σĂf

W σ.

We then have that X is c.e. in Y if and only if there is a c.e. subset
W Ď NăN ˆ N such that X “ W Y . A standard assumption is that
xσ, ny P W only if n ă |σ|.

Enumeration reducibility. Recall that an enumeration of a set
A is just an onto function f : NÑ A. Given A,B Ď N, we say that A
is enumeration reducible (or e-reducible) to B, and write A ďe B , if
every enumeration of B computes an enumeration of A. Selman [Sel71]
showed that we can make this reduction uniformly: A ďe B if and only
if there is a Turing operator Φ such that, for every enumeration f of
B, Φf is an enumeration of A. (See Theorem IV.12.) Another way
of defining enumeration reducibility is via enumeration operators: An
enumeration operator is a c.e. set Θ of pairs that acts as follows: For
B Ď N, we define

ΘB
“ tn : pDD Ďfin Bq xxDy, ny P Θu,

where Ďfin means ‘finite subset of.’ Selman also showed that A ďe B
if and only if there is an enumeration operator Θ such that A “ ΘB.

The Turing degrees embed into the enumeration degrees via the
map ιpAq “ A‘Ac. It is not hard to show that A ďT B ðñ ιpAq ďe
ιpBq.

Positive reducibility. We say that A positively reduces to B, and
write A ďp B, if there is a computable function f : NÑ pNăNqăN such
that, for every n P N, n P A if and only if there is an i ă |fpnq| such
that every entry of fpnqpiq is in B [Joc68]. That is,

n P A ðñ
ł

iă|fpnq|

ľ

jă|fpnqpiq|

fpnqpiqpjq P B.

Notice that ďp implies both Turing reducibility and enumeration re-
ducibility, and is implied by many-one reducibility. In particular, the
classes of computable sets and of c.e. sets are both closed downwards
under ďp.

The Turing jump. Let K be the domain of the universal partial
computable function. That is,

K “ txe, ny : ΦepnqÓu “
à

ePN
We.

xviii NOTATION AND CONVENTIONS

K is called the halting problem.¶ It is not hard to see that K is c.e. com-
plete. Using a standard diagonalization argument, one can show that
K is not computable.} It is common to define K as te : ΦepeqÓu instead
— the two definitions give 1-equivalent sets. We will use whichever is
more convenient in each situation. We will often write 01 for K.

We can relativize this definition and, given a set X, define the
Turing jump of X as

X 1
“ te P N : ΦX

e peqÓu.

Relativizing the properties of K, we get that X 1 is X-c.e.-complete,
that X ďT X

1, and that X 1 ęT X. The Turing degree of X 1 is strictly
above that of X — this is why it is called a jump. The jump defines
an operation on the Turing degrees. Furthermore, for X, Y Ď N, X ďT
Y ðñ X 1 ďm Y 1.

The double iteration of the Turing jump is denoted X2, and the
n-th iteration by Xpnq.

Vocabularies and languages

Let us quickly review the basics about vocabularies and structures.
Our vocabularies will always be countable. Furthermore, except for a
few occasions, they will always be computable.

A vocabulary τ consists of three sets of symbols tRi : i P IRu,
tfi : i P IF u, and tci : i P ICu; and two functions aR : IR Ñ N and
aF : IF Ñ N. Each of IR, IF , and IC is an initial segment of N. The
symbols Ri, fi, and ci represent relations, functions, and constants,
respectively. For i P IR, aRpiq is the arity of Ri, and for i P IF , aF piq is
the arity of fi.

A vocabulary τ is computable if the arity functions aR and aF are
computable. This only matters when τ is infinite; finite vocabularies
are trivially computable.

Given such a vocabulary τ , a τ -structure is a tuple

M “ pM ; tRM
i : i P IRu, tf

M
i : i P IF u, tc

M
i : i P ICuq,

where M is just a set called the domain of M, and the rest are interpre-
tations of the symbols in τ . That is, RM

i ĂMaRpiq, fM
i : MaF piq ÑM ,

and cMi PM . A structure is a τ -structure for some τ .
Given two τ -structures A and B, we write A Ď B to mean that

A is a substructure of B, that is, that A Ď B, fA
i “ fB

i æ A
aF piq,

¶The ‘K’ is for Kleene.
}If it were computable, so would be the set A “ te : xe, ey R Ku. But then

A “ We for some e, and we would have that e P A ðñ xe, ey R K ðñ e R
We ðñ e R A.

ORDERINGS xix

RA
j “ RB

j æ A
aRpiq and cAk “ cBk for all symbols fi, Rj and ck. This

notation should not be confused with A Ď B which only means that the
domain of A is a subset of the domain of B. If A is a τ0-structure and B
a τ1-structure with τ0 Ď τ1,˚˚ A Ď B means that A is a τ0-substructure
of B æ τ0, where B æ τ0 is obtained by forgetting the interpretations of
the symbols of τ1 r τ0 in B. B æ τ0 is called the τ0-reduct of B, and B
is said to be an expansion of B æ τ0.

Given a vocabulary τ , we define various languages over it. First,
recursively define a τ -term to be either a variable x, a constant symbol
ci, or a function symbol applied to other τ -terms, that is, fipt1, ..., taF piqq,
where each tj is a τ -term we have already built. The atomic τ -formulas
are the ones of the form Ript1, ..., taRpiqq or t1 “ t2, where each ti is a
τ -term. A τ -literal is either a τ -atomic formula or a negation of a τ -
atomic formula. A quantifier-free τ -formula is built out of literals using
conjunctions, disjunctions, and implications. If we close the quantifier-
free τ -formulas under existential quantification, we get the existential
τ -formulas, of D-formulas. Every τ -existential formula is equivalent to
one of the form Dx1 ¨ ¨ ¨ Dxk ϕ, where ϕ is quantifier-free. A universal
τ -formula, or @-formula, is one equivalent to @x1 ¨ ¨ ¨ @xk ϕ for some
quantifier-free τ -formula ϕ. An elementary τ -formula is built out of
quantifier-free formulas using existential and universal quantifiers. We
also call these the finitary first-order formulas.

Given a τ structure A, and a tuple ā P AăN, we write pA, āq for the
τ Y c̄-structure where c̄ is a new tuple of constant symbols and c̄A “ ā.
Given R Ď N ˆ AăN, we write pA, Rq for the rτ structure where rτ is
defined by adding to τ relations symbols Ri,j of arity j for i, j P N, and
RA
i,j “ tā P A

j : xi, āy P Ru.

Orderings

Here are some structures we will use quite often in examples. A
partial order is a structure over the vocabulary tďu with one binary
relation symbol which is transitive (x ď y & y ď z Ñ x ď z), reflexive
(x ď x), and anti-symmetric (x ď y & y ď xÑ x “ y). A linear order
is a partial order where every two elements are comparable (@x, y px ď
y _ y ď xq). We will often add and multiply linear orderings. Given
linear orderings A “ pA;ďAq and B “ pB;ďBq, we define A` B to be
the linear ordering with domain A\B, where the elements of A stand
below the elements of B. We define AˆB to be the linear ordering with
domain AˆB where xa1, b1y ďAˆB xa2, b2y if either b1 ăB b2 or b1 “ b2

˚˚By τ0 Ď τ1 we mean that every symbol in τ0 is also in τ1 and with the same
arity

xx NOTATION AND CONVENTIONS

and a1 ďA a2 — notice we compare the second coordinate first.:: We
will use ω to denote the linear ordering of the natural numbers and Z
and Q for the orderings of the integers and the rationals. We denote
the finite linear ordering with n elements by n. We use A˚ to denote
the reverse ordering pA;ěAq of A “ pA,ďAq. For a ăA b P A, we
use the notation A æ pa, bq or the notation pa, bqA to denote the open
tx P A : a ăA x ăA bu. We also use A æ a to denote the initial segment
of A below a, which we could also denote as p´8, aqA.

As mentioned above, a tree T is a downward closed subset of XăN.
As a structure, a tree can be represented in various ways. One is as
a partial order pT ;Ďq using the ordering on strings. Another is as a
graph where each node σ P T other than the root is connected to its
parent node σ æ |σ ´ 1|, and there is a constant symbol used for the
root of the tree. We will refer to these two types of structures as trees
as orders and trees as graphs.

A partial order where every two elements have a least upper bound
(x_ y) and a greatest lower bound (x^ y) is called a lattice. A lattice
with a top element 1, a bottom element 0, and where every element
x has a complement (that is an element xc such that x _ xc “ 1 and
x ^ xc “ 0) is called a Boolean algebra. The vocabulary for Boolean
algebras is t0, 1,_,^, ¨cu, and the ordering can be defined by x ď

y ðñ y “ x_ y.

The arithmetic hierarchy

Consider the structure pN; 0, 1,`,ˆ,ďq. In this vocabulary, the
bounded formulas are built out of the quantifier-free formulas using
bounded quantifiers of the form @x ă y and Dx ă y. A Σ0

1 formula is
one of the form Dx ϕ, where ϕ is bounded; and a Π0

1 formula is one
of the form @x ϕ, where ϕ is bounded. By coding tuples of numbers
by a single natural number, one can show that formulas of the form
Dx0Dx1 ¨ ¨ ¨ ...Dxk ϕ are equivalent to Σ0

1 formulas. Post’s theorem as-
serts that a set A Ď N is c.e. if and only if it can be defined by a Σ0

1

formula. Thus, a set is computable if and only if it is ∆0
1, that is, if it

can be defined by both a Σ0
1 and Π0

1 formulas.
By recursion, we define the Σ0

n`1 formulas as those of the form Dx ϕ,
where ϕ is Π0

n; and the Π0
n`1 formulas as those of the form @x ϕ, where

ϕ is Σ0
n. A set is ∆0

n if it can be defined by both a Σ0
n formula and

a Π0
n formula. Again, in the definition of Σ0

n`1 formulas, using one
existential quantifier or many makes no difference. What matters is
the number of alternations of quantifiers. Post’s theorem asserts that

::A times B is A B times.

THE ARITHMETIC HIERARCHY xxi

a set A Ď N is c.e. in 0pnq if and only if it can be defined by a Σ0
n`1

formula. In particular, a set is computable from 01 if and only if it
is ∆0

2. The Shoenfield Limit Lemma says that a set A is ∆0
2 if and

only if there is a computable function f : N2 Ñ N such that, for each
n P N, if n P A then fpn, sq “ 1 for all sufficiently large s, and if
n R A then fpn, sq “ 0 for all sufficiently large s. This can be written
as χApnq “ limsÑ8 fpn, sq, where χA is the characteristic function of
A and the limit with respect to the discrete topology of N where a
sequence converges if and only if it is eventually constant.

The language of second-order arithmetic is a two-sorted language
for the structure pN,NN; 0, 1,`,ˆ,ďq. The elements of the first sort,
called first-order elements, are natural numbers. The elements of the
second sort, called second-order elements or reals, are functions NÑ N.
The vocabulary consists of the standard vocabulary of arithmetic, 0, 1,
+, ˆ, ď which is used on the first-order elements, and an application
operation denoted F pnq for a second-order element F and a first-order
element n. A formula in this language is said to be arithmetic if it
has no quantifiers over second-order objects. Among the arithmetic
formulas, the hierarchy of Σ0

n and Π0
n formulas are defined exactly as

above. Post’s theorem that Σ0
1 sets are c.e. also applies in this context:

For every Σ0
1 formula ψpF, nq, where n a number variable and F is a

function variable, there is c.e. operator W such that n P W F ðñ

ψpF, nq. We can then build the computable tree Tn “ tσ P NăN : n R
W σu and we have that ψpF, nq holds if and only if F is not a path
through Tn. A Π0

1 class is a set of the form tF P NN : ψpF qu for some
Π0

1 formula ψpF q. The observation above shows how every Π0
1 class is

of the form rT s for some computable tree T Ď NăN.

CHAPTER I

Structures

Algorithms, Turing machines, and modern computer programs all
work with finitary objects, objects that usually can be encoded by
finite binary strings or just by natural numbers. For this reason, com-
putability theory concentrates on the study of the complexity of sets
of natural numbers. To study the computational properties of a count-
able mathematical structure, the first approach is to set the domain of
the structure to be a subset of the natural numbers and then borrow
the tools we already have from computability theory. One issue comes
up: There might be many bijections between the domain of a struc-
ture and the natural numbers, inducing many different presentations
of the structure with different computability-theoretic properties. The
interplay between properties of presentations (computational proper-
ties) and properties of isomorphism types (structural properties) is one
of the main themes of computable structure theory.

We start this chapter by introducing various ways of represent-
ing structures so that we can analyze their computational complexity.
These different types of presentations are essentially equivalent, and
the distinctions are purely technical and not deep. However, they will
allow us to be precise later. At the end of the chapter we prove Knight’s
theorem that all non-trivial structures have presentations that code any
given set.

I.1. Presentations

All the structures we consider are countable. So, unless otherwise
stated, “structure” means “countable structure.” Furthermore, we usu-
ally assume that the domains of our structures are subsets of N. This
will allow us to use everything we already know about computable
functions on N.

Definition I.1. An ω-presentation is nothing more than a struc-
ture whose domain is N.˚ Given a structure A, when we refer to an

˚The use of the word presentation here has nothing to do with its use in group
theory. There, a presentation of a group consists a a list of generators and a list of
relations among them. You might have a group with a computable presentation,

1

2 I. STRUCTURES

ω-presentation of A or to a copy of A, we mean an ω-presentation M
which is isomorphic to A. An ω-presentation M is computable if all its
relations, functions, and constants are uniformly computable; that is,
if the set τM, defined as

(1) τM “
à

iPIR

RM
i ‘

à

iPIF

FM
i ‘

à

iPIC

tcMi u,

is computable. Note that via standard coding, we can think of τM as
a subset of N.

I.1.1. Atomic diagrams. Another standard way of defining when
an ω-presentation is computable is via its atomic diagram. Let tϕat

i :
i P Nu be an effective enumeration of all atomic τ -formulas with free
variables from the set tx0, x1, ...u. (An atomic τ -formula is one of the
form Rpt1, ..., taq, where R is either ““” or Rj for j P IR, and each ti is
a term built out of the function, constant, and variable symbols.)

Definition I.2. The atomic diagram of an ω-presentation M is
the infinite binary string DpMq P 2N defined by

DpMqpiq “

#

1 if M |ù ϕat

i rxj ÞÑ j : j P Ns
0 otherwise.

It is not hard to see that DpMq and τM are Turing equivalent.
We will often treat the ω-presentation M, the real τM, and the real
DpMq as the same thing. For instance, we define the Turing degree of
the ω-presentation M to be the Turing degree of DpMq. When we say
that M is computable from a set X, that a set X is computable from
M, that M is ∆0

2, that M is arithmetic, that M is low, etc., we mean
DpMq instead of M.

Let us also point out that the quantifier-free diagram, which is
defined like the atomic diagram but using a listing of the quantifier-
free formulas instead, is Turing equivalent to DpMq too.

I.1.2. An example. Unless it is trivial, a structure will have many
different ω-presentations — continuum many actually (see Theorem
I.16) — and these different ω-presentations will have different com-
putability theoretic properties. For starters, some of them may be
computable while others may not. But even among the computable
copies of a single structure one may find different computability theo-
retic properties.

meaning that this list of relations is computable, but which has no computable
ω-presentation in our sense.

I.1. PRESENTATIONS 3

Consider the linear ordering A “ pN;ďq, where ď is the standard
ordering on the natural numbers. We can build another ω-presentation
M “ pN;ďMq of A as follows. Let tki : i P Nu be a one-to-one
computable enumeration of the halting problem 01. First, order the
even natural numbers in the natural way: 2n ďM 2m if n ď m. Second,
place the odd number 2s` 1 right in between 2ks and 2ks ` 2, that is,
let 2ks ďM 2s ` 1 ďM 2ks ` 2. Using transitivity we can then define
ďM on all pairs of numbers. Thus 2n ăM 2s` 1 if and only if n ă ks,
and 2s` 1 ăM 2t` 1 if and only if ks ă kt. (Early codings of sets into
ω-presentations of linear orderings appear in [Mar82].)

One can show that A and M are two computable ω-presentations
of the same structure.: However, computationally, they behave quite
differently. For instance, the successor function is computable in A but
not in M: In A, SuccApnq “ n`1 is clearly computable. On the other
hand, in M, SuccMp2nq “ 2n` 2 if and only if there is no odd number
placed ďM -in-between 2n and 2n`2, which occurs if and only if n R 01.
Therefore, SuccM computes 01 and SuccA does not.

The reason A and M can behave differently despite being isomor-
phic is that they are not computably isomorphic: There is no com-
putable isomorphism between them. To see this, note that if there
was one, we could use SuccA and the isomorphism to compute SuccM,
contradicting that SuccM computes 01.

I.1.3. Relaxing the domain. In many cases, it will be useful to
consider structures whose domain is a subset of N. We call those pĎωq-
presentations. If M , the domain of M, is a proper subset of N, we can
still define DpMq by letting DpMqpiq “ 0 if ϕat

i mentions a variable
xj with j RM . In this case, we have

DpMq ”T M ‘ τM.

To see that DpMq computes M , notice that, for j P N, j P M Ø

DpMqpxxj “ xjyq “ 1, where xϕy is the index of the atomic formula ϕ
in the enumeration tϕat

i : i P Nu.
The following observation will simplify many of our constructions

later on.

Observation I.3. We can always associate to an infinite pĎωq-
presentation M, an isomorphic ω-presentation A: If M “ tm0 ă m1 ă

m2 ă ¨ ¨ ¨ u Ď N, we can use the bijection i ÞÑ mi : N Ñ M to get a
copy A of M, now with domain N. Since this bijection is computable

:To show that M is isomorphic to the standard ordering on N, one has to
observe that every element of M “ N has finitely many elements ăM -below it: 2n
has at most 2n, and 2s` 1 has at most 2ks.

4 I. STRUCTURES

in M , it is not hard to see that DpAq ďT DpMq, and furthermore that
DpAq ‘M ”T DpMq.

One of the advantages of pĎωq-presentations is that they allow us
to present finite structures.

I.1.4. Relational vocabularies. A vocabulary is relational if it
has no function or constant symbols, and has only relational symbols.
Every vocabulary τ can be made into a relational one, rτ , by replacing
each n-ary function symbol by an pn ` 1q-ary relation symbol coding
the graph of the function, and each constant symbol by a 1-ary re-
lation symbol coding it as a singleton. Depending on the situation,
this change in vocabulary might be more or less significant. For in-
stance, the class of quantifier-free definable sets changes, but the class
of D-definable sets does not (see Exercise I.4). For most computational
properties, this change is nonessential; for instance, if M is an ω-

presentation of a τ -structure, and ĂM is the associated ω-presentation

of M as a rτ -structure, then DpMq ”T DpĂMq (as it follows from Ex-
ercise I.4). Because of this, and for the sake of simplicity, we will often
restrict ourselves to relational vocabularies.

Exercise I.4. Show that the D-diagram of M as a τ -structure is m-
equivalent to its D-diagram as a rτ -structure. More concretely, let tϕDi :
i P Nu and trϕDi : i P Nu be the standard effective enumerations of the
existential τ -formulas and the existential rτ -formulas on the variables
x0, x1, Show that

ti P N : M |ù ϕDi rxj ÞÑ j : j P Nsu ”m ti P N : ĂM |ù rϕDi rxj ÞÑ j : j P Nsu.
One could also show these sets are ”1-equivalent.

I.1.5. Finite structures and approximations. We can repre-
sent finite structures using pĎωq-presentations. However, when work-
ing with infinitely many finite structures at once, we often want to be
able to compute things about them uniformly, for instance the sizes of
the structures, which we could not do from pĎωq-presentations (see Ex-
ercise I.5). For that reason, we sometimes consider pĎωq-presentations,
which are pĎωq-presentations whose domains are initial segments of N.
Given a finite pĎωq-presentation, we can easily find the first k that is
not in the domain of the structure.

Exercise I.5. Show that there exists a computable list tMn :
n P Nu of pĎωq-presentations of finite structures whose sizes cannot be
computed uniformly, that is, a list such that the domains and relations
of the Mn’s are uniformly computable, but there is no computable
function f such that fpnq is the size of Mn.

I.1. PRESENTATIONS 5

When τ is a finite vocabulary, finite τ -structures can be coded by
a finite amount of information. Suppose M is a finite τ -structure with
domain t0, ..., k´1u, and τ is a finite relational vocabulary. Then there
are only finitely many atomic τ -formulas on the variables x0, ..., xk´1,
let us say `k of them. Assume the enumeration tϕat

i : i P Nu of the
atomic τ -formulas is such that those `k formulas come first, and the
formulas mentioning variables beyond xk come later. Then DpMq is
determined by the finite binary string of length `k that codes the values
of those formulas. We will often assume DpMq is that string.

When dealing with infinite structures, very often we will want to
approximate them using finite substructures. We need to take care
of two technical details. First, if τ is an infinite vocabulary, we need
to approximate it using finite sub-vocabularies. We assume that all
computable vocabularies τ come with an associated effective approx-
imation τ0 Ď τ1 Ď ¨ ¨ ¨ Ď τ , where each τs is finite and τ “

Ť

s τs.
In general and unless otherwise stated, we let τs consist of the first s
relation, constant and function symbols in τ , but in some particular
cases, we might prefer other approximations. For instance, if τ is al-
ready finite, we usually prefer to let τs “ τ for all s. Second, to be able
to approximate a τ -structure M using τs-substructures, we need the
τs-reduct of M to be locally finite, i.e., every finite subset generates a
finite substructure. To avoid unnecessary complications, we will just
assume τ is relational and, in particular, locally finite. Even if τ is not
originally relational, we can make it relational as in Section I.1.4.

Definition I.6. Given an ω-presentation M, we let Ms be the
finite τs-substructure of M with domain t0, ..., s ´ 1u. We call the
sequence tMs : s P Nu a finite approximation of M. We identify this
sequence with the sequence of codes tDpMsq : s P Nu Ď 2ăN, which
allows us to consider its computational complexity.

In general, when we refer to a τ|¨|-structure, we mean a τs-structure
where s is the size of the structure itself. For instance, the structures
Ms above are all τ|¨|-structures.

Observation I.7. Here is a simple, but very important observation
we will use throughout the book. For each s, DpMsq “ DpMq æ `s,
and hence

DpM0q Ď DpM1q Ď DpM2q Ď ¨ ¨ ¨ and DpMq “
ď

sPN

DpMsq.

The convention here is that for each s, the τs-atomic formulas on
the variables tx0, ..., xs´1u are listed before the rest; that is, they are
ϕat

0 , ..., ϕ
at

`s´1 for some `s P N.

6 I. STRUCTURES

Also, let us remark that the inclusion is an inclusion of stings, not
of sets, and so is the union, as defined on page xiv.

Thus, from a computational viewpoint, having an ω-presentation is
equivalent to having a finite approximation of a structure M. This is
why, when we are working with an ω-presentation, we often visualize
the structure as being given to us little by little.

Observation I.8. Another simple but important observation is
that an D-formula is true of a tuple m̄ in M if and only if it is true
in some finite substructure Ms that contains m̄. Thus, if D-ThpMq

denotes the set of D-τ -sentences true of M, and D-ThpMsq the set of
D-τs-sentences true of Ms, then

D-ThpMq “
ď

sPN

D-ThpMsq,

where the union here refers to the union of sets, not sequences.

As a useful technical device, we define the atomic diagram of a finite
tuple as the finite binary sequence coding the set of atomic formulas
true of the tuple restricted to the smaller vocabulary. Again, we assume
that τ is relational.

Definition I.9. Let M be a τ -structure and let ā “ xa0, ..., as´1y P

M s. We define the atomic diagram of ā in M, denoted DMpāq, as the
string in 2`s such that

DMpāqpiq “

#

1 if M |ù ϕat

i rxj ÞÑ aj, j ă ss,

0 otherwise.

So, if M were an ω-presentation and a0, ...as, ... were the elements
0, ..., s, ... PM “ N, then DMpxa0, ..., as´1qy “ DpMsq as in Definition
I.6.

Observation I.10. For every σ P 2ăN and every s with `s ě |σ|,
there is a quantifier-free τ -formula ϕat

σ px0, ..., xs´1q such that

A |ù ϕ
at

σ pāq ðñ σ Ď DApāq

for every τ -structure A and tuple ā P As, namely

ϕatσ px̄q ”

¨

˝

ľ

iă|σ|,σpiq“1

ϕati px̄q

˛

‚^

¨

˝

ľ

iă|σ|,σpiq“0

 ϕati px̄q

˛

‚.

I.1. PRESENTATIONS 7

I.1.6. Congruence structures. It will often be useful to con-
sider structures where equality is interpreted by an equivalence rela-
tion. A congruence τ -structure is a structure M “ pM ;“M, tRM

i :
i P IRu, tf

M
i : i P IF u, tc

M
i : i P ICuq, where “M is an equivalence

relation on M , and the interpretations of all the τ -symbols are invari-
ant under “M (that is, if ā “M b̄, then ā P RM

i ðñ b̄ P RM
i and

fMj pāq “
M fjpb̄q for all relations symbols Ri and function symbols fj).

If M “ N, we say that M is a congruence ω-presentation. We can
then define DpMq exactly as in Definition I.2, using “M to interpret
equality.

Given a congruence τ -structure, one can always take the quotient
M{“M and get a τ -structure where equality is the standard N-equality.
To highlight the difference, we will sometimes use the term injective
ω-presentations when equality is N-equality.

Lemma I.11. Given a congruence ω-presentation M with infin-
itely many equivalence classes, the quotient M{“M has an injective
ω-presentation A computable from DpMq. Furthermore, the natural
projection MÑ A is also computable from DpMq.

Proof. All we need to do is pick a representative for each “M-
equivalence class in a DpMq-computable way. Just take the N-least
element of each class: Let

A “ ta PM : @b PM pb ăN añ b ­“M aqu

be the domain of A. Define the functions and relations in the obvious
way to get a pĎωq-presentation of M. To get an ω-presentation, use
Observation I.3. l

Therefore, from a computational viewpoint, there is no real differ-
ence in considering congruence structures or injective structures.

Example I.12. Suppose that R is a computable ring, and I Ď R is
a computable ideal. The quotient ring R{I has a natural congruence
ω-presentation where the domain and the operations stay as in R, but
the equality relation “R{I is the equivalence relation induced by I,
namely r “R{I q ðñ r´ q P I. We can then use the lemma above to
get a computable injective ω-presentation of R{I.

Exercise I.13. Given a sequence of structures tAi : i P Nu and
sequence of embeddings fi,i`1 : Ai ãÑ Ai`1, the direct limit of such a
sequence is a structure A8 for which there are embeddings fi,8 : Ai Ñ

A8 that commute with the previous embeddings (i.e, fi,8 “ fi`1,8 ˝

fi,i`1 for all i P N), with the property that there is a increasing se-
quence of structures B0 Ď B1 Ď ¨ ¨ ¨ Ď B8, with B8 “

Ť

s Bs, that is

8 I. STRUCTURES

isomorphic to the original sequence, in the sense that there are isomor-
phisms gi : Bi Ñ Ai for i P N Y t8u such that fi,j ˝ gi “ gj æ Bi for
all i ă j P N Y t8u. Prove that if the sequences tAi : i P Nu and
tfi,i`1 : i P Nu of structures and embeddings are computable, then A8
has a computable copy.

I.1.7. Enumerations. Assume τ is a relational vocabulary. An
enumeration of a structure M is just an onto map g : N Ñ M . To
each such enumeration we can associate a congruence ω-presentation
g´1pMq by taking the pull-back of M through g:

g´1
pMq “ pN;„, tR

g´1pMq

i : i P IRuq,

where a „ b ðñ gpaq “ gpbq and R
g´1pMq

i “ g´1pRM
i q Ď Napiq. The

assumption that τ is relational was used here so that the pull-backs
of functions and constants are not multi-valued. Let us remark that if
g is injective, then „ becomes “N, and hence g´1pMq is an injective
ω-presentation. In this case, the assumption that τ is relational is not
important, as we can always pull-back functions and constants through
bijections.

It is not hard to see that

Dpg´1
pMqq ďT g ‘DpMq.

Furthermore, Dpg´1pMqq ďT g‘ τ
M, where τM is as in Definition I.1.

As a corollary we get the following lemma.

Lemma I.14. Let A be a computable structure in a relational vo-
cabulary and M be an infinite c.e. subset of A. Then, the substructure
M of A with domain M has a computable ω-presentation.

Proof. Just let g be an injective computable enumeration of M.
Then g´1pMq is a computable copy of M. l

Throughout the book, there will be many constructions where we
need to build a copy of a given structure with certain properties. In
most cases, we will do it by building an enumeration of the structure
and then taking the pull-back. The following observation will allow us
to approximate the atomic diagram of the pull-back, and we will use it
countless times.

Observation I.15. Let g be an enumeration of M. Notice that
for every tuple ā PMăN,

Dg´1pMqpāq “ DMpgpāqq.

For each k, use g æk to denote the tuple xgp0q, ..., gpk´1qy PMk. Then
Dg´1pMqpx0, ..., k ´ 1yq “ DMpg æ kq and the diagram of the pull-back

I.2. PRESENTATIONS THAT CODE SETS 9

can be calculated in terms of the diagrams of tuples in M as follows:

Dpg´1
pMqq “

ď

kPN

DMpg æ kq.

I.2. Presentations that code sets

In this section, we show that the Turing degrees of ω-presentations
of a non-trivial structure can be arbitrarily high. Furthermore, we
prove a well-known theorem of Julia Knight that states that the set of
Turing degrees of the ω-presentations of a structure is upwards closed.
This set of Turing degrees is called the degree spectrum of the structure,
and we will study it in detail in Chapter V. Knight’s theorem applies
only to non-trivial structures: A structure A is trivial if there is a finite
tuple such that every permutation of the domain fixing that tuple is
an automorphism. Notice that these structures are essentially finite in
the sense that anything relevant about them happens within that finite
tuple.

Theorem I.16 (Knight [Kni98]). Suppose that X can compute
an ω-presentation of a non-trivial τ -structure M. Then there is an
ω-presentation A of M of Turing degree X.

Before proving the theorem, let us remark that if instead of an ω-
presentation we wanted a pĎωq-presentation or a congruence ω-presentation,
it would be very easy to code X into either the domain or the equality
relation of A: Recall that DpAq “ A‘ p“Aq ‘ τA. Requiring A to be
an injective ω-presentation forces us to code X into the structural part
of A, namely τA.

Proof. We will build an X-computable injective enumeration g
of M and let A “ g´1pMq. Since g and M are X-computable, that
already gives us DpAq ďT X; the actual work comes from ensuring
that DpAq ěT X. We build g as a limit

g “
ď

s

p̄s PM
N,

where the p̄s are a nested sequence of injective tuples p̄0 Ď p̄1 Ď ¨ ¨ ¨

in MăN. Recall from Observation I.15 that we can approximate the
atomic diagram of A by the atomic diagrams of the tuples p̄s:

DpAq “
ď

sPN

DMpp̄sq.

Let p̄0 “ H. Suppose now we have already defined p̄s. At stage s`1,
we build p̄s`1 Ě p̄s with the objective of coding the bit Xpsq P t0, 1u
into DpAq. The idea for coding Xpsq is as follows: We would like to

10 I. STRUCTURES

find a, b P M r p̄s such that DMpp̄saq ‰ DMpp̄sbq. Suppose we find
them and DMpp̄saq ălex DMpp̄sbq, where ďlex is the lexicographical
ordering on strings in 2ăN. Then, depending on whether Xpsq “ 0 or
1, we can define p̄s`1 to be either p̄sab or p̄sba. To decode Xpsq, all
we have to do is compare the binary strings DAx0, ..., ks ´ 1, ksy and
DAx0, ..., ks ´ 1, ks ` 1y lexicographicaly, where ks “ |p̄s|.

The problem with this idea is that such a and b may not exist,
and DMpp̄saq might be the same for all a P M . Since M is non-
trivial, we know there is some bijection of M preserving p̄s which is
not an isomorphism, and hence there exist tuples ā and b̄ P pM r p̄sqăN
of the same length with DMpp̄sāq ‰ DMpp̄sb̄q. Furthermore, there
exists disjoint such ā and b̄: To see this, take a third tuple disjoint
from ā and b̄. Its diagram must be different from that of either ā or
b̄ (as those diagrams are different) and we can replace it for b̄ or ā
accordingly, two get two disjoint tuples with different diagrams. So we
search for such a pair of tuples ā, b̄, say of length h. We also require
the pair ā, b̄ to be minimal, in the sense that DMpp̄sa0, ..., ai´1q “

DMpp̄sb0, ..., bi´1q for i ă h — if they are not, truncate them. Suppose
DMpp̄sāq ălex DMpp̄sb̄q (otherwise replace ā for b̄ in what follows). If
Xpsq “ 0, let p̃s`1 “ p̄sa0b0a1b1, ..., ah´1bh´1. If Xpsq “ 1, let p̃s`1 “

p̄sb0a0b1a1, ..., bh´1ah´1. Finally, to make sure g is onto, we let p̄s`1 “

p̃s`1c, where c is the N-least element of M r p̃s`1.
To recover X from DpAq, we need to also simultaneously recover

the sequence of lengths tks : s P Nu, where ks “ |p̄s|, for which we use
the minimality of ā and b̄. Given ks, we can compute ks`1 uniformly
in DpAq as follows: ks`1 is the least k ą ks such that

DAp0,, ks ´ 1, ks, ks ` 2, ks ` 4, ..., k ´ 3q ‰

DAp0,, ks ´ 1, ks ` 1, ks ` 3, ks ` 5, ..., k ´ 2q.

Once we know which of these two binary strings is lexicographically
smaller, we can tell if Xpsq is 0 or 1: It is 0 if the former one is ălex-
smaller than the latter one. l

Notice that for trivial structures, all presentations are isomorphic
via computable bijections, and hence all presentations have the same
Turing degree. When the vocabulary is finite, all trivial structures are
computable.

CHAPTER II

Relations

A relation is nothing more than a set of tuples from a structure. The
study of the complexity and definability of this basic concept is one of
the main components of computable structure theory. In model theory,
a relation on a structure A is usually a subset of An for some fixed n.
Here, we allow ourselves to consider infinitely many relations at once,
and hence consider subsets of AăN and even N ˆ AăN as relations.
Thus, while in model theory one is interested in structures of lesser
computational complexity than the natural numbers, here we purposely
allow our relations to interact with the natural numbers.

Many of the notions of computability on subsets of N can be ex-
tended to such relations on a structure, but the space of relations is
usually much richer than the space of subsets of N, and understanding
that space allows us to infer properties about the underlying struc-
ture. In this chapter we will introduce the analogues of the notions of
c.e.ness, Turing reducibility, join, and jump for the space of relations.
These tools will be used throughout the book.

From now on, unless otherwise stated, when we are given a struc-
ture, we are given an ω-presentation of a structure. Throughout this
chapter, A always denotes an ω-presentation of a τ -structure.

II.1. Relatively intrinsic notions

We start by defining a notion of c.e.-ness for relations on a given
structure. This will open the door for generalizing other notions of
computability theory from subsets of N to relations on a structure.

II.1.1. R.i.c.e. relations. Let us try to capture what is happen-
ing underneath the following examples:

Example II.1. Consider Q-vector spaces where the vocabulary
contains a constant ~0 for the zero vector, a binary operation ` for
vector addition, and, for each rational q P Q, a unary operation q ¨ for
scalar multiplication by q. The field Q is not part of the domain of the
structure, only the vectors are. Over a Q-vector space V , the relation

11

12 II. RELATIONS

LD Ď V ăN of linear dependence˚ is always c.e. in V . To enumerate
LD in a DpVq-computable way, go through all the possible non-trivial
Q-linear combinations q0 ¨ v0 ` ¨ ¨ ¨ ` qk ¨ vk of all possible tuples of vec-
tors xv0, ..., vky P V

ăN, and if you find one that is equal to ~0, enumerate
xv0, ..., vky into LD.

Example II.2. Over a ring R, the relation that holds of xr0, ..., rky P
RăN if the polynomial r0 ` r1x ` ... ` rkx

k has a root is c.e. in R: As
in the previous example, search for a root of the polynomial by eval-
uating the polynomial (which can be done DpRq-computably) on all
the possible values of x P R, and if you ever find one that makes the
polynomial 0, enumerate xr0, ..., rky into the relation.

Definition II.3. Let A be a structure. A relation R Ď N ˆ AăN

is relatively intrinsically computably enumerable (r.i.c.e.) if, for every
copy pB, RBq of pA, Rq, the relation RB (viewed as a subset of NăN) is
c.e. in DpBq.

The relations from Examples II.1 and II.2 are both r.i.c.e. A relation
like linear independence, whose complement is r.i.c.e., is said to be co-
r.i.c.e.

Notice that the notion of being r.i.c.e. is independent of the presen-
tation of A, and depends only on its isomorphism type.

Let us remark that we can view pA, Rq as a structure in the sense
we defined on page xviii, by thinking of R as an infinite sequence of
relations xRm,n : m,n P Ny, where Rm,n “ tr̄ P A

n : xm, r̄y P Ru is a
relation of arity n. The original definitions of r.i.c.e. (see [AK00, Page
165] [Mon12, Definition 3.1]) are only on n-ary relations for fixed n,
but that is too restrictive for us. The reason we choose to define r.i.c.e.
on subsets of N ˆ AăN is that it is a simple enough setting which, at
the same time, is fully general. This is the same reason we choose to
develop computability theory on sets of natural numbers instead of on
the set of hereditarily finite sets: The natural numbers are simpler, and
yet every finite object can be encoded by a single natural number. We
will get back to this point in Section II.4.

Example II.4. Let A be a linear ordering pA;ďq. We say that x
and y P A are adjacent, and write Adjpx, yq, if x ă y and there is no
element in between them. Notice that the complement of this relation,
 Adjpa, bq Ď A2, is c.e. in DpAq: At stage s, we are monitoring the first
s elements of the ω-presentation of A, and if we see an element appear
in between a and b, we enumerate the pair xa, by into Adjpa, bq. This

˚LD is the set of tuples xv0, ..., vky P V
ăN of vectors that are linearly dependent.

II.1. RELATIVELY INTRINSIC NOTIONS 13

is also the case for any other ω-presentation of A. Therefore, Adj
is r.i.c.e. There is something intrinsic about Adj that makes it c.e.
in whatever ω-presentation we consider. The reason is actually quite
explicit: It has an D-definition, namely

 Adjpx, yq ðñ x ­ă y _ Dz px ă z ă yq.

There are, however, r.i.c.e. relation that do not have D-definitions:

Example II.5. Consider a linear ordering with the adjacency rela-
tion as part of the structure A “ pA;ă,Adjq. We call these structures
adjacency linear orderings. On it, consider the set R of pairs of ele-
ments from A for which the number of elements in between them is
a number that belongs to 01. We note that R Ď A2 is r.i.c.e.: Given
a, b P A, wait to find elements a1, ..., an with Adjpa, a1q ^ Adjpa1, a2q ^

...^Adjpan´1, anq^Adjpan, bq, and if we ever find them, wait to see if n
enters 01, and if that ever happens, enumerate xa, by into R. The rela-
tion R cannot be defined by an D-formula in the vocabulary tď,Adju.
But it can be defined by a computable infinite disjunction of them.

Example II.6. On the standard computable ω-presentation of the
rationals Q “ pQ; 0, 1,`,ˆq, a relation R Ď N ˆ QăN is r.i.c.e. if and
only if it is c.e. This is because if A is a copy of Q, then there is a
DpAq computable isomorphism between A and Q, and hence if R is
c.e., RA is c.e. in DpAq.

Observation II.7. For the definition of r.i.c.e., it does not mat-
ter whether we use ω-presentations or congruence pĎωq-presentations.
That is, a relation R Ď N ˆ AăN is r.i.c.e. as in Definition II.3 if and
only if, for every congruence pĎωq-presentation pB, RBq of pA, Rq, we
have that RB is c.e. in DpBq.

II.1.2. R.i. computability. The same way we generalized the no-
tion of c.e.ness to define r.i.c.e. relations, we can extend other standard
concepts from computability theory to the space of relations on a struc-
ture.

Definition II.8. A relation R Ď NˆAăN is relatively intrinsically
computable (r.i. computable) if RB is computable in DpBq whenever
pB, RBq is a copy of pA, Rq.

Observe that R is r.i. computable if and only if it is r.i.c.e. and co-
r.i.c.e. The reader can imagine how to continue in this line of definitions
for other notions of complexity, like relatively intrinsically ∆0

2, relatively
intrinsically arithmetic, etc. These notions relativize in an obvious way
to produce a notion of relative computability:

14 II. RELATIONS

Definition II.9. Given R Ď N ˆ AăN and Q Ď N ˆ AăN, we say
that R is r.i.c.e. in Q if R is r.i.c.e. in the structure pA, Qq, that is, if
RB is c.e. in DpBq ‘QB for every copy pB, RB, QBq of pA, R,Qq. R is
r.i. computable in Q, and we write R ďrT Q, if R is r.i. computable in
the structure pA, Qq.

The ‘rT’ stands for “relatively Turing.”

Example II.10. Let A “ pA;ďq be a linear ordering, and consider
the relation given by the pairs of elements which have at least two
elements in between:

T “ txa, by P A2 : a ă b^ Dc, dpa ă c ă d ă bqu.

Then T ďrT Adj: Suppose we are given xa, by P A2 with a ă b and we
want to decide if xa, by P T using Adj. If Adjpa, bq, we know xa, by R T .
Otherwise, search for c in between a and b, which we know we will find.
If Adjpa, cq and Adjpc, bq, we know that xa, by R T . Otherwise, we must
have xa, by P T .

On the linear ordering of the natural numbers ω “ pN;ďq, we also
have Adj ďrT T : To decide if a and b are adjacent wait either for
an element to appear in between them or for an element c ą b with
 T pa, cq. In the former case we know that a and b are not adjacent,
while in the latter case we can deduce that they are.

On the other hand, there are linear orderings where Adj ­ďrT T . As
an example, consider the linear ordering

A “ 2Q` 3` 2Q` 3` 2Q` 3` ¨ ¨ ¨ ,

where 2Q is built by replacing each element of Q by a pair of adjacent
elements, obtaining densely many copies of 2. To show that Adj ­ďrT T ,
it is enough to build a computable copy B of A, where TB is com-
putable, but AdjB is not. To do this, let us start by fixing a computable
ω-presentation C of the linear ordering 2Q “ 2Q`1`1`2Q`1`1`¨ ¨ ¨ ,
and picking a computable increasing sequence of adjacent pairs cn,0, cn,1
for n P N.

C “ 2Q`tc0,0u` tc0,1u` 2Q`tc1,0u` tc1,1u` 2Q`tc2,0u` tc2,1u` ¨ ¨ ¨

To build the ω-presentation B of A, we will add an element in between
cn,0 and cn,1 if and only if n P 01; we can then decode 01 from AdjB by
checking if cn,0 and cn,1 are adjacent in B. More formally, to define B,
put a copy of C on the even numbers in the domain of B, and use the odd
numbers to add those “in-between” elements. Let 2s`1 be ďB-between
cks,0 and cks,1, where tks : s P Nu is a computable enumeration of 01.
Notice that ďB is computable. The relation TB is also computable,
as it holds between any two elements of C which are not in the same

II.1. RELATIVELY INTRINSIC NOTIONS 15

2-block, and holds between 2s ` 1 and any other element, except for
cks,0 and cks,1. The adjacency relation is not computable because k P
01 ðñ Adjpck,0, ck,1q for all k P N.

Exercise II.11. On a linear ordering, let Tn be the n-in-between
relation that holds of a pair xa, by if a ă b and there are at least n
elements in between a and b.

(a) Show that on every linear ordering, Tn`1 ďrT Tn for all n P N.
(b) Show that there is a linear ordering on which Tn`1 ărT Tn for

all n.

II.1.3. A syntactic characterization. R.i.c.e. relations can be
characterized in a purely syntactical way using computably infinitary
formulas and without referring to the different copies of the structure.
We will define computably infinitary formulas in [MonP2]. For now,
we define just the class of computably infinitary Σ1 formulas or Σc

1

formulas.

Definition II.12. An infinitary Σ1 formula (denoted Σin
1) is a

countable (finite or infinite) disjunction of D-formulas over a finite set
of free variables. A computable infinitary Σ1 formula (denoted Σc

1) is
a finite or infinite disjunction of a computable list of D-formulas over a
finite set of free variables.

Thus, a Σc
1 formula is one of the form

ψpx̄q ”
łł

iPI

Dȳiϕipx̄, ȳiq,

where each ϕi is quantifier-free, I is an initial segment of N, and the
Gödel indices xxϕiy: i P Iy can be listed computably, i.e. it is a c.e. set
of indices. The definition of satisfaction is straightforward: A |ù ψpāq
if and only if there exist i P I and b̄ P A|ȳi| such that A |ù ϕipā, b̄q.
Using the effective enumeration tWe : e P Nu of the c.e. sets, we can
enumerate all Σc

1 formulas as follows: If tϕDi,jpx1, ..., xjq : i P Nu is an
effective enumeration of the existential τ -formulas with j free variables,
we define

ϕ
Σc

1
e,jpx̄q ”

łł

xi,jyPWe

ϕDi,jpx̄q

for each e P N. We then get that tϕ
Σc

1
e,j : e P Nu is an effective enumer-

ation of the Σc
1 τ -formulas with j free variables. Note that if ψpx̄q is

Σc
1, then tā P A|x̄| : A |ù ψpāqu is c.e. in DpAq, uniformly in ψ and A.

In other words, there is a c.e. operator W such that

xxψy, āy P WDpAq
ðñ A |ù ψpāq

16 II. RELATIONS

for all τ -ω-presentations A, Σc
1 τ -formulas ψ, and tuples ā P A|x̄|.

Example II.13. In a group G “ pG; ˚q, the set of torsion elements
can be described by the Σc

1 formula:

torsionpxq ”
łł

iPN

¨

˝x ˚ x ˚ x ˚ ¨ ¨ ¨ ˚ x
loooooomoooooon

i times

“ e

˛

‚,

where e is the identity of the group.

Example II.14. On a graph G “ pV ;Eq, the relation of being
path-connected can be described by the Σc

1 formula:

connectedpx, yq ”
łł

iPN

Dz1, ..., zi pxEz1 ^ z1Ez2 ^ ¨ ¨ ¨ ^ ziEyq .

We would like to consider Σc
1 definability, not only for n-ary rela-

tions, but also for subsets of AăN.

Definition II.15. A relation R Ă N ˆ AăN is Σc
1-definable in A

with parameters if there is a tuple p̄ P AăN and a computable sequence:

of Σc
1 formulas ψi,jpx1, ..., x|p̄|, y1, ..., yjq, for i, j P N, such that

R “ txi, b̄y P Nˆ AăN : A |ù ψi,|b̄|xp̄, b̄yu.

The elements in p̄ are the parameters in the definition of R.

From the observation before Example II.13, it is not hard to see
that if R Ă NˆAăN is Σc

1 definable in A with parameters, it is r.i.c.e.
The next theorem shows that this is a characterization. The theorem
was proved for n-ary relations by Ash, Knight, Manasse, and Slaman
[AKMS89], and independently by Chisholm [Chi90]. The proof for
subsets of Nˆ AăN is no different.

Theorem II.16 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm
[Chi90]). Let A be a structure, and R Ď NˆAăN a relation on it. The
following are equivalent:

(1) R is r.i.c.e.
(2) R is Σc

1 definable in A with parameters.

Proof. As we mentioned above, (2) easily implies (1). We prove
the other direction. We will build a copy B of A by taking the pull-
back of an enumeration g : NÑ A that we construct step by step, and
we will apply p1q to that copy. We define g as the union of a nested
sequence of tuples tp̄s : s P Nu Ď AăN, where p̄s is defined at stage s.

:When we say “computable sequence of Σc
1 formulas,” we of course mean a

computable sequence of indices of Σc
1 formulas.

II.1. RELATIVELY INTRINSIC NOTIONS 17

Then we define B to be the pull-back g´1pAq as in Subsection I.1.7.;

Thus, we will have

p̄0 Ď p̄1 Ď ¨ ¨ ¨ Ď p̄s Ď ¨ ¨ ¨
sÑ8
ÝÝÝÑ g and DpBq “

ď

s

DApp̄sq.

Throughout the construction, we try as much as possible to make RB

not c.e. in DpBq. But, because of (1), this attempt will fail somewhere,
and we will have that

g´1
pRq “ RB

“ WDpBq
e

for some e P N.§ We will then turn this failure into a Σc
1 definition of

R.
Here is the construction of B. Let p̄0 be the empty sequence. At odd

stages, we take one step towards making g onto: At stage s`1 “ 2e`1,
if the eth element of A is not already in p̄s, we add it to the range of
p̄s`1 (i.e., we let p̄s`1 “ p̄s

ae), and otherwise let p̄s`1 “ p̄s.
At the even stages, we work towards making RB not c.e. in DpBq:

At stage s`1 “ 2e, we try to force W
DpBq
e Ę g´1pRq for which we need

a tuple xi, j1, ..., j`y P W
DpBq
e with xi, gpj1q, ..., gpj`qy R R. We do this as

follows: Ask if there is an extension q̄ of p̄s in the set

Qe “ tq̄ P A
ăN : D`, i, j1, ..., j` ă |q̄|

`

xi, j1, ..., j`y P W
DApq̄q
e and xi, qj1 , ..., qj`y R R

˘

u.

If there is one, we let p̄s`1 “ q̄. If not, we do nothing and let p̄s`1 “ p̄s.
This ends the construction of g and B.

NˆBăN “ Nˆ NăN
g // Nˆ AăN

W
DpBq
e

Ď

R

Ď

xi, j1, ..., j`y
q̄ //

P

xi, qj1 , ..., qj`y

R

Notice that if at a stage s ` 1 “ 2e, we succeed in defining p̄s`1 “

q̄ P Qe, then we succeed in making W
DpBq
e ‰ g´1pRq: This is because

;Let us observe that the fact that the congruence ω-presentation B is non-
injective is not important here by Observation II.7. Alternatively, we can make g
one-to-one by requiring the tuples ps to be injective.

§By g´1pRq we of course mean

txi, xj0, ..., j`yy P Nˆ NăN : xi, xgpj0q,, gpj`qyy P Ru.

We will use xi, j1, ..., j`y as shorthand for xi, xj1, ..., j`yy.

18 II. RELATIONS

we would have q̄ Ď g and hence that

xi, j1, ..., j`y P W
DApq̄q
e Ď WDpBq

e
¶while xi, gpj1q, ..., gpj`qy “ xi, qj1 , ..., qj`y R R.

However, we cannot succeed at all such stages because RB “ W
DpBq
e for

some e P N. Thus, for that particular e, at stage s` 1 “ 2e, there was
no extension of p̄s in Qe.

Claim II.16.1. If RB “ W
DpBq
e and there are no extensions of p̄ in

Qe, then R is Σc
1-definable in A with parameters p̄.

Proof of the claim. Notice that if we find some q̄ Ě p̄ and a

sub-tuple xi, āy “ xi, qj1 , ..., qj`y such that xi, j1, ..., j`y P W
DApq̄q
e , then

we must have xi, āy P R, as otherwise we would get q̄ P Qe. This is the
key idea we use to enumerate elements into R.

More formally, we will show that R is equal to the set

S “ txi, qj1 , ..., qj`y P NˆA
ăN : for some q̄ P AăN and `, i, j1, ..., j` ă |q̄|

satisfying q̄ Ě p̄ and xi, j1, ..., j`y P W
DApq̄q
e u.

If xi, āy P R, let j1, ..., j|ā| be indices such that ā “ xgpj1q, ..., gpj|ā|qy,
and we get that xi, āy P S witnessed by a long enough segment q̄ of
g. For the other direction, if ā “ xi, qj1 , ..., qj`y P S, then we must
have xi, āy P R: Otherwise we would have q̄ P Qe, contradicting the
assumption of the claim.

Now that we know that R “ S, let us show that S is Σc
1 definable

with parameters p̄. For every i P N and ā P AăN,

xi, āy P S ðñ Dq̄ Ě p̄
ł

j1,...,j|ā|ă|q̄|

`

xqj1 , ..., qj|ā|y “ ā & xi, j1, ..., j|ā|y P W
DApq̄q
e

˘

.

But “xi, j1, ..., j|ā|y P W
DApq̄q
e ” is not a formula in the language. So we

need to re-write it as:

xi, āy P S ðñ
łł

σP2ăN,

ł

xi,j1,...,j|ā|yPWσ
e

Dq̄ Ě p̄
`

xqj1 , ..., qj|ā|y “ ā & “σ Ď DApq̄q”
˘

.

Recall that, for each σ P 2ăN, there is a quantifier-free formula with
the meaning “σ Ď DApx̄q” (Observation I.10). ˝

Thus, R is Σc
1-definable in A with parameters p̄s. l

Let us comment on where the parameters come from. We just
showed that: either for every e, every p̄ P AăN can be extend to a tuple
q̄ P Qe, in which case we can satisfy every diagonalization requirement
getting that RB is not c.e. in DpBq; or there exists some e and some

¶Observe that since DpBq “
Ť

sDApp̄sq, we have that W
DpBq
e “

Ť

sW
DApp̄sq
e .

II.1. RELATIVELY INTRINSIC NOTIONS 19

tuple p̄ which cannot be extended in Qe, in which case R is Σc
1 definable

in A with parameters p̄. This tuple p̄ forces RB to be equal to W
DpBq
e

as we will see in Chapter IV.
Very often, we will deal with relations that are Σc

1-definable without
parameters. These relations are not just r.i.c.e., but uniformly r.i.c.e.:

Definition II.17. A relation R Ď N ˆ AăN is uniformly r.i.c.e.
(denoted u.r.i.c.e.) if there is a c.e. operator W such that RB “ WDpBq

for all pB, RBq – pA, Rq.

The difference between r.i.c.e. and u.r.i.c.e. relations is just that the
former needs parameters in its Σc

1 definition — parameters that one
may not be able to find computably and hence require “non-uniform”
information.

Corollary II.18. Let A be a structure and R Ď NˆAăN a relation
on it. The following are equivalent:

(1) R is u.r.i.c.e.
(2) R is Σc

1 definable in A without parameters.

Proof. It is easy to see that (2) implies (1). For the other direc-
tion, let We be the c.e. operator witnessing that R is u.r.i.c.e.. Let
Qe be as in the proof of Theorem II.16. No tuple q̄ P AăN can be
in Qe because, otherwise, any extension of q̄ to an enumeration g of

A would satisfy W
Dpg´1pAqq
e Ę g´1pRq, contradicting our choice of We.

The corollary then follows from Claim II.16.1 where p̄ is the empty
tuple. l

Exercise II.19. Show that a relation R Ď Ak is u.r.i.c.e. if and
only if there exists a c.e. set W Ď 2ăN such that, for ā P Ak,

ā P R ðñ
łł

σPW

Dq̄ P AăN pσ Ď DApāq̄qq .

Hint in footnote.}

II.1.4. Coding sets of natural numbers. Another feature that
is useful when working with subsets of N ˆ AăN is that we can code
subsets of N in an obvious way: We represent X Ď N by X ˆ txyu Ď

NˆAăN, where xy is the empty tuple. We will sometimes abuse notation
and refer to a set X Ď N as if it was a subset of NˆAăN. For instance,
if we say that X is r.i.c.e. in A, we would formally mean that X ˆtxyu
is r.i.c.e. in A. Thus, X ˆ txyu is r.i.c.e. in A if and only if X is c.e.

}Prove it first for atomic formulas, then quantifier free formulas, then D-
formulas, and then Σc

1 formulas.

20 II. RELATIONS

in every ω-presentation of A. If that is the case, we say that X is
c.e.-coded by A [Mon10, Definition 1,8]. If X ˆ txyu r.i. computable
in A, or equivalently if X is computable in every ω-presentation of A,
we say that X is computably coded by A. A characterization of the
sets that are c.e.-coded by a given structure was first given by Knight
[Kni86, Theorem 1.4’]. We get it as a corollary of Theorem II.16. Let
us first see an example.

Example II.20. Given X Ď N, let G be the group
À

iPX Zpi , where
pi is the ith prime number and Zp is the cyclic group of size p, namely
Z{pZ. We then have that X is c.e.-coded by G, as i P X if and only if
there is an element of G of order pi.

A more general family of examples are the D-types of tuples from
the structure.

Definition II.21. Given ā P AăN, we define the D-type of ā in A
as

D-tpApāq “ ti P N : A |ù ϕDi,|ā|pāqu

where tϕDi,j : i P Nu is an effective enumeration of the D-τ -formulas with
j-free variables.

Clearly, for any tuple ā P AăN, we can enumerate D-tpApāq from
any ω-presentation of A once we recognize where the tuple ā is in
the ω-presentation (non-uniformly). Knight’s theorem essentially says
that D-types are essentially all that a structure can c.e.-code. To state
Knight’s results, we need to review enumeration reducibility.

Definition II.22. An enumeration of Y is an onto function f : NÑ
Y . A set X Ď N is e-reducible to Y Ď N if every enumeration of Y com-
putes an enumeration of X. See page xvii in the background section
for more on e-reducibility.

Suppose we have a set X Ď N that is e-reducible to the D-type
of some tuple p̄ in A. Then any ω-presentation of A can enumerate
D-tpApp̄q and hence also X. Thus, X is c.e.-coded by A. Knight showed
that these are all the sets A codes:

Corollary II.23 (Knight [Kni86, Theorem 1.4’], see also [AK00,
Theorem 10.17]). Let X Ď N. The following are equivalent:

(B1) X is c.e.-coded by A (i.e., X is c.e. in every copy of A).
(B2) X is e-reducible to D-tpApp̄q for some p̄ P AăN.

Proof. We have already mentioned how (B2) implies (B1). We
prove the other direction.

II.1. RELATIVELY INTRINSIC NOTIONS 21

As we mentioned before, X is c.e. in every copy of A if and only
if X ˆ txyu is r.i.c.e. in A. By Theorem II.16, we have a Σc

1 definition
of X ˆ txyu over some parameters p̄. This means that we have a com-
putable list tψn : n P Nu of Σc

1 sentences such that n P X ðñ A |ù

ψn. We can then transform this Σc
1 definition into an enumeration op-

erator Φ that outputs X when D-tpApp̄q is given as input: The operator
Φ enumerates n into ΦD-tpApp̄q if (the index of) one of the disjuncts of
ψn appears in D-tpApp̄q. If the reader wants to be very explicit: if the
Σc

1 definition of X ˆ txyu with parameters p̄ is of the form

xn, xyy P X ˆ txyu ðñ A |ù ψn ðñ A |ù
łł

i:xn,iyPW

ϕDi,|p̄|pp̄q

for some c.e. set W . Then

n P X ðñ Di P N
`

xn, iy P W ^ i P D-tpApp̄q
˘

,

and hence X is e-reducible to D-tpApp̄q. l

Exercise II.24. Let A be a structure and X a set c.e.-coded by A.
Let ψpx0, ..., xk´1q be a Σin

1 formula of the form
ŽŽ

iPY ϕ
D
i,kpx̄q where Y

is e-reducible to X. Show that tā P Ak : A |ù ψpāqu is r.i.c.e.

Exercise II.25. We say that X Ď N is uniformly c.e.-coded by A
if X ˆ xy is u.r.i.c.e. in A. Show that X is uniformly c.e.-coded by A
if and only if X ďe D-ThpAq.

II.1.5. Joins. The use of subsets of NˆAăN allows us to consider
not only natural numbers and all n-tuples simultaneously, but also all
finite objects that can be built over A. We will see more on this in
Section II.4. For now, we see how to code many relations using just
one.

Definition II.26. Given R,Q Ď N ˆ AăN, we define R ‘ Q by
xm, b̄y P R ‘ Q if either m “ 2n and xn, b̄y P R, or m “ 2n ` 1 and
xn, b̄y P Q.

It is not hard to see that‘ defines a least-upper-bound operation for
r.i. computability. That is, R and Q are r.i. computable in R‘Q, and
whenever both R and Q are r.i. computable in a relation S Ď NˆAăN,
R ‘Q is r.i. computable in S too.

We can then take joins of N-sequences of relations in a straightfor-
ward way too. We can keep on pushing this idea much further. For
instance, given Q Ď pAăNq2, we can encode it by a relation N ˆ R Ď
N ˆ AăN as follows: xn, b̄y P R if xxb0,, bn´1y, xbn, ..., b|b̄|´1yy P Q. In

a similar way, the reader can imagine how to code subsets of pAăNqăN

22 II. RELATIONS

by subsets of AăN. We will see the most general form of this in Section
II.4.1.

Remark II.27. Given Q Ď N ˆ AăN, define R Ď AăN as follows:
b̄ P R if and only if |b̄| is a number coding a pair xn,my P N2 and
xn, b̄ æmy P Q. We then have that Q is r.i.c.e. if and only if R is r.i.c.e.
Thus, working in the setting of subsets of AăN would have been as
general as working in the setting of subsets of Nˆ AăN.

II.2. Complete relations

So far we have notions of c.e.-ness, computability, and join on the
subsets of NˆAăN. The next step is to get an analogue for the Turing
jump.

II.2.1. R.i.c.e. complete relations.

Definition II.28. A relation R Ď N ˆ AăN is complete in A if
every r.i.c.e. relation Q Ď NˆAăN is r.i. computable in R. R is r.i.c.e.
complete if it is also r.i.c.e. itself.˚˚

If we view 01 as a subset of NˆAăN as in Section II.1.4, 01 is always
r.i.c.e. in A and hence every complete relation must r.i. compute it.
For some structures A, 01 is r.i.c.e. complete itself, but in most cases,
it is not. This is not surprising as 01 contains no structural information
about A.

Example II.29. On a Q-vector space, LD ‘ 01 is r.i.c.e. complete,
and LD is not r.i. computable from 01 when the space has infinite
dimension. Recall that LD is the linear dependence relation (Example
II.1).

On a linear ordering, p Adjq‘01 is r.i.c.e. complete, and Adj is not
r.i. computable from 01 unless there are only finitely many adjacencies.
We will prove these facts in Lemmas II.43 and II.42.

These examples of complete relations are particularly nice and clean,
but we will not always be able to find such simple complete relations.
Simple or not, r.i.c.e. complete relations always exist. We consider the
analogue of Kleene’s predicate K by putting together all Σc

1-definable

relations. Recall from Section II.1.3 that tϕ
Σc

1
i,j : i P Nu is an effective

enumeration of the Σc
1 τ -formulas with j free variables.

˚˚This is the analogue of Turing-complete and not of m-complete.

II.2. COMPLETE RELATIONS 23

Definition II.30. [Mon12] The Kleene relation relative to A,
~KA Ď Nˆ AăN, is defined by

xi, b̄y P ~KA
ðñ A |ù ϕ

Σc
1

i,|b̄|
pb̄q.

It is clear that ~KA is r.i.c.e. It follows from Theorem II.16 that,
for every r.i.c.e. relation R Ď An, there are i P N and ā P AăN such

that R “ tb̄ P An : xi, āab̄y P ~KAu. The following lemma shows ~KA is
complete among all r.i.c.e. relations in Nˆ AăN.

Lemma II.31. For every r.i.c.e. R Ď N ˆ AăN, there is a tuple ā
and a computable function f : NÑ N such that

xm, b̄y P R ðñ xfpmq, āab̄y P ~KA for all m P N and b̄ P AăN.

Proof. It follows from Theorem II.16 that, for every r.i.c.e. R Ď
N ˆ AăN, there is a tuple ā such that each column of the form R X
tmuˆAn is uniformly Σc

1 definable with parameters ā. More precisely,
there is a computable function m, j ÞÑ em,j such that R X ptmu ˆ Ajq
is definable by the em,j-th Σc

1 formula using ā as parameters:

xm, b̄y P R ðñ A |ù ϕ
Σc

1

em,|b̄|,|āb̄|
pā, b̄q for all m P N and b̄ P AăN.

Notice that the right-hand-side is equivalent to xem,|b̄|, āb̄y P ~K
A, which

is almost what we want — what is left is to remove the dependence of
em,|b̄| on |b̄|.

The rest of the proof uses a standard technical argument to define

fpmq so that is does not depend on |b̄|. Recall that ϕ
Σc

1
e,jpx̄q was defined

as
ŽŽ

xi,jyPWe
ϕDi,jpx̄q where j “ |x̄|. Given m, define fpmq to be the

index of a c.e. set, Wfpmq, such that

xi, |ā| ` ny P Wfpmq ðñ xi, |ā| ` ny P Wem,n for all i, n P N.

Then, we get p@m,n P Nq ϕΣc
1

fpmq,|ā|`n ” ϕ
Σc

1

em,n,|ā|`n
, and that

xm, b̄y P R ðñ xfpmq, āb̄y P ~KA for all b̄ P AăN. l

Remark II.32. In particular, it follows that, given an enumeration
of all tuples in A, we can get an enumeration of all r.i.c.e. subsets of
Nˆ AăN. Furthermore,

~KA
1 “ txxe, āy, xi, b̄yy : ΦepiqÓ & xΦepiq, āb̄y P ~K

A
u Ď pNˆAăNqˆpNˆAăNq

is a r.i.c.e. relation such that every other r.i.c.e. relation R Ď NˆAăN,

is a column of ~KA
1 . That is, R “ tr : xs, ry P ~KA

1 u for some s P NˆAăN.

24 II. RELATIONS

In terms of Turing degrees, it is easy to see that ~KA ďT DpAq1
for any ω-presentation A. The reverse reducibility holds in some ω-
presentations (Lemma IV.23) but not in others:

Exercise II.33. Show that any non-trivial structure has an ω-

presentation A with DpAq ”T ~KA. Hint in footnote.::

By relativizing Kleene’s relation, we can define a jump operator on
subsets of Nˆ AăN.

Definition II.34. Given Q P NˆAăN, we define the jump of Q in

A to be ~KpA,Qq, that is, Kleene’s relation as in Definition II.30 relative
to the structure pA, Qq. We denote it by Q

1

.

Observation II.35. The jump operator on relations is well-defined
on ďrT -degrees. Furthermore, if Q ďrT R, then Q1 ďrT R1. This is
because if Q ďrT R, then QB is computable in DpB, RBq for any ω-
presentation B of A, and hence Q1 is c.e. in DpB, RBq, getting that Q1

is r.i.c.e. in pA, Rq. From the completeness of R1, it follows that Q is
r.i. computable in pA, R1q.

II.2.2. Diagonalization. We now prove that, on the space of sub-
sets of Nˆ AăN, the jump operation actually jumps.

Theorem II.36. For every structure A, ~KA is not r.i. computable
in A.

Proof. This proof is essentially the same as Kleene’s diagonaliza-
tion argument for showing that 01 is not computable (see footnote in

page xviii), but adapted to this setting. Suppose that ~KA is co-r.i.c.e.
— we will produce a contradiction by finding a pair that is supposed

to be in ~KA if and only if it is supposed to be out.
We consider the following relation reminiscent of the complement

of the diagonal in Kleene’s argument:

~R “ txi, b̄y P Nˆ AăN : ΦipiqÓ and xΦipiq, b̄b̄y R ~K
A
u.

Since we are assuming ~KA is co-r.i.c.e., ~R is r.i.c.e.. By the r.i.c.e.-

completeness of ~KA as in Lemma II.31, we have that there is an index
e P N for a total computable function Φe and a tuple ā P AăN such that

xi, b̄y P ~R ðñ xΦepiq, āb̄y P ~K
A for all xi, b̄y P Nˆ AăN.

If we use xe, āy for xi, b̄y, we then get the following contradiction:

xe, āy P ~R ðñ xΦepeq, āāy P ~K
A
ðñ xe, āy R ~R,

the latter equivalence coming from the definition of ~R l

::Use Theorem I.16.

II.2. COMPLETE RELATIONS 25

Corollary II.37. For every Q P N ˆ AăN, Q ăA
rT Q

1; that is, Q
is r.i. computable in Q1, but Q1 is not r.i. computable in Q.

Proof. It is easy to see that Q ďrT Q
1 because the Σc

1 diagram of
pA, Qq clearly computes the atomic diagram of pA, Qq in any copy of
A. That Q1 is not r.i. computable in Q follows from the theorem above
applied to the structure pA, Qq. l

Historical Remark II.38. The proof of Theorem II.36 given above
is from [Mon12], although it is clearly similar to the standard proof of the
incomputability of the halting problem. Theorem II.36 had been previously
proved for a different, yet equivalent, notion of jump by Vatev in [Vat11].
Vatev’s proof, restated in our terms, goes by showing that if B is a generic

copy of A, then ~KB has degree DpBq1 (which, of course, is not computable

in DpBq), and hence ~KA is not r.i. computable in A. From a personal
communication, Stukachev has another proof which has not been translated
into English yet.

II.2.3. Structural versus binary information. As we saw in
Section II.1.4, we can trivially code reals X Ď N with relations X ˆ

txyu Ă N ˆ AăN. There is no structural information on the relation
X ˆ txyu. The information content in X ˆ txyu is purely binary:

Definition II.39. A relation R Ď NˆAăN is purely binary if there
is an X P 2N such that R is r.i. computable in pA, Xq.

Example II.40. Let L “ pL;ď,Adjq be an adjacency linear order-
ing isomorphic to Z, and let R Ď L2 be the set of pairs xa, by for which
the number of elements in between a and b is a number in 01. R is not
r.i. computable, but it is clearly r.i. computable in 01. Its information
content is purely binary.

In contrast, relations like Adj on a linear ordering contain struc-
tural information and no binary information. Relations like the r.i.c.e.-

complete relation on a linear ordering, ~KL ”rT Adj‘ 01, are a mix of
both. In many occasions, one is interested only in structural behavior.
In that case, one should consider the structural versions of the notions
from earlier in this chapter by modding out the binary information: A
relation R Ď NˆAăN is structurally r.i.c.e. in A if it is r.i.c.e. in pA, Xq
for some X P 2N. R is structurally r.i. computable from Q within A if R
is r.i. computable in pA, Q,Xq for some X P 2N. We sometimes refer to
these versions as the boldface versions or the on-a-cone versions. The
following notion is particularly important:

Definition II.41. A relation R is structurally complete if every
structurally r.i.c.e. relation is structurally r.i. computable in R. R is
structurally r.i.c.e. complete if it is also structurally r.i.c.e. itself.

26 II. RELATIONS

We will see below that the linear dependence relation is structurally
r.i.c.e. complete in Q-vector spaces, and that the adjacency relation is
structurally co-r.i.c.e. complete on linear orderings, among other exam-
ples. We will further analyze structurally complete relations in Section
X.1 once we have more tools at hand.

II.3. Examples of r.i.c.e. complete relations

In this section, we consider structures that have nice structurally
complete relations. The first example, linear dependence on vector
spaces, is rather simple. The proof for the second example, adjacency
on linear orderings, is quite interesting.

Lemma II.42. The relation LD of linear dependence on a Q-vector
space is structurally complete. Moreover LD‘01 is r.i.c.e. complete.;;

Proof. The key point is that any Q-vector space has a canonical
computable copy, and using LD, one can find an isomorphism with
that particular copy. One can then move c.e. relations through that
isomorphism.

All the countable Q-vector spaces are of the form Qn for some
n P N Y t8u. Each Qn has a standard, nicely behaved computable
ω-presentation. Assume n “ 8 as the other cases are even simpler.
Let R Ď Nˆ pQ8qăN be a r.i.c.e. relation. We want to show that R is
r.i. computable in LD ‘ 01.

Let W be a copy of Q8, and let RW be the image of R — we need to
show that RW is computable from LDW ‘01. We can use LDW to find
a basis for W and hence compute an isomorphism g : Q8 ÑW , which
maybe be different from the original isomorphism we had between W
and Q8 that we used to define RW from R. What we do have is that

pQ8, Rq – pW ,RW
q – pQ8, g´1

pRW
qq.

Since R is r.i.c.e., that g´1pRWq is c.e. in DpQ8q, and hence c.e., and
hence computable from 01. We then get that RW is computable from
g ‘ 01, and hence from LDW ‘ 01 as needed. l

The same argument above can be used to show that the “algebraic
dependence” relation is structurally complete on algebraically closed
fields.

;;Recall from Example II.1 that the field Q is not part of the structure and we
use the vocabulary that includes a unary scalar multiplication symbol q ¨ for each
q P Q.

II.3. EXAMPLES OF R.I.C.E. COMPLETE RELATIONS 27

Lemma II.43. Let A “ pA;ďq be a linear ordering. Then

Adj “ txa, by P A2 : a ă b & Ec pa ă c ă bqu.

is structurally complete. Furthermore, Adj‘ 01 is r.i.c.e. complete.

Proof. The proof goes by showing that every Σc
1 formula over the

vocabulary tďu is equivalent to a finitary universal formula over the
vocabulary tď,Adju, and that 01 can find these equivalent @-formulas
uniformly. We then get that every Σc

1-definable relation is co-r.i.c.e.
in Adj ‘ 01 and hence r.i. computable in it. One could prove this in a
purely syntactical way in the style of a quantifier-elimination argument.
Instead, we give a more model-theoretic proof.

Let ϕpx1, ..., xkq be a Σc
1 formula about linear orderings (i.e., over

the vocabulary tďu). Let c̄ “ xc1,, cky be new constant symbols and
τ 1 “ tď, c1, ..., cku. We will use the term c̄-linear ordering to refer to
a linear ordering where the constants from c̄ have been assigned. As
a preview of the rest of the proof, let us mention that one of the key
points is that the finite c̄-linear orderings form a well-quasi-ordering
under embeddability. The proof is divided into three claims:

Claim II.43.1. Two Σc
1 τ

1-sentences are equivalent on c̄-linear or-
derings if and only if they hold on the same finite c̄-linear orderings.

The left-to-right direction is obvious; we prove the other direction.
Let ϕ and ψ be two Σc

1 sentences which hold on the same finite c̄-linear
orderings. Consider an infinite c̄-linear ordering L where ϕ holds. Then
one of the D-disjuncts of ϕ holds in L, and hence holds on a finite τ 1-
substructure of L. By the assumption, ψ holds on that same finite
c̄-linear ordering, and by upward-persistence of Σc

1 formulas, ψ holds
in L too.

Claim II.43.2. For every Σc
1 τ

1-sentence ϕ, there is a finite set of
finite c̄-linear orderings Ld1 , ...,Ld` such that, for any c̄-linear ordering
A, A |ù ϕ if and only if one of those finite c̄-linear orderings Ldi
τ 1-embeds: into A. Furthermore, 01 can find those c̄-linear orderings
uniformly in ϕ.

Given a permutation xπ1, ..., πky of x1, ..., ky and k ` 1 numbers
n̄ “ xn0, ..., nky, let Lπ,n̄ be the finite c̄-linear ordering with cπ1 ď

cπ2 ď ¨ ¨ ¨ ď cπk that has exactly n0 elements less than cπ1 , ni elements
between cπi and cπi`1

, and nk elements greater than cπk . Consider the
ordering ĺ on Sk ˆ Nk`1 given by

xπ, n̄y ĺ xσ, m̄y ðñ π “ σ & p@i ď kq ni ď mi,

:By τ 1-embed we meant that it embeds as a τ 1-structure.

28 II. RELATIONS

where Sk is the set of permutations of t1, ..., ku. We then have that

xπ, n̄y ĺ xσ, m̄y ñ Lπ,n̄ embeds in Lσ,m̄.

By upward-persistence of Σc
1 formulas, it follows that the set D of

xπ, n̄y P Sk ˆ Nk`1 such that Lπ,n̄ |ù ϕ is ĺ-upwards closed. Now,
by Dickson’s Lemma, the ordering ĺ is a well-quasi-ordering.; (See
Definition X.13.) That means that every subset of Sk ˆ Nk`1 has a
finite set of minimal elements, and hence that for every upward-closed
subset D Ď Sk ˆ Nk`1, there is a finite set of elements d1, ..., d` P D
such that

f P D ðñ
ł

jď`

dj ĺ f for all f P Sk ˆ Nk`1.

The oracle 01 can find this finite set td1, ..., d`u because it can check
that every Ldj satisfies ϕ and that every Lf with p@j ď `q dj ę f does
not satisfy ϕ. This proves our second claim.

Let ψnpx, yq be the D-formula that says that there are at least n
elements strictly in between x and y:

ψnpx, yq ” Dz1, ..., zn px ă z1 ă z2 ă ¨ ¨ ¨ ă zn ă yq.

We write ψnp´8, yq for the unary D-formula that says that there are
at least n elements less than y, and analogously with ψnpx,8q. Given
a permutation π P Sk and n̄ “ xn0, ..., nky P Nk`1, we let

ψπ,n̄px1, ..., xkq ”

xπ1 ď ¨ ¨ ¨ ď xπk ^pψn0p´8, xπ1q ^ ψn1pxπ1 , xπ2q ^ ...^ ψnkpxπk ,8qq .

A c̄-linear ordering satisfies ψπ,n̄pc1, ..., ckq if and only if Lπ,n̄ embeds in
it. Then we get from the claim that every Σc

1 formula ϕpx1, ..., xkq is
equivalent to a finite disjunction of formulas of the form ψπ,n̄pxπ1 , ..., xπkq.
Furthermore, 01 can find these formulas uniformly. The following claim
is all that is left to prove the lemma.

Claim II.43.3. The formulas ψnpx, yq are equivalent to @-tď,Adju-
formulas, and hence so are the formulas ψπ,n̄px1, ..., xkq.

;A well-quasi-ordering is a partial ordering which has no infinite descending
sequences and no infinite antichains. Equivalently, it is a partial ordering on which
every set has a finite subset of minimal elements. Dickson’s Lemma states that Nn
is well-quasi-ordered under the coordinate-wise ordering.

II.3. EXAMPLES OF R.I.C.E. COMPLETE RELATIONS 29

Just observe that ψnpx, yq is equivalent to the following universal
formula over the adjacency predicate:

ψnpx, yq ðñ
ľ

jďn

Ez0, ..., zj

˜

x “ z0 ď ¨ ¨ ¨ ď zj “ y ^

ˆ j´1
ľ

i“0

´

Adjpzi, zi`1q

¯

˙

¸

.

This proves the claim. We should still observe that the unary formulas
ψnp´8, xq are equivalent to @-tď,Adju-formulas only once we know
who the first element is, and if there is one. That is, using the first
element as parameter, say f, we have that ψnp´8, xq ” ψn´1pf, xq, and
if there is no first element, then ψnp´8, xq is always true. Knowing
what are the first and last elements, and if they exists, is non-uniform
information that we need.

It follows that the formulas ψπ,n̄px1, ..., xkq are equivalent to @-
formulas over the vocabulary tď,Adj, fi, lau, where fi and la are unary
relations identifying the first and last elements if they exist. Then
so are all Σc

1 formulas, though 01 is necessary to find the equivalent
formula. Therefore, every Σc

1 formula is uniformly r.i. computable in
Adj ‘ fi ‘ la ‘ 01, and in particular r.i. computable in Adj ‘ 01, as fi
and la are either empty or singletons, and thus (non-uniformly) r.i.
computable. l

The unary relations fipyq and lapxq for first and last elements are,
in a sense, extreme cases of the adjacency relation:

fipyq Ø Adjp´8, yq and lapxq Ø Adjpx,`8q.

Of course, ´8 and `8 are not elements of the linear ordering, nor
symbols of our vocabulary. When we use these symbols in a formula,
an atomic sub-formula of the form x ă `8 should always be read as
true, and a sub-formula `8 ď x should always be read as false.

Definition II.44. We define a new relation symbol Ādj that en-
capsulates these three uses of the adjacency relation into one:

Ādj ” Adj‘ fi‘ la. §

From the proof above we get that, if what we want is a relation
that is structurally r.i.c.e. complete in a uniform way across all linear
orderings, we need to consider Ādj instead of Adj.

This technique of proving the the finite substructures with added
constants are well-quasi-ordered by embeddability can be used on some

§We defined the join ‘ of relations in Definition II.26. In this case, on a linear
ordering A, Ādj can be seen as a subset of p2ˆAq \A2, where x0, ay P Ādj if fipaq,
x1, ay P Ādj if lapaq, and xa, by P Ādj if Adjpa, bq, for a, b P A.

30 II. RELATIONS

other classes too. We will study this technique in more generality in
Section X.2.

An equivalence structure is a structure E “ pD;Eq, where E is a
equivalence relation on the domain D. Define the following relations
on E :

(1) for k P N, Fk “ tx P D : there are ě k elements equivalent to
xu, and

(2) the character of E:
G “ txn, ky P N2 : there are ě n equivalence classes with ě k
elementsu.

Exercise II.45. (a) Show that the relation ~F “
À

kPN Fk Ď NˆD
is structurally complete.

(b) Show that ~F ‘G‘ 01 is r.i.c.e. complete. Hint in footnote.¶

Exercise II.46. Show that the atom relation on a Boolean algebra
is structurally complete. (An element in a Boolean algebra is an atom
if it is non-zero and has no elements below it other than zero.)

Exercise II.47. (Hard) (a) [Sho78, Theorem 2.2] Show that LDn`1 ­ďrT
LDn in the 8-dimensional Q-vector space, where LDn is the linear de-
pendence relation on n tuples.

(b) [Mon12, Theorem 7.2] Show that no relation of fixed arity is
structurally complete in the 8-dimensional Q-vector space.

II.4. Superstructures

The notion of r.i.c.e. relation is equivalent to other notions that were
known many decades ago. In this section, we study one of them — the
Σ-definable subsets of the hereditarily finite superstructure HFA. There
are some advantages to working in this setting: One is that r.i.c.e.
relations are now defined by finitary formulas instead of computably
infinitary ones. Another one is that there is almost no coding required;
while subsets of pAăNqăN can be coded by subsets of AăN as in Section
II.1.5, subsets of pHFAq

ăN are already subsets of HFA. Nevertheless,
the advantage of working with NˆAăN is that it is easier to visualize.
At the end of the day, all these advantages and disadvantages are purely
aesthetic and not really significant.

¶The proof of (b) follows a somewhat similar outline to that of Lemma II.43.
You need to use that the set of finite subsets of N2 ordered by A ď B ðñ @xx, yy P
ADxx1, y1y P B px ď x1 & y ď y1q is well-quasi-ordered.

II.4. SUPERSTRUCTURES 31

II.4.1. The hereditarily finite superstructure. Another ap-
proach to the study of r.i.c.e. relations is using Σ-definability on admis-
sible structures. We will not consider admissible structures in general,
but just the hereditarily finite extension of an abstract structure A.
The elements of this extension are the finite sets of finite sets of ¨ ¨ ¨ of
finite sets of elements of A.

Definition II.48. Let PfinpXq denote the collection of finite sub-
sets of X. Given a set A, we define:

(1) HFAp0q “ ∅,
(2) HFApn` 1q “ PfinpAY HFApnqq, and
(3) HFA “

Ť

nPN HFApnq.

Now, given a τ -structure A, we define the τ Y tP, Du-structure HFA
whose domain has two sorts, A and HFA, and where the symbols from
τ are interpreted in the A-sort as in A, ‘P’ is interpreted in the obvious
way, and D is a unary relation coding the atomic diagram of A as
defined below. The need for adding D is slightly technical, so we will
explain it later.

A quantifier of the form @x P y or Dx P y is called a bounded
quantifier. A Σ-formula is a finitary τ Y tP, Du-formula that is built
out of atomic and negation-of-atomic formulas using disjunctions, con-
junctions, bounded quantifiers, and existential unbounded quantifiers.
A subset of HFA is ∆-definable if it and its complement are both Σ-
definable.

Clearly, on HFA we have the usual pairing function xx, yy “ ttxu, tx, yuu,
and we can encode n-tuples, strings, etc. Notice also that HFA in-
cludes the finite von Neumann ordinals (denoted by n, where 0 “ ∅
and n` 1 “ t0, ..., nu). We use ω to denote the ∆-definable set of finite
ordinals of HFA. The operations of successor, addition, and multiplica-
tion on ω are also ∆-definable, and hence so is Kleene’s T predicate. It
follows that every c.e. subset of ω is Σ-definable, and every computable
function is ∆-definable in HFA (for more details, see [Bar75, Theorem
II.2.3]).

We define D to be the satisfaction relation for atomic formulas,
that is

D “ txi, āy : A |ù ϕ
at

i pāqu Ď HFA,

where tϕat

0 , ϕ
at

1 , ...u is an effective enumeration of all the atomic τ -
formulas. Notice that if the vocabulary of A is finite and relational,
this is a finite list of formulas, and hence D is ∆-definable in HFA
without using D. In that case, there is no need to add D to the vo-
cabulary HFA. On the other hand, when τ is infinite, if we do not add

32 II. RELATIONS

D, Σ-formulas could only involve finitely many symbols from τ which
would be too restrictive. An important consequence of having D in the
vocabulary is that the D-diagram of A is Σ-definable in HFA.}

Given any R Ď N ˆ AăN, we can view it directly as a subset of
HFpAq. Conversely, there is also a natural way of going from relations
in HFA to subsets of N ˆ AăN. Let X “ tx0, x1, ...u be a list of vari-
able symbols. Every t P HFX is essentially a term over a finite set
of variables, and we write tpx̄q to show the variables that appear in t.
Observe that HFA “ ttpāq : tpx̄q P HFX , ā P A|x̄|u. Let tti : i P Nu be
an effective enumeration of HFX YX. Now, given Q Ď HFA, we define

spQq “ txi, āy : tipāq P Qu Ď Nˆ AăN.

Observation II.49. The relation txb, n, āy : b P HFA, n P N, ā P
AăN & b “ tnpāqu Ď HFA ˆ ω ˆ AăN is ∆-definable in HFA. This is
not completely trivial, and is proved by recursion on terms. We leave
the details to the reader.

Theorem II.50. Given R P NˆAăN, the following are equivalent:

(1) R is r.i.c.e. in A.
(2) R is Σ-definable in HFA with parameters.

Given Q Ď AYHFA, the following are equivalent:

(1) spQq is r.i.c.e. in A.
(2) Q is Σ-definable in HFA with parameters.

Historical Remark II.51. This theorem is credited to Vǎıtsenavichyus
[Văı89] in [Stu] and appears in some form in [BT79].

Proof. We only prove the second part; the proof of the first part
is very similar. Suppose first that spQq is r.i.c.e. in A. Using Theorem
II.16, we get a c.e. set W and a tuple p̄ P AăN such that

xi, āy P spQq ðñ A |ù
łł

e:xi,e,|ā|yPW

ϕDe,|p̄ā|pp̄, āq for all i P N and ā P AăN,

where tϕDe,j : e P Nu is an effective enumeration of the D-τ -formulas
with j free variables. Then

b P Q ðñ Di, e P N Dā P AăN
`

b “ tipāq & xi, e, |ā|y P W & A |ù ϕDe,|p̄ā|pp̄, āq
˘

.

Using that deciding whether b “ tipāq is ∆-definable and that both
W and the existential diagram of A are Σ-definable, we get that Q is
Σ-definable with parameters p̄.

}The Σ-definition of the D-diagram of A says that, given an D-formula ϕ, there
exists a variable assignment and a truth valuations of the sub-formulas of ϕ that
makes ϕ true, using D on the atomic sub-formulas.

II.4. SUPERSTRUCTURES 33

Conversely, suppose now that Q is Σ-definable in HFA with pa-
rameters; we want to prove that spQq is r.i.c.e.. Let B be a copy of
A. Computably in DpBq, build HFB and a copy of HFB, and then use
the Σ-definition of Q to enumerate QHFB . We end up with a DpBq-
computable enumeration of QB, which we can then use to produce a
DpBq-computable enumeration of spQq. l

Historical Remark II.52. In [Mos69], Moschovakis introduces
what we now call the Moschovakis enrichment of a structure A, denoted
A˚. For our purposes, there is no real difference between A˚ and HFA. The
difference is that in the iterative definition of the domain of A˚ we take pairs
instead of finite subsets as we did for HFA. Moschovakis [Mos69] then de-
fines a class of partial multi-valued functions from pA˚qn to A˚ which he calls
search computable functions. This class is defined as the least class closed
under certain primitive operations, much in the style of Kleene’s definition
of primitive recursive and partial recursive functions, where instead of the
Kleene’s least-element operator µ, we have a multivalued search operator ν.
A subset of A˚ is search computable if its characteristic function is, and it
is semi-search computable if it has a definition of the form Dy pfpx, yq “ 1q,
where f is search computable.

The definition of search computable allows us to add a list of new prim-
itive functions to our starting list (so long as they are given in an effective
list, with computable arities), obtaining a sort of relativized version of search
computability. If we have a structure A, we would add to the list of prim-
itive functions the characteristic functions of the relations in A to obtain a
notion of partial, multi-valued, search computable functions in A.

Much in the same way as we did for HFA above, we have a natural way
of encoding relations R Ď NˆAăN by subsets of A˚, and vice versa. Maybe
even more directly, one can go from subsets of A˚ to subsets of HFA and
back. Gordon [Gor70] proved that the notions of search computable in A
and semi-search computable in A for subsets of A˚ coincide with the notions
of ∆-definable and Σ-definable for subsets of HFA. Therefore, when we add
parameters, they also coincide with the notions of r.i. computable and r.i.c.e.
for relations in NˆAăN.

CHAPTER III

Existentially-atomic models

The key notion in this chapter is that of existentially atomic struc-
tures: these are atomic structures where all the types are generated
by existential formulas. They are the best-behaved structures around.
Given a structure, typical questions in computable structure theory
include: How difficult is it to compute isomorphisms between different
ω-presentations? How difficult is it to identify it syntactically? Can
we characterize the set of oracles that can compute an ω-presentation
of it? In these three senses, existentially atomic structures are the
simplest ones. Not only are they simple, they are also general: every
structure is D-atomic if one adds enough relations to the vocabulary,
as for instance, if one adds enough jumps, as we will see in [MonP2].
This means that the results we present in this chapter apply to all
structures relative to those relations.

In this chapter, we will also introduce a variety of tools that will
be useful throughout the book, for instance, the Cantor back-and-forth
argument and the notion of a structure having enumeration degree.

III.1. Definition

Let A be a τ -structure. The automorphism orbit of a tuple ā P AăN

is the relation

orbApāq “ tb̄ P A
|ā| : there is an automorphism of A mapping ā to b̄u.

Definition III.1. A structure A is D-atomic if, for every tuple
ā P AăN, there is an D-formula˚ ϕāpx̄q which defines the automorphism
orbit of ā; that is,

orbApāq “ tb̄ P A
|ā| : A |ù ϕāpb̄qu.

We say that A is D-atomic over parameters if there is a finite tuple
ā P AăN such that the structure pA, āq is D-atomic.

These structures were studied by Simmons in [Sim76, Section 2],
and he cites [Pou72] as their first occurrence in the literature.

˚Recall that an D-formula is one of the form Dȳ ϕpx̄, ȳq where ϕ is quantifier
free.

35

36 III. EXISTENTIALLY-ATOMIC MODELS

The set tϕā : ā P AăNu of all these defining formulas makes what
we call a Scott family:

Definition III.2. A Scott family for a structure A is a set S of
formulas such that each ā P AăN satisfies some formula ϕpx̄q P S, and
if ā and b̄ satisfy the same formula ϕpx̄q P S, they are automorphic.

Thus, a structure is D-atomic if and only if it has a Scott family of
D-formulas. Having access to a Scott family for a structure A allows
us to recognize the different tuples in A up to automorphism. This is
exactly what one needs to build isomorphisms between different copies
of A. As we will see in Theorem III.18, if we want to build a computable
isomorphism, we need the Scott family to be computably enumerable.

Definition III.3. We say that a Scott family is c.e. if the set of
indices for its formulas is c.e. A structure A is effectively D-atomic if it
has a c.e. Scott family of D-formulas.

Example III.4. A linear ordering is D-atomic if and only if it is
either finite or dense without end points:

If a linear ordering has n elements, the ith element can be charac-
terized by the D-formula that says that there are i´ 1 elements below
it and n ´ i ´ 1 elements above it. If a linear ordering is dense with-
out endpoints, then two tuples are automorphic if and only if they are
ordered the same way.

Suppose now that we have a linear ordering that is neither dense nor
finite. We claim that there must exist a tuple a, b, c such that: either
a ă b ă c, a and b are adjacent, and there are infinitely elements to the
right of c; or c ă b ă a, a and b are adjacent, and there are infinitely
many elements to the left of c. To prove the claim, we consider three
cases: If there is only one adjacency pair in the whole linear ordering,
then the linear ordering must have a dense segment; let a and b be the
elements of the adjacency pair and take c from the dense segment. If
every element has finitely many elements to its right or to its left, then
the linear ordering has either an initial segment isomorphic to ω or a
final segment isomorphic to ω˚; either let a ă b ă c be the first three
elements, or let c ă b ă a be the last three. If neither of the above is
the case, take c so that it has infinitely many elements to both its left
and its right, and let a, b be an adjacency pair disjoint from c. Now that
we have proved that a, b, c always exist, we claim that no existential
formula defines the orbit of the pair xa, by. For this, we notice that any
D-formula true of xa, by is true of xa, cy: This follows from the analysis
of D-formulas we did in Lemma II.43, and the fact that the number
of elements in each of the intervals p´8, aq, pa, bq, and pb,`8q is less

III.2. EXISTENTIALLY ALGEBRAIC STRUCTURES 37

than or equal to the number of elements in p´8, aq, pa, cq, and pc,`8q
respectively. But xa, by and xa, cy are not automorphic because a and
b are adjacent, and a and c are not. This proves the claim that no
D-formula defines the orbit of xa, by.

Example III.5. Augment the vocabulary tďu of linear orderings by
adding a symbol Ādj for the adjacency relation.: Call these structures
pL;ď, Ādjq, adjacency linear orderings. It follows from work of McCoy
[McC03, Theorem 2.6] that the D-atomic adjacency linear orderings
over parameters are exactly the ones of the form

A0 ` 1`A1 ` 1` ¨ ¨ ¨ ` 1`Ak,

where each Ai is isomorphic to one of the following: 0, ω, ω˚, ω ` ω˚,
or m ¨Q, for m P N.

Exercise III.6. (a) Prove that the adjacency linear ordering m ¨Q
is D-atomic. (b) Prove that the adjacency linear orderings ω, ω˚, ω`ω˚

are D-atomic over parameters. (c) Prove that if m0 ‰ m1, m0¨Q`m1¨Q
is not D-atomic even over parameters.

III.2. Existentially algebraic structures

We will see that fields of finite transcendence degree, graphs of
finite valence with finitely many connected components, and torsion-
free abelian groups of finite rank are all D-atomic over a finite set of
parameters. The reason is that they are D-algebraic.

Definition III.7. An element a P A is D-algebraic in A if there is
an D-formula ϕpxq true of a such that tb P A : A |ù ϕpbqu is finite. A
structure A is D-algebraic if all its elements are.

Example III.8. A field that is algebraic over its prime sub-field is
D-algebraic because every element is one of finitely many that is a root
of a polynomial over the prime field. We will develop this example
further in Example III.45.

A connected graph of finite valence with a selected root vertex is D-
algebraic because every element is one of finitely many that are at a
given distance from the root.

An abelian torsion-free group with a selected basis is D-algebraic
because every element is the only one for which a certain non-trivial
Z-linear combination of it and the basis evaluates to 0.

:Recall from Definition II.44, that Ādj is the version of the adjacency relation
that allows for the three uses of the adjacency relation: Adjpx, yq, Adjp´8, yq, and
Adjpx,`8q, where Adjp´8, yq only holds of the first element if there is any, and
Adjpx,`8q of the last.

38 III. EXISTENTIALLY-ATOMIC MODELS

We prove that D-algebraic structures are D-atomic in two lemmas.
The core of the arguments is an application of König’s lemma that
appears in the first one.

Definition III.9. The D-theory of a structure A, denoted D-ThpAq,
is the set of (indices) of D-sentences true about A.

Notice that, as opposed to the diagram, or even the D-diagram
of a structure, the D-theory is independent of the presentation of the
structure.

Lemma III.10. Two structures that are D-algebraic and have the
same D-theories are isomorphic.

Proof. Let A and B be D-algebraic structures with the same D-
theories. To prove that A and B are isomorphic, we will define a tree of
finite approximations to possible isomorphisms from A to B, and then
use König’s lemma to show this tree has a path.

List the elements of A as ta0, a1, ...u. For each n, let ϕnpx0,, xn´1q

be an D-formula which is true of tuple xa0, ..., an´1y and has finitely
many solutions. (A solution to a formula is a tuple that makes it true.)
By taking conjunctions if necessary, we may assume that ϕnpx0,, xn´1q

implies ϕn´1px0, ..., xn´2q. Let

T “ tb̄ P BăN : DBpb̄q “ DApa0, ..., a|b̄|´1q & B |ù ϕ|b̄|pb̄qu.

We will prove that a path through T gives us an isomorphism from A
to B. But before that, let us prove T has a path.

T is clearly a tree in the sense that it is closed under taking initial
segments of tuples. It is finitely branching because, for each n, ϕn has
finitely many solutions in A, say k many, and thus it cannot have more
than k solutions in B, as otherwise, the D-sentence saying that ϕn has
at least k ` 1 different solutions would be true in B but false in A. To
show that T is infinite, notice that, for each n,

A |ù Dx0, ..., xn´1pDpx̄q “ σ & ϕnpx̄qq, where σ “ DApa0, ..., a|b̄|´1q,

as witnessed by a0, ..., an´1. Since A and B have the same D-theories, B
models this D-sentence too, and the witness is an n-tuple that belongs
to T . König’s lemma states that every infinite finitely branching tree
must have an infinite path. Thus, T must have an infinite path P P BN.
This path determines a map g : AÑ B mapping an to P pnq. That map
is an embedding as it preserves finite atomic diagrams: This is because
since xgpa0q, ..., panqy P T , DBpgpa0q, ..., panqq “ DApa0, ..., anq for all n.
This map must also be onto: If b P B is a solution of an D-formula
ϕ with finitely many solutions, then ϕ must have the same number of

III.3. CANTOR’S BACK-AND-FORTH ARGUMENT 39

solutions in A (because D-ThpAq “ D-ThpBq), and since D-formulas are
preserved under embeddings, one of those solutions has to be mapped
to b. l

Lemma III.11. Every D-algebraic structure is D-atomic.

Proof. Let A be D-algebraic and take ā P AăN. Let ϕpx̄q be
an D-formula true of ā with the least possible number of solutions,
say k solutions. We claim that every solution to ϕ is automorphic
to ā. Suppose, toward a contradiction, that b̄ satisfies ϕ but is not
automorphic to ā. Then there must be an D-formula ψpx̄q that is true
of either ā or b̄, but not of both. This is because if pA, āq and pA, b̄q
satisfied the same D-formulas, the previous lemma would imply they
are isomorphic. If ψpx̄q is true of ā, then ϕpx̄q ^ ψpx̄q would be true
of ā and have fewer solutions than ϕ, contradicting our choice of ϕ. If
ψpx̄q is not true of ā and it is true of i out of the k solutions of ϕ, then
the formula of x̄ saying

“ϕpx̄q and there are i solutions to ϕ ^ ψ all different
from x̄”

is an D-formula true of ā with k ´ i solutions — getting the desired
contradiction. l

Historical Remark III.12. The statements of the lemmas in this
section are new, but the ideas behind them are not. Proofs like that of
Lemma III.10 using König’s lemma have appeared in many other places
before, for instance [HLZ99]. The ideas for the proof of Lemma III.11
are similar to those one would use in a proof that algebraic structures
are atomic (without the D-), except that here one has to be slightly
more careful.

III.3. Cantor’s back-and-forth argument

Before we move on with more on D-atomic structures, we take an
interlude to introduce a tool we will use throughout the book.

Definition III.13. Given structures A and B, we say that a set
I Ď AăNˆ BăN has the back-and-forth property if, for every xā, b̄y P I,

‚ DApāq “ DBpb̄q (i.e., |ā| “ |b̄| and ā and b̄ satisfy the same
τ|ā|-atomic formulas);

‚ for every c P A, there exists d P B such that xāc, b̄dy P I; and;

‚ for every d P B, there exists c P A such that xāc, b̄dy P I.

;Recall that we are using the notation āc for the concatenation āac.

40 III. EXISTENTIALLY-ATOMIC MODELS

The canonical example is the following. If A and B are isomorphic,
then the set

txā, b̄y P AăN ˆBăN : pA, āq – pB, b̄qu,
has the back-and-forth property. We let the reader verify this fact.

Observation III.14. It follows immediately from the example above,
that if A and B are isomorphic and S is a Scott family for A, then the
set

IA,B “ txā, b̄y P A
ăN
ˆBăN : pfor some ϕ P Sq A |ù ϕpāq & B |ù ϕpb̄qu

has the back-and-forth property.

Lemma III.15. If I Ď AăN ˆBăN has the back-and-forth property,
then for every xā, b̄y P I, there is an isomorphism g : A Ñ B map-
ping ā to b̄. Moreover, such an isomorphism can be computed from an
enumeration of I.

Proof. The map g : A Ñ B is defined by stages. Let ā0 “ ā
and b̄0 “ b̄. At each stage s ` 1, we define tuples ās`1 P A

ăN and
b̄s`1 P B

ăN with ās Ď ās`1, b̄s Ď b̄s`1, and xās`1, b̄s`1y P I. The back-
and-forth property will allow us to build such sequences in a way that,
for every c P A, there is some s such that c is one of the entries of ās,
and, for every d P B, there is some s such that d is one of the entries of
b̄s: All we have to do is take turns choosing elements from A and B in
such a way that we eventually choose them all. At the end of stages,
we define g : A Ñ B so that gpāsq “ b̄s. Since ās and b̄s satisfy the
same τ|ās|-atomic formulas, we get that g preserves all the relations,
functions, and constants and hence that it is an isomorphism. (Notice
that DApāsq “ DBpb̄sq also implies that, if two entries in ās are equal,
so are the corresponding ones in b̄s, and hence there is no issue defining
g so that it maps ās to b̄s.)

It is clear that g can be computed from an enumeration of I. l

Exercise III.16. Let I be a subset of AăN ˆ AăN which (a) has
the back-and-forth property, (b) is an equivalence relation, and (c)
satisfies the following condition: for every n,m P N and π : n Ñ m, if
xxa0,, am´1y, xb0, ..., bm´1yy P I, then xxaπp0q,, aπpn´1qy, xbπp0q, ..., bπpn´1qyy P

I. Prove that there is a relation R Ď Nˆ AăN such that

I “ txā, b̄y : pA, R, āq – pA, R, b̄qu.

III.4. Uniform computable categoricity

An issue we have to be constantly aware of when working with
computable structures is that different copies of the same structure may

III.4. UNIFORM COMPUTABLE CATEGORICITY 41

behave differently computationally. Computably categorical structures
are the ones where this issue does not show up. They are the ones whose
computable copies all have the same computability theoretic properties.
We will study them in Chapter VIII. For now, we consider the stronger
notion of uniform computable categoricity.

Definition III.17. A computable structure A is uniformly com-
putably categorical if there is a computable operator that, when given
the atomic diagram DpBq of a computable copy B of A as an oracle,
outputs an isomorphism from B to A. A computable structure A is
uniformly relatively computably categorical if there is a computable op-
erator that, when given DpBq for a (not necessarily computable) copy
B of A, outputs an isomorphism from B to A.

Notice that if a structure A has a c.e. Scott family of D-formulas,
and B is a copy of A, then the set IA,B from Observation III.14 is c.e. in
DpBq and has the back-and-forth property. Then, by Lemma III.15, we
get that A and B are DpBq-computably isomorphic. Furthermore, the
definition of IA,B, and the construction of the isomorphism in Lemma
III.15 are completely uniform, and produce a computable operator as
needed in the definition of uniform relative computable categoricity.

Theorem III.18 (Ventsov [Ven92]). Let A be a computable struc-
ture. The following are equivalent:

(1) A is effectively D-atomic (Definition III.3).
(2) A is uniformly relatively computably categorical.
(3) A is uniformly computably categorical.

Proof. That (1) implies (2) was observed in the previous para-
graph — it is just a back-and-forth construction using the set IA,B
from Observation III.14. It is obvious that (2) implies (3). The proof
that (3) implies (1) is quite a bit more elaborate.

Suppose Γ is a computable operator such that ΓDpBq is an isomor-
phism from B to A for every computable copy B of A. We need to
find D-formulas defining each tuple in A. Here is the key observation:
suppose that for q̄ P AăN we have that ΓDApq̄q converges on 0, ..., k ´ 1
for some k P N, then, the automorphism orbit of q̄ æ k is determined
by DApq̄q P 2ăN in the sense that if DApp̄q “ DApq̄q then p̄ æ k is auto-
morphic to q̄ æ k. To prove this, we first claim that for every k P N and
every tuple q̄ P AăN such that ΓDApq̄q converges on 0, ..., k´ 1, we have
that

42 III. EXISTENTIALLY-ATOMIC MODELS

q̄ æ k is automorphic to ΓDApq̄q æ k. §

To see this, extend q̄ to a computable onto map g : N Ñ A. For
B “ g´1pAq, ΓDpBq is an isomorphism from B to A. Since g is also
an isomorphism from B to A, the two images of x0, ..., k ´ 1y through
those isomorphisms must be automorphic; namely g æ k and ΓDpBq æ k
(see figure below). Since g Ą q̄, g æ k “ q̄ æ k, and since DpBq Ą DApq̄q,
ΓDpBq æ k “ ΓDApq̄q æ k.

A Bg

–
oo ΓDpBq

–
// A

q̄ æ k x0, ..., k ´ 1y�oo � // ΓDApq̄q æ k

Now, given a tuple ā P AăN, we need to produce an D-formula
defining its orbit, and we need to find this formula computably. Let
k “ |ā|. Search for q̄ P AăN extending ā such that ΓDApq̄q converges
on 0, ..., k ´ 1. We now claim that the following D-formula defines the
orbit of ā:

ϕāpx̄q ” pDȳ Ě x̄q“Dpȳq “ σ”, where σ “ DApq̄q P 2ăN. ¶

Clearly, ā satisfies ϕā using ȳ “ q̄. Suppose now that A |ù ϕāpc̄q; we
need to show that ā and c̄ are automorphic. From ϕāpc̄q we get a tuple
p̄ Ě c̄ such that DApp̄q “ σ “ DApq̄q. So

ΓDApp̄q æ k “ ΓDApq̄q æ k.

By our first claim above, the left-hand-side is automorphic to p̄æk “ c̄,
and the right-hand-side is automorphic to q̄ æ k “ ā.

We conclude that tϕāpx̄q : ā P AăNu is a c.e. Scott family of D-
formulas for A. l

Exercise III.19. Build the uniformly computably categoricity op-
erator explicitly for the case of a computable connected graph of finite
valance with a root node (identified with a constant symbol).

Historical Remark III.20. The theorem above is due to Ventsov
[Ven92]. Other notions of uniform categoricity were studied by Kudi-
nov [Kud96a, Kud96c, Kud97] and by Downey, Hirschfeldt and
Khoussainov [DHK03].

§As the reader may expect: ΓDApq̄q æ k “ xΓDApq̄qp0q,ΓDApq̄qp1q, ...,ΓDApq̄qpk ´
1qy P Ak.

¶Recall from Observation I.10 that, for each σ P 2`|z̄| , there is a quantifier-free
formula ϕatσ pz̄q which holds if and only if Dpz̄q “ σ.

III.5. EXISTENTIAL ATOMICITY IN TERMS OF TYPES 43

III.5. Existential atomicity in terms of types

The usual definition of atomic models in model theory is in terms
of types (as in (A2) below). We show in this section that, for D-atomic
models, it is enough to look at @-types instead of full first-order types.

We need to review some basic definitions. A @-type on the variables
x1, ..., xn is a set ppx̄q of @-formulas with free variables among x1, ..., xn
that is consistent, i.e., that is satisfied by some tuple a1, ..., an in some
structure. We say that a @-type is realized in a structure A if it is
satisfied by some tuple in A. Given ā P AăN, the @-type of ā in A is
the set of @-formulas true of ā:

@-tpApāq “ tϕpx̄q : ϕ is a @-formula and A |ù ϕpāqu. }

The reason we allow types to be partial is that @-types are never
complete, as we could not add the negation of @-formulas. For the same
reason, instead of principal types, we have to deal with supported types.

Definition III.21. A type ppx̄q is D-supported within a class K of
structures if there exists an D-formula ϕpx̄q which is realized in some
structure in K and which implies all of ppx̄q within K; that is, A |ù

@x̄pϕpx̄q Ñ ψpx̄qq for every ψpx̄q P ppx̄q and every A P K. We say that
ppx̄q is D-supported in a structure A if it is D-supported in K “ tAu.

Theorem III.22. For every structure A, the following are equiva-
lent:

(A1) A is D-atomic.
(A2) Every elementary first-order type realized in A is D-supported

in A.
(A3) Every @-type realized in A is D-supported in A.

Proof. It is not hard to see that (A1) implies (A2) as the D-formula
defining the orbit of ā supports its type. Clearly (A2) implies (A3).
Let us prove that (A3) implies (A1).

For each ā P AăN, let ϕāpx̄q be an D-formula supporting the @-type
of ā. We show that S “ tϕā : ā P AăNu is a Scott family for A. We start
by noticing that A |ù ϕāpāq. This is because, otherwise, ϕā would be
part of the @-type of ā, and hence implied by ϕā, which cannot be the
case because ϕā is realizable in A. Consider the set

IA “ txā, b̄y P A
ăN
ˆ AăN : A |ù ϕāpb̄qu.

First, let us prove IA is symmetric; that is, that if A |ù ϕāpb̄q, then
A |ù ϕb̄pāq. If not, then ϕb̄px̄q would be part of the @-type of ā, and

}The obvious assumption here is that |x̄| “ |ā|.

44 III. EXISTENTIALLY-ATOMIC MODELS

hence implied by ϕā. But we know this is not the case because b̄ models
both ϕā and ϕb̄.

Second, we now claim that IA has the back-and-forth property (Def-
inition III.13). Suppose xā, b̄y P IA. Observe ā and b̄ must satisfy the
same @-types as they both satisfy ϕā and ϕb̄ which support their respec-
tive @-types. In particular, they satisfy the same τ|ā|-atomic formulas
and hence have the same atomic diagrams. To show the second con-
dition in Definition III.13, take c P A. If there was no d P A with
xāc, b̄dy P IA, we would have that A |ù Dyϕācpb̄, yq. This formula
would be part of the @-type of b̄, and hence implied by ϕb̄. But then,
since A |ù ϕb̄pāq, we would have A |ù Dyϕācpā, yq, which is not true
as witnessed by c. The third condition of the back-and-forth property
follows from the symmetry of IA.

Finally, to see that S is a Scott family for A, notice that if ϕāpb̄q and
ϕāpc̄q both hold, then, by Lemma III.15, both b̄ and c̄ are automorphic
to ā, and hence automorphic to each other. l

Exercise III.23. [DKLT13, Theorem 1.6] (a) Prove that the in-
dex set of all computable structures that are effectively D-atomic after
adding some parameters, is Σ0

3.
(b) Prove that it is Σ0

3-complete. Hint in footnote.˚˚

III.6. Building structures and omitting types

Before we continue studying the properties of D-atomic structures,
we need to make another stop to prove some general lemmas that will
be useful in future sections. First, we prove a lemma that will allow us
to find computable structures in a given class of structures. Second,
using similar techniques, we prove the type omitting lemma for @-types,
and its effective version.

We need one more level of the hierarchy of infinitary formulas:

Definition III.24. An infinitary Π2 formula (denoted Πin
2) is a

countable infinite (or finite) conjunction of formulas of the form @ȳψpȳ, x̄q,
where each formula ψ is Σin

1 , and x̄ is a fixed tuple of free variables.
That is, a Πin

2 formula is one of the form
ľľ

iPN

@ȳi
łł

jPN

Dz̄j ϕi,jpx̄, ȳi, z̄jq,

where the formulas ϕi,j are finitary and quantifier free. Such a for-
mula is computable infinitary Π2 (denoted Πc

2) if the formulas ψ are Σc
1

and the list of indices of the formulas ψ is computably enumerable, or

˚˚Use Q-vector spaces.

III.6. BUILDING STRUCTURES AND OMITTING TYPES 45

equivalently, if the matrix txϕi,jy: i, j P Nu is computable. A class of
structures is Πc

2 if it is the class of all the ω-presentations that satisfy

a certain Πc
2 sentence. Given an oracle X, we use Πc,X

2 to denote the
X-computable infinitary Π2 formulas.

As the reader may expect, an infinitary Σ2 formula (denoted Σin
2)

is a countable disjunction of formulas of the form Dȳψpȳ, x̄q, where each
formula ψ is Πin

1 , and x̄ is a fixed tuple of free variables.

Observe that every Πc
2 formula on a structure A is equivalent to a

Πc
1 formula on pA, ~KAq, where ~KA is Kleene’s relation defined in II.30.

Definition III.25. Assume, without loss of generality, we are work-
ing with a relational vocabulary τ . Given a class of structures K, we
let Kfin be — essentially — the set of all the finite substructures of the
structures in K: ::

Kfin
“ tDpAq : A a finite τ|¨|-substructure of some B P Ku

“ tDBpāq : B P K, ā P BăNu Ď 2ăN.

Observation III.26. An D-sentence ψ holds of a structure A on a
relational vocabulary if and only if it holds on some finite substructure
of A.

Exercise III.27. Show that

Kfin
”pos

ď

tD-ThpAq : A P Ku,
where ”pos is positive equivalence defined in page xvii. In particular,
they are both Turing and enumeration equivalent.

Exercise III.28. Prove that Kfin is the set of diagrams of all the
finite τ|¨|-structures satisfying @-ThpKq.;; Recall that @-ThpKq is the
set of @-sentences true in all structures in K.

Lemma III.29. Let K be the class of models of a Πc
2 sentence and

suppose that Kfin is c.e. Then there is at least one computable structure
in K.

Proof. We build a structure in K by building a finite approxima-
tion to it as in Definition I.6. That is, we build an increasing chain of
finite structures As, s P N, over increasing vocabularies. Each As is a

::Recall from Definition I.6 that a τ|¨|-structure is a τs-structure for s “ |A|
where τs consists, usually, of the first s symbols of τ when τ is infinite and τs “ τ
when τ is finite.

;;Of course, we refer only to the sentences that use the vocabulary of the finite
structure. Thus, if A is a τ|A|-structure, the claim is that DpAq P Kfin if and only

if all @-τ|A|-sentences in @-ThpKq are true in A.

46 III. EXISTENTIALLY-ATOMIC MODELS

τ|¨|-structure whose domain is an initial segment of N. Furthermore, we
require that each As be in Kfin (i.e., the diagram of As be in Kfinq, and
that As Ď As`1 (as τ|As|-structures). At the end of stages, we define
the τ -structure A “

Ť

sPN As.
Let

ŹŹ

iPI @ȳiψipȳiq be the Πc
2 sentence that axiomatizes K, where

each ψi is Σc
1. To get A P K, we need to guarantee that, for each i and

each ā P A|ȳi|, we have A |ù ψipāq. For this, when we build As`1, we
will make sure that,

(‹) for every i ă s and every ā P A
|ȳi|
s , As`1 |ù ψipāq.

Notice that since ψi is Σc
1, As`1 |ù ψipāq implies A |ù ψipāq. Thus, we

would end up with A |ù
ŹŹ

iPI @ȳiψipȳiq.
Now that we know what we need to do, let us build the sequence

of As’s. Suppose we have already built A0, ...,As and we want to
define As`1 Ě As. All we need to do is search for a finite structure in
Kfin satisfying (‹), which we can check computably. We need to show
that at least one such structure exists. Since As P Kfin, there is some
B P K which has a substructure Bs τ|¨|-isomorphic to As. Since B |ù
ŹŹ

iPI @ȳiψipȳiq, for every i ă s and every b̄ P B|ȳi|s , there exists a tuple
in B witnessing that B |ù ψipb̄q. Let Bs`1 be a finite τ|¨|-substructure
of B containing Bs and all those witnessing tuples, and large enough so
that all the symbols in the D-disjunct of the ψi witnessing B |ù ψipb̄q
for i ă s appear in τ|Bs`1|. Then Bs`1 satisfies (‹) with respect to Bs
as needed. l

Corollary III.30. Let K be a Πc
2 class of structures, and S be the

D-theory of some structure in K. If S is c.e. in a set X, then there is
an X-computable ω-presentation of a structure in K with D-theory S.

Proof. Add to the Πc
2 axiom for K the Πc,X

2 sentence saying that
the structure must have D-theory S:

˜

ľľ

ϕPS

ϕ

¸

^

¨

˚

˝

ľľ

ϕ D-formula:
ϕRS

 ϕ

˛

‹

‚

where the left-hand-side says of a structure A that S Ď D-ThpAq, and

the right-hand-side that D-ThpAq Ď S. Let KS be the new Πc,X
2 class of

structures. It is nonempty because we are assuming that some structure
in K has D-theory S. All the structures in KS have D-theory S, and
hence Kfin

S is enumeration reducible to S, and hence it is c.e. in X
too. Applying Lemma III.29 relative to X, we get an X-computable
structure in KS as wanted. l

III.7. SCOTT SENTENCES OF EXISTENTIALLY ATOMIC STRUCTURES. 47

Not only can we build a computable structure in such a class K, we
can build one omitting certain types. The first one to prove an effective
version of the omitting types theorem was Terry Millar [Mil83]. Our
version below is different than hers, as she used first-order types over
complete decidable first-order theories.

Lemma III.31 (The @-type omitting theorem). Let K be an Πin
2

class of structures. Let tpipx̄iq : i P Nu be a sequence of @-types which
are not D-supported in K. Then there is a structure A P K which omits
all the types pipx̄iq for i P N.

Furthermore, if K is Πc
2, Kfin is c.e. and the list tpipx̄iq : i P Nu is

c.e., we can make A computable.

Proof. We construct A by stages as in the proof of Lemma III.29,
the difference being that now we need to omit the types pi. So, on
the even stages s, we do exactly the same thing we did in Lemma
III.29, and we use the odd stages to omit the types. That is, we build
a sequence of finite τ|¨|-structures A0 Ď A1 Ď ¨ ¨ ¨ and at even stages
we define As`1 so that it satisfies (‹) from Lemma III.29 guaranteeing
that A belongs to K. At odd stages s ` 1 “ 2xi, jy ` 1, we ensure
that the jth tuple ā does not satisfy pi as follows. We are given As

and we need to define As`1 so that ā satisfies some D-formula whose
negation is in pi. Let c̄ be the tuple of elements of As which are not in
ā, and let σ “ DAspā, c̄q. Then, ā satisfies Dȳ pDpā, ȳq “ σq. Since pi is
not D-supported in K, there exists a @-formula ψpx̄q P pi which is not
implied by DȳDpx̄, ȳq “ σ within K. That means that, for some B P K
and b̄ P BăN,

B |ù DȳDpb̄, ȳq “ σ & ψpb̄q.

Then, there is a finite substructure rB P Kfin of B containing such ȳ
the witnesses for ψpb̄q which also satisfies DȳDpb̄, ȳq “ σ and ψpb̄q.

Since rB |ù DȳDpb̄, ȳq “ σ, we can assume that As Ďτ|As|
rB and that

b̄ “ ā. Since such rB and ψ exist, we can wait until we find them and
then define As`1 accordingly. l

We will see how the classical first-order type omitting theorem is
a corollary of the @-type omitting theorem in [MonP2] once we see
Morleyizations.

III.7. Scott sentences of existentially atomic structures.

Existentially atomic structures are also among the simplest ones in
terms of the complexity of their Scott sentences.

48 III. EXISTENTIALLY-ATOMIC MODELS

Definition III.32. A sentence ψ is a Scott sentence for a structure
A if A is the only countable structure satisfying ψ. That is, ψ is true
on a structure B if and only if B is isomorphic to A.

We will see in [MonP2] that every countable structure has a Scott
sentence in the infinitary language Lω1,ω. For now, we prove it only for
D-atomic structures.

Lemma III.33. Every D-atomic structure has an Πin
2 Scott sentence.

Furthermore, every effectively D-atomic computable structure has a Πc
2

Scott sentence.

Proof. Let S be a Scott family of D-formulas for A. For each
ā P AăN, let ϕāpx̄q be the D-formula defining the orbit of ā. For the
empty tuple, let ϕxypq be a sentence that is always true. Given any
other structure B, consider the set

IB “ txā, b̄y P A
ăN
ˆBăN : B |ù ϕāpb̄qu.

If IB had the back-and-forth property, then, by Lemma III.15, we would
know that B is isomorphic to A because xxy, xyy P IB. Recall from the
proof of Theorem III.22 that IA has the back-and-forth property. Thus,
if B is isomorphic to A, then IB also has the back-and-forth property.
Therefore, we get that IB has the back-and-forth property if and only
if B is isomorphic to A. The Scott sentence for A says of a structure
B that IB has the back-and-forth property:

ľľ

āPAăN

@x1, ..., x|ā|

˜

ϕāpx̄q ñ

ˆ

“Dpx̄q “ DApāq”

˙

^

ˆ

@y
łł

bPA

ϕābpx̄yq

˙

^

ˆ

ľľ

bPA

Dyϕābpx̄yq

˙

¸

,

where “Dpx̄q “ DApāq” stands for ϕatDApāq
px̄q as in Observation I.10.

As for the effectivity claim, if A is a computable ω-presentation and S
is c.e., then the map ā ÞÑ ϕā is computable, and the conjunctions and
disjunctions in the Scott sentence above are all computable. l

To prove the other direction, we need to go through the type omit-
ting theorem for @-types.

Theorem III.34. Let A be a structure. The following are equiva-
lent:

(1) A is D-atomic.
(2) A has an Πin

2 Scott sentence.

III.8. TURING DEGREE AND ENUMERATION DEGREE 49

Proof. We already know that (1) implies (2). For the other di-
rection, suppose ψ is an Πin

2 Scott sentence for A, but that A is not
D-atomic. By Theorem III.22, there is a @-type realized in A which is
not D-supported. But then, by Lemma III.31, there exists a model of
ψ which omits that type. This structure could not be isomorphic to A,
contradicting that ψ was a Scott sentence for A. l

Lemma III.35. Let A be a structure. The following are equivalent:

(1) A is D-atomic over a finite tuple of parameters.
(2) A has an Σin

3 Scott sentence.

As the reader might be able to guess by now, an Σin
3 formula is a

countable disjunction of formulas of the form Dȳψpȳ, x̄q, where ψ is Πin
2

and x̄ is a fixed tuple of variables.

Proof. If A is D-atomic over a finite tuple of parameters ā, then
pA, āq has an Πin

2 Scott sentence ϕpc̄q. Then Dȳϕpȳq is a Scott sentence
for A.

Suppose now that A has a Scott sentence
ŽŽ

iPN Dȳiψipȳiq. A must
satisfy one of the disjuncts, and that disjunct must then also be a Scott
sentence for A. So, suppose the Scott sentence for A is Dȳ ψpȳq, where
ψ is Πin

2 . Let c̄ be a new tuple of constants of the same size as ȳ. If
ψpc̄q were a Scott sentence for pA, āq, we would know A is D-atomic
over ā — but this might not be the case. Suppose pB, b̄q |ù ψpc̄q. Then
B must be isomorphic to A as it satisfies Dȳ ψpȳq, but we could have
pB, b̄q ­– pA, āq. However, it is enough for us to show that one of the
models pB, b̄q of ψpc̄q is D-atomic over b̄. There are only countably many
models of ψpc̄q because there are only countably many tuples in AăN

to which we can assign c̄. Therefore, there are countably many @-types
among the models of ψpc̄q. Thus, we can omit the non-D-supported ones
while satisfying ψpc̄q. The resulting structure would be D-atomic over c̄
by Theorem III.22 and isomorphic to A because it satisfies Dȳ ψpȳq. l

III.8. Turing degree and enumeration degree

To measure the computational complexity of a structure, the most
common tool is its degree spectrum, which we will study in Chapter V.
A much more natural attempt to measure the computational complex-
ity of a structure is given in the following definition — unfortunately,
it does not always apply.

Definition III.36 (Jockusch and Richter [Ric81]). A structure A
has Turing degree X P 2N if X computes a copy of A, and every copy
of A computes X.

50 III. EXISTENTIALLY-ATOMIC MODELS

It turns out that if we look at a similar definition, but on the enu-
meration degrees, we obtain a better behaved notion.

Definition III.37. A structure A has enumeration degree X Ď N
if every enumeration of X computes a copy of A, and every copy of A
computes an enumeration of X. Recall that an enumeration of X is an
onto function f : NÑ X.

Equivalently, A has enumeration degree X if and only if, for every
Y ,

Y computes a copy of A ðñ X is c.e. in Y .

Notice that the enumeration degree of a structure is unique up to enu-
meration equivalence. (See page xvii.)

Example III.38. Given X Ď N, the standard example of a struc-
ture with enumeration degree X is the graph GX , which is made out of
disjoint cycles of different lengths and which contains a cycle of length
n` 3 if and only if n P X. It is not hard to see that every presentation
of this graph can enumerate X: Whenever we find a cycle of length
n` 3, we enumerate n into X. For the other direction, if we can enu-
merate X, we can build a copy of GX by enumerating a cycle of length
n` 3 every time we see a number n enter X.

Example III.39. Given X Ď N, consider the group GX “
À

iPX Zpi
as in Example II.20, where pi is the ith prime number. Then GX has
enumeration degree X: We can easily build GX out of an enumeration
of X, and for the other direction, we have that n P X if and only if
there exists g P GX of order pn.

Exercise III.40. Show that both the graph and the group from
the previous examples are D-atomic. Hint in the footnote.:

Note that A has Turing degree X if and only if has enumeration
degree X ‘Xc.; This is because X ďT Y ðñ X ‘Xc is c.e. in Y .
So, in either of the examples above, we can get a graph or a group of
Turing degree X by considering GX‘Xc . A set X is said to have total
enumeration degree if it is enumeration equivalent to a set of the form
Z ‘ Zc. There are sets which do not have total enumeration degree
[Med55]. Those are exactly the sets X for which the set tY P 2N :
X is c.e. in Y u has no least Turing degree.§ It follows that if a structure

:Show they are D-algebraic.
;Xc denotes the complement of X.
§If Z is the least Turing degree of the set tY P 2N : X is c.e. in Y u, then X

would be enumeration equivalent to Z ‘ Zc. This is because we have that, for all
Y , X is c.e. in Y if and only if Z ďT Y , if and only if Z ‘Zc is c.e. in Y , and thus
the same Y ’s can enumerate both X and Z ‘ Zc.

III.8. TURING DEGREE AND ENUMERATION DEGREE 51

has enumeration degree X and X does not have total enumeration
degree, then the structure does not have Turing degree.

The enumeration degree of a structure is indeed a good way to mea-
sure its computational complexity. Unfortunately, in general, struc-
tures need not have enumeration degree. Furthermore, there are whole
classes of structures, like linear orderings for instance, where no struc-
ture has enumeration degrees unless it is already computable (Section
V.1). Before getting into that, the rest of the section is dedicated to
classes whose structures all have enumeration degree.

Theorem III.41. Let K be a Πc
2 class, all whose structures are D-

atomic. Then every structure in K has enumeration degree given by its
D-theory.

The proof of Theorem III.41 needs a couple of lemmas that are
interesting on their own right.

Lemma III.42. Let S be the D-theory of a structure A. If A belongs
to some Πc

2 class K where A is the only structure with D-theory S, then
A has enumeration degree S.

Proof. By Corollary III.30, if X can compute an enumeration of
S, then it can compute an ω-presentation of a structure B P K with
D-theory S. By the assumption on K, A and B must be isomorphic. So,
X can compute a copy of A. Of course, every copy of A can enumerate
S, and hence A has enumeration degree S. l

Lemma III.43. If A and B are D-atomic and have the same D-theory,
then they are isomorphic.

Recall that we already proved this lemma for D-algebraic structures
in III.10.

Proof. We prove that A and B are isomorphic using a back-and-
forth construction. Let

I “ txā, b̄y : @-tpApa0, ..., asq “ @-tpBpb0, ..., bsqu.

We need to show that I has the back-and-forth property (Definition
III.13). Clearly, @-tpApa0, ..., asq “ @-tpBpb0, ..., bsq impliesDApa0, ..., asq “
DBpb0, ..., bsq. By assumption, xxy, xyy P I. For the second condition
in Definition III.13, suppose xā, b̄y P I, and let c P A. Let ψ be
the principal D-formula satisfied by āc. Since @-tpApāq “ @-tpBpb̄q,
there is a d in B satisfying the same formula. We need to show that
@-tpApācq “ @-tpBpb̄dq. Let us remark that since we do not know A
and B are isomorphic yet, we do not know that ψ generates a @-type
in B.

52 III. EXISTENTIALLY-ATOMIC MODELS

First, to show @-tpApācq Ď @-tpBpb̄dq, take θpx̄yq P @-tpApācq. Then

“@ypψpx̄yq Ñ θpx̄yqq” P @-tpApāq “ @-tpBpb̄q,

and hence θ P @-tpBpb̄dq. Let us now prove the other inclusion. Let
rψpx̄yq be the D-formula generating @-tpBpb̄dq. Then since rψ R @-tpBpb̄dq,

by our previous argument, rψ R @-tpApācq either, and hence A |ù

rψpācq. The rest of the proof that @-tpBpb̄dq Ď @-tpApācq is now sym-

metrical to the one of the other inclusion: For rθpx̄yq P @-tpBpb̄dq, we

have that “@yp rψpx̄yq Ñ rθpx̄yqq” P @-tpBpācq “ @-tpApācq, and hence
θ P @-tpApācq. l

Proof of Theorem III.41. The proof is immediate from Lem-
mas III.42 and III.43. l

The following exercise gives a structural property that is sufficient
for a structure to have enumeration degree. The property is far from
necessary though.

Exercise III.44. Suppose that a structure A has a Σc
3 Scott sen-

tence. Prove that A has enumeration degree. Hint in footnote.¶

Example III.45 (Frolov, Kalimullin and R. Miller [FKM09]).
Consider the class K of fields of finite transcendence degree over Q.
We claim that every such field has enumeration degree. This class is
not Πc

2, but if we consider Kn to be the class of fields of transcendence
degree n, and add n constant symbols to name a transcendence basis,
v1, ..., vn, then we do get a Πc

2 class. Since all these fields are algebraic
over Qpv1, ..., vnq, they are D-algebraic, and hence D-atomic. It then
follows from Theorem III.41 that every such field has enumeration de-
gree, namely the enumeration degree of the D-type of a transcendence
basis.

Conversely, we claim that for every set X, there is an algebraic
field whose D-theory is enumeration-equivalent to X: Take the field
that contains the pnth roots of unity if and only if n P X, where pn is
the nth prime number. From an enumeration of X, one can build such
a field, and hence enumerate its D-theory, and conversely, the D-theory
of that field can enumerate X.

Example III.46 (Calvert, Harizanov, Shlapentokh [CHS07]). Torsion-
free abelian groups of finite rank always have enumeration degree. If
we add a basis of the group as parameters, then the class of torsion-
free abelian groups generated by such a basis is Πc

2. All these groups

¶Use Corollary III.30

III.8. TURING DEGREE AND ENUMERATION DEGREE 53

are clearly D-algebraic and D-atomic, as every element is generated as a
Q-linear combination of the base. Thus, they have enumeration degree.

Furthermore, for every set X there is a torsion-free abelian group
of rank one with enumeration degree X: Consider the subgroup of Q
generated by 1{pn for n P X.

Example III.47 (Steiner [Ste13]). Graphs of finite valence with
finitely many connected components always have enumeration degree
and can have all possible enumeration degrees: Let G be such a graph.
Add a constant element for each connected component. Recall from
Example III.8 that, with the added constants, G becomes D-algebraic
and hence D-atomic. Saying that every element is connected to one
of these constants is Πc

2. However, saying that G has finite valence is
not. But the @-theory of G says that it has finite valence: for each
constant element, and for each k P N, there is a @-formula that says
that exists no more than a certain finite number of nodes at distance
k from that constant. Since different D-atomic structures must have
different D-theories, the isomorphism type of G is determined by the Πc

2

sentence saying every element is connected to one of the constants and
its D-theory. It then follows from Lemma III.42 that G has enumeration
degree.

One can show that for every X there is a connected graph of finite
valence and enumeration degree X. The graphs GX from III.38 are
not connected, but a small modification would work: make all of these
cycles sharing exactly one common node.

Exercise III.48. Show that if a structure A has enumeration de-
gree, that degree is the enumeration degree of some D-type of some
tuple in A.

Exercise III.49. Show that if A is D-atomic and has enumeration
degree, then its enumeration degree is given by its D-theory. Hint in
footnote.}

Exercise III.50. Give an example of a structure which has enumer-
ation degree, but whose enumeration degree is not that of its D-theory.

}Show that every D-type is e-reducible to the D-theory of A.

CHAPTER IV

Generic presentations

Forcing and generics are useful tools all over computability the-
ory. The first forcing-style argument in computability theory can be
traced back to the Kleene–Post construction of two incomparable de-
grees [KP54], published a decade before the invention of forcing. In
this chapter, we give an introduction to forcing in computable struc-
ture theory. We will develop a more general framework for forcing in
[MonP2], once we gain more familiarity with infinitary languages. For
now, instead of looking at fully generic objects, we consider 1-generics,
which have relatively low computational complexity.

The notion of forcing was introduced by Cohen to prove that the
continuum hypothesis does not follow from the ZFC axioms of set the-
ory. Soon after, forcing became one of the main tools in set theory to
prove independence results of all kinds. Generic objects are “generic”
or “typical” in the sense that they do not have any property that is
satisfied by a meager class of objects, where meagerness is viewed as a
notion of smallness. This implies that if a generic satisfies a particular
property, it must belong to a class where most objects have that prop-
erty, and hence there is a clear reason why it has that the property.
Our forcing arguments will essentially have that form: If a generic ω-
presentation has a certain computational property, then there must be
a structural reason for it.

Generic objects come in different shapes and sizes, but here, we will
only consider Cohen generics. A Cohen generic real is a real in NN that
does not belong to any meager set, where a subset of NN is meager if
it is contained in a countable union of nowhere-dense closed sets, and
a set is nowhere dense if it is not dense when restricted to any open
set. Meager sets are considered to be small sets — for instance, Baire’s
category theorem states that no countable union of meager sets can
cover all of NN. If a real belongs to a particular meager set, belonging
to this set would be a property of this real that most reals do not have.
As we will see, the feature characterizing generics is the following: If
G P NN is generic, P Ď NN is a definable set viewed as a property, and
G P P , then there is a finite initial segment σ Ď G which forces G to

55

56 IV. GENERIC PRESENTATIONS

belong to P in the sense that every generic extending σ belongs to P .
Behind this is Baire’s theorem that says that if P is Borel, then there
is an open set such that, restricted to that open set, P is either meager
or co-meager. One problem that arises is that every real belongs to
a meager set, namely the singleton that contains itself. That is why
in set theory one has to work with generic reals that live outside the
universe of sets. For the purposes of computability theory, we do not
need to consider all meager sets, but only countably many of them.
Since countable unions of meager sets are still meager, we can find
object that are generic enough for our purposes.

We start this chapter by introducing 1-generic reals; these are the
ones that avoid all nowhere-dense closed sets given as the boundaries of
effectively open sets (Definition IV.1). The notion of 1-generic was iso-
lated by Jockusch [Joc80], though Kleene–Post’s construction [KP54]
already gives 1-generic reals 26 years earlier. See Exercise IV.8 below
for a proof of Kleene–Post’s result that every countable partial ordering
embeds into the Turing degrees using 1-generics. They were then used
in all kinds of embeddability results into the Turing degrees and other
kinds of degrees. They are also often used in effective randomness and
in reverse mathematics.

The objective of this chapter, though, is to introduce 1-generic enu-
merations and 1-generic presentations of structures. We will develop a
more general notion of forcing and generics later in [MonP2], which
is similar to the notion originally considered independently by Knight
[Kni86], and by Manasse and Slaman (later published in [AKMS89]).
For now, 1-generic presentations are enough for the results in this first
part of the book. We will use them in the next chapter to prove
Richter’s theorem V.10, Knight et al.’s theorem V.15, Andrews and
Miller’s theorem V.20, and other results later on.

IV.1. Cohen generic reals

We review the standard notion of 1-genericity for reals and prove
some of their basic properties. (For more background, see [Ler83,
Section IV.2] or [Soa16, Section 6.3].) We will extend these proofs to
generic enumerations of structures in the next sections.

For R Ď NăN, define the open subset of NN generated by R to be

rRs
Ă

“ tX P NN : Dσ P R pσ Ă Xqu.

In other words, if rσs
Ă

denotes the clopen set of extensions of σ, namely
tX P NN : σ Ă Xu, then rRs

Ă

“
Ť

σPRrσs
Ă

. A subset of NN is effectively
open if it is of the form rRs

Ă

for some c.e. R Ď NăN. A real G P NN is
1-generic if and only if it avoids the boundaries of all effectively open

IV.1. COHEN GENERIC REALS 57

sets. Thus, for every effectively open set, either G is well inside it or
well outside it. Here is the equivalent definition we will actually use:

Definition IV.1 (Jockusch [Joc80]). Let R Ď NăN be closed up-
wards, that is, if σ Ď τ and σ P R, then τ P R too. We say that a string
γ P NăN decides R if either γ P R or σ R R for all σ Ě γ. If R is not
closed upwards, we say that γ decides R if it decides its upward closure.
A real G P NN is 1-generic if for every upward-closed c.e. subset R of
NăN, there is an initial string of G, G æ k for some k, which decides R.

The reason we use the words “decide” and “force” is the following:
Let G be 1-generic and rRs

Ă

be an effectively open set for R upward
closed. For γ Ă G, if γ P R, we say that γ forces G to be in rRs

Ă

, while
if p@σ Ě γq σ R R, then we say that γ forces G to be outside rRs

Ă

. In
either case, γ decides whether G belongs to rRs

Ă

or not.
One can require more genericity by requiring G to decide more sets,

e.g., α-generics decide all Σ0
α sets R, as we will see in [MonP2]. Cohen

generics decide all sets R in the universe — we will not deal with these
in this book.

Observation IV.2. 1-generic reals are not computable: For each
computable C P NN, consider RC “ tσ P NăN : σ Ć Cu. Since there
is not enough room to force out of RC in the sense that there is no
γ P NăN all whose extensions are outside RC , any 1-generic must be
forced to be in rRCs

Ă

and be hence different from C.

Lemma IV.3. There is a 1-generic real computable from 01.

Proof. This is essentially an effective version of the Baire category
theorem.

We build a 1-generic G as the union of an increasing sequence of
finite strings p̄0 Ď p̄1 Ď ¨ ¨ ¨ P NăN. Let p̄0 be the empty string. At stage
s` 1 “ e, we define p̄s`1 so that it decides the eth c.e. set We Ď NăN:
If there is a q̄ Ě p̄s with q̄ P We, we let p̄s`1 “ q̄. Otherwise, we let
p̄s`1 “ p̄s. At the end of stages, we define G “

Ť

s p̄s. It is not hard
to check that G is 1-generic. (To see that the lengths of the p̄s’s go
to infinity, notice that, for each n, the set tσ P NăN : |σ| ě nu is c.e.
and hence is eventually considered during the construction as one of
the We’s.)

The only step in the construction that was not computable was
checking whether there existed q̄ Ě p̄s with q̄ P We. This is a question 01

can answer, and hence the whole construction is computable in 01. l

For the next lemma, we need to consider the relativized version of
1-genericity. Given X P NN, we say that G P NN is X-1-generic if every

58 IV. GENERIC PRESENTATIONS

X-c.e. subset of NăN is decided by an initial segment of G. The next
lemma implies that the only sets that are c.e. in all generic sets are the
ones that are already c.e.

Lemma IV.4. Let G,X P NN. Suppose that G is X-1-generic. Then
X is not c.e. in G, unless X is c.e. already.

Proof. Suppose that X “ WG
e for some e P N; we will show that

X is already c.e. Consider the set of strings which “force ‘WG
e Ę X’,”

by which we mean:

Q “ tq̄ P NăN : Dn pn P W q̄
e ^ n R Xqu.

Notice that Q is c.e. in X, and hence it is decided by some initial
segment of G — say by G æ k. If we had G æ k P Q, we would get
n P WG

e and n R X, contradicting our assumption that X “ WG
e .

Thus, G æ k must force out of rQs
Ă

and no extension of G æ k is in Q.
We now claim that

X “ tn P N : pDq̄ Ě G æ kq n P W q̄
e u.

Notice that this would show that X is c.e. as needed. As for the claim:
For the left-to-right inclusion, if n P X, since X “ WG

e , there is some
initial segment q̄ of G satisfying n P W q̄

e . For the other inclusion, if
there exists q̄ Ě G æ k with n P W q̄

e , then n must belong to X as
otherwise q̄ would be an extension of G æ k in Q. l

In particular, we get that if G is X-1-generic, then G computes X
if and only if X is computable.˚ Thus, if G is X-1-generic, G and X
form a minimal pair, i.e., there is no non-computable set computable
from both. This is because if Y ďT X, then G is Y -1-generic too, so if
also Y ďT G, Y must be computable.

The following lemma shows that 1-generics do not code much in-
formation on their jumps: For Z P NN, basic properties of the Turing
jump imply that Z 1 ěT Z ‘ 01. We say that Z is generalized low if
Z 1 ”T Z ‘ 01.

Lemma IV.5. Every 1-generic real G is generalized low.

Proof. That G1 ěT G ‘ 01 is true for all reals G. Let us prove
that G1 ďT G ‘ 01. Take e P N; we want to decide if e P G1, that is, if
ΦG
e peqÓ using G‘ 01 as oracle, uniformly in e. Consider the set

Re “ tq̄ P NăN : Φq̄
epeqÓu.

Since Re is c.e., it is decided by G. Notice that 01 can tell if a string γ
forces in (which is a Σ0

1 question), forces out (which is a Π0
1 question), or

˚Here we are using that computable is equivalent to c.e. and co-c.e.

IV.1. COHEN GENERIC REALS 59

does not decide rRes
Ă

. Then, using G‘ 01, we can find k P N such that
G æk decides Re. If G æk P Re, we know that ΦG

e peqÓ and hence e P G1.
If no extension of G æ k is in Re, then ΦG

e peqÒ and hence e R G1. l

An important application of 1-generics is Friedberg’s jump inversion
theorem which implies that every Turing degree above 01 is the jump
of some degree.

Theorem IV.6 (Friedberg’s jump inversion theorem [Fri57a]). For
every A P NN with A ěT 01, there is a 1-generic G such that

A ”T G
1
”T G‘ 01.

Proof. We follow the construction of a 1-generic computable from
01 (Lemma IV.3) but with extra steps to encode A into G.

We build G as the union of an increasing sequence of finite strings
p̄0 Ď p̄1 Ď ¨ ¨ ¨ P NăN. Let p̄0 be the empty string. At an odd stage
s`1 “ 2e`1 we define p̄s`1 so that it decides the eth c.e. set We Ď NăN:
Ask 01 if there is a q̄ Ě p̄s with q̄ P We. If yes, let p̄s`1 be the least such
q̄ according to some enumeration of NăN — insisting that q̄ was least
was not necessary in Lemma IV.3. If no, let p̄s`1 “ p̄s. At an even
stage s` 1 “ 2e, we let p̄s`1 “ p̄s

aApeq.
Since A computes 01, A can run the construction and thus G ďT A.

Conversely, G ‘ 01 can recover all the steps of the construction and
recover the sequence p̄0 Ď p̄1 Ď ¨ ¨ ¨ : This is because 01 can figure out
how p̄s`1 was defined at odd stages — using that q̄ was chosen to be
least — and, at even stages, p̄s`1 is just one bit longer than p̄s, i.e.,
p̄s`1 “ G æ |p̄s| ` 1. We can then recover A, as Apeq is the last entry
of p̄2e. This shows that A ”T G ‘ 01. Since we made G 1-generic,
G1 ”T G‘ 01. l

The following lemma shows that if we split a 1-generic in two pieces,
we get two 1-generics. Furthermore, the pieces are 1-generic relative to
each other.

Lemma IV.7. Let G,H P NN. Then G‘H is 1-generic if and only
if G is 1-generic and H is G-1-generic.

This is essentially an effective version of the Kuratowski-Ulam The-
orem, that says that a set P Ď NN ˆ NN is comeager if and only if the
set tx P NN : P X txu ˆ NN is comeager in txu ˆ NNu is comeager.

Proof. Suppose first that G ‘ H is 1-generic. Consider a c.e.
operator W which outputs subsets of NăN. To prove that H is G-1-
generic, we need to show that H decides WG using the genericity of

60 IV. GENERIC PRESENTATIONS

G‘H. Consider the c.e. set of pairs of strings that “force H P rWGs
Ă

,”
by which we mean:

R “ tγ ‘ δ P NăN : δ P W γ
u.

G‘H must decide R. If we have γ ‘ δ Ă G‘H with γ ‘ δ P R, then
δ P WG and H is forced into rWGs

Ă

. If we have that p@τ Ě γ‘δq τ R R,
then p@σ Ě δq σ R WG and H is forced out of rWGs

Ă

.
In exactly the same way we can show that G is H-1-generic, and in

particular 1-generic.
For the other direction, suppose G is 1-generic and H is G-1-generic.

Let R be an upwards-closed c.e. subset of NăN; we must prove that
G‘H decides it. Define

S1 “ tδ P NăN : pG æ |δ|q ‘ δ P Ru.

S1 is c.e. in G and thus H must decide it. If there is a δ1 Ă H with
δ P S1, then Gæ|δ1|‘δ1 forces G‘H to be in rRs

Ă

. Otherwise, suppose
there is δ1 Ă H no extension of which is in S1. Define

S0 “ tγ P NăN : Dδ P N|γ| pδ Ě δ1 & γ ‘ δ P Rqu.

G must decide S0. There cannot be a γ Ď G with γ P S0, because the
witness δ would be an extension of δ1 in S1. So, there is a γ1 Ď G no
extension of which is in S0. Thus, for γ Ě γ1 and δ Ě δ1, γ ‘ δ R R.
We get that γ1 ‘ pH æ |γ1|q forces G‘H out of rRs

Ă

. l

Such H and G are said to be mutually generic. Similarly, we can
get an infinite sequence of mutually generic reals by taking the columns
tGrns : n P Nu of a 1-generic G.

Exercise IV.8. Prove Kleene–Post’s theorem that every countable
partial ordering embeds into the Turing degrees. To prove it, given a
partial ordering pP ; ďq, consider a bijection f : PˆNÑ N, and consider
the pull-back H “ f´1pGq of a 1-generic real G Ď N. Show that the
map p ÞÑ

À

qďpH
rqs from P to NN induces the desired embedding.

Exercise IV.9. Prove that the countable atomless Boolean algebra
embeds into the Turing degrees preserving joins and meets. Hint in
footnote.:

Exercise IV.10. Prove that given a real A ěT 01, there exist reals
G and H such that G1 ”T A ”T H

1, and G and H form a minimal pair,
meaning that there is no non-computable set computable from both G
and H.

:Consider a 1-generic subset H of Q and then map an element a of the interval
algebra of Q to aXH.

IV.2. GENERIC ENUMERATIONS OF SETS 61

IV.2. Generic enumerations of sets

Before diving into generic enumerations of structures, let us take a
quick look at generic enumerations of sets and give a proof of Selman’s
theorem about enumeration reducibility. (See page xvii.) Recall that
an enumeration of a set Z is nothing more than a function g : N Ñ Z
that is onto Z. We say that g P ZN is a 1-generic enumeration of Z if
for every subset R of ZăN that is enumeration reducible to Z, there is
an initial segment of g, g æ k for some k, that decides it in the sense
that either g æ k P R or no extension of g æ k is in R. Notice that a
1-generic enumeration of Z must be onto Z, because for each z P Z,
the set R “ tσ P ZăN : Di ă |σ| σpiq “ zu is dense and enumeration
reducible to Z and hence must be forced in. We relativize this notion
in the obvious way: g P ZN is an X-1-generic enumeration of Z if for
every subset R of ZăN that is X-enumeration reducible to Z,; there is
an initial segment of g that decides it.

The next lemma implies that the only sets that are c.e. in all generic
enumerations of Z are the ones that are already enumeration reducible
to Z. It is the analog of Lemma IV.4, and the proof is almost the same
verbatim.

Lemma IV.11. Consider sets Z Ď N and X Ď N. Suppose that g
is an X-1-generic enumeration of Z. Then X is not c.e. in g, unless
X is enumeration reducible to Z.

Proof. Suppose that X “ W g
e for some e P N; we will show that

X ďe Z. Consider the set of strings which “force ‘W g
e Ę X’,” by which

we mean:
Q “ tq̄ P ZăN : Dn pn P W q̄

e ^ n R Xqu.

Notice that Q is X-enumeration reducible to Z, and hence it is decided
by some initial segment of g — say by gæk. If we had gæk P Q, we would
get n P W g

e and n R X, contradicting our assumption that X “ W g
e .

Thus, g æ k must force out of rQs
Ă

and we have that no extension of
g æ k is in Q.

We now claim that

X “ tn P N : pDq̄ P ZăNq q̄ Ě g æ k & n P W q̄
e u.

If n P X, then, since X “ W g
e , there is some initial segment q̄ of g

satisfying n P W q̄
e . For the other inclusion, if there exists q̄ P ZăN with

q̄ Ě g æ k and n P W q̄
e , then n must belong to X as otherwise q̄ would

be an extension of g æ k in Q.

;We say that R is X-enumeration reducible to Z if there is an X-c.e. enumera-
tion operator Θ such that R “ ΘZ , where ΘZ “ tn : pDD Ďfin Zq xxDy, ny P Θu.

62 IV. GENERIC PRESENTATIONS

Now, let us observe that the claim implies that X ďe Z as needed.
Define the following c.e. enumeration operator:

Θ “ txxDy, ny : D Ăfin N, n P N, pDq̄ P DăNq q̄ Ě g æ k & n P W q̄
e u.

From the claim above we get that X “ ΘZ . l

Selman’s theorem proves the equivalence between the different def-
initions of enumeration reducibility:

Theorem IV.12 (Selman [Sel71]). Let Y, Z be subsets of N. The
following are equivalent:

(1) Every enumeration of Z computes an enumeration of Y .
(2) There is a single computable operator that maps every enu-

meration of Z into an enumeration of Y .
(3) There is a c.e. enumeration operator Θ such that Y “ ΘZ.

Proof. The implications (3)ñ (2) and (2)ñ (1) are quite straight-
forward. The interesting direction is (1) ñ (3). For this, let g by a
Y -1-generic enumeration of Z. By (1), Y is c.e. in g, and hence from
the proof of the previous lemma we get a c.e. enumeration operator Θ
such that Y “ ΘZ . l

IV.3. Generic enumerations of structures

We now turn to consider 1-generic enumerations of structures. The
main difference with 1-generic reals is that, instead of deciding the c.e.
subsets of NăN, we now decide the r.i.c.e. subsets of AăN.

We assume throughout the rest of the chapter that A is an ω-
presentation of a τ -structure, and, of course, that τ is a computable
vocabulary. Given a set A, let A‹ be the set of all finite strings from
A whose entries are all different:

A‹ “ tσ P AăN : p@i ‰ j ă |σ|q σpiq ‰ σpjqu.

Definition IV.13. We say that γ P A‹ decides an upward-closed
subset R Ď A‹ if either γ P R or σ R R for all σ Ě γ. We say that
a one-to-one function g P AN is a 1-generic enumeration of A if, for
every r.i.c.e. set R Ď A‹, there is an initial segment of g that decides
R.§

The existence of 1-generic enumerations follows from the Baire cate-
gory theorem. As in Lemma IV.3, we can build a 1-generic enumeration

§Let us remind the reader that we identify tuples γ P AăN with functions
γ : t0, ..., |γ| ´ 1u Ñ A. For instance, when we say that a tuple is an initial segment
of a function g : NÑ A, we are viewing the tuple as a function.

IV.3. GENERIC ENUMERATIONS OF STRUCTURES 63

of A computably in DpAq1 by finite approximations deciding all DpAq-
c.e. sets, and hence all r.i.c.e. subsets of AăN “ NăN. Since we only
need to decide the r.i.c.e. sets, we can do this with less than DpAq1: The

lemma below says that ~KA is enough. See II.30 for the definition of the

complete r.i.c.e. set ~KA, and recall that we always have ~KA ďT DpAq1,
and that sometimes ~KA ăT DpAq1 (Exercise II.33).

Lemma IV.14. Every ω-presentation A has a 1-generic enumera-

tion computable in ~KA.

Proof. We build g as the union of a strictly increasing sequence
tp̄s : s P Nu with p̄s P A‹. Using Remark II.32 we get a DpAq-
computable enumeration tR0, R1,u of the r.i.c.e. subsets of A‹. At
stage s` 1 “ e, we define p̄s`1 to decide the eth r.i.c.e. set Re Ď A‹ as
follows: If there is a q̄ Ě p̄s with q̄ P Re, we let p̄s`1 “ q̄. Otherwise, we
let p̄s`1 “ p̄s. Finally, we let g “

Ť

s p̄s P A
N. It is not hard to check

that g is one-to-one and 1-generic.
To carry on this construction, we need to check at each stage s` 1

whether there exists q̄ Ě p̄s with q̄ P Re or not. The set of p̄’s such that
Dq̄ Ě p̄ pq̄ P Req, namely the downward closure of Re, is Σc

1-definable

and its index can be obtained uniformly from e. Hence, ~KA can decide
whether p̄s belongs to the downward closure of Re or not, and thus,

the whole construction is computable in ~KA. l

It is not hard to see that a 1-generic enumeration must be onto:
Given a P A, the set tp̄ P A‹ :

Ž

iă|p̄| p̄piq “ au is r.i.c.e. and dense,
in the sense that every q̄ P A‹ has a extension in it. Thus a 1-generic
enumeration must force into it. 1-generic enumerations are then bijec-
tions between N and A. Using the pull-back (see Section I.1.7), each
1-generic enumeration induces what we call a 1-generic presentation:

Definition IV.15. A 1-generic presentation of A is the pull-back
g´1pAq of some 1-generic enumeration g of A.

The reason we defined 1-generic enumerations of A using r.i.c.e.
sets, instead of DpAq-c.e. sets, is that we get a notion that is indepen-
dent of the given ω-presentation of A:

Lemma IV.16. Let A and B be isomorphic. Any 1-generic presen-
tation of A is also a 1-generic presentation of B.

Proof. Let h : A Ñ B be an isomorphism. The key point is that
h preserves Σc

1-definable sets.
Suppose that g : N Ñ A is a 1-generic enumeration of A, and let

C “ g´1pAq. We want to show that C is a 1-generic presentation of B

64 IV. GENERIC PRESENTATIONS

too. Since C “ ph˝gq´1pBq, it is enough to show that h˝g is a 1-generic
enumeration of B. Let R Ď B‹ be Σc

1-definable in B with parameters;
we need to show that h ˝ g decides it. Since h is an isomorphism,
h´1pRq Ď A‹ is Σc

1-definable in A with parameters, and hence decided
by g. Let k P N be such that either g æ k P h´1pRq or σ R h´1pRq for
all σ P A‹ with σ Ě g æ k. Applying h, we get that ph ˝ gq æ k decides
R, as wanted. l

Remark IV.17. In particular, a 1-generic presentation of a struc-
ture A is also a 1-generic presentation of itself. An ω-presentation C is
a 1-generic presentation if and only if every r.i.c.e. set R Ď C‹ “ N‹ is
decided by some tuple of the form x0, 1, ..., k ´ 1y.

Exercise IV.18. Suppose the vocabulary τ consists of only one
unary relation symbol R and A is a τ -structure where RA is infinite and
co-infinite. Prove an ω-presentation C of A is a 1-generic presentation
if and only if the characteristic function of RC, viewed as a real in 2N,
is a 1-generic real.

Exercise IV.19. Let X compute a copy of a structure A and let G
be X-1-generic. Prove that X‘G can compute a 1-generic presentation
of A.

IV.4. Relations on generic presentations

Generic presentations are useful because whatever happens to them
happens for a reason. For instance, we will see that if a relation is c.e. on
a generic presentation, it is because it was r.i.c.e. already (assuming the
ω-presentation is generic relative to the relation too). In Theorem II.16,
we showed that a relation R Ď AăN is Σc

1-definable with parameters
if and only if RB is c.e. in DpBq for every pB, RBq – pA, Rq (i.e., it is
r.i.c.e.). The following theorem, which is the analogue of Lemma IV.4,
shows that we do not need to consider all the copies of pA, Rq, but just
one that is 1-generic. The construction in the proof of Ash–Knight–
Manasse–Slaman—Chisholm’s Theorem II.16 essentially already builds
a 1-generic copy of pA, Rq.

Theorem IV.20. Let A be a structure and R Ď AăN. Suppose
pA, Rq is a 1-generic presentation. Then R is c.e. in DpAq if and only
if R is r.i.c.e.¶

Proof. Clearly, if R is r.i.c.e. it is c.e. in DpAq. Let us prove the
other direction.

¶The same is true of relations R Ď Nˆ AăN. By Remark II.27 it is enough to
consider R Ď AăN.

IV.4. RELATIONS ON GENERIC PRESENTATIONS 65

Suppose that R “ W
DpAq
e for some e P N. Consider the same set

used in the proof of Theorem II.16, in which we were trying to build a

copy C of A satisfying W
DpCq
e Ę RC:

Q “ tq̄ P A‹ : D`, j1, ..., j` ă |q̄|
`

xj1, ..., j`y P W
DApq̄q
e and xqj1 , ..., qj`y R R

˘

u.

It is not hard to see that Q is r.i.c.e. in pA, Rq. So Q is decided by
some tuple of the form x0,, k ´ 1y P A‹ as in Remark IV.17 above.
We cannot have x0,, k´ 1y P Q, as otherwise there would be a tuple

xj1, ..., j`y P W
DpAq
e with xj1, ..., j`y R R, contradicting that R “ W

DpAq
e .

Thus, no extension of x0, ..., k ´ 1y is in Q. Let p̄ “ x0, ..., k ´ 1y. It
now follows from Claim 1 from the proof of Theorem II.16 that R is
Σc

1-definable in A with parameters p̄ as needed. To be more explicit,
recall that the proof of Claim 1 went through proving that

R “ txqj1 , ..., qj`y : for q̄ P A‹ and `, j1, ..., j` ă |q̄|,

with q̄ Ě p̄ and xj1, ..., j`y P W
DApq̄q
e u. l

Recall that a set X Ď N is c.e.-coded by A if and only if it is c.e. in
every presentation of A (see Subsection II.1.4). This is equivalent to
saying that X is r.i.c.e. in A. Recall that we can view X as a subset
of N ˆ AăN as in Section II.1.4. Let us also remark that saying that
pA, Xq is a 1-generic presentation is equivalent to saying that A is X-
1-generic, as the r.i.c.e. relations on pA, Xq are exactly the X-r.i.c.e.
relations on A, which are the ones that need to be decided by the
X-1-generic enumeration of A.}

Corollary IV.21. Let X Ď N and suppose A is a X-1-generic
presentation. Then X is c.e. in DpAq if and only if it is c.e.-coded by
A.

Proof. Immediate from the previous theorem. l

Corollary IV.22. For every ω-presentation B, there is another
ω-presentation A – B such that, a set X Ď N is c.e.-coded by B if and
only if it is c.e. in both DpAq and DpBq.

Proof. If X is c.e.-coded by B, by definition it is c.e. in DpBq and
in DpAq for every copy A of B.

For the other direction, let Y “ DpBq1 and let A be Y -1-generic
presentation of B. If X is c.e. in DpBq, then X ďT Y and hence A is

}A relation R Ď N ˆ AăN is X-r.i.c.e. if it is c.e. in DpBq ‘ X for all copies
B of A. A one-to-one enumeration g of A is X-1-generic if, for every X-r.i.c.e. set
R Ď A‹, there is an initial segment of g that decides it.

66 IV. GENERIC PRESENTATIONS

X-1-generic too. If X is also c.e. in DpAq, by the previous corollary,
X is c.e.-coded by A and hence also by B. l

The next lemma is the analogue of Lemma IV.5 that says that 1-

generics are generalized low. Recall that always ~KB ďT DpBq and there

are ω-presentations B with ~KB ăT DpBq1 (Exercise II.33).

Lemma IV.23. [Vat11] If B is 1-generic, then DpBq1 ”T ~KB.

Proof. We already know that ~KB ďT DpBq1 for every presentation

B. Let us prove that DpBq1 ďT ~KB. Take e P N; we want to decide if

Φ
DpBq
e peqÓ using ~KB as an oracle uniformly in e. Consider the set

Re “ tq̄ P B
‹ : ΦDBpq̄q

e peqÓu.

It is not hard to see that Re is r.i.c.e. The set of tuples which force
into rRes

Ă

, namely

tp̄ P B‹ : Dq̄ Ď p̄ pq̄ P Requ,

is r.i.c.e.. The set of tuples which force out of rRes
Ă

, namely

tp̄ P B‹ : @q̄ Ě p̄ pq̄ R Requ,

is co-r.i.c.e.. Since B is 1-generic, Re is decided by some tuple of the

form x0, ..., k ´ 1y as in Remark IV.17. Using ~KB, we can then find
such a k and decide whether x0, ..., k ´ 1y forces into rRes

Ă

and hence
that e P DpBq1, or x0, ..., k ´ 1y forces out of rRes

Ă

and hence that
e R DpBq1. l

Vatev [Vat11] used this lemma to give the first proof that ~KB is
never r.i. computable in B.

CHAPTER V

Degree spectra

Among the main objectives of computable structure theory is mea-
suring the computational complexity of structures. There are various
ways of doing this. The most common one is through degree spectra.

We already know how to assign a Turing degree to an ω-presentation
(namely DpAq, as in Subsection I.1.1), but a structure may have many
ω-presentations with different Turing degrees. We want a measure of
complexity that is independent of the particular ω-presentation.

Definition V.1. The degree spectrum of a structure M is the set

DgSppMq “ tX P 2N : X computes a copy of Mu.

Degree spectra are closed upward under Turing reduction, and in
particular under Turing equivalence. Thus, we can think of them as
sets of Turing degrees rather than sets of reals. As it follows from
Knight’s Theorem I.16, DgSppAq is the set of Turing degrees of all the
copies of A, provided A is non-trivial.

Understanding which subsets of the Turing degrees can be realized
as degree spectra is an important open problem in the area.

V.1. The c.e. embeddability condition

Our first approach to measuring the complexity of a structure was
by assigning it an enumeration degree (Definition III.37), if possible.
In her Ph.D. thesis [Ric77], Linda Richter showed there are many
structures that do not have enumeration degree. She gave a general
sufficient condition for this to happen:

Definition V.2. [Ric81, Section 3] A structure A has the com-
putable embeddability condition if each D-type realized in A is com-
putable. A structure A has the c.e. embeddability condition if each
D-type realized in A is c.e.˚

The reason Richter introduced this notion was to prove Theorem
V.7 and Corollary V.9 below.

˚Recall that the D-type of a tuple is the set indices of all D-formulas true about
it.

67

68 V. DEGREE SPECTRA

Example V.3. Richter then showed that linear orderings have the
computable embeddability condition. This is because the D-type of a
tuple a1, ..., ak, or equivalently the set of finite extensions of ā, namely
the finite ā-linear orderings as in Example II.43, is determined by the
ordering among the elements of the tuple ā, how many elements are in
between each pair from the tuple, how many elements are to the left of
the whole tuple, and how many are to the right. By “how many,” we
mean either a finite number or infinity. Thus, the D-type of a k-tuple is
determined by a permutation σ of t1, 2, ..., ku, and a k ` 1 tuple from
NYt8u, in the sense that given that information, one can computably
decide if an D-formula belongs to the type or not.

Example V.4. Richter also showed that trees when viewed as par-
tial orderings (i.e., as tďu-structures) also have the computable em-
beddability condition. We defer this proof to Chapter X, where we will
prove that the class of trees is Σ-small.

Other examples include Boolean algebras, Q-vector spaces, alge-
braically closed fields, differentially closed fields, abelian p-groups, and
equivalence structures.

Historical Remark V.5. Richter’s original definition was not in
terms of types, but in terms of finite structures embeddable in A and extend-
ing a fixed tuple, as in the following exercise. She defined the computable
embeddability condition and not the c.e. one. However, Theorem V.7 be-
low has a more rounded statement when we consider the latter notion. In
Russia, structures with the c.e. embeddability condition are called locally
constructivizable.

Exercise V.6. For each tuple ā P AăN, prove that the set

tDApāb̄q : b̄ P AăNu Ď 2ăN

is positive equivalent to D-tpApāq. In particular, they are both Turing
and enumeration equivalent. (For the definition of positive reducibility,
see page xvii.)

Theorem V.7. (Richter) Let A be any structure. The following
are equivalent:

(1) A has the c.e. embeddability condition.
(2) Every set X Ď N that c.e.-coded by A is already c.e.

Recall from Section II.1.4 that X is c.e.-coded by A if X is c.e. in
every presentation of A.

Proof. To show that (1) implies (2), recall Knight’s Theorem II.23
that if X is c.e.-coded by A, it must be enumeration reducible to some
D-type realized in A. Since these are all c.e., X must be c.e. too.

V.2. CO-SPECTRA 69

For the other direction, notice that every D-type realized in A is
c.e.-coded by A, and hence (2) implies they are all c.e. l

Recall that a structure A has enumeration degree Y if and only
if DgSppAq “ tX P 2N : Y is c.e. in Xu, and A has Turing degree Y
if DgSppAq “ tX P 2N : Y ěT Xu. Richter’s theorem allows us to
conclude many degree spectra do not have that shape.

Corollary V.8. If A has the c.e. embeddability condition, then it
does not have enumeration degree, unless it has a computable copy and
enumeration degree H.

Proof. If A has enumeration degree Y , then Y must be c.e. coded
in A, and hence c.e. l

Corollary V.9. If A has the c.e. embeddability condition, then
it does not have Turing degree, unless it has a computable copy and
Turing degree H.

Proof. Apply the previous corollary to X ‘Xc. l

Richter’s original result is actually stronger than Theorem V.7. We
say that X and Y from a c.e.-minimal pair if no set is c.e. in both X
and Y , unless it is already c.e. Notice that a c.e.-minimal pair is also
a minimal pair in the sense that whenever a set is computable in both
X and Y , it is already computable.

Theorem V.10. (Richter) Let A have the c.e. embeddability con-
dition. Then, for every non-computable set X, there is a copy B of A
that forms a c.e.-minimal pair with X.

Proof. Let B be an X 1-1-generic presentation of A. Let Y be c.e.
in both X and DpBq. Since Y is c.e. in X, B is Y -1-generic. Then,
since Y is c.e. in DpBq, Y must be c.e.-coded by A (Corollary IV.21)
and thus be c.e. l

V.2. Co-spectra

The degree spectrum of a structure measures how difficult it is
to present the structure. If instead we want to measure how much
information is encoded in a structure, the first approach is to use co-
spectra. This is not the only approach because, as we will see later,
information can be coded within a structure in many different ways —
as for instance, it can be coded in the jump of the structure without
getting reflected in the co-spectra.

70 V. DEGREE SPECTRA

Definition V.11. The co-spectrum of a structure A is the set

coDgSppAq “ tX Ď N : X is c.e.-coded by Au.

Recall that X is c.e.-coded by A if and only if X is r.i.c.e. in A, if
and only if X ďe D-tpApp̄q for some p̄ P AăN, and if and only if X is
c.e. in every Y P DgSppAq (see Section II.1.4). Note that a structure
has a trivial co-spectrum (i.e., the class of just the c.e. sets) if and only
if it has the c.e. embeddability condition.

Definition V.12. A set S Ď PpNq is an ideal in the enumeration
degrees if it is closed downward under enumeration reducibility and
closed under joins.

Co-spectra are always ideals in the enumeration degrees. The re-
verse is also true.

Lemma V.13 (Soskov [Sos04]). Every countable ideal in the enu-
meration degrees S Ď PpNq is the co-spectrum of some structure.

Proof. Given a set X, let GX be the graph from Example III.38
with one modification: GX is made out of cycles of length n ` 3 for
n P X and all of these cycles share exactly one common node — we
call it a flower graph because the cycles look like petals coming out
of a center node. Recall that in Example III.38 we showed that GX
has enumeration degree X. For a set S Ď PpNq, let G8S be the graph
formed by the disjoint and disconnected union of the graphs GX for
X P S, each one repeated infinitely often. We call it a bouquet graph.
Clearly S Ď coDgSppG8S q, as for every X P S, X is c.e. in every copy
of GX . Conversely, we claim that the D-type of any tuple p̄ P G8S ăN is
e-reducible to a finite join of X’s in S, which would imply that every
set c.e.-coded in G8S is in S. To see this, let X1, ..., Xn P S be such

that the elements of p̄ are in
Ťn
i“1 GXi . Let rG consist of

Ťn
i“1 GXi and

infinitely many copies of GN (i.e., GY for Y “ N), and let q̄ be the

tuple in rG corresponding to p̄ (i.e., under the isomorphism between the
pieces of the form

Ťn
i“1 GXi). We claim that D-tpG8S pp̄q “ D-tp rGpq̄q: For

the left-to-right inclusion, observe that there is an embedding G8S Ñ rG
matching p̄ and q̄, mapping each GX for X ‰ Xi into a copy of GN, and
recall that D-formulas are preserved forward under embeddings. For the

other inclusion observe that rG is a sub-graph of G8S , just because N P S
(since S contains all c.e. sets), and recall that D-formulas are preserved

upwards. One can easily build a copy of rG from an enumeration of
X1‘ ¨ ¨ ¨ ‘Xn, and hence enumerate the D-type of q̄. Thus D-tp

rGpq̄q ďe
X1 ‘ ¨ ¨ ¨ ‘Xn P S. We conclude that D-tpG8S pp̄q P S. l

V.3. DEGREE SPECTRA THAT ARE NOT POSSIBLE 71

Figure V.1. Bouquet Graph

Richter’s Theorem V.10 can be generalized to arbitrary structures
without the c.e. embeddability condition because, in a sense, every
structure has the c.e. embeddability condition relative to its co-spectra:

Lemma V.14. Suppose that every set in coDgSppAq is c.e. in Y .
Then there is a copy B of A such that DpBq and Y are a c.e.-exact
pair for coDgSppAq; that is, such that, for Z Ď N, Z P coDgSppAq if
and only if Z is c.e. in both DpBq and Y .

Proof. Let B be a Y 1-1-generic copy of A. Suppose now that X
is c.e. in both Y and DpBq. Since X is a column in Y 1, B is also X-
1-generic. Then, by Corollary IV.21, X must be c.e.-coded by B, and
hence belong to coDgSppAq. l

Recall from Corollary IV.22, that we can actually get two copies B
and C of a structure A such that a set Z is c.e. in in both if and only
if it is in coDgSppAq. That is, DpBq and DpCq form a c.e.-exact pair
for coDgSppAq.

V.3. Degree spectra that are not possible

In this section, we look at degree-theoretic properties degree spectra
must have.

The first observation along these lines is that degree spectra are
always Borel. This will follow from results in [MonP2], where we

72 V. DEGREE SPECTRA

prove that every structure has an infinitary Scott sentence. But among
upward closed Borel sets of Turing degrees, we know very little about
which ones can be degree spectra and which ones cannot.

V.3.1. No two cones. One of the best-known results in this vein
is due to Knight and her group in the 90’s and says that no degree
spectrum can be a non-trivial union of two upper cones of Turing de-
grees — not even the union of countably many upper cones. Her result
also applies to cones of the following kind: the enumeration upper cone
with base X, namely the set tZ P 2N : X is c.e. in Zu.

Theorem V.15 (Knight et al.). No degree spectrum is the union
of countably many enumeration upper cones, unless it is equal to just
one enumeration upper cone.

Proof. Suppose that we have X1, X2, ... Ď N and a structure A
with

DgSppAq “
ď

nPN

tZ P 2N : Xn is c.e. in Zu.

Let X “
À

nXn. Let C be a copy of A such that C is X-1-generic.
Since DpCq P DgSppAq, there exists an n such that Xn is c.e. in DpCq.
From Lemma IV.21, we get that Xn is c.e.-coded by C. But then
DgSppAq Ď tZ P 2N : Xn is c.e. in Zu, and hence DgSppAq “ tZ P

2N : Xn is c.e. in Zu is a single enumeration upper cone. l

Observation V.16. No degree spectrum is the union of countably
many Turing upper cones, unless it is equal to just one Turing upper
cone: To see this, replace Xn by Xn ‘Xc

n in the proof of the theorem
above.

V.3.2. Upward closure of Fσ. We can generalize Observation
V.16 quite a bit by extending some ideas of U. Andrews and J. Miller
[AM15]. Recall that we give NN and 2N the product topology of the
discrete topology on N and 2 respectively. Thus, the topology on NN is
generated by the basic open sets rσs

Ă

“ tX P NN : σ Ă Xu for σ P NăN,
and similarly on 2N. Open set are then of the form rRs

Ă

“
Ť

σPRrσs
Ă

for some R Ď NăN. The complement of rRs
Ă

can then be viewed as
the set of paths through the tree T “ tτ P NăN : p@σ Ď τq σ R Ru.
We thus have that a set P Ď NN is closed if and only if it is the set
of paths rT s through some tree T Ď NăN. A closed set can be defined
by a boldface Π0

1 formula ϕpXq of arithmetic with a parameter for the
tree T . Conversely, one can show that every boldface Π0

1 formula ϕpXq
of arithmetic defines a closed set. Furthermore, a set P Ď NN can be
defined by a lightface Π0

1 formula ϕpXq, i.e., without real parameters, if

V.3. DEGREE SPECTRA THAT ARE NOT POSSIBLE 73

and only if it is the set of paths through a computable tree T , and the
tree T can be computed uniformly from ϕ.We call such sets Π0

1 classes:

Definition V.17. A set P Ď NN is a Π0
1 class if there exists a

computable tree T such that P “ rT s.

A subset of NN is said to be Fσ if it is a countable union of closed
sets, or equivalently, if it can be defined by a boldface Σ0

2 formula ϕpXq
of arithmetic. For F Ď NN, we define the Turing-upward closure of F
to be tX P NN : DY ďT X pY P F qu.

Theorem V.18. A degree spectrum is never the Turing-upward clo-
sure of an Fσ set of reals in NN, unless it is an enumeration-cone.

We will prove this theorem on page 76. Let us first notice that we
get Observation V.16 as a corollary:

Corollary V.19 (Knight et al.). A degree spectrum is never the
countable union of countably many Turing cones, unless it is a single
Turing cone.

Proof of Corollary. Every countable set is Fσ, as singleton
sets are closed. So, by the theorem, if a degree spectra is the Turing-
upper closure of a countable set, it must be an e-cone. But no e-cone is
the Turing-upper closure of a countable set unless it is a Turing cone:
To see this, consider the e-cone above a set Z Ď N, and suppose that
X0, X1, ... are such that, for all Y P NN, Z is c.e. in Y if and only if
Y ěT Xn for some n. This is equivalent to: Z ďe Xn ‘ Xc

n for all
n, and, for all Y ěe Z, Y ěe Xn ‘ Xc

n for some n. Let g P ZN be a
À

nXn-1-generic enumeration of Z as in Section IV.2. One of the Xn’s
must be computable in g. In other words, Xn‘X

c
n is c.e. in g for some

n P N — say n0. Since g is Xn0-1-generic, using Lemma IV.11, we get
that Xn0 ‘ Xc

n0
ďe Z. Therefore, Z ”e Xn0 ‘ Xc

n0
, and the e-cone

above Z is the Turing-cone above Xn0 . l

Another corollary we will see below is that the following familiar
classes of degrees are not degree spectra: DNC degrees, ML-random
degrees, and PA degrees — they are are all Fσ classes of reals. We will
get this and a bit more below in Corollary V.22, after we prove the
following theorem, which contains some of the main ideas needed for
Theorem V.18.

Theorem V.20 (U. Andrews, J. Miller [AM15, Proposition 3.9]).
Let A satisfy the c.e. embeddability condition. Then A has a copy B
such that, for every Π0

1 class P Ď NN without computable members,
DpBq computes no real X P P .

74 V. DEGREE SPECTRA

To prove this theorem we need to introduce 2-generic enumerations
— they are not really a new concept:

Definition V.21. An enumeration g of A is said to be 2-generic if

it is a 1-generic enumeration of pA, ~KAq. (Recall that ~KA is a complete

r.i.c.e. relation on A. The r.i.c.e. subsets of pA, ~KAq are exactly the
ones that are Σc

2-definable with parameters over A.)

Proof of Theorem V.20. Let g be a 2-generic enumeration of
A and let B be the 2-generic presentation obtained as the pull-back of
A through g . Consider a Π0

1 class P and let T Ď NăN be a computable
tree with P “ rT s. Suppose DpBq computes a path through T — we
need to prove that T has a computable path.

Let Φ be a computable operator such that ΦDpBq is a path through
T , i.e., ΦDpBqpnq P NnXT and ΦDpBqpnq Ď ΦDpBqpn`1q for every n. Let
us start by finding an initial segment of g that forces ΦDpBq to output
the right kind of values. For this, consider the set of strings that do
not:

Q0 “ tp̄ P A
‹ : Dn P N pΦDApp̄qpnqÓ & ΦDApp̄qpnq R Nn

X T qu.

(Remember that A‹ is the set of strings from AăN without repetition.)
The set Q0 is r.i.c.e. in A, and hence decided by some initial segment of
the enumeration g. No initial segment of g is in Q0 because ΦDpBqpnqÓ P
Nn X T , and recall that DpBq “

Ť

kPNDApg æ kq. So there must be
an initial segment b̄0 P A‹ of g such that no extension of b̄0 is in
Q0. This means that whenever p̄ P A‹ extends b̄0, if ΦDApp̄qpnqÓ, then
ΦDApp̄qpnq P Nn X T .

Second, we force the values of ΦDpBq to be compatible. For this,
consider the set of strings that force them to be incompatible:

Q1 “ tp̄ P A
‹ : Dn P N

`

ΦDApp̄qpnqÓ & ΦDApp̄qpn` 1qÓ &

ΦDApp̄qpnq Ę ΦDApp̄qpn` 1q
˘

u.

The set Q1 is r.i. computable in A, and hence decided by some initial
segment of the enumeration g. Again, since ΦDpBq P rT s, no initial
segment of g is in Q1, and hence there must be an initial segment,
b̄1 P A‹, of g none of whose extensions is in Q1. We may assume
b̄1 Ě b̄0.

Third, we force that ΦDpBq is total: For this, consider the set of
strings which force ΦDpBq to be undefined at some n P N:

Q2 “ tp̄ P A
‹ : Dn P N @q̄ P A‹

`

q̄ Ě p̄Ñ ΦDApq̄qpnqÒ
˘

u.

V.3. DEGREE SPECTRA THAT ARE NOT POSSIBLE 75

The set Q2 is Σc
2 in A, and hence r.i.c.e. in pA, ~KAq and decided by

an initial segment of g.: We cannot have an initial segment of g in Q2

because we would have that ΦDpBqpnqÒ for some n. So, for some initial
segment b̄2 of g, we have that for every p̄ P A‹ extending b̄2 and every
n, there is a q̄ P A‹ extending p̄ for which ΦDBpq̄qpnqÓ. We may assume
b̄2 Ě b̄1.

Now, using D-tpBpb̄2q, which we know is c.e., we define a computable
path through P . We define a path tσn : n P Nu Ď T step by step as
follows. Let σ0 be the empty string. Given σn, chose σn`1 P Nn`1 X T
with σn`1 Ě σn so that

A |ù Dx̄pΦDApb̄2
ax̄q
pn` 1q “ σn`1q,

or, in other words, wait to find τ P 2ăN with Φτ pn ` 1q “ σn`1 for
which the formula Dx̄pDpb̄2

ax̄q “ τq is in D-tpBpb̄2q, and then let σn`1 “

Φτ pn`1q. We know σn`1 exists because, if ān was the witness to define

σn (i.e., ΦDApb̄2
aānqpnq “ σn), then we know there is an extension ān`1 of

ān such that ΦDApb̄2
aān`1qpn`1qÓ. We also know that ΦDApb̄2

aān`1qpn`1q

must be in Nn`1XT and must extend ΦDApb̄2
aānqpnq. That is our σn`1.

Ť

n σn is then a computable path through T . l

The following corollary is for the reader familiar with the following
notions. A real X P 2N is said to be diagonally non-computable (DNC)
if @npXpnq ‰ Φnpnqq; a real is ML-random if it does not belong to any
effectively-null Gδ set; and a real is PA if it computes a complete, con-
sistent theory extending the axioms of Peano arithmetic. See [Nie09]
for more background on these classes.

Corollary V.22 (U. Andrews, J. Miller [AM15]). The class of
DNC degrees, the class of ML-random degrees, and the class of PA
degrees are not degree spectra. Furthermore, if a structure has the c.e.
embeddability property, its degree spectrum is not contained in any of
these classes.

Proof. All these classes are easily seen to be Fσ, and hence they
cannot be degree spectra by Theorem V.18. Furthermore, The classes
of DNC and PA reals are both Π0

1 classes without computable members,
and the class of ML-random reals is an effective countable union of
Π0

1 classes without computable members. We will refer to [AM15,
Proposition 3.6] for a proof that if a set is c.e. in all members of a
given non-empty Π0

1 class, it is c.e. already. It follows that neither the
DNC, the PA, nor the ML-random degrees are contained in any proper
e-cone.

:p̄ P Q2 ðñ A |ù
ŽŽ

nPNp@q̄Ěp̄q
ŹŹ

σP2ăN:ΦσpnqÓDApq̄q ‰ σ.

76 V. DEGREE SPECTRA

The second part of the corollary follows from Theorem V.20. l

Let us now give the proof of V.18 — we recommend reading the
proof of Theorem V.20 first.

Proof of Theorem V.18. Suppose A is a structure whose de-
gree spectrum is the Turing-upper closure of an Fσ set F Ď 2N. As-
sume F “

Ť

iPN Pi where each Pi “ rTis for trees Ti Ď 2ăN. Let g be a
p
À

iPN Tiq-2-generic enumeration of A and let B be the pull-back struc-
ture. There is a computable functional Φ and an i such that ΦDpBq is a
path through Ti, i.e., ΦDpBqpnq P Nn X Ti and ΦDpBqpnq Ď ΦDpBqpn` 1q
for every n. As in the proof of Theorem V.20, there is an initial seg-
ment b̄ P A‹ of the enumeration g which has no extensions in Q0, Q1,
and Q2. That is, the tuple b̄ satisfies:

(1) p@q̄ Ě b̄, q̄ P A‹q, if ΦDApq̄qpnqÓ, then ΦDApq̄qpnq P Ti X 2n

(2) p@q̄ Ě b̄, q̄ P A‹q, if ΦDApq̄qpnqÓ & ΦDApq̄qpn ` 1qÓ, then
ΦDApq̄qpnq Ă ΦDApq̄qpn` 1q.

(3) p@n P N @q̄ Ě b̄, q̄ P A‹qpDp̄ Ě q̄, p̄ P A‹q ΦDApp̄qpnqÓ.

Consider now the tree of possible values of Φ:

S “ tσ P 2ăN : pDq̄ Ě b̄, q̄ P A‹q σ Ď ΦDApq̄qu.

We claim that A has e-degree S. From its definition we get that S is
r.i.c.e. in A. On the other hand, by the assumptions on b̄, we get that
S is a subtree of Ti without dead ends. Thus, every enumeration of S
can compute a path through S, and hence a path through Ti, which
must then compute a copy of A. l

Let us remark that Theorem V.18 cannot be improved by replacing
Turing-cone with enumeration-cone in its statement. That is, there are
enumeration cones, and hence degree spectra, that are the Turing up-
ward closure of closed sets but are not Turing cones. J. Miller and M.
Soskova proved this is the case for all continuous enumeration degrees
which are not total. (The continuous degrees are a sub-class of enu-
merations degrees larger than the total degrees introduced by J. Miller
[Mil04].) Furthermore, E. McCarthy [McC] later characterized the
enumeration degrees whose upper cone is the Turing upper closure of
a closed set as exactly the co-total degrees, which have been recently
shown to be a robust class within the enumeration degrees [AGK`].

Exercise V.23. (a) Prove that no degree spectrum can be the up-
ward closure of a lightface Π0

2 subset of NN, unless it is an enumeration
cone. Hint in footnote.;

;Try to make the Π0
2 set into a Π0

1 one.

V.4. SOME PARTICULAR DEGREE SPECTRA 77

(b) Furthermore, show that it cannot even be the upward closure
of a countable union of lightface Π0

2 subsets of NN, unless it is an enu-
meration upper cone.

Notice that the degree spectrum of any D-atomic structure is always
the Turing upward closure of a boldface Π0

2 set, namely the set of
presentations satisfying the Πin

2 Scott sentence of the structure. See
Exercise V.28 for the existence of an D-atomic structure whose degree
spectrum is not an enumeration cone.

V.4. Some particular degree spectra

We already saw that all upper cones and enumeration cones can
be realized as degree spectra (Examples III.38 and III.39). In this
section, we look at another easy-to-describe though more surprising
degree spectrum.

V.4.1. The Slaman–Wehner Family. The Slaman–Wehner struc-
ture is one that has no computable copy, but is computable in any
non-computable set. The easiest way to describe it is using families of
sets.

Definition V.24. We say that X can enumerate a family S Ď

PpNq if there is an X-c.e. set W such that S “ tW rns : n P Nu.§

Observation V.25. For every countable family S Ď PpNq, there
is a graph G8S such that, for every oracle X, X can compute a copy of
G8S if and only if X can enumerate S: As in the proof of Lemma V.13,
consider the bouquet graph G8S “

Ť

Y PS,iPN GY , where GY is the flower
graph coding Y , that is GY contains a cycle of length n ` 3 for each
n P Y , and all the cycles intersect at one node, a node common to all
cycles in GY . Notice that each GY appears infinitely often in GS.

Theorem V.26 (Slaman [Sla98], Wehner [Weh98]). There is a
structure W whose degree spectrum is tX P 2N : X not computableu.

Proof. Consider the family

F “ tF ‘ tnu : F Ď N finite & F ‰ Wnu,

and let W be the bouquet graph G8F as in the observation above. Then,

DgSppWq “ tX P NN : X can enumerate Fu.
We claim that X can enumerate F if and only if X is not computable.

Suppose F had a computable enumeration. We could then build a
function g that, on input n, outputs the c.e. index of a finite set Wgpnq

§Note that columns may be repeated.

78 V. DEGREE SPECTRA

with Wgpnq ‰ Wn: given n, just look through the enumeration of F
until you find a column of the form F ‘tnu for some F and let gpnq be
the c.e. index of that F .¶ This contradicts the recursion theorem (see
page xiii).

For the other direction, suppose X is not computable. We need to
define an X-computable enumeration of F . Let Y “ X ‘ Xc, which
we know is not c.e. since X is not computable. Here is the general
intuition: At the beginning of stage t, enumerate into F all the sets of
the form F ‘ tnu for all F Ď t, and all n ă t. If, among the columns
that have been enumerated so far, one is of the form F ‘ tnu with
F “ Wnrts (the stage-t approximation to Wn), we take it as a threat,
and we add to F the least element of Y that is not in F already. The
idea is that no column can be threatened infinitely often because that
would imply that Wn “ F Y Y , which we know is not c.e.

More formally: Fix n P N; we want to enumerate the family Fn “

tF : F Ď N finite & F ‰ Wnu uniformly in n. For each finite set F and
every s P N, we will enumerate a set RF,s with the objective of having

tRF,s : F Ď N finite, s P Nu “ Fn.

We define RF,s by stages as RF,s “
Ť

tPNRF,srts, where each RF,srts is
finite. For t ď s, let RF,srts “ F . At stage t`1 ą s, if RF,srts “ Wnrts,
we take it as a threat and let RF,srt ` 1s “ RF,srts Y tyu, where y is
the least element of Y r RF,srts. The threats to RF,s must eventually
stop, as otherwise we would have Wn “

Ť

tPNRF,srts “ F ‘ Y , which
is not c.e. Thus, RF,s will end up being finite and not equal to Wn,
and hence RF,s belongs to Fn. On the other hand, for every finite
set F ‰ Wn, we have RF,s “ F for large enough s: Take s so that
p@t ą sq Wnrts ‰ F . l

Kalimullin [Kal08] showed that the non-∆0
2 degrees are a degree

spectrum (see Exercise VII.22). On the other hand, U. Andrews, M.
Cai, I. Kalimullin, S. Lempp, J. Miller, and A. Montalbán showed
[ACK`] that the class of non-∆0

n degrees cannot be a degree spectrum,
for n ě 3. It remains open whether the non-arithmetic degrees from a
degree spectrum.

Exercise V.27. Instead of G8S , there are many other structure that
code a countable family of sets S Ď PpNq. We define a structure AS
in the vocabulary with three unary relations S, N , and C, a binary
relation R, and a constant symbols cn for each n P N. The relations
S, N , and C partition the domain of AS in three sets. Every constant

¶That is, if F Ď N2 is the enumeration of F , look for a column c P N such that
2n` 1 P F rcs and let gpnq be such that Wgpnq “ tm P N : 2m P F rcsu.

V.4. SOME PARTICULAR DEGREE SPECTRA 79

cn belongs to N and every member of N is one of the constants. We
define an ω-presentation of AS as follows: Let N “ N, S “ S ˆ ω,
C “ txxX,my, ny : xX,my P S, n P Xu Ď S ˆ N, and R “ txxx, ny, ny :
xx, ny P Cu Y txxx, ny, xy : xx, ny P Cu. Prove that an oracle can
compute a copy of AS if and only if it can enumerate S.

Exercise V.28. (Hirschfeldt [Hir06]) A tree T Ď 2ăN is said to
be a PAC tree if it has no dead ends and all its paths are computable.
(PAC is for “paths all computable.”) Goncharov and Nurtazin, and
Millar proved the existence of a computable PAC tree for which there
is no computable listing of its isolated paths.

(a) Prove that every non-computable real can compute a listing of
all the isolated paths through a PAC tree. Hint in footnote.}

(b) Use this to build a structure whose degree spectrum is the non-
computable degrees.

(c) Build such a structure so that it is also D-atomic.

}From any given point in the tree, try to climb up the tree following the direction
of the non-computable real.

CHAPTER VI

Comparing structures and classes of structures

A common way to measure the complexity of an object is compar-
ing it to other objects. If our objects are sets of natural numbers, there
are various ways to compare their complexity: Turing reducibility, enu-
meration reducibility, many-one reducibility, etc. For structures, the
situation is a bit more complicated due to the fact that structures have
many different presentations. In this chapter we will look into Much-
nik reducibility, Medvedev reducibility, effective interpretability (also
known as Σ-definability), and effective bi-interpretability.

VI.1. Muchnik and Medvedev reducibilities

Let us start by defining these reducibilities on classes of reals:

Definition VI.1. A class R Ď 2N is Muchnik reducible to a class
S Ď 2N if every real in S computes a real in R [Muč63]. If so, we write
R ďw S, where the ‘w’ stands for “weak,” in contrast to the following
stronger reducibility. A class R Ď 2N is Medvedev reducible to a class
S Ď 2N if there is a computable operator Φ such that ΦX P R for every
X P S [Med55]. If so, we write R ďs S, where the ‘s’ is for strong.

Here is the idea behind these notions. Suppose we have two prob-
lems, R and S, which consist of finding reals with certain properties.
Let R and S be the sets of reals which are solutions to R and S re-
spectively. For either of the two reductions above, R reduces to S if
and only if we can produce a solution for R using a solution for S.
In the case of Medvedev reducibility, we need to produce a solution
to R uniformly from one to S, while for Muchnik we can use different
procedures for different solutions to S.

Both notions generalize both Turing reducibility and enumeration
reducibility: For X, Y Ď N, we have that X ďT Y if and only if
tXu ďw tY u, and also if and only if tXu ďs tY u. We have that
X ďe Y if and only if the set of enumerations of X (i.e., the set of onto
functions f : N Ñ X) is Muchnik reducible to the set of enumerations
of Y , and also, but less trivially, if and only if the set of enumerations
of X is Medvedev reducible to the set of enumerations of Y (Selman
[Sel71], see Theorem IV.12).

81

82 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

Example VI.2. Observe that a structure A c.e.-codes a set X Ď N
if and only if the set of enumerations of X is Muchnik reducible to the
set of ω-presentations of A. This is just a re-writing of the definition
of c.e. coding a set (see page 20).

When we are considering countable structures, we apply these re-
ducibilities to the set of their ω-presentations.

Definition VI.3. A structure A is Muchnik reducible to a structure
B if every ω-presentation of B computes an ω-presentation of A or, more
precisely, the atomic diagram of every ω-presentation of B computes
the atomic diagram of an ω-presentation of A. If so, we write A ďw
B. A structure A is Medvedev reducible to a structure B if there is
a computable operator Φ such that, for every ω-presentation pB of B,

ΦDp pBq “ Dp pAq for some ω-presentation pA of A. If so, we write A ďs B.
We denote the respective notions of equivalence by ”w and ”s (i.e.,
A ”w B ðñ A ďw B & B ďw A and A ”s B ðñ A ďs B & B ďs
A).

Observation VI.4. Muchnik reducibility is nothing more than
comparability of the degree spectra:

A ďw B ðñ DgSppAq Ě DgSppBq.

Example VI.5. Given linear a ordering A, every segment ra, bsA of
A, is Muchnik reducible to A, but not necessarily Medvedev reducible
to A.˚

Example VI.6. Given a ring R, Rrxs ďs R.

Example VI.7. Given a structure A, there exists a graph GA such
that A ”s GA. We will develop this example later in Section VI.3.2.

Example VI.8. For a group G, Gω ďs G, but not necessarily G ęw
Gω, where Gω is the sum of ω many copies of G. Take G “

À

nPN Zpn ‘
À

nP01c Zpn .: We then get that Gω “
À

nPN Zωpn which has a computable
copy, while G computably codes 01.

These reducibilities form upper-semi-lattices; that is, given struc-
tures A and B, if we define A‘B by putting together disjoint copies of
A and B and adding a unary relation A that holds only of the elements
in the copy of A, then A ‘ B is the least upper bound of A and B

˚Such examples are not easy to build. Schweber showed there are ordinals
which have initial segments which are not Medvedev reducible to them [Sch16,
Section 8.3].

:01
c
“ Nr 01 and pn is the n-th prime number.

VI.1. MUCHNIK AND MEDVEDEV REDUCIBILITIES 83

according to both Muchnik and Medvedev reducibilities. In both cases
there is a least degree: If a structure has a computable copy, it reduces
to every other structure. Another interesting observation is that there
is a least non-computable structure:

Observation VI.9. The Slaman–Wehner structure W from The-
orem V.26 has no computable copies and is Medvedev reducible to all
other structures without computable copies. All we have to observe is
that the construction in V.26 is uniform in X, i.e., that it produces a
computable operator Φ such that, for every non-computable X, ΦX is
the atomic diagram of a copy of W .

The following lemma shows how we can obtain structural informa-
tion from knowing that a structure is Muchnik or Medvedev reducible
to another.

Lemma VI.10. If A ďw B, then for every tuple ā P AăN, there is
a tuple b̄ P BăN such that D-tpApāq ďe D-tpBpb̄q. If also A ďs B, then
D-ThpAq ďe D-ThpBq.

Proof. For the first part, suppose that A ďw B and take ā P AăN.
Since D-tpApāq is c.e. in every copy of A, it is also c.e. in every copy of B,
and hence it is c.e.-coded by B. By Knight’s Lemma II.23, D-tpApāq ďe
D-tpBpb̄q for some tuple b̄ P BăN.

Suppose now that A ďs B. Since D-ThpAq is uniformly c.e.-coded
in A, it is also uniformly c.e.-coded in B: That is, from the diagram
of a copy of B we can uniformly produce the diagram of a copy of
A, from which we can uniformly enumerate D-ThpAq. Then, using
Exercise II.25, we get that D-ThpAq ďe D-ThpBq. l

So far, Muchnik and Medvedev reducibilities seem to behave in
a similar way. However, one of the main differences is that adding
constants to the structures does not affect Muchnik reducibility, while
the following lemma shows that it does affect Medvedev reducibility.

Lemma VI.11. There are structures B and C and an element c P C
with B ďs pC, cq, but B ęs C.

Notice that B ďs pC, cq implies B ďw C, and hence this is an example
where the Muchnik and Medvedev reducibilities differ.

Proof. Let Z be a non-c.e. set. Recall from Observation V.25
and Lemma V.13 that to each family of sets S we can assign a bouquet
graph G8S such that G8S has an X-computable copy if and only if X
can enumerate S. We consider the following families of sets and their
respective bouquet graphs:

84 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

‚ S0 “ tF : F Ă N finiteu and A “ G8S0
.

‚ S1 “ tZu and B “ G8S1
.

‚ S2 “ S0 Y S1 and C “ G8S2
.

The family S0 has a c.e. enumeration. Thus, A has a computable copy
and D-ThpAq is c.e. The family S1 does not have a c.e. enumeration.
Furthermore, an oracleX can compute an enumeration of S1 if and only
if X can enumerate Z. Thus, DgSppBq “ tX P 2N : Z is c.e. in Xu is
the e-cone above Z. The same is true for C: clearly, from a copy of
B, we can produce one of C by attaching a computable copy of A, and
conversely, given a copy of C, we can produce a copy of B if we can
identify the component of C that corresponds to GZ . This implies that
if c is the center of the flower corresponding to the component GZ , we
get that B ”s pC, cq.

However, every finite substructure of C is isomorphic to some finite
substructure of A, and vice versa. Since an D-formula is true of A if
and only if it is true of some finite substructure of A, this implies that
D-ThpCq “ D-ThpAq, which is c.e. On the other hand, D-ThpBq can
enumerate Z, and hence is not c.e. It follows from Lemma VI.10 that
B ęs C. l

Exercise VI.12 (Stuckachev [Stu07]). Prove that if a structure
A has Turing degree and B ďw A, then for some tuple ā P AăN,
B ďs pA, āq.

Kalimullin [Kal09] showed that this is not true if we only assume
that A has e-degree.

The difference between Muchnik and Medvedev reducibility is more
than just adding constants, as shown in the corollary below. The fol-
lowing theorem gives a version of the Slaman–Wehner structure which
is computable from every non-computable oracle, but not in a uniform
way.

Theorem VI.13 (Faizrahmanov and Kalimullin [FK]). There is a
structure A that has an X-computable copy for every non-computable
X, but not uniformly. That is, there is no single computable operator
Φ such that ΦX is copy of A for each non-computable X.

Corollary VI.14 (Kalimullin [Kal09]). There are structures A
and W such that A ”w W, but A ęs pW , w̄q for any tuple w̄ P WăN.

Proof of Corollary VI.14. The structure W is the Slaman–
Wehner structure from Theorem V.26 whose degree spectrum is the
non-computable sets and for which there exists a Turing operator that
outputs a copy of W whenever a non-computable set is used as an or-
acle. Moreover, for any w̄ P WăN, we can produce such an operator

VI.1. MUCHNIK AND MEDVEDEV REDUCIBILITIES 85

that outputs a copy of pW , w̄q: Recall that W “
Ť

nPN Wn, where Wn

is the disjoint union of the flower graphs GF‘tnu for F Ă N finite with
F ‰ Wn, each appearing infinitely often. There are finitely many com-
ponents Wn which contain an element of w̄, so we can fix a computable
enumeration of them. The rest of W is isomorphic to W , so we can
use the construction of Theorem V.26.

The structure A is the one from Theorem VI.13. It is Muchnik
equivalent to W : On the one hand it is computable from any non-
computable oracle. On the other hand, it has no computable copies, as
otherwise we could produce a computable operator that always outputs
the same computable ω-presentation of A ignoring the oracle. A is not
Medvedev reducible to pW , w̄q for any w̄ P WăN because the set of
presentations of pW , w̄q is Medvedev reducible to the set tX P NN : X
non-computableu, but the set of presentations of A is not. l

Proof of Theorem VI.13. We modify Wehner’s construction from
Theorem V.26. We still consider a family of finite sets of the form
F ‘tnu, but the difference with Wehner’s construction is that we think
of F as a finite subset of Q instead of N, and instead of requiring F to
be different from the n-th c.e. set, we just require its maximum to be
different from the maximum of the n-th c.e. subset of Q. It works.

Let tQn : n P Nu be an effective enumeration of the c.e. subsets of
Q. (For example, given an effective Gödel numbering q ÞÑxqy : QÑ N,
let Qn “ tq P Q :xqyP Wnu.) Consider the family of sets

F “ tF ‘ tnu : F Ď Q finite, n P N,maxpF q ‰ maxpQnqu,

where the formula maxpF q ‰ maxpQnq is assumed to be vacuously true
when Qn does not have a greatest element. Let A be the associated
bouquet graph G8F as in Observation V.25. Recall that the existence of
an X-computable presentation of G8F is equivalent to the existence of
an X-c.e. enumeration of F , that is, an X-c.e. set V with F “ tV rns :
n P Nu.

First, let us show that F is computably enumerable in every non-
computable set X. A real is said to be left c.e. if it is of the form
suppQeq for some c.e. set Qe Ď Q. Let α be X-left c.e., but not left c.e.
To see that such an α exists, consider β0 “

ř

iPX 2´i and β1 “
ř

iRX 2´i.

They cannot be both left c.e., as otherwise X would be computable.;

Let α be whichever of β0 or β1 is not left c.e. — this is the only step

;If β0 and β1 are both left c.e. with effective approximations β0rss and β1rss,
we can compute X æ n by searching for some F Ď t0, ..., n´ 1u and stage s P N so
that both β0rss ě

ř

jPF 2´i and β1rss ě
ř

jPnrF 2´j — we then know X æ n “ F .

86 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

in the construction that is not uniform in X. Let tαi : i P Nu Ď Q be
an X-computable increasing sequence with limit α.

Fix n. We want to enumerate the family

Fn “ tF : F Ď Q finite,maxpF q ‰ maxpQnqu

uniformly in n. The idea is to enumerate a new component of the form
F for each finite set F Ď Q at each stage, and if, at a certain stage t, we
are threatened by having maxpF q “ maxpQn,tq, we add maxpF q`αt to
that component changing its maximum value. A component cannot be
threatened infinitely often because we would end up having suppQnq “

maxpF q ` α, which is not left-c.e. Let us explain this in more detail.
For each finite set F P Q and s P N, we will enumerate a set RF,s

uniformly in X, with the objective of getting

Fn “ tRF,s : F Ďfin Q, s P Nu,
where Ďfin means that F is a finite subset of Q. The idea is that RF,s

starts by being F at stage s and then every time it is threaten, we add
a new element to RF,s so as to change its maximum value. To define
RF,s, we will define a non-decreasing sequence trF,srts : t P Nu Ă Q and
then let

RF,s “ F Y trF,srts : t P ωu.

Let rF,srts “ maxpF q for all t ď s. At stage t ` 1 ą s, if rF,srts “
maxpQn,tq, let rF,srt`1s “ maxpF q`αt, whereQn,t and αt are the stage-
t approximation to Qn and α. We claim that this sequence eventually
stabilizes. Otherwise, we would have that

suppQnq “ lim
t

maxpQn,tq “ lim
t
rF,srts “ maxpF q ` α,

contradicting that maxpF q ` α is not left c.e. Let rF,s “ limt rF,srts.
Then rF,s ‰ maxpQnq and RF,s P Fn. On the other hand, for every
finite F Ď Q for which maxpF q ‰ maxpQnq, we have that RF,s “ F for
large enough s: Take s so that maxpQn,tq ‰ maxpF q for all t ą s, and
hence so that rF,srts “ maxpF q for all t P N.

For the second part of the theorem, let us assume that V is a c.e. op-
erator such that V X is an enumeration of F for every non-computable
X, and let us try to get a contradiction. For this, we will define a
uniformly c.e. sequence tMn : n P Nu of finite subsets of Q with
maxpMnq ‰ maxpQnq. This will give us a contradiction because, if
f is a computable function such that Qfpnq “ Mn, then the recursion
theorem (see page xiii) gives an n0 with Wfpn0q “ Wn0 , and hence with
Mn0 “ Qfpn0q “ Qn0 .

Using the operator V , we can easily produce a uniform family of
c.e. operators tUn : n P Nu such that UX

n Ď Q is finite and maxpUX
n q ‰

VI.1. MUCHNIK AND MEDVEDEV REDUCIBILITIES 87

maxpQnq for all non-computable X and n P N: Search for a column of
V X of the form F ‘ tnu for some F (i.e., a column that contains the
number 2n` 1), and let UX

n be the left side of that column, namely F .
For X P 2N, let

mX
n “ suppUX

n q P RY t8u,

which we know is actually a maximum in Q when X is non-computable.
For σ P 2ăN, let mσ

n “ maxpUσ
n q P QY t´8u, where Uσ

n is the step-|σ|
approximation to UX

n for X Ą σ, and where mσ
n “ ´8 if Uσ

n “ H. The
map σ ÞÑ mσ

n has the following properties:

‚ σ Ď τ ñ mσ
n ď mτ

n.
‚ If X P 2N is non-computable, then mX

n “ mσX
n for some finite

σX Ă X.
‚ If X P 2N is non-computable, mX

n ‰ maxpQnq.

Let T Ď 2ăN be a computable tree with no computable paths.§

The idea is to use T to define tMn : n P Nu so that Mn’s maximum
element is the minimum value of mX

n among all the X P rT s. Since such
X P rT s would be non-computable, we would have that maxpMnq “

mX
n ‰ maxpQnq. Let

γ “ inftmX
n : X P rT su P RY t´8u;

we will show that γ is actually a minimum. Consider the following
sequence approximating γ:

γrks “ minpmσ
n : σ P T X 2kq.

Since mX
n ě mXæk

n for all X and k, we get that γ ě γrks. First, we
claim that this sequence becomes constant and equal to γ from some
point on. To see this, let us observe that the sub-tree tσ P T : mσ

n ă γu
must be finite: Otherwise, by König’s lemma, it would have a path
Y P rT s. But then mY

n “ mσY
n ă γ contradicting the definition of γ.

So if k0 bounds the lengths of all the strings in that tree, γrks “ γ for
all k ě k0.

Second, we claim that γ “ mX
n for some X P rT s. To see this,

let us observe that the tree tσ P T : mσ
n ď γu must have a path:

Otherwise, by König’s lemma, the tree would be finite, and if k0 bounds
the lengths of all the strings in that tree, we would get γrk0s ą γ,
which we know does not happen. So, if X is a path through that tree,
mX
n “ mσX

n ď γ and hence mX
n is minimum among all X P rT s. It

follows that γ “ mX
n ‰ maxpQnq.

§For instance, let T “ tσ P 2ăN : @e ă |σ| pσpeq ‰ Φe,|σ|peqqu whose paths are

called 2-diagonally non-computable.

88 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

Finally, let

Mn “ tγrks : k P Nu.
Then Mn must be finite and have maximum element γ ‰ maxpQnq. It
is not hard to see that tMn : n P ωu is c.e. uniformly in n. This finishes
the construction of Mn and the proof that G8F cannot be uniformly
computed from all non-computable sets. l

VI.2. Turing-computable embeddings

Medvedev reductions can also be used to compare the complexity
of classes of structures. One of the objectives of this reducibility is
to reduce the problem of deciding if two structures in a class K are
isomorphic to the problem of deciding if two structure in another class
S are isomorphic.

Definition VI.15. [CCKM04, KMVB07] A Turing-computable
embedding from class of structures K to a class of structures S is a
Turing operator Φ such that, for every ω-presentation A P K, ΦDpAq

outputs the diagram DpBq of some ω-presentation B P S and satisfies
that

A – rA ðñ ΦpAq – Φp rAq

for all structures A, rA P K, where ΦpAq denotes the ω-presentation B
with ΦDpAq “ DpBq.

Turing-computable embeddings are useful to compare the complex-
ity of the isomorphism problems of different classes of structures. Later
we will see stronger notions of embeddings between structures where
we can reduce more properties from one class to the the other. The
weaker notion that inspired the definition of Turing-computable em-
beddings is that of Borel embedding, where Φ is allowed to be Borel. It
was introduced by Friedman and Stanley in [FS89], a seminal paper
for what today is the field of Borel equivalence relations in Descriptive
Set Theory — we will see more about this in [MonP2].

Let us see some examples.

VI.2.1. Examples. Let VS be the class of Q-vector spaces (as in
Example II.1) and let LO be the class of linear orderings. The following
is a simple example that gives a clear picture of how the isomorphism
problem for vector spaces is coded into linear orderings.

Lemma VI.16. There is a Turing-computable embedding from VS
to LO.

VI.2. TURING-COMPUTABLE EMBEDDINGS 89

Proof. We build a Turing operator that, given a vector space,
produces a linear ordering isomorphic to ωˆp1`nq,¶ where n P NYt8u
is the dimension of the vector space. The construction goes as follows.
Let V be an ω-presentation of a vector space that we receive as the
oracle for our Turing operator. The first step is to analyze V and try
to guess its dimension. List the vectors in V as v0, v1, v2, ..., and assume
v0 is the zero vector. As we discover more and more about V , we try to
pick out a basis of V . Of course, we will make plenty of mistakes in the
process, as deciding if a tuple of vectors is linearly independent requires
checking an infinite amount of linear combinations. We say that a
tuple of vectors is s-linearly independent if there is no non-trivial linear
combination of them that equals zero and where all the coefficients
are among the first s rational numbers. At each stage s, we define
our guess vt0rss, vt1rss, ..., vtkrssrss for a basis of V as follows: We always
include v1 in our basis — thus, let t0rss “ 1. Given t0rss, t1rss, ..., tirss,
let ti`1rss be the first t ą tirss which is s-linearly independent with
vt0rss, vt1rss, ..., vtirss. If there is no such t ď s, we leave ti`1rss undefined
and let krss “ i. Notice that if V has dimension n P N Y t8u, then
for each i ă n, virss eventually stabilizes to the first vector in the list
that is linearly independent from the previous ones. These eventually
stable vectors will end up forming a basis for V .

Let us now build our linear ordering. The idea is to assign a copy
of ω to each basis element, ending up with n copies of ω, plus an extra
one used for garbage collection. At each stage s we will assign, to
each vector that looks like it is in the basis, a linear ordering of size
s which grows to the right. Thus, for the vectors that remain in the
basis for ever, we end up building a copy of ω. For some vectors we will
eventually stop believing they are in the basis. To them we associate a
finite linear ordering that will become part of the ω-chain to its right.
Let us repeat this construction a bit more carefully. To each vector vt
we associate a non-trivial linear ordering Lt in a uniformly computable
way, in such a way that Lt – ω if vs is a basis vector and Lt is finite
otherwise. To do this, we build Lt by adding a new element to its right
at every stage s that vt is among the vectors we believe are in the basis,
namely vt0rss, vt1rss, ..., vtkrssrss. We then define

L “ L1 ` L2 ` L3 ` ¨ ¨ ¨ ` Lt ` ¨ ¨ ¨ .

If V has finite dimension n, then n of the Lt’s will end up being iso-
morphic to ω, and the rest will stay finite though non-zero, ending up

¶ω ˆm consist of m copies of ω, one after the other.

90 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

with L – ω ˆ n` ω. If V has infinite dimension, then infinitely many
of the Lt’s will be isomorphic to ω, ending up with a copy of ωˆω. l

The reversal is obviously not true, i.e., LO does not embed into
VS, as there are only countably many countable Q-vector spaces while
there are continuum many linear orderings.

The class of linear orderings is actually as complicated as it can be
in terms of Turing computability in the following sense:

Definition VI.17. A class K is said to be on top for Turing com-
putability if any other class of structures Turing-computably embeds in
K.

We will see in Section VI.3.2 that the class of graphs is on top
for Turing computability — actually graphs are universal in a much
stronger sense. We will use that result here to prove Friedman and
Stanley’s result that linear orderings are top for Turing computability.
They also showed that fields are on top.

Lemma VI.18 (Friedman and Stanley [FS89]). Linear orderings
are on top for Turing computability.

Proof. As a first intermediate step, consider the class LT of la-
beled trees, where the trees are viewed as directed graphs and each
node in the tree is labeled with a natural number.} We claim that LT
is on top for Turing computability: Given a structure A, let A‹ be the
structure with domain A‹, which consist of the tuples from A with-
out repeated entries, viewed as a tree, where each σ P A‹ is labeled
with the number xDApσqy coding the atomic diagram of σ within A.˚˚

This transformation from A to A‹ is clearly Turing computable. It
is obvious from the construction that the isomorphism type of A‹ is
independent of the ω-presentation of A — that is, that if A – B, then
A‹ – B‹. We need to prove the converse, that if A‹ – B‹, then A – B.

Given a labeled tree A‹ “ pA‹;P, `q, where P is the parent relation
and ` : A‹ Ñ 2N is the labeling function, we will recover a copy of the
original structure A. To each path g P rA‹s Ď AN through the tree
A‹, we associate a congruence-ω-presentation Ag with atomic diagram
Ť

σĂg `pσq “
Ť

σĂgDApσq. Equivalently, Ag “ g´1pAq. If g is onto A,
and hence a bijection, then g is actually an isomorphism from Ag to A.
The problem is that we cannot recognize which paths g through A‹ are
onto if all we are given is A‹ as a labeled tree, and hence, in general,

} That is, the structures in LT are of the form pT ;P, `q where P : T Ñ T is the
parent function of the tree and ` : T Ñ N.

˚˚That is, A˚ “ pA˚;P, `q where P pσq “ σ æ |σ| ´ 1 and `pσq “xDApσqy.

VI.2. TURING-COMPUTABLE EMBEDDINGS 91

Ag need not be isomorphic to A. However, we claim that for almost all
g P rA‹s, in the sense of category, g is onto. To see this, observe that
for each a P A, the set of g which contain a in its image is dense and
open in rA‹s. The intersection of these sets among all a P A is thus
comeager.:: By the Baire category theorem, a countable intersection
of dense open sets cannot be empty, thus A is the unique structure for
which there is a co-meager set of g’s such that Ag – A. This finishes
the proof of the claim that LT is on top for Turing computability.

For the rest of the argument, we need a small modification of the
construction above to make each branch repeat infinitely often. Define
A‹8 to be the structure with domain

tσ ‘ τ P A‹ ˆ NăN : |σ| “ |τ |u.

We view A‹8 as a tree where the parent relation comes form the prod-
uct of the parent relations in A‹ˆNăN. We label a node σ‘τ with the
number xDApσqy. Is easy to see that the same proof as above shows
that A – B ðñ A‹8 – B‹8. We call these structures infinitely
repeated labeled trees.

As a second intermediate step, let us consider the class of labeled
dense linear orderings LDLO. These are dense linear orderings without
endpoints (i.e., copies of the rationals) where each node is labeled with
a natural number. We claim that LDLO are also on top for Turing
computability: For this, we produce a Turing-computable embedding
from infinitely repeated labeled trees to label dense linear orderings.
Consider an infinitely repeated labeled tree T Ď NăN with labeling
function `T : T Ñ N. As domain for our labeled linear ordering we will
use QăN ordered lexicographically, which is isomorphic to Q. We now
need to add the labels. By recursion on the length of the strings, define
a length-preserving map f : QăN Ñ T as follows. Start by mapping
the empty string to the root of T . Suppose we have already defined
fpσq. To define f on σaQ “ tσaq : q P Qu, let fσ be a map from
Q onto tτ P T : P pτq “ σu such that, for each τ in the image of
fσ, the pre-image f´1

σ pτq is dense in Q. Then, for each q P Q, define
fpσaqq “ fσpqq. Let us observe that, even though f is not one-to-one,
pT, `T q and pQăN, `T ˝ fq are isomorphic as labeled trees, because T is
an infinitely repeated labeled tree. Label each σ P QăN with a number
coding the corresponding label in the tree and the length of the node,
namely x`T pfpσqq, |σ|y.

It is easy to see that this is a computable procedure. To see that
isomorphic trees yield isomorphic labeled linear orderings, start from

::A set X Ď NN is comeager if it contains a countable intersection of dense open
sets. See page 55 for the connection with generic sets

92 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

an isomorphism between two labeled trees and build an isomorphism
between their images by recursion on the length of the strings, using the
fact that two dense labeled linear orderings with infinitely many dense
labels are isomorphic. For the converse, suppose we have a labeled
dense linear ordering L “ pL;ďL, `Lq that is in the image of this map.
We need to define a labeled tree that is isomorphic to the one used to
build L. For this, we define a tree structure on L by defining a parent
relation between elements of L as follows. Recall that for s P L, its
label records two numbers, the second coordinate π2p`Lpsqq being the
length of the string σ in the tree that was associated with s. We say
that t P L is the parent of s if t ăL s, π2p`Lptqq “ π2p`Lpsqq´ 1, and for
all r P L, with t ăL r ăL s, π2p`Lprqq ě π2p`Lpsqq. Now that we have a
tree structure with domain L, we define a labeling function: For s P L,
let `T psq “ π1p`Lpsqq. We have built the original labeled tree back.

The third step is to reduce LDLO to unlabeled LO. This is the
easiest step. Given a labeled dense linear ordering, replace each element
s P L by a finite linear ordering with `psq ` 2 elements. l

We saw above that a structure A can be recovered from its tree
of tuples A‹8 but in a rather cumbersome way. Harrison-Trainor and
Montalbán [HTM] recently showed that A cannot be recovered com-
putably, that there is a non-computable structure A for which A‹8 has
a computable copy.

When a class of structures in not on top for Turing computability, it
must have a special property not all classes have. Thus, understanding
why a class of structures is not on top can give valuable information
about it. As we mentioned above, vector spaces are not on on top be-
cause there are only countably many of them. The same reason holds
for algebraically closed fields. Equivalence structures, of which there
are continuum many, are not on top for a different reason: Their iso-
morphism problem is too simple. Deciding whether two equivalence
structures are isomorphic requires four jumps, as all one needs to do is
to count how many equivalence classes are of each size.;; There are
classes of structures whose isomorphism problems are much more com-
plex than that. For instance, in [MonP2] we will see tools for showing
that deciding whether a linear ordering is isomorphic to either ωn or
ωn`1 is Π0

2n`1-complete. Furthermore, deciding if two ω-presentations
of linear orderings are isomorphic is Σ1

1-complete. Another class whose
isomorphism problem is too simple is finitely branching trees: They
are D-atomic and hence their isomorphism types are determined by

;;The index set of the equivalence structures with infinitely many infinite equiv-
alence classes is Π0

4-complete.

VI.3. COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 93

their D-diagrams. The same applies to torsion-free abelian groups of
finite rank (i.e., subgroups of pQn;`q for some n P N). Deciding if
two such groups is isomorphic is Σ0

3-complete. Whether torsion-free
abelian groups of arbitrary rank are on top is not known and has been
open since [FS89]. The class of abelian p-groups is also not on top
[FS89] because of a much more complicated reason which we will see
in [MonP2].

VI.3. Computable functors and effective interpretability

Let us go back to reducibilities between structures. There is a
third important notion of reducibility between structures. It has more
structural consequences and even has a structural characterization in
terms of interpretations. The idea is to require a Medvedev reduction
Φ to preserve isomorphisms effectively.

Definition VI.19 (R. Miller, B. Poonen, H. Schoutens, and A.
Shlapentokh [MPSS, Definition 3.1]). Given structures A and B, a
computable functor from B to A consists of two computable operators,
Φ and Ψ, such that:

(1) Φ is a Medvedev reduction witnessing A ďs B; that is, for

every copy pB of B, ΦDp pBq is the atomic diagram of a copy of
A.

(2) For every isomorphism f between two copies pB and rB of B,

ΨDp pBq,f,Dp rBq is an isomorphism between the copies of A ob-

tained from ΦDp pBq and ΦDp rBq.

We also require that the operator Ψ preserve the identity and compo-
sition of isomorphisms:

(3) ΨDp pBq,id,Dp pBq “ id for every copy pB of B.
(4) ΨDpB0q,g˝f,DpB2q “ ΨDpB1q,g,DpB2q ˝ ΨDpB0q,f,DpB1q, for copies B0,

B1 and B2 of B and isomorphisms f : B0 Ñ B1 and g : B1 Ñ B2.

The pair Φ,Ψ is a functor in the sense of category theory. It is
a functor from the category of ω-presentations of B where morphisms
are the isomorphisms between the copies of B, to the category of ω-
presentations of A.

Example VI.20. Let B be an integral domain (i.e., a commutative
ring without zero-divisors) and let A be the field of fractions of B. That
is, A consists of element of the form p

q
for p, q P B, q ‰ 0. Equivalence,

addition, and multiplication of fractions is defined as in the standard
construction of Q from Z. One can easily build a computable functor
that produces a copy of A out of a copy of B and maps isomorphisms

94 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

between copies of B to the respective copies of A. We let the reader
check the details. We will develop this example further in Example
VI.22 below.

We will prove that having a computable functor is equivalent to hav-
ing an effective interpretation. Informally, a structure A is effectively-
interpretable in a structure B if there is an interpretation of A in B as
in model theory, but where the domain of the interpretation is allowed
to be a subset of N ˆ BăN instead of just Bn, and where all sets in
the interpretation are required to be “effectively definable” instead of
elementary first-order definable.

Before giving the formal definition, we need to review one more con-
cept. Recall that a relation R on AăN is uniformly r.i.c.e. (u.r.i.c.e.) if
there is a c.e. operator W such that RB “ WDpBq for every copy pB, RBq

of pA, Rq. These are exactly the Σc
1-definable relations without param-

eters (Corollary II.18). Analogously, R is uniformly r.i. computable if
there is a computable operator Φ such that RB “ ΦDpBq for every copy
pB, RBq of pA, Rq. Recall that a relation is u.r.i. computable if and only
if it is ∆c

1-definable without parameters.

Definition VI.21. Let A be a τ -structure, and B be any structure.
Let us assume that τ is a relational vocabulary τ “ tPi : i P Iu where
Pi has arity apiq. So A “ pA;PA

0 , P
A
1 , ...q and PA

i Ď Aapiq.
We say that A is effectively-interpretable in B if, in B, there are

u.r.i. computable relations AB, „B, and tRB
i : i P Iu such that

‚ AB Ď NˆBăN (the domain of the interpretation of A in B),
‚ „BĎ AB ˆ AB is an equivalence relation on AB (interpreting

equality),
‚ each RB

i Ď pA
Bqapiq is closed under the equivalence „B (inter-

preting the relations Pi),

and there is a function fB
A : AB Ñ A which induces an isomorphism:

pAB
{ „

B;RB
0 , R

B
1 , ...q – pA;PA

0 , P
A
1 , ...q.

Let us clarify this last line. The function fB
A : AB Ñ A must be an onto

map such that fB
Apāq “ fB

Apb̄q ðñ xā, b̄y P „B and fB
Apāq P P

A
i ðñ

ā P RB
i for all ā, b̄ P pABqăN. Notice that there is no restriction on the

complexity or definability of fB
A. We use AB to denote the structure

pAB{ „B;RB
0 , R

B
1 , ...q.

If we add parameters, this notion is equivalent to that of Σ-definability,
introduced by Ershov [Ers96] and is widely studied in Russia. Ershov’s
definition is quite different in format: it uses HFB instead of N ˆ BăN
(see Section II.4.1) and sets that are D-definable over HFB instead of

VI.3. COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 95

Σc
1-definable subsets of Nˆ BăN (which we know are equivalent; The-

orem II.50).

Example VI.22. Recall Example VI.20 above where B is an in-
tegral domain and A its field of fractions. We claim that A is ef-
fectively interpretable in B. Let AB “ txp, qy P B2 : q ‰ 0u. Let
xp0, q0y „

B xp1, q1y if p0 ˆ
B q1 “ p1 ˆ

B q0. Define the graph of addition

for AB to be the set of triplets of pairs xxp0, q0y, xp1, q1y, xp2, q2yy P B
23

that satisfy pp0 ˆ
B q1 `

B p1 ˆ
B q0q ˆ

B q2 “ q0 ˆ
B q1 ˆ

B p2. Define
the graph of multiplication for AB to be the set of triplets of pairs
xxp0, q0y, xp1, q1y, xp2, q2yy that satisfy p0 ˆ

B p1 ˆ
B q2 “ q0 ˆ

B q1 ˆ
B p2.

Lemma VI.23. An effective interpretation of A in B induces a com-
putable functor from B to A.

Proof. Since AB, „B, and tRB
i : i P Iu are u.r.i. computable in

B, we have a computable operator that gives us those sets within any

copy pB of B, using Dp pBq as an oracle. Thus we have a computable

operator Φ that, given pB – B, outputs DpA pBq, the atomic diagram

of the congruence pĎ N ˆ NăNq-presentation A pB of A with domain

A
pB Ď B̂ăN “ N ˆ NăN. Fixing a bijection between N and N ˆ NăN,

and using Lemma I.11, we get a computable operator Υ transforming
congruence pĎ N ˆ NăNq-presentations into injective ω-presentations.
Both of these computable operators Φ and Υ preserve isomorphisms
effectively; in other words, they can be easily made into computable
functors. Composing these computable functor we get the computable
functor Υ ˝ Φ we wanted. l

The following theorem shows the reversal. Furthermore, given a
computable functor, we can get an effective interpretation that induces
the original functor back, up to effective isomorphism of functors.

Theorem VI.24 (Harrison-Trainor, Melnikov, Miller, Montalbán
[HTMMM]). Let A and B be countable structures. The following are
equivalent:

(1) A is effectively interpretable in B.
(2) There is a computable functor from B to A.

We will prove this theorem in [MonP2] once we have developed
more forcing techniques. The original proof from [HTMMM] does
not use forcing, and the reader should be able to follow it with what
we have learned so far. The proof using forcing [HTMM] is much
more informative and can be generalized to a broader setting.

96 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

VI.3.1. Effective bi-interpretability. Effective interpretability
and Σ-definability induce notions of equivalence between structures as
usual: two structures are equivalent if they are reducible to each other.
Σ-equivalence, the equivalence notion that comes from Σ-definability,
has been widely studied. However, it still does not really capture the
idea of two structures being “the same from a computability view-
point.” In this section, we introduce the more recent notion of effectively-
bi-interpretability, which is a strengthening of Σ-equivalence. For this
strengthening, we require the composition of the isomorphisms inter-
preting one structure inside the other and then interpreting the other
back into the first one to be effective. We will show how most com-
putability theoretic properties are preserved under this equivalence,
and see some examples that show how it matches our intuitive notions
of when two structures are essentially the same. Here is the formal
definition:

Definition VI.25. [Mond, Definition 5.1] Two structures, A and
B, are effectively-bi-interpretable if there exist effective-interpretations
of each structure inside the other as in Definition VI.21 such that the
compositions

fA
B ˝ f̃

B
A : BAB

Ñ B and fB
A ˝ f̃

A
B : ABA

Ñ A

are u.r.i. computable in B and A, respectively.
Let us explain this messy notation. BAB

Ď NˆpABqăN Ď NˆpNˆ
BăNqăN is the domain of the interpretation of B within the interpre-

tation of A within B, and f̃B
A : N ˆ pABqăN Ñ N ˆ AăN is the obvious

extension of fB
A : AB Ñ A from elements to tuples: f̃B

Api, a0, ..., akq “

xi, fB
Apa0q, ..., f

B
Apakqy. Notice that since fA

B ˝ f̃
B
A is a partial function

from NˆpNˆBăNqăN to B, it can be coded by a relation on NˆBăN
which we require it to be u.r.i. computable.

Let us make a quick comment on non-relational vocabularies. We
have defined bi-interpretability for relational vocabularies, because func-
tion symbols do not work well on congruence presentations. When
the interpretations are injective, Definition VI.25 goes through with-
out problems for non-relational vocabularies too.

In the next lemma, we see how effective-bi-interpretability preserves
most computability theoretic properties.

Lemma VI.26. Let A and B be effectively-bi-interpretable.
(1) A and B have the same degree spectrum.
(2) A is D-atomic if and only if B is.
(3) A is rigid if and only if B is.

VI.3. COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 97

(4) The automorphism groups of A and B are isomorphic.
(5) A is computably categorical if and only if B is.
(6) A and B have the same computable dimension.
(7) A has the c.e. extendibility condition if and only if B does.
(8) The index sets of A and B are Turing equivalent, provided A and
B are infinite.

(Of course, items (5), (6), and (8) assume A and B are computable.)

Proof. Throughout this proof, assume that A is already the pre-
sentation AB that is coded inside N ˆ BăN, i.e., with domain AB, and
rB is the copy of B coded inside NˆAăN, i.e., with domain BA “ BAB

.

We let f be the isomorphism from rB to B obtained by f “ fA
B ˝ f̃

B
A

which is Σc
1-definable.

For part (1), recall from Lemma VI.23 that there are computable
functors between A and B, and in particular, that they are Medvedev
equivalent, and hence also Muchnik equivalent.

For part (2), suppose A is D-atomic, and hence that every automor-
phism orbit in A is D-definable. Take a tuple b̄ P BăN; we will show its

orbit is also D-definable. Let c̄ P rBăN “ pBAB
qăN be such that fpc̄q “ b̄.

The orbit of c̄ is D-definable inside AB, and since AB is ∆c
1-definable

in B, the orbit of c̄ is also Σc
1 definable in B.: Since f is Σc

1-definable
in B, the orbit of b̄ is also Σc

1 definable.; If an orbit is definable by a
disjunction, it must be defined by one of its disjuncts,§ and hence the
orbit of b̄ is D-definable in B. It follows that B is D-atomic.

Part (3) is a particular case of (4), but its proof is still informative.
Suppose B is not rigid, and let h be a nontrivial automorphism of B.
The automorphism h induces an automorphism of BăN, which then in-
duces an automorphism gh of AB, which then induces an automorphism
hgh of BAB

. Since f : BAB
Ñ B is u.r.i. computable, it is invariant; that

is, fpāq “ b ðñ fphghpāqq “ hpbq. In other words, f ˝ hgh “ h ˝ f ,
and since h is nontrivial and f a bijection, hgh must be nontrivial too.
It follows that the automorphism gh of A cannot be trivial either.

:To define the orbit of c̄ in B, replace, in its Σc
1 definition inside AB, each symbol

in the vocabulary of A either by its Σc
1 definition or its Πc

1 definition depending on
whether the atomic sub-formula appears positively or negatively, and restrict the
existentially quantified variables using the Σc

1 definition of the domain of AB.
;A tuple ȳ is in the orbit of b̄ if there exists a tuple x̄ in the orbit of c̄ such that

xx̄, ȳy is in the graph of f .
§If orbit of a tuple is defined by a disjunction, one of the disjuncts must be true

of the tuple, and it implies the whole disjunction, so it also defines the orbit.

98 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

For part (4), notice that in the previous paragraph we showed that

the homomorphism h ÞÑ hgh : AutpBq Ñ AutpBAB
q has the same ef-

fect as the conjugation homomorphism induced by f , namely h ÞÑ
f´1 ˝ h ˝ f : AutpBq Ñ AutpBAB

q. Therefore, the composition of
the following three maps is the identity on AutpBq: first the homo-
morphism h ÞÑ gh : AutpBq Ñ AutpABq; second the homomorphism

g ÞÑ hg : AutpABq Ñ AutpBAB
q; and third the inverse of the conju-

gation homomorphism induced by f . We thus get that they are all
isomorphisms, and that AutpBq – AutpABq.

For part (5), we need the following observation. Let B1 and B2

be copies of B. The point we need to make here is that if AB1 and
AB2 are computably isomorphic, then so are B1 and B2: A computable
isomorphism between AB1 and AB2 induces a computable isomorphism
between BAB1 and BAB2 , each of which is computably isomorphic to
B1 and B2, respectively. Thus, if A is computably categorical, so is
B. For (6), we have that if B has k non-computably isomorphic copies
B1, ...,Bk, then the respective structures AB1 , ...,ABk cannot be com-
putably isomorphic either. So the effective dimension of A is at least
that of B, and hence, by symmetry, they must be equal.

For part (7), recall that we can decide if a structure has the c.e.
embeddability condition by looking at its degree spectrum, which we
already proved is preserved under effective bi-interpretability.

In part (8), by the index set of a structure A, we mean the set of all
i’s such that Φi : NÑ 2 is the atomic diagram of a structure isomorphic
to A. Suppose we are given an index of a computable structure C, and
we want to decide if it is isomorphic to B using the index set of A
as an oracle. Using the formulas in the effective interpretation of A
in B, we can produce a structure AC such that AC – AB if C – B.
We can then produce an index for AC, and use the index set of A
to check if it is isomorphic to A. If it is not, then we know C is
not isomorphic to B. Otherwise, we need to check that the function
fA
B ˝ f̃

C
A : BAC

Ñ C from the the bi-interpretability does produce an

isomorphism between BAC
and C. This would be enough because, since

AC – A, we know BAC
– B. Checking this is not computable though

— it is 02-computable. However, all index sets compute 02 because we
can use them to check totality of functions.¶ l

¶An index set of a non-empty family of total functions is always Π0
2-hard. To

see this, let Φ be a computable function in the family. Given e, we can check if
We “ N which is a Π0

2-complete question, by asking whether the index of Φ æWe

belongs to the index set.

VI.3. COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY 99

We will see later that effectively-bi-interpretable also preserves Scott
rank in [MonP2] and is preserved under taking jumps (see Remarks
IX.3).

VI.3.2. Making structures into graphs. In this section, we
show how every structure is effectively-bi-interpretable with a graph.
This result will allow us to reduce statements about structures in gen-
eral to statements about graphs, sometimes making proofs simpler.
Within the following classes of structures we can also effectively-bi-
interpret all other structures: partial orderings, lattices, [HKSS02]
and fields [MPSS]; and if we add a few constants to the vocabulary
also: integral domains, commutative semigroups, and 2-step nilpotent
groups [HKSS02]. These classes are said to be universal for effective-
bi-interpretability.

Theorem VI.27. For every structure A, there is a graph GA that
is effectively-bi-interpretable with A.

Furthermore, the interpretations are independent of the given struc-
ture. That is, given a vocabulary τ , the Σc

1 formulas used to define the
sets involved in the interpretations are the same for all τ -structures A.

Proof. We only sketch the construction and let the reader verify
the details.

Similar constructions can be found in [HKSS02]. The earliest ref-
erences we know of this type of coding into graphs are Rabin and Scott
[RS] and Lavrov [Lav63].

Assume that τ is a relational vocabulary. The first step is to show
that A is effectively-bi-interpretable with a structure H in the vocab-
ulary tU,Eu, where U is a unary relation and E a symmetric binary
relation. The unary relation U picks out the elements that represent
the domain of A. The elements outside U are going to be used to
code the relations in A. Enumerate the domain of A as ta0, a1, ...u
and let h0, h1, ... be the corresponding elements in UH. For each tuple
ai1 , ..., aik satisfying the nth relation Rn in τ (of arity k), we attach the
following configuration to hi1 , ..., hik in H, where the top cycle has size
2n` 5.

So that both the interpretation of R and that of its complement
are D-definable, to each tuple ai1 , ..., aik not satisfying Rn we attach an
p2n` 4q-spider. (See Figure VI.1.)

It is clear that A can be effectively interpreted in H: the domain of
the interpretation is UH, and the interpretation of Rn is given by the set
of tuples in pUHqk that have a p2n` 5q-spider attached to them, which
can be expressed by an D-formula. This set is also @-definable, because

100 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

hi1 hi2 hi3 hi4

Figure VI.1. We call this configuration an m-spider,
where m is the size of the top loop. (In this case m “ 7
and k “ 4.) The edges represent the pairs of elements
that satisfy E. Let `m be the number of nodes in the
spider (`m “ 14 in this case).

it is the set of tuples which do not have a p2n ` 4q-spider attached to
them.

Conversely, H can be interpreted in A as follows. Use A to inter-
pret UH and, for each m-spider attached to a tuple hi1 , ..., hik , use the
elements

xm, i, xai1 , ..., aikyy P Nˆ Nˆ AăN, for i ă `m,

to interpret its elements. The domain of this interpretation is u.r.i.
computable because, given a tuple of the form xm, i, xai1 , ..., aikyy with
i ă `m, the tuple belongs to the interpretation if and only if xai1 , ..., aiky P
RM
n , where n “ tpm´ 3q{2u. Similarly, we can also decide which pairs

of these elements are E-connected.}

Checking that the compositions of the interpretations are u.r.i.
computable is also straightforward: the composition of the interpre-
tations going from A to H and back is the identity; the interpretation
going from H to AăN and back to HăN is a bit more tedious, but not
much harder to analyze.

The second step is to show that every tU,Eu-structure H is effectively-
bi-interpretable with a graph G “ pG;Rq without using an extra unary
relation. Within G, we will use a subset, G0, to interpret the domain of
H. We use the other elements of G to encode the relations U and E on
G0. Enumerate the elements of H as th0, h1, ...u and the corresponding

}Recall from Remark II.27 that it makes no difference to deal with subsets of
AăN or of Nˆ NˆAăN.

VI.3. COMPUTABLE FUNCTORS AND EFFECTIVE INTERPRETABILITY101

ones of G0 as g0, g1, Attach to each element gi P G0 either an A-flag
or a B-flag as in Figure VI.2 depending on whether hi P U

H or not.

gi gi

gi gj gi gj

Figure VI.2. We call these configurations A-flags, B-
flags, 2-connectors, and 3-connectors. We attach A-flags
to the elements that are in U and B-flags to the ones out
of U . We use 2-connectors to encode E, and 3-connectors
for the complement of E.

Connect two elements of G0 using a 2-connector if and only if the
corresponding elements in H are connected by E. (See Figure VI.2.)
Connect them using a 3-connector if and only if the corresponding
elements in H are not connected by E. The reason we cannot connect
the elements of G0 directly to code E is that we do not want to confuse
the elements of G0 with the ones used for the flags. This way, every
element of G is either part of a flag (and hence out of G0), attached to
a flag (and hence in G0), or attached to something that is attached to
a flag (and hence part of either a 2-connector or a 3-connector, and out
of G0). Each of these three sets is D-definable, and hence G0 is u.r.i.
computable. Notice that the connectors coding the graph E among the
elements of H do not get confused with these flags because since each
edge in E is replaced by at least a 2-connector, the smallest cycles one
could produce are 6-cycles coming from triangles in H.

The relation E is coded by the pairs of elements of G0 which are
connected by a 2-connector or, equivalently, not connected by a 3-
connector. This is u.r.i. computable.

Again, checking that the composition of the interpretations are u.r.i.
computable is straightforward. l

102 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

VI.4. Reducible via effective bi-interpretability

We just defined a reduction that, for every structure A, produces a
graph GA effectively bi-interpretable with A, making the class of graphs
universal in any computability theoretic sense possible. Furthermore,
the Σc

1 formulas used in the effective bi-interpretation to define the
domains and relations are always the same: They are independent of
the τ -structure A and depend only on the vocabulary τ .

Definition VI.28. A class of structures K is reducible via effec-
tively bi-interpretability to a class S if there are Σc

1 formulas defining the
domains, relations, and isomorphisms of an effective bi-interpretation
as in Definitions VI.21 and VI.25 so that every structure in K is bi-
interpretable with a structure in S.

If we also have that, under the backward direction of the bi-interpretation,
every structure in S is interpreted by some structure in K, we say that
K and S are effectively bi-interpretable.

Classes that are effectively bi-interpretable are considered as the
same class for computability theoretic purposes. Most, if not all, com-
putability theoretic properties of classes of structures are invariant un-
der effectively bi-interpretability.

Notice that K is reducible via effectively bi-interpretable to S if and
only if K is effectively bi-interpretable with a sub-class of S, the sub-
class given by the image of the reduction. The next lemma shows that
the complexity of this sub-class is similar to the complexity of K.

Lemma VI.29. If K and S are effectively bi-interpretable and K is
Πc

2, then S is Πc
2 too.

Proof. Given a structure S that may or may not belong to S, we
can try to use the Σc

1 formulas in the effective bi-interpretation to define
a structure AS and then use the other direction of the interpretation
to get SAS

. If S happens to be in S, this would all work out and we
would have that AS is in K and that SAS

is isomorphic to S. We claim
that this characterizes S. That is, that S P S if and only if

‚ the Σc
1 formulas in the effective bi-interpretation define an ac-

tual bi-interpretation on S,
‚ and the structure AS is in K.

When we say that the Σc
1 formulas in the effective bi-interpretation de-

fine an actual bi-interpretation on S we mean three things: First that
the pairs of Σc

1 formulas used to define the ∆c
1 relations that interpret

the domain and relations of AS actually define ∆c
1 relations, that is,

define complementary Σc
1 relations — this can be checked with a Πc

2

VI.4. REDUCIBLE VIA EFFECTIVE BI-INTERPRETABILITY 103

sentence. Second, the same needs to be true about SAS
inside AS —

this can also be checked with a Πc
2 about AS , which can be translated

into a Πc
2 sentence about S once we know the definition of AS within

S is ∆c
1. Third, that the maps defined as compositions of the interpre-

tations are actual isomorphisms between S and SAS
, and between AS

and ASAS
— this again can be stated as a Πc

2 sentence.
There might be structures S outside S where these formulas still

produces a bi-interpretation. In that case, the structure AS would not
be in K, as if AS was in K, then SAS

would be in S, and hence so
would S – SAS

. Since K is Πc
2, one can write a Πc

2 sentence about S
saying that AS in in K.

The conjunction of all these Πc
2 sentences gives us a Πc

2 sentence
describing the structures in S. l

Theorem VI.27 above shows that every class of structures is re-
ducible via effective bi-interpretability to the class of graphs. The
lemma above shows that every Πc

2 class of structures is effective bi-
interpretable with a Πc

2 class of graphs.

Definition VI.30. A class of structure S is on top for effective
bi-interpretability if every other class of structures reduces to it via
effective bi-interpretability.˚˚

A class that was recently shown to be on top for effective bi-
interpretability is the class of fields. This was proved by R. Miller,
B. Poonen, H. Schoutens, and A. Shlapentokh [MPSS] using functors.
Fields were known to be on top for Turing-computable embeddings
much earlier [FS89], though that proof did not produce effective bi-
interpretations.

Classes of structures that are on top for effective bi-interpretability
present all the possible computability theoretic behaviors. Thus, once
one proves that a class is on top for effective bi-interpretability, one
knows that those structures will not have any particular computabil-
ity theoretic property that was not already present on graphs. That
is not to say that computability has nothing to say about them. For
instance, there are sub-classes of the class of fields with various interest-
ing properties. When a class of structures is not on top under effective
bi-interpretability, it is because it has some special property not all
classes have. If the class is already not on top for Turing-computable
embeddings, then it is not on top for effective bi-interpretability. We
mentioned various reasons why a class would not on top for Turing-
computable embeddings at the end of Section VI.2.1. There are classes

˚˚Such classes are sometimes called universal for effective bi-interpretability.

104 VI. COMPARING STRUCTURES AND CLASSES OF STRUCTURES

that are on top for Turing-computable embeddings but not for effective
bi-interpretability. An example is linear orderings. Linear orderings are
not top for for effective bi-interpretability because they have the com-
putable embeddability condition, a property that is preserved under
effective bi-interpretability (Lemma VI.26, (6)). The same is true for
differentially closed fields.

CHAPTER VII

Finite-injury constructions

The technique of finite-injury constructions is among the most im-
portant ones in computability theory, and is used throughout the field.
It was introduced independently by Friedberg [Fri57b] and Muchnik[Muc56]
to solve Post’s problem, as we explain below. This technique is used to
build computable objects using 01-computable information. On a com-
putable construction, we can only only guess at this non-computable
information, so we will often be taking steps in a wrong direction based
on wrong guesses. We will then need to be able to recover from those
mistakes.

We will see two kinds of finite-injury constructions: priority con-
structions and true-stage constructions. Depending on the situation,
one might be better than the other.

In a priority construction, one needs to build an object satisfying an
infinite list of requirements whose actions are in conflict with one an-
other — when we act to satisfy a requirement, we may injure the work
done to satisfy other requirements. To control these injuries, require-
ments are listed in order of priority: Requirements are only allowed to
injure weaker-priority requirements. In the type of constructions we
will see, each requirement will be injured at most finitely many times,
and hence there will be a point after which it is never injured again.

A true-stage construction works in quite a different way. It is based
on a combinatorial device, the approximation of the true stages, which
organizes our guesses on 01-computable information. One advantage of
this combinatorial device is that it can be generalized to the iterates
of the jump, even over the transfinite, as we will see in [MonP2].

VII.1. Priority constructions

To show how priority constructions work, we give a full proof of
the Friedberg–Muchnik solution to Post’s problem — a seminal re-
sult in computability theory. Post [Pos44] asked whether there was
a computably enumerable set that was neither computable nor Turing

105

106 VII. FINITE-INJURY CONSTRUCTIONS

complete. That question was open for more than a decade, until Fried-
berg and Muchnik solved it independently by developing the method
of finite-injury priority constructions.

We will see two other finite-injury priority constructions in Chap-
ter VIII on computable categoricity. The reader interested in learning
priority constructions should read Theorem VIII.11 after fully under-
standing the proof below. The third finite-injury priority construction
in the book, Lemma VIII.21, is a beautiful construction, though is a
bit more complicated.

Theorem VII.1 (Friedberg [Fri57b], Muchnik[Muc56]). There is
a low, non-computable, computably enumerable set.

A set A Ď N is low if its jump is as low as possible, namely A1 ”T 01.
Low sets cannot be complete. Note that for sets below 01, being low is
equivalent to being generalized low.

Proof. We build A as the union of a computable sequence of finite
sets A0 Ď A1 Ď A2 Ď ¨ ¨ ¨ satisfying the following requirements for each
e P N:

Negative requirements Ne: If ΦAs
e,speqÓ for infin-

itely many s’s, then ΦA
e peqÓ.

Satisfying the Ne requirements for all e P N ensures that A is low: We
would get that e P A1 if and only if ΦAs

e,speqÓ for infinitely many s’s.

This makes A1 a Π0
2 set.˚ Since A1 is already Σ0

2, we get that A1 is ∆0
2.

Positive requirements Pe: If We is infinite, then
AXWe ‰ H.

Satisfying the Pe requirements for all e P N ensures that the comple-
ment of A is different from all the We’s and hence A is not computable
— well, that is unless A is co-finite. We will also make sure during the
construction that A is co-infinite. Co-infinite c.e. sets which satisfy all
the Pe requirements are said to be simple sets.

We list these requirements in decreasing order of priority as follows:

N0, P0, N1, P1, N2, P2,,

the ones to the left having stronger priority than those to the right.
Notice that each requirement has only finitely many requirements that
are stronger than it. We think of each requirement as an individual
worker trying to achieve its goal. Except for possible injuries, the
different requirements will work almost independently of each other.
Let us look at each of these requirements individually.

˚Because a P A1 if and only if @k P N Ds ě k pΦAse,speqÓq.

VII.1. PRIORITY CONSTRUCTIONS 107

Negative requirements Ne: The only way in which Ne would
not be satisfied is if ΦAs

e,speq goes back and forth between converging
and not converging infinitely often. What Ne needs to do if it sees
that ΦAs

e,speq converges, is to try to preserve this computation forever
by restraining elements from going into A below the use of this com-
putation. Here is what Ne does at a stage s of the construction. Let
re be the use of ΦAs

e,speqÓ, that is, the length of the initial segment of

the oracle As used in the computation ΦAs
e,speqÓ. If the computation

diverges, let re “ 0. During the construction, Ne does not enumerate
any number into A. Instead, it imposes a restraint on weaker-priority
Pi requirements, not allowing them to enumerate elements below re
into A. (This is why we call the Ni negative requirements.) Ne is not
allowed to impose anything on stronger-priority requirements, which
may enumerate elements below re and injure Ne.

Positive requirements Pe: It is the Pe requirements that enumer-
ate elements into A. (This is why we call them positive requirements.)
They will enumerate at most one element each. The plan to satisfy Pe
is to wait until we see some number enter We and enumerate it into A.
However, we cannot enumerate just any number, as there are a couple
things we need worry about. First, Pe is not allowed to injure stronger-
priority requirements. In other words, if we let Re “ maxiďe ri, then
Pe is not allowed to enumerate any number below Re into A. Second,
we want to make sure A is co-infinite. To do this, we only allow Pe
to enumerate numbers that are greater than 2e. The plan for Pe can
now be restated as follows: At a stage s ą e, if We,s X As ‰ H, we
consider Pe done, and we never do anything else for Pe again. Other-
wise, if there is an x P We,s greater than 2e and greater than Re, we
say that Pe requires attention. Once Pe requires attention, it acts by
enumerating such an x into A.

The construction: Let us now describe the full construction. At
each stage s we define a finite set As`1 Ě As, and at the end of stages
we define A “

Ť

sAs. Let A0 “ H. At each stage s ą 0, do the
following. First, define re for each e ă s; recall that re is the use
of ΦAs

e,speq. Second, check which requirements Pe, for e ă s, require
attention, and let them act; that is, for each e ă s, if We,s X As “ H
and there exists x P We,s with x ą maxp2e, Req, add x to As`1. If
no requirement requires attention, move on to the next stage without
doing anything.

Verification: Each requirement Pe acts at most once. Therefore,
a requirement Ne can be injured at most e ´ 1 times, and there is a
stage after which it is never injured again. After this stage, if ΦAs

e,speq

108 VII. FINITE-INJURY CONSTRUCTIONS

never converges again, Ne is satisfied. Otherwise, ΦAt
e,tpeqÓ for some

later stage t. At that stage t, Ne will define re to be the use of this
computation. After t, no requirement of weaker priority is allowed
to enumerate numbers below re. Since we are assuming all stronger-
priority Pi requirements that ever act have acted already, we get that
At æ re is preserved forever (i.e. At æ re “ A æ req, and hence so is the
computation ΦAt

e,tpeqÓ, getting ΦA
e peqÓ. Ne is then satisfied. In either

case, re is eventually constant; it is either eventually equal to zero if
ΦA
e peqÒ, or eventually equal to the use of ΦA

e peqÓ. Since this is true for
all e, Re is eventually constant too.

Let us now verify that the requirements Pe are all satisfied. If a
requirement Pe ever requires attention, it acts, and it is then satisfied
forever. Suppose that, otherwise, there is a stage t after which Pe
never requires attention again. Assume t is large enough so that Re has
reached its limit already. Either Pe does not require attention because
it is done, in which case we are done, or because all the numbers in
We are below maxp2e, Req. In that case, Pe is satisfied because We is
finite.

Finally, let us notice that A is co-infinite, as it can have at most e
elements below 2e for each e. This is because only the requirements Pi
for i ă e are allowed to enumerate numbers below 2e. l

VII.2. The method of true stages

Often in computability theory, we want to use ∆0
2 information to

construct computable objects. We then need to computably approxi-
mate or guess the ∆0

2 information. This can get messy, and there are
various ways to organize this guessing system. We will concentrate
on the method of true stages for the enumeration of 01, introduced by
Lachlan in [Lac73]. There are slightly different definitions in the liter-
ature — we use our own, which is quite flexible and applies to a large
variety of situations. The reason for our choice is that, in [MonP2],
we will be able to extend this notion throughout the hyperarithmetic
hierarchy, obtaining a very powerful technique.

One way of approximating the halting problem 01 is by the sequence
of finite sets

01s “ te P N : Φe,speqÓu Ď N.
Notice 01s is finite. It is then natural to view 01s as a finite string, say
by considering 01s ææms P 2ms`1, where ms “ maxp01sq.

: A problem with
01s ææ ms is that it may be always wrong: It could happen that at no

:Recall that X ææm is tx ď m : x P Xu, or, when viewed as strings, it is the
initial segment of X of length m` 1.

VII.2. THE METHOD OF TRUE STAGES 109

stage s ą 0 is 01s ææ ms an initial segment of 01, viewed as a sequence
in 2N. This might be a problem for some constructions. Lachlan’s idea
was to consider 01s ææ ks, where ks is the least element enumerated into
01 at stage s (i.e., ks “ minp01sr01s´1q). The key difference is that there
are infinitely many stages where 01s ææ ks is correct, in the sense that
01s ææ ks is an initial string of 01 P 2N. Stages where our guesses for 01

are correct are called true stages.
We introduce a different approximation to the jump that enjoys

better combinatorial properties. Instead of 01, we will use the increasing
settling-time function for 01, which we call ∇. At each stage s, we will
computably define a finite string ∇s P NăN which tries to approximate
∇ P NN. A true stage will be one where ∇s is correct; i.e., it is an
initial segment of ∇. One of the main advantages of using ∇ and ∇s
is that they relativize easily, allowing us to iterate them, as we will see
in [MonP2].

VII.2.1. The increasing settling-time function. The settling-
time function of a c.e. set measures the speed at which its elements are
enumerated. That is, the settling time of an enumeration tAs : s P Nu
of a c.e. set A at n is the least s such that As ææn “ Aææn. The settling-
time function has many uses in various constructions, and we will see a
couple of examples in Subsection VII.2.3. We will deviate slightly from
the standard settling-time function to consider the strictly increasing
version. For now, let us fix an enumeration of the halting problem, and
concentrate on it.

VII.2.1.1. The definition of ∇. The settling-time function of a set
measures the time a given enumeration takes to settle on an initial
segment of the set. The increasing settling-time function is the least
strictly-increasing function ∇ such that 01∇piqææi “ 01ææi for every i P N:

Definition VII.2. The i-th true stage (in the enumeration of 01),
denoted ∇piq, is defined by recursion on i by any of the following three
equivalent definitions:;

∇piq “ the least t ą ∇pi´ 1q such that 01t ææ i “ 01 ææ i,

“ the least t ą ∇pi´ 1q such that ΦipiqÓ ðñ Φi,tpiqÓ,

“

$

’

&

’

%

∇pi´ 1q ` 1 if Φipiq diverges,

∇pi´ 1q ` 1 if Φipiq converges by stage ∇pi´ 1q,

µt pΦi,tpiqÓq if Φipiq converges after stage ∇pi´ 1q.

;Recall that µt ϕptq denotes the least t that satisfies ϕptq.

110 VII. FINITE-INJURY CONSTRUCTIONS

We use the value ∇p´1q “ ´1 as the base case for the recursion, so
that ∇p0q ě 0. We call t a true stage if t “ ∇piq for some i. We call ∇
the increasing settling-time function for 01.

Observe that ∇ ”T 01: Clearly ∇ ďT 01. For the other reduction,
notice that i P 01 ðñ i P 01∇piq.

Lemma VII.3. The set of true stages is co-c.e., and the set

txi, ty P N2 : t ă ∇piqu
is c.e.

Proof. Let us first observe that the set of initial segments of ∇,
t∇ æ i : i P Nu Ď NăN, is Π0

1. To see this, note that given σ P 2ăN,
σ Ď ∇ if and only if, for every e ă |σ|,

‚ either ΦepeqÒ and σpeq “ σpe´ 1q ` 1,
‚ or Φe,σpeqpeqÓ and σpeq is the least t ą σpe ´ 1q such that

Φe,tpeqÓ.

Notice the first item is Π0
1 and the second computable. It follows that

the set of true stages, i.e., the image of ∇, is Π0
1: This is because t is a

true stage if and only if there exists an increasing finite string σ whose
last value is t (and the previous values are less than t) that is an initial
segment of ∇.

As for the second part of the statement, t ą ∇piq if and only if
some σ P pt` 1qi`1 is an initial segment of ∇. l

VII.2.2. Domination properties. One of the useful properties
of ∇ is that it grows rapidly when compared to computable functions.
We characterize it below as the fastest ω-c.a. function up to computable
speed up. For functions f, g : NÑ N, we say that

‚ f majorizes g if p@mq fpmq ě gpmq;
‚ f dominates g if pDnq p@m ě nq fpmq ě gpmq.

The function ∇ is fast growing in this sense: It dominates all com-
putable functions (Exercise VII.6), and every function that dominates
∇ computes 01 (Lemma VII.4).

Lemma VII.4. If g : NÑ N dominates ∇, then g computes 01.

Proof. First, modify the first few values of g to get a function
f ”T g that majorizes ∇. Given x P N, we can decide whether x P 01

by checking if x P 01fpxq. l

Corollary VII.5. Every infinite subset of the set of true stages
computes 01.

VII.2. THE METHOD OF TRUE STAGES 111

Proof. If we enumerate in increasing order the elements of a sub-
set of the set of true stages, we obtain a function that majorizes ∇. l

Exercise VII.6. (Hard) Prove that ∇ dominates every computable
function. Hint in footnote.§

We can still talk about domination in the case of partial computable
functions: A function f majorizes a partial function g if fpnq ě gpnq
for every n at which gpnq is defined. The exercise above is not true
for partial computable functions, although, ∇ is still faster than the
partial computable functions in the following sense.

Definition VII.7. We say that f : NÑ N is faster than g : NÑ N
up to computable speed up if there is a computable function h : NÑ N
such that f ˝ h majorizes g.

Lemma VII.8. ∇ is faster than every partial computable function
up to a computable speed up.

Proof. Let g be a partial computable function. We define the
computable speed-up function as follows: Let hpiq be the index of a
computable function that, independently of the input, converges after
gpiq converges; that is, if gpiqÒ, then ΦhpiqpxqÒ, and if gpiqÓ, then Φhpiqpxq
converges in at least gpiq steps. Since ∇pjq is larger than the time-use
of Φjpjq, we get that ∇phpiqq ě gpiq whenever gpiqÓ. l

Definition VII.9. A function f : NÑ N is said to be ω-computably
approximable (denoted ω-c.a.) if it has a computable approximation
tfs : s P Nu for which the number of mind-changes is computably
bounded: That is, there are a computable list of computable functions
tfs : s P Nu and a computable function c : N Ñ N such that |ts :
fspiq ‰ fs`1piqu| ď cpiq for all i, and, of course, limsÑ8 fspiq “ fpiq.
(Cf. limit lemma on page xxi.)

Notice that ∇ is ω-c.a. since the number of mind-changes of ∇spiq is
at most i` 1, as it changes only if a number below i` 1 is enumerated
into 01. Actually, the following lemma shows that ∇ is the fastest ω-c.a.
function up to computable speed up.

Lemma VII.10. If f : N Ñ N is increasing and faster than every
partial computable function up to a computable speed up, then it is
faster than every ω-c.a. function up to a computable speed up.

§Given a non-decreasing computable function g, use the recursion theorem to
define a computable function s such that ∇pspiqq ě gpspi` 1qq for each i.

112 VII. FINITE-INJURY CONSTRUCTIONS

Proof. Let g be ω-c.a. as witnessed by the computable function
c that bounds the number of mind-changes in the approximation tgs :
s P Nu. Define a partial computable function p such that ppi, jq is
the value of gspiq after j mind changes. That is, ppi, jq is gspiq for the
least s such that |tt ă s : gtpiq ‰ gt`1piqu| “ j if such an s exists,
and ppi, jq is undefined otherwise. Notice that since gpiq changes at
most cpiq times, gpiq ď maxtppi, jq : j ď cpiqu. Since f is faster than
every partial computable function up to a computable speed up, there
is a computable h such that fphpi, jqq ě ppi, jq for all i, j P N.¶ The

function h̃piq “ maxthpi, jq : j ď cpiqu is the computable speed up
witnessing that f is faster than g: Using that f is increasing,

fph̃piqq ě maxtfphpi, jqq : j ď cpiqu ě maxtppi, jq : j ď cpiqu ě gpiq.
l

Exercise VII.11. Given a computable well-ordering α “ pA;ďαq,
we say that f : NÑ N is α-c.a. if there is a computable approximation
tfs : s P Nu of f , and a computable function c : N2 Ñ A that counts the
number of mind changes in fs in the following sense: If fspiq ‰ fs`1piq,
then cpi, sq ąα cpi, s` 1q.

(a) Prove that for every computable well-ordering α “ pA;ďαq there
is an α-c.a. function fα that is faster than any other α-c.a. function up
to a computable speed up.

(b) (Hard) Prove that if β ă α, then fβ is not faster than fα even
after a computable speed up.

VII.2.3. A couple of examples. The facts that the set of true
stages is co-c.e., and that ∇ grows so fast are enough to make ∇ useful.
We give a couple of examples to illustrate its use. In Section I.1.2, we
built a copy A of the ordering ω “ pN;ďq so that the isomorphism
between A and pN;ďq computes 01. We now produce another such
copy using a different method.

Lemma VII.12. There is a computable ω-presentation A of the or-
dering pN;ďq such that any embedding from A to pN;ďq computes 01.

Proof. The idea is to define A “ pA;ďAq together with a com-
putable sequence a0 ăA a1 ăA a2 ăA ¨ ¨ ¨ such that there are at least
∇piq elements ăA-below ai`1 for every i. This way, if g : A Ñ N is
an embedding from A to pN;ďq, we would have that the function
i ÞÑ gpai`1q majorizes ∇ and hence computes 01. Recall that the set
txi, ty : i P N, t ă ∇piqu is c.e. We build A by first laying down ele-
ments a0 ăA a1 ăA a2 ăA ¨ ¨ ¨ (say, using the even integers: an “ 2n),

¶We are using a computable bijection between N and N2.

VII.2. THE METHOD OF TRUE STAGES 113

and then adding elements bi,t ďA-in-between ai and ai`1 for each i, t
with t ă ∇piq. More formally, if f is a computable one-to-one enumer-
ation of txi, ty : t ă ∇piq, i P Nu, name the odd number 2n`1 with the
label bi,t if fpnq “ xi, ty and then define

aj ăA bi,t ðñ j ď i and bj,s ăA bi,t ðñ j ă i_ pj “ i^ s ă tq.

We then get that there are ∇piq elements ďA-between ai and ai`1 as
needed. l

The following lemma answers the question of how difficult is it
to find a basis on a vector space. A jump is sufficient, as we can
computably enumerate a maximal linearly independent set using the
linear dependence relation, which we know is r.i.c.e. The lemma below
shows it is necessary.

Lemma VII.13. There is a computable copy of the infinite dimen-
sional Q-vector space Q8 where every basis computes 01.

We will actually show that every infinite linearly independent set
in this ω-presentation computes 01. Let Q8 denote the standard ω-
presentation of the infinite dimensional Q-vector space, which has a
computable basis tei : i P Nu.

Proof. The idea is to define a copy A of Q8 by taking the quotient
of Q8 over a computable subspace U with infinite co-dimension. The
equivalence relation generated by a computable subspace U — namely
u „ v ðñ u ´ v P U — is computable, and hence we have a
computable congruence ω-presentation A of Q8{U – Q8, where the
projection map from Q8 to A is also computable (see Lemma I.11).

Define U so that, for every s1 and s2 which are not true stages,
es1 and es2 are linearly dependent in Q8{U . To get this, all we need
to do is add to U a vector of the form aes1 ´ es2 for some a P Q
as soon as we realize s1 and s2 are not true. Before showing how
to define U in a computable way, let us see why having such a U is
enough. Suppose I Ď A is an infinite linearly independent set in A;
we need to show I ěT 01. Since the projection map is computable,
by choosing pre-images we can get an infinite set J Ď Q8 which is
not just linearly independent, but also linearly independent modulo U .
The subspace generated by e0, e1,, e∇pnq´1 has dimension n`1 when
projected to A, because, except for e∇p0q, e∇p1q, ..., e∇pn´1q, all the other
vectors are mutually linearly dependent. Therefore, if we take n ` 2
vectors v0, ..., vn`1 from J , they cannot all belong to the subspace of
Q8 generated by e0, e1,, e∇pnq´1. Recall that in Q8, every vector is
given as a linear combination of the bases of ei’s. One of the vectors

114 VII. FINITE-INJURY CONSTRUCTIONS

vi must then use some et for t ě ∇pnq ´ 1 in its representation. Let
gpnq be the largest t such that et appears in the representation of one
of the vectors vi for i ď n` 1. The function g majorizes ∇, and hence
we can use g to compute 01 as in Lemma VII.4.

We now have to show how to build U effectively. At each stage s,
we define a finite subset Us Ď Q8 and at the end, define U “

Ť

sPN Us.
Consider the finite sets

Vs “ t
ÿ

iăs

pi
qi
ei : pi, qi P Z, |pi| ă s, 0 ă qi ă su,

whose union is Q8. To make sure U is computable, we will ensure
that U X Vs “ Us X Vs for every s. Therefore, after each stage s,
we must ensure that no element of Vs r Us ever enters U . To get U
to be a subspace, we will ensure that each Us is closed under linear
combinations within Vs (i.e., Us X Vs “ xUsy X Vs).

Suppose that, at stage s, we discover that s1 and s2 are not true
stages and we have not made es1 and es2 dependent in A yet. (Recall
that the set of non-true stages is c.e.) We then want to add a vector of
the form aes1 ´ es2 to U so that we make es1 and es2 dependent in A
without changing U within Vs: All we have to do is search for such an
a P Q such that when we add aes1 ´ es2 to U , we keep all the vectors
in Vs r Us outside U . That is, we need to make sure that no vector in
VsrUs belongs to the subspace generated by UsYtaes1´es2u. Once we
find such an a, we can verify this computably, and thus we just need
to know that one such a exists. Using basic linear algebra, if a0 ‰ a1,
and es1 and es2 are independent over Us, then the intersection of the
spaces generated by Us Y ta0es1 ´ es2u and by Us Y ta1es1 ´ es2u is the
subspace generated by Us.

} Since Vs is finite, there can be at most
finitely many a’s which generate elements in Vs r Us. In other words,
for all but finitely many a’s, the space generated by Us Y taes1 ´ es2u
adds no new vectors to Vs that were not in the subspace generated by
Us already. Now that we know such a exist, all we have to do is look
for one. When we find it, we add aes1 ´ es2 to Us`1. At stage s we
might discover that various pairs s1 and s2 are not true, so we do this
for each such pair. Finally, to get Us`1XVs`1 “ xUs`1yXVs`1, once we
have added all these vectors, we close Us`1 under linear combinations

}Suppose v in in the intersection of the spaces generated by Us Y ta0es1 ´ es2u
and Us Y ta1es1 ´ es2u. Thus v “ u0 ` λ0pa0es1 ´ es2q “ u1 ` λ1pa1es1 ´ es2q
for some u0, u1 P xUsy and λ0, λ1 P Q. We then get that u0 ´ u1 “ pλ1a1 ´

λ0a0q ¨ es1 ` pλ1 ´ λ0q ¨ es2 . Since es1 and es2 are independent over Us, we get that
λ1a1 ´ λ0a0 “ 0 “ λ1 ´ λ0, from which we deduce that λ0 “ λ1 “ 0 and that
v “ u0 “ u1 P xUsy.

VII.3. APPROXIMATING THE SETTLING-TIME FUNCTION 115

that are in Vs`1, that is, we add to Us`1 all vectors in Vs`1 which are
linear combination of Us and these new vectors.

Notice that U has infinite co-dimension as whenever t1, ..., tk are
true stages, et1 , ..., etk are linearly independent modulo U , as only vec-
tors in the subspace generated by the remaining basis vectors are ever
added to U . l

Historical Remark VII.14. Metakides and Nerode [MN79] prove
a similar result, and Friedman, Simpson, and Smith [FSS83] prove this
same result for reverse mathematics purposes.

VII.3. Approximating the settling-time function

Every true stage can figure out all the previous true stages in a
uniformly computable way. More precisely: Suppose t “ ∇piq is the
ith true stage. Using the fact that 01t ææ i “ 01 ææ i, we have that, for
j ď i, ∇pjq is the least s ą ∇pj ´ 1q such that 01s ææ j “ 01t ææ j. If t
is not a true stage, we can still apply the same procedure and get the
stages that t believes should be true.

Definition VII.15. Given j ă t, we define the jth apparent true
stage at t, denoted ∇tpjq, as the least s ď t such that s ą ∇tpj´1q and
01s ææ j “ 01t ææ j. Again, to match with ∇, we are using ∇tp´1q “ ´1 in
the definition of ∇tp0q.

This definition only makes sense if s ď t, so once we reach a j with
∇tpjq “ t, we cannot define any more apparent true stages, and we let
∇t be the string defined up to that point. Thus, ∇t is a finite increasing
string whose last element is always t.

From the paragraph preceding the definition, we get that if t is the
ith true stage, then ∇t “ ∇ ææ i. Furthermore, for every s ą t, since
01t ææ i “ 01s ææ i “ 01 ææ i, we get that ∇s ææ i is also correct and equal to
∇ ææ i. On the other hand, if t is not a true stage, since t is the last
entry of ∇t, we have that ∇t Ę ∇. For the same reason, if s ą t is a
true stage, then ∇t Ę ∇s. In short, for t P N,

t is a true stage ðñ ∇t Ă ∇ ðñ @s ą t p∇t Ď ∇sq.
By essentially the same argument, we get the following property:

(♣) For every r ă s ă t, if ∇r Ď ∇t, then ∇r Ď ∇s.
The reason is that if ∇r Ď ∇t, then no number below |∇r| is enumerated
into 01 between the stages r and t. That would then also be true
between the stages r and s, and hence ∇r Ď ∇s.

The following two lemmas are intended to give us a feeling for how
the sequence t∇s : s P Nu behaves. Let T be the image of the function

116 VII. FINITE-INJURY CONSTRUCTIONS

s ÞÑ ∇s. To gain some intuition, we recommend the reader see how the
sequence t∇s : s P Nu moves around T in Figure VII.1 below.

∇0 “ xy

∇1 “ x1y

∇2 “ x1, 2y

∇3 “ x1, 2, 3y

∇4 “ x1, 2, 3, 4y ∇5 “ x1, 2, 3, 5y

∇6 “ x1, 2, 3, 5, 6y

∇7 “ x1, 7y

∇8 “ x1, 7, 8y

∇9 “ x1, 7, 8, 9y

∇10 “ x1, 7, 8, 9, 10y ∇11 “ x1, 7, 8, 9, 11y

Figure VII.1. Example where 3 is enumerated into 01

at stage 5, 1 at stage 7 and 4 at stage 11.

Exercise VII.16. Draw a tree like the one in Figure VII.1 in the
following situation: 4 is enumerated at stage 5, 3 at 7, 5 at 9, and 0 at
11.

Lemma VII.17. The set T “ t∇s : s P Nu Ď NăN is a computable
tree whose only path is ∇.

Proof. T is computable because given σ P NăN, we can calculate
∇t, where t is the last entry of σ, and then check if σ “ ∇t.

To show that T is a tree, we need to show that it is closed downward.
To do this, all we have to observe is that if ∇spiq “ t, then ∇s ææ i “ ∇t.
This is because 01s ææ i “ 01t ææ i, and hence the computations of ∇t ææ i
and ∇s ææ i are the same.

About the paths of T , clearly ∇ is one of them. We claim that if
∇s Ć ∇, the set of extensions of ∇s in T is finite, and hence there is no
path extending ∇s: Let t ą s be a true stage. Then ∇s Ę ∇t. By (♣),
for all u ě t, ∇s Ę ∇u. l

The Kleene-Brower ordering, ďKB, on NăN is defined as follows:
σ ďKB τ if either σ Ě τ or σ and τ are incomparable and, for the least
i with σpiq ‰ τpiq, we have σpiq ă τpiq.

Lemma VII.18. The Kleene-Brower ordering, ďKB, on T produces
a computable ordering of order type ω ` ω˚ on which every descending
sequence computes 01.

Proof. To prove that pT ;ďKBq – ω ` ω˚, we prove that if s is
a true stage, then there are only finitely many strings in T that are

VII.3. APPROXIMATING THE SETTLING-TIME FUNCTION 117

ěKB ∇s; and if s is not a true stage, then there are only finitely many
strings in T that are ďKB ∇s. For the former claim, if s is a true stage,
then for every t ě s, we have ∇t Ě ∇s, and hence ∇t ďKB ∇s. For the
latter claim, if s is not a true stage and t ą s is a true stage, then there
is a least i such that ∇spiq ‰ ∇tpiq. The reason for this difference must
be that i R 01s while i P 01t, and hence ∇tpiq ą s ě ∇spiq. Since t is true,
we have that, for every u ě t, ∇u Ě ∇t, and hence ∇u ææ i “ ∇s ææ i and
∇upiq “ ∇tpiq ą ∇spiq. Thus, ∇u ěKB ∇s.

Every descending sequence must be a subsequence of t∇t : t is a
true stageu, and hence computes 01 by Corollary VII.5. l

Exercise VII.19. Show that pT ;ďKBq has a computable ascending
sequence.

Exercise VII.20. (Hard) Use a priority argument to show that
there is an ω-presentation of ω`ω˚ which has no computable ascending
sequence and no computable descending sequence.

Remark VII.21. Hirschfeldt and Shore [HS07, Theorem 2.11] showed
that every computable ω-presentation of ω ` ω˚ must have either an
ascending sequence or a descending sequence that is low.

Exercise VII.22. (Hard) A small modification of the proof of The-
orem V.26 can produce another interesting spectrum. Let us view a
set Γ Ď 2ăN as an operator by letting ΓX “ t|τ | : τ Ď X, τ P Γu. Given
a finite set F Ď N, let

ΓF “ t∇ æ i : i P F u Y tτ P 2ăN : τ Ć ∇u.

Notice that Γ∇
F “ F . Consider the family of sets:

F “ tΓF ‘ tnu : F Ď N finite & F ‰ W∇
n u.

Prove that

DgSppGFq “ tX P 2N : X not ∆0
2u.

(The first one to construct a structure with this spectrum was Kalimullin
[Kal08]. The construction above is due to Montalbán [ACK`, Theo-
rem 2].) Hint in footnote:˚˚

˚˚For the construction, use as an oracle a set U with no ∆0
2 computable subsets,

and when there is a threat Γ∇s “W∇s
n add to Γ the extensions of ∇s with a certain

length in U .

118 VII. FINITE-INJURY CONSTRUCTIONS

VII.4. A construction of linear orderings

In this section, we prove a well-known result that is best proved
using the method of true stages we just developed. Given linear or-
derings A and B, we let A ¨ B be the ordering on A ˆ B given by
xa0, b0y ďA¨B xa1, b1y if either b0 ăB b1, or b0 “ b1 and a0 ďA a1. No-
tice that the coordinates are compared from right to left, and not as
in the lexicographic ordering — it is the tradition. Then, for instance
A `A “ A ¨ 2, and Z ¨A is the linear ordering obtained by replacing
each element in A with a copy of Z.

Theorem VII.23 (Fellner [Fel76]). Let L be a linear ordering.
Then Z ¨L has a computable copy if and only if L has a 02-computable
copy.

The left-to-right direction is the easy one. On a computable copy
of Z ¨ L, the equivalence relation „, given by a „ b if and only if they
are finitely apart, is 02 computable, and hence we can make the copy
of Z ¨ L into a 02-computable congruence ω-presentation of L.

The proof of the other direction is divided into a few steps which
we prove in separate lemmas. The first lemma is a general one that
will be useful in other settings too. It gives a way of approximating
01-computable structures in a way that correct approximations to the
structure happen at the same stages where we have correct approxima-
tions to ∇.

Lemma VII.24. Let B be a 01-computable ω-presentation of a struc-
ture in a relational vocabulary τ . There is a computable sequence of
finite τ|¨|-structures tBs : s P Nu such that

p@s ă tq ∇s Ď ∇t ñ Bs is a substructure of Bt,

and

B “
ď

tBs : s a true stageu.

Moreover, if ϕ is a @-formula true of B, we can make the Bs’s satisfy
ϕ too.

Proof. Let At be the τt-substructure of B with domain t0, ..., t´
1u. The sequence tAt : t P Nu is 01 computable. Let Φ be a computable
function such that Φ∇ptq is an index for the finite structure At. If at
a stage s we believe ∇s is an initial segment of ∇, we also believe
that Φ∇s outputs the indices of the first few structures in the sequence
tAt : t P Nu. For each s, let ts be the largest t so that, for every

i ď t, Φ∇spiq converges and outputs an index for a finite structure rAi

VII.4. A CONSTRUCTION OF LINEAR ORDERINGS 119

satisfying ϕ and so that

rA0 Ď rA1 Ď ¨ ¨ ¨ Ď rAt.

Let Bs “ rAts . We then have that if ∇s Ď ∇r, Φ∇spiq “ Φ∇rpiq for all

i ď ts, and hence Bs Ď Br. If ∇s Ď ∇, then rAts is actually one of the
At’s, and hence Bs Ă B. l

Lemma VII.25. If a linear ordering L has a 01-computable copy,
then the adjacency linear ordering pZˆL;ďZˆL,Adjq has a computable
copy.

Proof. Let tLs : s P Nu be a sequence of finite linear orderings
approximating L as in Lemma VII.24 — notice that being a linear
ordering can be described by a @-sentence.

At each stage s, we build a finite linear ordering As “ pt0,, ksu;ďAs
,Adjsq and an onto, order-preserving map gs : As Ñ Ls such that
gspaq “ gspbq if and only if there is a finite sequence of Adjs-adjacent
elements in between a and b in As. The binary relations Adjs satisfy
that if As |ù Adjspa, bq, then there is no element in between a and
b in As, but there could be elements a, b P As without elements in
between for which Adjs does not hold. Thus, As is partitioned into
adjacency chains, where an adjacency chain is a maximal string of ele-
ments a0 ăAs ¨ ¨ ¨ ăAs ak with Adjspai, ai`1q for all i ă k. The condition
on g above implies that for each ` P Ls, g´1

s p`q is an adjacency chain.

As a4 a8 a1 a6 a7 a0 a5 a3 a2 a9

Adjs Adjs Adjs Adjs Adjs Adjs

Ls
`3 `1 `0 `2

gs

Figure VII.2. The top row are the points in As ordered
by ďAs from left to right. The bottom row are the points
in Ls ordered by ďLs from left to right.

At each stage s, we need to satisfy the following two properties:

(1) If t ď s, then At Ď As (as structures, i.e., preserving ď and
Adj).

120 VII. FINITE-INJURY CONSTRUCTIONS

(2) If ∇t Ă ∇s, then gt Ď gs, and for every ` P Lt, 1` g´1
t p`q` 1 Ď

g´1
s p`q.

::

Let us first note that these conditions are enough to build the de-
sired structure A. Condition (1) allows us to define a computable ad-
jacency linear ordering A “

Ť

sAs. Condition (2) allows us to define
an onto, order-preserving map g “

Ť

tgs : s is a true stageu : A Ñ L.
Furthermore, for every ` P L, g´1p`q must be infinite in both directions
and satisfy that any two elements in it are linked by a finite sequence
of adjacencies. Therefore, g´1p`q is isomorphic to Z, and we get that
A is isomorphic to Z ¨ L.

Last, we need to show that, at each stage s` 1, we can define As`1

and gs`1 so that they satisfy (1) and (2). Let t ď s be the largest such
that ∇t Ď ∇s`1. Thus, we know that Lt Ď Ls`1, and we need to define
As`1 extending As and gs`1 extending gt. The rest of the proof is just
a brute-force combinatorial argument proving that such an As`1 and
gs`1 exist. We recommend the reader to try to prove it and to draw
pictures like Figures VII.2 and VII.3 before reading it.

First, define rAs`1 by adding a new element at the end of each
adjacency chain in As, and by attaching each new adjacency chain to
one that existed in At. (To attach two adjacency chains, we add a
new element in between the chains and make it satisfy Adjs`1 with the

ends of the two chains.) Thus, we end up with rAs`1 having the same

adjacency chains as At, though these chains are longer in rAs`1. Extend

gt : At Ñ Lt to g̃s`1 : rAs`1 Ñ Lt so that, for each ` P Lt, g̃´1
s`1p`q is an

adjacency chain in rAs`1. We have now fixed the mess done at stage s.

At Ď ¨ ¨ ¨ Ď As Ď rAs`1 Ď As`1

Lt Ď Ls`1

gt g̃s`1 gs`1

Figure VII.3. The diagram above commutes.

Second, define As`1 Ě rAs`1 by adding a new element a` in between
chains for each new ` P Ls`1rLt. Of course, if `0 ă ` ă `1 with `0, `1 P

Lt, then the a` must be in between the chains corresponding to g´1p`0q

and g´1p`1q. Finally, extend g̃s`1 : rAs`1 Ñ Lt to gs`1 : As`1 Ñ Ls`1 by
mapping each a` to `. l

::That is, g´1
t p`q Ď g´1

s p`q, and there is an element in g´1
s p`q that is less than

all the elements in g´1
t p`q and another one that is greater.

VII.4. A CONSTRUCTION OF LINEAR ORDERINGS 121

Lemma VII.26. If pZ ¨ L;ď,Adjq has a 01 computable copy, then
Z ¨ L has a computable copy.

Proof. Let B be the 01-computable copy of pZ ¨ L;ď,Adjq. Let
tBs : s P Nu be a sequence of finite structures approximating B as in
Lemma VII.24. We assume each Bs satisfies the @-sentence saying that
they are linear orderings and that if Bs |ù Adjpa, bq, there is no element
between a and b. However, as for the structures As in the previous
lemma, there will be elements a and b not satisfying Adjpa, bq in Bs and
without anything in Bs between them.

At each stage s, we build a finite linear ordering

As “ pt0,, ksu;ďAs ,Adjsq

and an order-preserving, one-to-one map hs : Bs Ñ As. Again, as
with the structures As from the previous lemma, Adjs satisfies @a, b ď
kspAdjspa, bq ^ a ăAs b Ñ Ecpa ăAs c ăAs bqq, and hence As is par-
titioned into adjacency chains. We do not require hs to be onto, not
even in the limit. Instead, all we require is that every adjacency chain
in As has an element in the image of hs. Also, we require that two ele-
ments of Bs are in the same adjacency chain if and only if their images
are. Thus, hs induces a bijection between the adjacency chains in Bs
and the adjacency chains in As. Notice that we do not require hs to
preserve Adj, but only to preserve the property of being in the same
adjacency chain.

At each stage s, we need to satisfy the following two properties:

(1) If t ď s, then pt0,, ktu;ďAtq Ď pt0,, ksu;ďAsq.
(2) If ∇t Ď ∇s, then At Ď As preserving order and adjacency, and

ht Ď hs.

Condition (1) allows us to define a computable linear ordering

A “ pN;ďAq “
ď

s

pt0,, ksu;ďAsq.

Notice that we lost the adjacency relation, which may not be com-
putable. Condition (2) allows us to define an embedding h “

Ť

ths :
s a true stageu : B Ñ A, which preserves ordering and adjacency chains.
The embedding h produces a bijection between the adjacency chains
in B and those in A, and an embedding of each adjacency chain in B
to the corresponding one in A. Since the adjacency chains in B are
isomorphic to Z, the ones in A must also be isomorphic to Z, and we
get that A and B are isomorphic.

Last, we need to show that, at each stage s` 1, we can define As`1

and hs`1 so they satisfy (1) and (2). Let t ď s be the largest such
that ∇t Ď ∇s`1. We need to define pAs`1;ďs`1q extending pAs;ďsq and

122 VII. FINITE-INJURY CONSTRUCTIONS

Adjs`1 and hs`1 extending Adjt and ht. The rest of the proof is just
a brute-force combinatorial argument proving that such As`1, Adjs`1,
and hs`1 exist. Again, we recommend the reader to try to prove and
to draw pictures before reading it.

Ignoring Adjs, define ĂAdjs`1 on As so that it is compatible with
Adjt and so that every element belongs to an adjacency chain that
existed in At. We can do this because, since ∇t Ď ∇s (which follows
from ∇t Ď ∇s`1 and p♣q), Adjt is preserved in As, and hence if two
elements satisfy Adjt in At, they is still nothing in between them in As.

Extend pAs;ďsq to p rAs`1;ďs`1q by adding one new element a` for each
` P Bs`1rBt so that we can extend ht : Bt Ñ At to hs`1 : Bs`1 Ñ As`1

(recall that Bt Ď Bs`1). Also, if two adjacency chains in Bt have
collapsed to one in Bs`1, we need to collapse the respective chains
in As`1: Thus, if two consecutive elements `0, `1 P Bs`1 belong to
adjacency chains that were part of separate chains in Bt, but are part
of a single chain in Bs`1, we add a new element a`0,`1 to As`1 in between
the adjacency chains corresponding to htp`0q and htp`1q so that we can
attach those chains. Define Adjs`1 on As`1 so that hs`1 produces a
bijection between the adjacency chains in Bs`1 and those in As`1. l

Finally, the right-to-left direction of Theorem VII.23 follows from
first applying Lemma VII.25 relativized to 01, and then Lemma VII.26.

Exercise VII.27. (Downey [DK92]) Prove that L has a 01 com-
putable copy if and only if pQ` 2`Qq ¨ L has a computable copy.

CHAPTER VIII

Computable categoricity

Computably categorical structures are the ones for which all com-
putable ω-presentations have the same computational properties. This
is a desirable property on a structure, of course, but the structures
which have it are rather few. The notion was originally introduced by
Mal’cev [Mal62] in 1962 for groups, and has been intensively studied
over the past few decades.

A second objective of this chapter is to get the reader acquainted
with finite-injury priority constructions.

VIII.1. The basics

Most of the properties one considers in computable structure the-
ory are invariant under computable isomorphisms, though not neces-
sarily under all isomorphisms: Two computable ω-presentations may
be isomorphic and still have different computational properties. For in-
stance, there are computable ω-presentations of the countable, infinite-
dimensional Q-vector space Q8 where all the finite-dimensional sub-
spaces are computable, and there are computable ω-presentations of
Q8 where no non-trivial finite-dimensional subspace is computable (see
[DHK`07]).

Definition VIII.1. A computable structure A is computably cat-
egorical if there is a computable isomorphism between any two com-
putable copies of A.

The following somewhat trivial lemma shows how computably cat-
egorical structures are exactly the ones that avoid the behavior of the
example above, that is, the ones where all computable copies have the
same computable relations.

Lemma VIII.2. Let A be a computable structure. The following are
equivalent:

(1) A is computably categorical.
(2) For every computable R Ď An and every computable copy B of

A, there is a computable RB Ď Bn such that pB, RBq – pA, Rq.

123

124 VIII. COMPUTABLE CATEGORICITY

Proof. To show that (1) implies (2), consider a computable iso-
morphism g : B Ñ A, and define RB “ g´1pRq. For the other direction,
consider a computable copy B of A; we need to build a computable iso-
morphism between them. Of course, we are assuming A is infinite, and
hence we may assume its domain is N. Let

R “ txn, n` 1y : n P Nu Ď N2
“ A2.

Since R is computable, there is a computable RB such that pA, Rq –
pB, RBq. Once we know what element of B corresponds to 0 P A under
this isomorphism, we can use RB to computably find the element of
B that corresponds to 1 P A, and then the one that corresponds to
2 P A, etc. Continuing this process, we get the desired computable
isomorphism between A and B. l

Now that we are convinced that computable categoricity is a desir-
able property, the next question that is “what makes a structure com-
putable categorical?” This question is currently being investigated, and
there has been a lot of work characterizing the computably categorical
structures within certain classes of structures. See Table 1.

Such clean characterizations as in Table 1 are not always possible.
Downey, Kach, Lempp, Lewis-Pye, Montalbán, and Turetsky [DKL`]
showed that there is no structural characterization of the notion of
computable categoricity. They did this by showing that the index set
of the computably categorical structures˚ is Π1

1-complete (defined in
[MonP2]). There are, however, structural characterizations of vari-
ations of the notion of computable categoricity. For instance, we al-
ready proved in Section III.4 that the uniformly computably categorical
structures coincide with the effectively D-atomic ones. This chapter is
dedicated to the non-uniform notions which are, arguably, more natu-
ral. In particular, it is dedicated to the notion of relative computable
categoricity and its connections to plain computable categoricity.

VIII.2. Relative computable categoricity

In this section, we give a purely structural characterization of the
computational notion of relative computable categoricity.

Definition VIII.3 ([AKMS89, Section 4][Chi90, Definition V.9]).
Given X P 2N, an X-computable structure A is X-computably cat-
egorical if there is an X-computable isomorphism between any two
X-computable copies of A. A computable structure A is relatively
computably categorical if it is X-computably categorical for all X P 2N.

˚The index set of a class of structures is the set of indices for computable
functions that are the diagrams of ω-presentations of structures in the class.

VIII.2. RELATIVE COMPUTABLE CATEGORICITY 125

Class Condition for computable cate-
goricity

Reference

Linear order-
ings

Finitely many pairs of adjacent
elements

Dzgoev and Gon-
charov [GD80],
Remmel [Rem81a]

Boolean alge-
bras

Finitely many atoms Goncharov
[Gon75b], La
Roche [LR78]

Q-vector
spaces

Finite dimension

Algebraically
closed fields

Finite transcendence degree
over prime subfield

Ershov [Erš77]

Ordered
abelian
groups

Finite rank Goncharov,
Lempp, and
Solomon [GLS03]

Trees of finite
height

Finite type Lempp, McCoy,
R. Miller, and
Solomon [LMMS05]

Torsion-
free abelian
groups

Finite rank Nurtazin [Nur74]

Abelian
p-groups

Either (i) pZpp8qq` ‘ G for ` P
N Y t8u and G finite, or (ii)
pZpp8qqn‘pZpkq8‘G where G
is finite, and n, k P N

Goncharov [Gon80],
Smith [Smi81]

Table 1. The middle column describes a necessary and
sufficient condition condition for a structure within the
given class to be computably categorical. For the def-
initions of the relevant terms and the proofs, we refer
the reader to the references given in the third column.
Each case requires a different priority argument to show
that structures that do not satisfy the condition are not
computably categorical.

Equivalently, A is relatively computably categorical if, for every
copy B (computable or not) of A, there is an isomorphism between B
and A that is computable in DpBq.

Theorem VIII.4 (Ash, Knight, Manasse, Slaman [AKMS89, The-
orem 4]; Chisholm [Chi90, Theorem V.10]). Let A be a computable
structure. The following are equivalent:

126 VIII. COMPUTABLE CATEGORICITY

(1) A is relatively computably categorical.
(2) pA, āq is uniformly computably categorical for some ā P AăN.
(3) pA, āq is effectively D-atomic for some ā P AăN.

Proof. The equivalence between (2) and (3) was proved in Theo-
rem III.18. To see that (2) implies (1), just notice that for any copy B
of A, one can non-uniformly pick the corresponding tuple āB so that
pB, āBq – pA, āq, and then use part (2) of Theorem III.18 to get a
DpBq-computable isomorphism between them.

The interesting direction is the implication from (1) to (3), which
shares some ideas with the proof of Theorem III.18 — we recommend
the reader studies it first. Assume A is relatively computably cat-
egorical. Out of this computational assumption we need to build a
syntactical object, namely a c.e. Scott family of D-definitions for the
automorphism orbits of the tuples in AăN, over some parameters.

Let g : N Ñ A be an enumeration of A that is 2-generic relative
to the presentation of A as in Definition V.21. Let B be the generic
presentation obtained as the pull-back of A through g (as in Definition
IV.15). Since A is relatively computably categorical, and B – A, there
is a computable operator Γ such that ΓDpBq is an isomorphism from B
to A.

The first step is to get a tuple p̄ Ď g which forces that ΓDpBq is an
isomorphism as follows:

Claim VIII.4.1. There is a tuple p̄ Ď g such that any tuple qq Ě p̄

can be extended to an enumeration qg with pull-back qB “ qg´1pAq so

that ΓDp
qBq is an isomorphism from qB to A.

Let us leave the proof of the claim for later, and start by proving
the theorem from it.

Given tuples q̄ “ xq0, q1, ...y P AďN and n̄ “ xn0, ..., n`y P NăN,
we use q̄ æ n̄ to denote xqn0 , ..., qn`y P A|n̄|. Since g and ΓDpBq are
isomorphisms from B to A, for every n̄ P NăN,

pA, g æ n̄q – pB, n̄q – pA,ΓDpBq æ n̄q.
Recall that if q̄ Ď g, then DApq̄q Ď DpBq (Observation I.15). Therefore,
if we have q̄ Ď g so that ΓDApq̄q æ n̄ converges (i.e., if ΓDApq̄qpniqÓ for all
i ď `), then ΓDApq̄q æ n̄ is automorphic to q̄ æ n̄ as in the diagram below.

Here comes the key observation: the value of ΓDApq̄q æ n̄ depends
only on DApq̄q P 2ăN, and it determines the automorphism orbit of
q̄ æ n̄. Thus, informally: for ā “ q̄ æ n̄, the existential formula that
says that ā is part of a tuple q̄ with this particular diagram defines the
automorphism orbit of ā. Let us explain this in more detail. The key
observation above can be formally stated as follows:

VIII.2. RELATIVE COMPUTABLE CATEGORICITY 127

A B
ΓDpBq

– //
g

–oo A

q̄ æ n̄ n̄ � //�oo ΓDApq̄q æ n̄

Claim VIII.4.2. If q̄, qq Ě p̄ and ΓDApq̄q æ n̄Ó, then

DApq̄q “ DApqqq ñ pA, q̄ æ n̄q – pA, qq æ n̄q.

To see this, from the previous claim we get an enumeration qg Ą qq

such that if qB “ qg´1pAq, then ΓDp
qBq is an isomorphism. Then, using the

observation from the diagram above and that ΓDApq̄q æ n̄ “ ΓDApqqq æ n̄,
we get that

pA, q̄æn̄q – pB, n̄q – pA,ΓDApq̄qæn̄q “ pA,ΓDApqqqæn̄q – p qB, n̄q – pA, qqæn̄q,
as needed for the claim.

Fix a tuple ā; let us find a D-definition for the orbit of ā under
automorphisms of A that fix p̄. Computably, search for a tuple q̄ā P
AăN and a tuple n̄ā P NăN such that

q̄ā Ě p̄, q̄ā æ n̄ā “ p̄ā and ΓDApq̄āq æ n̄āÓ.

We will eventually find such tuples because one can always take q̄ā to
be a long enough initial segment of g and take n̄ā so that g æ n̄ā “ p̄ā.
We claim that, for any tuple b̄,

pA, p̄āq – pA, p̄b̄q ðñ Dqq
`

qq Ě p̄ ^ qq æ n̄ā “ p̄b̄ ^ DApqqq “ DApq̄āq
˘

.

For the right-to-left direction, consider such a tuple qq, and observe
that p̄ā and p̄b̄ are automorphic by Claim VIII.4.2. For the left-to-
right direction, let qq be the tuple that corresponds to q̄ā through the
automorphism mapping p̄ā to p̄b̄.

We can rewrite the right-hand side as an existential formula about
A with parameters p̄:

ϕāpp̄, x̄q ” Dȳ
`

ȳ Ě p̄ ^ ȳ æ n̄ā “ p̄x̄ ^ Dpȳq “ DApq̄āq
˘

,

where x̄ and ȳ are replacing b̄ and qq, and where “Dpȳq “ σ” is shorthand
for ϕat

σ pȳq, as defined in I.10. The formula ϕā defines the orbit of ā under
automorphisms that fix p̄. The set tϕā : ā P AăNu is thus the desired
c.e. Scott family of D-formulas over p̄.

We still have to prove Claim VIII.4.1, that there is a p̄ that forces
ΓDpBq to be an isomorphism from B to A.

Proof of Claim VIII.4.1. This is a standard forcing proof as
we will see in [MonP2]. For this particular forcing application, the

128 VIII. COMPUTABLE CATEGORICITY

techniques we have developed so far in Chapter IV are enough, as we
did in Theorem V.20.

Recall that g is a 2-generic enumeration of A, and B “ g´1pAq. Let
us start by forcing ΓDpBq to behave correctly wherever it converges. For
this, consider the set of strings which force it not to:

Q1 “ tq̄ P A
‹ : Dn ă |q̄|

`

ΓDApq̄q æ nÓ & DApΓ
DApq̄q æ nq ‰ DApq̄ æ nq

˘

u.

(Recall that A‹ is the set of tuples of different elements from A.) The
set Q1 is r.i. computable in A (using that DpAq is computable), and
hence decided by some initial segment of the enumeration g.: No initial
segment of g is in Q1 because ΓDApBq is an isomorphism, so there must
be an initial segment p̄1 P A

‹ of g such that no extension of p̄1 is in
Q1. This means that whenever q̄ P A‹ extends p̄1, if ΓDApp̄qpnqÓ, then
DApΓ

DApq̄q æ nq “ DApq̄ æ nq.
Second, we force that ΓDpBq is total: For this, consider the set of

strings which force ΓDpBq to be undefined at some n P N:

Q2 “ tq̄ P A
‹ : Dn P N @r̄ P A‹

`

r̄ Ě q̄ Ñ ΓDApr̄qpnqÒ
˘

u.

The set Q2 is Σc
2 in A, and hence r.i.c.e. in pA, ~KAq and decided by

an initial segment of g.; We cannot have an initial segment of g in Q2

because we would have that ΓDpBqpnqÒ for some n. So, for some initial
segment p̄ of g, we have that, for every q̄ P A‹ extending p̄ and every
n, there is a r̄ P A‹ extending q̄ for which ΓDApr̄qpnqÓ. We may assume
p̄ Ě p̄1.

We claim that p̄ is as wanted in Claim VIII.4.1. Since p̄ forces out of
Q2, for any qq Ě p̄, we can build a sequence qq Ď r̄1 Ď r̄2 Ď r̄3 Ď ¨ ¨ ¨ P A

‹

so that ΓDApr̄nqpnqÓ for each n. If we also make sure that n is in the
range of r̄n, we get an onto enumeration g̃ “

Ť

nPN r̄n : N Ñ A, which

satisfies that ΓDp
rBq is total, where rB “ g̃´1pAq. Since p̄ forces out of

Q1 (meaning that no extension of p̄ is in Q1), ΓDp
rBq ˝ g̃´1 : A Ñ A

must preserve diagrams and hence be an isomorphism. It follows that

ΓDp
rBq : rB Ñ A must be an isomorphism too. ˝

l

Exercise VIII.5. (Hard) (Originated after conversations between
Harrison-Trainor, Hirschfeldt, Kalimullin, Melnikov, Montalbán, and

:Notice that ΓDApq̄q æ n is a tuple in NăN, and we need to use DpAq to
figure out DApΓ

DApq̄q æ nq P 2ăN in this particular presentation of A. When
we wrote DApΓ

DApq̄q æ nq ‰ DApq̄ æ nq, it was a shorthand for ϕ
at

σ pq̄ æ nq for
σ “ DApΓ

DApq̄q æ nq, where ϕ
at

σ is as in Observation I.10.
;To see that Q2 is Σc

2, observe that txq̄, ny : @r̄ P A‹
`

r̄ Ě q̄ Ñ ΓDApr̄qpnqÒ
˘

u is

co-r.i.c.e. in A and hence Πc
1-definable.

VIII.3. CATEGORICITY ON A CONE 129

Solomon.) The proof above uses the fact that A has a computable
ω-presentation. We can still have relatively computably categorical
structures that do not have computable ω-presentations: between any
two copies B and C of A there is an isomorphism computable from
DpBq ‘DpCq.

(a) Prove that Theorem VIII.4 is still true when A does not have
computable copies. (In this case, the Scott family will have extra for-
mulas that are not satisfied by any tuple in the structure.) Hint in
footnote.§

(b) Show that in this setting, if the D-type of the parameters is c.e.

in an oracle X, then A has a Πc,X
2 Scott sentence.

(c) Show that A has enumeration degree given by the D-type of the
parameters.

VIII.3. Categoricity on a cone

Recall that by the Turing cone above X, we mean the set tY P

2N : Y ěT Xu. Sometimes, we will just call it a cone. A set R Ď 2N

is said to be degree invariant if, for every X, Y P 2N, if X P R and
Y ”T X, then Y P R too. Martin showed that every degree-invariant
set of reals either contains a cone or is disjoint from a cone — if one
assumes enough determinacy, whatever that means. This prompts us
to view degree-invariant sets that contain cones as large, and the ones
disjoint from cones as small. It is not hard to show that countable
intersections of large sets are still large, and countable unions of small
sets are still small.

Theorem VIII.6 (Martin [Mar68]). If R Ď 2N is Borel and degree-
invariant, it either contains a cone or is disjoint from a cone.

We sketch this proof for the readers familiar with infinite games.
The theorem is not relevant for the rest of the text, other than as a
motivation for Definition VIII.7. The reader not familiar with deter-
minacy may freely skip it.

Proof. Consider a game where player I and player II alternatively
play binary bits x0, y0, x1, y1, P t0, 1u for infinitely many steps.

Player I x0 x1 x2 ¨ ¨ ¨ ¨ ¨ ¨ x̄ P 2N

Player II y0 y1 ¨ ¨ ¨ ¨ ¨ ¨ ȳ P 2N

Let player I win the game if the sequence x̄ ‘ ȳ belongs to R, and let
player II win if it does not. By Borel determinacy (Martin [Mar75])
one of the two players must have a winning strategy s : 2ăN Ñ 2.

§You need to consider a generic presentation of A\A.

130 VIII. COMPUTABLE CATEGORICITY

We claim that if player I has a winning strategy, the cone above s is
included in R; while if player II has a winning strategy, the cone above
s is disjoint from R. Suppose s is a winning strategy for player I, and
let ȳ be any real in the cone above s; we want to show that ȳ P R.
Assume player II plays ȳ, and let x̄ be the response to ȳ by a player
I following the strategy s. Since s is a winning strategy, we have that
x̄‘ ȳ P R and x̄ ďT s‘ ȳ. Since ȳ ěT s, we get that ȳ ”T x̄‘ ȳ. Since
R is degree invariant, this implies that ȳ P R, as needed. The proof of
the case where II has a winning strategy is completely parallel. l

If instead of assuming R is Borel, we have that it is analytic, the
theorem is still true, but does not follow from ZFC. It follows from the
existence of sharps, which a weak large-cardinal hypothesis (Harrington
[Har78]). If we do not want to impose any complexity assumption on
R, we would need omit the axiom of choice and assume the full axiom
of determinacy.

Suppose now we have a property of reals that is invariant under
Turing equivalence. For instance, consider the set of X P 2N such
that a given structure A is X-computably categorical. By Martin’s
theorem, this set must be either large or small — assuming analytic
determinacy. In other words, either, relative to almost all oracles A
is computably categorical; or, relative to almost all oracles A is not
computably categorical.

Definition VIII.7. A structure A is computably categorical on a
cone if there is a Y P 2N such that A is X-computably categorical for
all X ěT Y .

In Section VIII.5, we will construct a computable categorical struc-
ture which is not relatively so. That structure is far from being natural,
and it was purposely build diagonalizing against lists of computable
functions. However, if A is a natural structure, a proof that it has a
property like categoricity, or a proof that it does not have it, would typ-
ically relativize. Thus, for natural A, the three notions of computable
categoricity — plain, relative, and on a cone — should coincide. If we
want to understand how computable categoricity works on “natural”
structures, our best bet is to look at it on a cone. The reason is that
on-a-cone properties avoid counterexamples one can build by diagonal-
izing against all computable functions. This is because one would have
to diagonalize against all X-computable functions for almost all X, and
there are continuum many of those. This is why it is often the case
that on-a-cone properties have cleaner structural characterizations, as
is the case for computable categoricity:

VIII.4. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY COINCIDE131

Theorem VIII.8. Let A be a countable structure. The following
are equivalent:

(1) A is computably categorical on a cone.
(2) A is D-atomic over a finite set of parameters.
(3) A has an Σin

3 Scott sentence.

Proof. The equivalence between the top two statements follows
from the relativized version of Theorem VIII.4: Notice that A is com-
putably categorical on a cone if and only if it is “relatively computably
categorical” relative to some oracle X. The equivalence between the
bottom two statements was proved in Lemma III.35. l

VIII.4. When relative and plain computable categoricity
coincide

We saw in Table 1 that computable categoricity can be completely
understood within certain classes of structures, despite being Π1

1-complete
in the general case. Something that is special about the classes from
Table 1 is that, for them, plain and relative computable categoricity co-
incide. As we argued above, for “natural” structures within any class,
the two notions should also coincide. Goncharov proved that, under
certain effectiveness conditions, computably categoricity is indeed well-
behaved. His result is based on a theorem by Nurtazin that deals with
yet another variation of the notion of computable categoricity.

Definition VIII.9. Given an ω-presentation A of a τ -structure,
we define EDpAq P 2N, the elementary diagram of A, the same way we
defined its atomic diagram in I.2, but now considering all elementary
first-order formulas instead of just the atomic ones.¶ For i P N,

EDpAqpiq “

#

1 if A |ù ϕel

i rxj ÞÑ j : j P Ns,
0 otherwise,

where tϕel

i : i P Nu is an effective listing of the elementary first-order
τ -formulas.

An ω-presentation A is said to be decidable if EDpAq is computable.

The notion of decidable structure is quite important in computable
structure theory. If one were interested in studying theorems from
model theory from a computational perspective, dealing with decidable
structures may be more appropriate than with computable ones. The
notions of computable categoricity and effective D-atomicity translate
as follows:

¶The elementary formulas are the finitary first-order formulas.

132 VIII. COMPUTABLE CATEGORICITY

Definition VIII.10. A is computably categorical for decidable copies
if there is a computable isomorphism between any two decidable copies
of A. A is effectively atomic if it has a c.e. Scott family of elementary
first-order formulas (see Definition III.2).

Atomic structures are quite important in model theory, as D-atomic
structure are relevant in computable structure theory. Exactly as in
Theorem III.22, a structure is atomic if and only if every elementary
type realized in the structure is supported by an elementary formula,
and its Scott family consists of these supporting formulas. (In the
case of full types, supported types are called principal types, and the
supporting formulas are called generating formulas.)

Theorem VIII.11 (Nurtazin [Nur74]). Let A be a decidable struc-
ture. The following are equivalent:

(1) A is computably categorical for decidable copies.
(2) A is effectively atomic over a finite set of parameters.

Let us highlight that, while in Theorem VIII.4 we could build a
non-computable (generic) copy of A to apply relatively computable
categoricity, we now need to build a decidable copy of A to apply the
assumptions. Thus, generics will not be useful here, and the proof will
have to be quite different.

Proof. An easy back-and-forth argument shows that effective atom-
icity implies computable categoricity for decidable copies as in Theorem
III.18.

The other implication, from (1) to (2), requires a finite-injury pri-
ority construction. The reader not familiar with priority construction
should read Section VII.1 first. This is a long and elaborated proof, so
brace for it.

The idea is to build a decidable copy B of A so that we can deduce
that either there are no computable isomorphisms between B and A,
or there is a c.e. Scott family for A. Thus, either part (1) fails or part
(2) holds. There are two sets of requirements. First, for each e, we
have:

Requirement Re: Either Φe is not an isomorphism
from B to A, or A has a c.e. Scott family over param-
eters.

If all these requirements are satisfied, then either one of them succeeds
in building a Scott family and we get that A is effectively atomic over
parameters, or all of them succeed in making sure no Φe is an isomor-
phism, and hence showing that A is not computably categorical for
decidable copies.

VIII.4. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY COINCIDE133

As usual, we will build B by building a one-to-one enumeration
g : N Ñ A and defining B as the pull-back g´1pAq. The other set of
requirements will guarantee that g is onto.

Requirement Pe: The eth element of the ω-presentation
A is in the range of g.

The requirements are listed in order of priority as usual: P0, R0, P1, R1,
We need to ensure that B is decidable despite g not being com-

putable. To be able to speak in precise terms, we need to define the
elementary diagram of finite tuples the same way we did for atomic
diagrams in Definition I.9. Given a tuple ā “ xa0, ..., asy P A

ăN, we de-
fine the elementary diagram of ā in A, denoted EDApāq, as the string
in 2|ā| such that, for i ă |ā|, }

EDApāqpiq “

#

1 if A |ù ϕel

i rxj ÞÑ aj, j ă ss,

0 otherwise.

As in Observation I.15, we have that if g is an enumeration of A, then

EDpg´1
pAqq “

ď

kPN

EDApg æ kq.

At each stage s of the construction, we will build an injective finite
tuple gs P A

ăN. The gs’s will not form a nested sequence, so we will
not be able to define g as their union. But the sequence will have a
pointwise limit, and we will be able to define gpiq “ lims gspiq. We still
need B to be decidable, though. So even if the gs’s are not nested, we
require that the strings EDApgsq P 2ăN are nested; that is, for all s ă t,
EDApgsq Ď EDApgtq. We will then have that

EDpBq “
ď

sPN

EDApgsq P 2N

is computable.
Informally, the idea for satisfying Re is as follows. Re will try

to define gs so that, for some tuple n̄ P NăN, Φe,s æ n̄ converges and
disagrees with gs æ n̄ on some elementary formula. This way, if Re

manages to preserve this tuple gs so that it ends up being an initial
segment of g, since g will be an isomorphism from B to A, Φe will
not. To do this, for every tuple b̄ P AăN, once we see Φe,s æ n̄Ó “ b̄ for
some n̄ and s, we enlist b̄ as a possible candidate for diagonalization.
From that point on, we will be looking for another tuple c̄ disagreeing

}We are choosing to make EDApāq have length |ā|, but we could have chosen
many other finite bounds for it. What matters is that it is a finite string, that
it only involves formulas that use the first |ā| variables, and that all formulas are
eventually taken into account as |ā| goes to infinity.

134 VIII. COMPUTABLE CATEGORICITY

with b̄ on some elementary formula, so we can try to define g æ n̄ “ c̄
while preserving EDApgsq. If we find it, Re will require attention, and if
attention is given to it at some stage t, it will define gt so that gtæ n̄ “ c̄
and then try to preserve this initial segment of g. If we do not find
such a disagreeing tuple c̄, the reason is that whatever commitment we
made at stage s about n̄ — namely that we must preserve EDApgsq
— had to imply all other formulas about b̄, and hence be a principal
formula for the type of b̄. If this happens for all tuples b̄, we can build
a Scott family for A. To make sure this works, we will be monitoring
that everything we commit to regarding b̄ later on — namely that we
must preserve EDApgtq for some new gt — is implied by the potentially
principal formula. If it is, then we are not really committing anything
new; if it is not, we have found an opportunity to diagonalize.

What makes this more difficult is that Re must respect the work
done by weaker priority requirements. The same way Re would like to
preserve the initial segment of g it defined, higher-priority requirements
will like to preserve their initial segments. At the beginning of stage
s ` 1, we will define p̄erss Ď gs to be the initial segment of gs that
has been defined by higher-priority requirements Ri for i ă e and Pi
for i ď e. Re must preserve p̄erss; that is, it is only allowed to define
gs`1 extending p̄erss. Re must also preserve EDpgsq; that is, it is only
allowed to define gs`1 satisfying EDpgs`1q Ě EDpgsq.

The construction: At any given stage, the first few requirements
will be active and the rest inactive. At each stage, the highest-priority
inactive requirement will be initialized and become active. During
the construction, requirements may be canceled, making them inactive
again. At each stage, each active Pe requirement will have an output
string p̄e P A

ăN, and each active Re requirement an output string r̄e.
These strings will be nested, p̄0 Ď r̄0 Ď p̄1 Ď r̄1 Ď ¨ ¨ ¨ , and gs will
be the union of the output strings of the active requirements at stage
s. These are not fixed strings, and the value of p̄e or r̄e may change
throughout the stages. We write p̄erss or r̄erss if we want to highlight
that we are referring to their values at stage s. We will show they will
eventually reach a limit and stop changing.

Requirement Pe only acts the first time it is active after being
initialized. If it is ever canceled, it will act again once it gets initialized
again. When it acts at stage s ` 1, its action consists of defining
gs`1 “ gs

ae (where e refers to the eth element of the ω-presentation
A). Well, that is if e is not in the range of gs already, in which case we
just define gs`1 “ gs. Once Pe acts, stage s ` 1 is over, and we move
on directly to the next stage, s ` 2. We define the output of Pe to be
p̄e “ gs`1, and this will stay this way unless Pe is later canceled. Since

VIII.4. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY COINCIDE135

Pe will only act at a stage when no other requirement acts, we will
have that r̄e´1, the output of Re´1, is included in gs. Thus, Pe indeed
respects higher-priority requirements.

Requirement Re works as follows. At each stage that is active,
Re may go through four phases:

‚ waiting,
‚ internal calculations,
‚ requiring attention, or
‚ acting.

We need to describe what Re does in each of these phases. We leave
the internal calculations phase for last.

Recall that p̄e is the initial segment of gs given by the output of
the requirement of immediately higher priority, namely Pe. Once Re

has been activated, it will stay in the waiting phase until we reach a
stage s at which Φe,s æ |p̄e| converges. At stages where Φe,s æ |p̄e| does
not converge, Re does not do anything, and we move on to consider
the next active requirement. During these waiting stages, and until the
requirement acts (if ever), its output is r̄e “ p̄e. When we reach a stage
s where Φe,s æ |p̄e| converges, we let

ā “ Φe,s æ |p̄e|

and move to the next phases of internal calculations to decide if we
require attention.

For a tuple p̄ Ď gs of elements and a tuple n̄ P NăN of numbers
between |p̄| and |gs| ´ 1, we let ψn̄,gspp̄, x̄q be the elementary formula
describing the commitments we have made about n̄ relative to p̄ in
EDpgsq:

ψn̄,gspp̄, x̄q ” Dȳ pȳ Ě p̄^ ȳæn̄ “ x̄^ EDpȳq “ σq, where σ “ EDApgsq P 2ăN. ˚˚

Notice that A |ù ψn̄,gspp̄, gs æ n̄q with witness ȳ “ gs.
Re requires attention if it finds an opportunity to diagonalize,

that is, if it finds a tuple n̄ P NăN of numbers greater than |p̄e|, a tuple
c̄ P AăN, and an elementary formula ϕ such that:

(1) Φe,s æ n̄ converges,
(2) the tuples p̄e

ac̄ and āaΦe,s æ n̄ disagree on ϕ, and
(3) A |ù ψn̄,gspp̄e, c̄q.

˚˚ “EDpȳq “ σ” is shorthand for what one would expect:
´

Ź

i:σpiq“1 ϕ
el

i pȳq
¯

^
´

Ź

i:σpiq“0 ϕ
el

i pȳq
¯

.

136 VIII. COMPUTABLE CATEGORICITY

After Re requires attention, it may be allowed to act. Let q̄ be the
witness to A |ù ψn̄,gspp̄e, c̄q. That is,

q̄ Ě p̄e ^ q̄ æ n̄ “ c̄ ^ EDApq̄q “ EDApgsq.

The action of Re is to define gs`1 “ q̄ and re-define r̄e, the outcome
of Re, to be q̄ too. If Re is never canceled again, and g ends up being
an isomorphism from B to A extending r̄e, Re would have succeeded in
diagonalizing against Φe, ensuring that Φe is not an isomorphism from
B to A. This is because, if Φe was an isomorphism, the automorphism
Φe ˝ g

´1 should map p̄e
ac̄ to āaΦe,s æ n̄, contradicting the fact that

they disagree on ϕ. After this action, we cancel all the weaker-priority
requirements making them inactive and finish stage s` 1. Re will not
act again, and r̄e will not change anymore, unless Re is later canceled
and re-initialized, in which case it will start all over again.

The initial calculations of Re are as follows. While Re waits for
a chance to require attention, it enumerates a set S of formulas hoping
it ends up being a Scott family for A over p̄e. Every time Φe,s converges
on some new tuple n̄ of numbers between |p̄e| and |gs|,

‚ define ϕn̄px̄q to be the formula ψn̄,gspp̄e, x̄q, and
‚ enumerate ϕn̄ into S.

By doing this, Re is betting ϕn̄px̄q generates the type of b̄ “ gæn̄ within
A over p̄e. To secure its bet, Re will verify at each later stage u that

A |ù @x̄pϕn̄px̄q Ñ ψn̄,gupp̄e, x̄qq.

It does this as follows: at each stage u ` 1 where a weaker-priority
requirement Ri of Pi for i ą e requires attention and wants to extend
gu to some tuple h̄, we first check that

(2) A |ù @x̄pϕn̄px̄q Ñ ψn̄,h̄pp̄e, x̄qq.

If it does, we let the weaker-priority requirement do its thing and define
gu`1 “ h̄. If it does not, Re does not allow the weaker-priority require-
ment to act, because, instead, Re is in a position to require atten-
tion itself: We know there is a tuple c̄1 satisfying ϕn̄pc̄1q ^ ψn̄,h̄pp̄e, c̄1q,

namely h̄ æ n̄,:: and we know there is another tuple c̄2 that satisfies
ϕn̄pc̄2q ^ ψn̄,h̄pp̄e, c̄2q because the implication (2) does not hold. Let c̄
be whichever of these two tuples disagrees with Φe,s æ n̄ on ψn̄,h̄pp̄e, x̄q.
Since, at the previous stage u, we verified that A |ù @x̄pϕn̄px̄q Ñ
ψn̄,gupp̄e, x̄qq, we have that A |ù ψn̄,gupp̄e, c̄q. Re has now found the wit-
nesses n̄, c̄, and ϕ ” ψn̄,h̄pp̄e, x̄q necessary to require attention at stage
u` 1.

::We know h̄ æ n̄ satisfies ϕn̄ because EDpgsq Ď EDpguq Ď EDph̄q.

VIII.4. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY COINCIDE137

Verifications: After a requirement is initialized, it will act at most
once before it is re-initialized again, if ever. One can then prove, by
induction on the list of requirements, that each requirement will even-
tually stop being canceled and will then eventually stop acting, and
hence the next requirement will stop being canceled and then eventu-
ally stop acting, and so on. Since the outputs of the requirements only
change when they act, we get that each p̄e and r̄e reaches a limit, and
that g is the union of all these limits. Since each requirement Pe is
eventually given the chance to act without being canceled again, we
get that g is onto. Notice that g is one-to-one because each gs is.

Let us now verify that each Re is satisfied. Let se be the last stage
in which Pe acted, so that Re is never canceled after se. Suppose Φe is
a computable isomorphism from B to A. It must then be the case that
Re never requires attention after se, as otherwise, Re would have acted
and diagonalized against Φe, as we argued before. We claim that this
implies that Re is successful in making S a Scott family. For each tuple
b̄ P AăN disjoint from p̄e, there will be some n̄ such that g æ n̄ “ b̄, and
there will be a first stage sb̄ ą se at which Φe,sb̄

æ n̄Ó. At that stage, we
enumerate ϕn̄px̄q p“ ψn̄,gsb̄ pp̄e, x̄qq into S. We need to show that ϕn̄ is

indeed a generating formula for the elementary type of b̄ over p̄e. First,
notice that even if gs æ n̄ ‰ b̄, we still have that A |ù ϕn̄pb̄q, because,
for every t ě s, since EDpgtq Ě EDpgsq, we have that A |ù ϕn̄pgt æ n̄q
as witnessed by ȳ “ gt æ |gs|. Since Re never requires attention again,
at every later stage u ą sb̄, we have that

A |ù @x̄pϕn̄px̄q Ñ ψn̄,gupp̄e, x̄qq.

Every elementary formula θpp̄e, x̄q that is true of b̄ in A will eventu-
ally be part of EDApguq for large enough u. Thus, θ is implied by
ψn̄,gupp̄e, x̄q, and hence implied by ϕn̄px̄q. l

If we want to go back to the notion of computable categoricity
(for computable copies), we can modify the proof above so long as we
assume the two-quantifier theory of A is computable.

Definition VIII.12. A @D-formula is one of the form

@x0@x1...@xnDy0Dy1...Dyk ψpx̄, ȳ, z̄q

where ψ is finitary and quantifier-free. An ω-presentation A is @D-
decidable if we can effectively decide all @D-formulas about the tuples
of A, i.e., if there exists a computable function that, given an index for
a @D-formula ϕpz̄q and a tuple ā P AăN, returns 1 or 0 depending on
whether A |ù ϕpāq.

138 VIII. COMPUTABLE CATEGORICITY

Theorem VIII.13 (Goncharov [Gon75a]). If A is @D-decidable,
then A is computably categorical if and only if it is effectively D-atomic
over a finite set of parameters.

Sketch of the proof. The proof is very similar to the proof
above, but it requires being extra careful with the complexity of cer-
tain formulas at various steps of the construction. For this proof,
we only need to preserve our usual atomic diagrams Dpgsq instead
of the elementary diagrams EDpgsq. This will get us a computable
ω-presentation B. The formulas ψn̄,gs are now defined using Dpgsq in-
stead of EDpgsq. Notice that ψn̄,gs is now an D-formula. When Re

is deciding if it requires attention, it now wants the tuples p̄e
ac̄ and

āaΦe,s æ n̄ to disagree on some @D-formula, as that is what we can check
computably. The key point where we used the decidability of A was
during the initial-calculations phase to check whether

A |ù @x̄pϕn̄px̄q Ñ ψn̄,h̄pp̄, x̄qq.

This formula is now @D, which we can decide by the assumption on
A. However, we need to check a bit more. Let ψ@n̄,gspp̄e, x̄q be the
conjunction of all the @-formulas with indices less than |gs| that are
true of gspn̄q over p̄e. We also check that

A |ù @x̄pϕn̄px̄q Ñ ψ@n̄,h̄pp̄, x̄qq,

as this also gives us an opportunity to diagonalize. When we are veri-
fying that Re works, we only need to show that ϕn̄ supports the @-type
of g æ n̄ over p̄e. All these formulas are implied by ψ@n̄,gupp̄e, x̄q for large
enough u, so the proof is the same. l

Kudinov [Kud96b] showed this result is sharp by building a @-
decidable computably categorical structure that is not effectively D-
atomic. It is still true that @-decidable computably categorical struc-
tures are effectively Σc

2-atomic, as proved by Downey, Kach, Lempp,
and Turetksy [DKLT13, Theorem 1.13].

VIII.5. When relative and plain computable categoricity
diverge

This section is dedicated to proving the following theorem.

Theorem VIII.14 (Goncharov [Gon77, Theorem 4]). There is a
structure which is computably categorical, but not relatively so.

This is an important theorem, and its proof illustrates a couple
of techniques that are useful throughout the field. One is the use of
families of sets to build structures with particular properties — a very

VIII.5. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY DIVERGE139

common technique in the Russian school. The other one is the use of
a finite-injury priority argument that is a bit more elaborate than the
two we have seen so far.

To prove Theorem VIII.14, we will build a c.e. family of sets F Ď

PpNq, and then take the graph

G1
F “

ğ

XPF
GX ,

where GX is the flower graph that consists of loops of size n ` 3, one
for each n P X, all with a common node. This is almost the same as
the graph G8F we considered in Observation V.25 and Lemma VI.11,
with the difference that, in G1

F , each X P F is associated to exactly one
flower graph GX instead of infinitely many as in G8F . Let us see how
the relevant properties about structures translate to families.

Definition VIII.15. A computable Friedberg enumeration of a fam-
ily F is a c.e. set W whose columns exactly are the sets in F without
repetition, i.e., not only F “ tW ris : i P Nu, but also W ris ‰ W rjs for
all i ‰ j.

Recall from Definition V.24 that a computable enumeration for a
family F is a c.e. set W with F “ tW ris : i P Nu, allowing for repeating
columns. In a Friedberg enumeration, every set in F corresponds to
exactly one column. In Observation V.25, we showed that F has a
computable enumeration if and only if G8F has a computable copy. As
in Observation V.25, one can easily produce a computable Friedberg
enumeration of F out of a computable ω-presentation of G1

F , and vice
versa.

Definition VIII.16. A family F Ď PpNq is discrete if there is a
family S of finite sets such that, for each A P F , there is an F P S with
F Ď A, and for each F P S, there is a unique A P F with F Ď A. We
call such a set S a separating family for F . We say that F is effectively
discrete if F has a c.e. separating family.

Lemma VIII.17. Let F Ď PpNq be a family with a c.e. enumeration.
Then G1

F is effectively D-atomic if and only if F is effectively discrete.

Proof. Suppose F has a separating set S. We need to find D-
formulas defining each node of G1

F . Notice that each center of a flower
graphs GX is alone in its own automorphism orbit because each GX
appears only once in G1

F . Also notice that if we have an D-formula
defining the center of GX , we can find D-definitions for all the nodes

140 VIII. COMPUTABLE CATEGORICITY

in GX .;; Thus, we will concentrate on enumerating D-definitions for
the centers of the flower graphs. For each X P F , there is a finite set
A P S such that X is the only set in F that contains A. Let ϕXpxq
be the formula that says that x is part of a loop of size n` 3 for each
n P A. The center of GX would be the only element of G1

F satisfying
that formula. Notice that if S is c.e., this produces a c.e. Scott family.

Suppose now that G1
F is D-atomic. For each X, let ϕX be the D-

formula in the Scott family satisfied by the center of GX . Let AX
be a finite subset of X such that the center of a flower graph GA also
satisfies ϕX . Such an AX must exist because if an D-formula is true of a
relational structure, it is also true of a finite substructure (Observation
I.8). We claim that tAX : X P Fu is a separating family for F . We
already argued that such an AX exists for each X. If AX Ď Y for
Y P F , then, since D-formulas are preserved under embeddings and
GAX embeds into GY , we would have that ϕX holds of the center of
GY too. Since ϕX defines the orbit of the center of GX , we must have
X “ Y .

Notice that if we have a c.e. enumeration of F , for each column
X of the enumeration, we can effectively find ϕX within the given c.e.
Scott family, and we then effectively find some AX . l

Recall that a structure is relatively computably categorical if and
only if it is effectively D-atomic over some parameters. So, we need to
add the parameters to the previous lemma. We only need one direction.

Corollary VIII.18. Let F Ď PpNq be a discrete family of com-
putable sets with a c.e. enumeration. Then if G1

F is effectively D-atomic
over parameters, F is effectively discrete.

Proof. Let p̄ be the parameters over which G1
F is effectively D-

atomic. We can assume the elements of p̄ are the centers of flowers,
as from each p P G1

F we can effectively find the center of the flower it
belongs to and, vice-versa, we can effectively find p from the center of
its flower. Since all flowers are completely independent, if we remove
the flowers that contain p̄ from G1

F , we get a bouquet graph G1
rF that is

effectively D-atomic over no parameters. By the previous lemma, the

corresponding family rF is effectively discrete, and has a c.e. separating

family rS. So, for each F P rS is included in a unique X P rF , but it

might also be included in some Y P F r rF . Since F was discrete to
begin with with, there is an extension of F which is still included in X,

but not included in any of the finitely many sets in Y P Fr rF . We can

;;We need to say that the node belongs to a loop of a certain size and that the
loop also contains the center of GX .

VIII.5. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY DIVERGE141

find such extension as we can find X using the c.e. enumeration of F
and then find the extension using that the sets Y are computable. Let
qS consist of the set of all the extensions of all the F ’s in rS. Also using
that F is discrete, there is a finite set of finite sets S0, such each F P S0

is included in a unique set in F and that set is one of the finitely many

ones in F r rF . We then get that qS Y S0 is a c.e. separating family for
F . l

Definition VIII.19. A computable equivalence between two com-
putable enumerations V and W of a family F is a computable per-
mutation f of N such that V rns “ W rfpnqs for every n. When such a
computable equivalence exists, we say that V and W are computably
equivalent.

Lemma VIII.20. G1
F is computably categorical if and only if F has

only one Friedberg enumeration up to computable equivalence.

Proof. We already know that computable ω-presentations of G1
F

are in correspondence with c.e. Friedberg enumerations of F . It is not
hard to see that computable isomorphisms between ω-presentations of
G1
F are then in correspondence with computable equivalences between

c.e. Friedberg enumerations of F . l

Theorem VIII.14 now follows from the following lemma which con-
tains the bulk of the proof.

Lemma VIII.21 (Badaev [Bad77]). There is a family F Ď PpNq
that is not effectively discrete and has only one computable Friedberg
enumeration up to computable equivalence.

Proof. Let

E “ t0, 2, 4, 6, 8, ...u and Ek “ t0, 2, 4, ..., 2ku Y t2k ` 1u.

For each n P N, the family F will contain one set of the form E ‘ tnu,
and at most one set of the form Ek ‘ tnu. There will be no other sets
in F . We will build a computable Friedberg enumeration U of F .

To make sure F is not effectively discrete, we have the following
requirements:

Positive Requirement Pe: We is not a separating
family for F .

To make sure F has a unique Friedberg enumeration, we have the
following requirements:

Negative Requirement Ne: If We is an Friedberg
enumeration of F , then We is computably equivalent
to U .

142 VIII. COMPUTABLE CATEGORICITY

The requirements are listed in decreasing order of priority as usual:
N0, P0, N1, P1, All the sets E‘tnu, for n P N, are enumerated into U
from the beginning, say on the even columns of U . The sets Ek‘tnu will
be enumerated later on by the positive requirements Pe. Each Pe will
act at most once, enumerating at most one such set. At each stage, each
negative requirement Ni will impose a restraint on the Pe requirements
of weaker priority by not allowing them to enumerate any set of the
form Ek‘tnu with n ăMi,s ď k, where Mi,s is a number defined by Ni

at stage s of the construction. Each stage s of the construction starts
with all the requirements Ni, for i ă s, independently doing their own
calculations and defining Mi,s. Then, all the requirements Pe for e ă s
will independently do their thing as we describe below.

What makes these requirements “positive” and “negative,” is that
Pe enumerates elements into U , while Ne prevents elements from being
enumerated.

The requirement Pe works as follows. Let tCe : e P Nu be a
computable partition of N; for instance, let Ce “ txe,my : m P Nu.
The set Ce is reserved for requirement Pe. Suppose Pe has not been
declared done yet. If we see a finite subset G with xGyP We such that,
for some n P Ce and some k P N, we have

‚ G Ď t0, 2, ..., 2ku ‘ tnu, and
‚ for each i ď e, either Mi,s ď n or k ăMi,s,

then we add Ek ‘ tnu to F (i.e., we enumerate it as a column in U),
getting G Ď E ‘ tnu and G Ď Ek ‘ tnu which are both in F . We
declare Pe done, and we re-initialize all lower-priority Ni requirements.
Recall that Mi,s will be defined by Ni below. All we need to know
for now about the sequence Mi,s is that it is non-decreasing in s, and
therefore that it converges to a limit — either to a number or to 8.
If We were indeed a separating family for F , then for every n, since
E ‘ tnu P F , We would contain some set of the form G “ F ‘ tnu
with F Ď t0, 2, ..., 2ku for some k. Consider some n P Ce which is
above limsMi,s for all the i ď e for which the limit is finite. The
corresponding k would eventually be below all the Mi,s for all the i ď e
for which the limit is infinite. Pe would then be allowed to act and
enumerate Ek ‘ tnu into F . This contradicts that We is a separating
family because G would be included in both E ‘ tnu and Ek ‘ tnu —
Pe succeeds.

The requirement Ne works as follows. It will be initialized at
stage s ` 1 “ e and then will be re-initialized every time a higher-
priority Pi requirement acts. Since each Pi acts at most once in the
whole construction, there will be a point after which Ne will never be

VIII.5. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY DIVERGE143

re-initialized again. Every time Ne is initialized, it starts building a
computable matching ge between the columns of We and those of U by
finite approximations ge,0 Ď ge,1 Ď ge,2 Ď ¨ ¨ ¨ Ñ ge, with ge,s P NăN.
If it turns out that We is a Friedberg enumeration of F and that Ne

is never re-initialized again, we have to make sure ge is a computable
equivalence between We and U . The rough idea is as follows: At each
stage s, we will look at the columns of We,s and U rss, and hope there
is an obvious way to match them. Whenever we see a set of the form
Ek ‘ tnu in both We,s and in U rss, we can safely match these columns
through ge,s. The problem arises when we need to match columns of
the form t0, 2, ..., 2mu‘ tnu: These apparently matching columns may
later grow in different ways and become Ek ‘ tnu for some k ě m in
We and become E ‘ tnu in U . To deal with this, Ne will impose a
restraint not allowing sets of the form Ek ‘ tnu for any k ě m to be
enumerated into U by lower-priority requirements.

Let us start by defining an enumeration tVe,s : s P Nu of F that
is tidier than We. We do this by delaying the enumeration of certain
elements, but in a way that if We is actually an enumeration of F , then
all elements of We eventually enter some Ve,s, so that We “

Ť

sPN Ve,s.
We want Ve,s to satisfy the following properties for every s P N:

‚ Ve,s Ď We,s.
‚ Every non-empty column of Ve,s is of the form F ‘ tnu for

some F and n.
‚ For every n, there are at most two such columns, one included

in E‘tnu, and if there is a second one, it must be of the form
Ek ‘ tnu.

‚ If Ve,s contains a column of the form Ek ‘ tnu, then so does
U rss.

We can easily get such an enumeration tVe,s : s P Nu by slowing down
the enumeration of We,s and enumerating the elements of a column of
We,s into Ve,s only once the properties above are satisfied.

Let Me,s be the largest m such that, for every n ă m, there is
a column in Ve,s containing t0, 2, 4, ..., 2mu ‘ tnu. (See Figure VIII.1
below.) Notice that Me,s is non-decreasing with s, and that if We is
indeed an enumeration of F , then Me,s converges to 8. Ne imposes
the following restraint on the lower-priority requirements:

No set of the form Ek ‘ tnu with n ă Me,s ď k can
be enumerated into F at stage s.

At each stage s, we define a finite partial map ge,s matching columns

in Ve,s with columns in U rss. We let ge,spiq “ j if and only if V
ris
e,s and

144 VIII. COMPUTABLE CATEGORICITY

n “ 0

E E4

n “ 1

E

E2

n “ 2

E

n “ 3

E

E3

n “ 4

E

n “ 5

E

E1

Me,s

Me,s

Figure VIII.1. These are the columns of Ve,s. In this
example, the restrain forbids us to enumerate a column
of the form Ek ‘ t2u for k ě Me,s at stage s. That is,
we cannot cross the horizontal Me,s-line. So, for instance,
the column that currently looks like E‘t2u is not allowed
to become of the form Ek ‘ t2u. The column E4 ‘ t0u
crossing the line in the picture was enumerated before
the current stage.

U rjsrss are of the forms A ‘ tnu and B ‘ tnu for the same n and one
the following holds:

(1) A and B are equal and of the form Ek for some k.
(2) n ă Me,s, A Ď E, B “ E, and there are no columns in U rss

of the form Ek ‘ tnu with A Ď Ek (and hence none in Ve,s
either).

We claim that, unless Ne is re-initialized, ge,s Ď ge,s`1 for all s: If ge,s
matches two columns of the form Ek ‘ tnu, those columns will still be
matched in ge,s`1. Suppose now ge,s matches two columns of the form
A‘tnu and B‘tnu with A,B Ď E. We then must have that n ăMe,s,
which implies that t0, ..., 2Me,su Ď A, and there is no column in U rss
of the form Ek ‘ tnu with A Ď Ek. Suppose, toward a contradiction,
ge,s`1 does not match those two columns. There could be only two
possible reasons: (1) that the column in Ve,s`1 that contains A is not

VIII.5. WHEN RELATIVE AND PLAIN COMPUTABLE CATEGORICITY DIVERGE145

a subset of E anymore, and (2) that there is a column in U rs ` 1s of
the form Ek ‘ tnu with A Ď Ek. Since columns of this form can only
enter Ve after entering U , in either case we have a new column in Us`1

of the form Ek ‘ tnu with A Ď Ek. Because of the restraint imposed
by Ne, only columns of the form Ek ‘ tnu with k ă Me,s are allowed
to be enumerated into Ve,s`1. But then we could not have A Ď Ek as
A Ě t0, ..., 2Me,su Ę Ek. This proves our claim, and we get that, if Ne

is never re-initialized again, ge “
Ť

s ge,s is a computable equivalence
between We and U . l

Notice that the family F is discrete, even if it is not effectively
discrete. We thus get that G1

F is D-atomic and hence computably cat-
egorical on a cone. After Goncharov’s result, there have been vari-
ous other constructions of computably categorical structures which are
not relatively so. For instance, Khoussainov, Semukhin, and Stephan
[KSS07] built one without using a priority argument using effective
randomness instead. Their structure is not D-atomic over any finite
set of parameters, so it is not computably categorical on a cone. An-
other example is due to Khoussainov and Shore [KS98, Theorem 4.2].
They built a computably categorical structure A such that, for each
element a P A, the structure pA, aq is not computably categorical. The
Khoussainov–Shore structure is not relatively computably categorical,
as otherwise, it would remain relatively computably categorical if one
added parameters.

Exercise VIII.22. Let G1
F be a bouquet graph as in Section VIII.5.

Show that if the degree spectrum of G1
F has measure 1, then G1

F has a
02-computable copy. Hint in footnote.:

:Use Sacks’s theorem that the measure of every non-trivial cone is 0.

CHAPTER IX

The jump of a structure

In Definition II.30, we defined Kleene’s complete r.i.c.e. relation ~KA

on a structure A by putting together all Σc
1-definable relations:

~KA
“ txi, b̄y : A |ù ϕ

Σc
1

i,|b̄|
pb̄qu Ď Nˆ AăN,

where ϕ
Σc

1
i,j px̄q is the ith Σc

1 τ -formula with j free variables. We then

used this construction to define the jump of a relation Q Ď NˆAăN to

be the relation Q1 “ ~KpA,Qq (Definition II.34), and proved that this is
an actual jump, that is, that Q ărT Q

1 for all Q Ď NˆAăN (Corollary
II.37). In this chapter, we consider this same construction, but view it
as an operation that maps structures to structures.

Definition IX.1. Given a τ -structure A, we define its jump to be
the new structure obtained by adding the complete r.i.c.e. relation to
it. That is, we let

A1 “ pA, ~KA
q.

Thus, A1 has the same domain as A, but a larger vocabulary. It is a
τ 1-structure, where τ 1 consists of τ together with infinitely many new

symbols naming the relations Ki,j “ tb̄ P A
j : A |ù ϕ

Σc
1
i,j pb̄qu.

Notice that this definition is independent of the presentation of A.
The isomorphism type of A1 depends only on the isomorphism type of
A. We should mention that the isomorphism type of A1 also depends
— in an totally unessential way — on the Gödel numbering of the Σc

1

τ -formulas, the same way the Turing jump of a set depends on the
Gödel numbering of the partial computable functions. Also notice that
the extended vocabulary τ 1 is still a computable relational vocabulary.

Historical Remark IX.2. The jump of structures has been intro-
duced on various independent occasions over the last few years. Other def-
initions can be found in [Mor04, Bal06, Sos07, SS09, Puz09, Mon09,
Stu09]. The history of the different definitions is explained in more detail
in [Mon12]. The definition we give here comes from [Mon12, Definition
5.1].

147

148 IX. THE JUMP OF A STRUCTURE

Remark IX.3. Let us remark that the jump preserves effective bi-
interpretability. That is, if A and B are effectively bi-interpretable,
then so are A1 and B1. The interpretation maps are the same. All

one has to observe is that the relation ~KAB
within the copy AB of A

interpreted in B is r.i.c.e. in B and therefore r.i. computable in B1.

IX.1. The jump-inversion theorems

Friedberg’s jump-inversion theorem (Theorem IV.6) says that every
Turing degree above 01 is the jump of some degree. There are a couple
of different ways in which one could generalize Friedberg theorem to the
jump of structures. We call them the first and second jump-inversion
theorems.

IX.1.1. The first jump-inversion theorem. This theorem is a
generalization of the Friedberg jump-inversion theorem to the semi-
lattice of structures ordered by effective interpretability.

Theorem IX.4 (Soskova, Stukachev). For every structure A which
computably codes 01, there is a structure C whose jump is effectively bi-
interpretable with A.

Proof. We proved in Theorem VI.27 that every structure is ef-
fectively bi-interpretable with a graph. Therefore, we may assume A
is a graph pA;Eq with domain A and edge relation E. The key idea
behind this proof is the following: If we are given a linear ordering
isomorphic to either ω or ω˚, deciding which one is the case is a ∆0

2-
complete question. We will thus define C by removing the edge relation
E and instead attaching to each pair of elements of A one of these two
linear orderings, depending on whether there is an edge between the
two elements or not.

We define C as pC;A,Rq, where A is a unary relation and R a 4-
ary relation. The domain C of C consists of the disjoint union of the
domain A of A and another set B, and we use the unary relation A to
identify the elements of A. We define the 4-ary relation

R Ď Aˆ AˆB ˆB

so that: If we let Ba,b “ tc P B : Rpa, b, c, cqu, and Ra,b “ txc, dy P B
2 :

Rpa, b, c, dqu, then pBa,b;Ra,bq is a linear ordering isomorphic to either
ω or ω˚, and it is isomorphic to ω if and only if xa, by P E. We also
assume the sets Ba,b for a, b P A partition B.

IX.1. THE JUMP-INVERSION THEOREMS 149

C can be easily effectively interpreted in A as follows. Let B “

Nˆ A2 and let C “ AYB. Then define R as follows:

R “ txa, b, xn, a, by, xm, a, byy P A2
ˆB2 : for xa, by P E & n ď mu

Ytxa, b, xn, a, by, xm, a, byy P A2
ˆB2 : for xa, by P A2rE & n ě mu.

To show that this is actually an effective interpretation of C 1, and not

just of C, we need to show that ~KC (viewed as a relation in NˆAăN) is
r.i. computable in A. To see this, fix an ω-presentation of A. The con-
struction above then gives us an ω-presentation of C. Use Friedberg’s
jump-inversion theorem to get an oracle X P 2N such that X 1 ”T DpAq
(using that A computably codes 01). We will now construct a second

copy, rC, of C that is computable in X. For each xa, by P A2, X 1 knows
whether or not xa, by P E, and hence computably in X, we can uni-

formly build a linear ordering rBa,b such that

rBa,b –

#

pN;ďq if xa, by P E,

pN;ěq if xa, by R E.

To do this, if fpa, b, sq is an X-computable function such that

‚ limsPN fpa, b, sq “ 1 if xa, by P E and
‚ limsPN fpa, b, sq “ 0 if xa, by R E,

then we can define rBa,b “ pN;ď
rBa,bq by

s ď
rBa,b r ðñ

`

s ďN r & fpa, b, rq “ 1
˘

_
`

r ďN s & fpa, b, sq “ 0
˘

.

In other words, for each s P N we have that, if fpa, b, sq “ 1, s is
ě

rBa,b-above all r ăN s, and, if fpa, b, sq “ 0, s is ď
rBa,b-below all r ăN s.

We let the reader verify this ordering is as needed. We then define rC
by putting together A and disjoint copies of all the rBa,b for xa, by P A2

and defining rRpa, b, n,mq ðñ n ď
rBa,b m. An important point is that

DpAq can compute an isomorphism between rC and C. This is because

X 1 can compute isomorphisms between rBa,b and Ba,b for all xa, by P A2.

Since DprCq ďT X, we have that ~K
rC is computable in X 1, and hence

in DpAq. Going through the isomorphism between rC and C, we get

that ~KC is also computable in DpAq. Since this worked for every ω-

presentation of A, we have that ~KC is r.i. computable in A. This proves
that we have an effective interpretation of C 1 in A.

The effective interpretation of A within C 1 is more direct. The
domain of the interpretation is, of course, A itself, as identified by
the relation A within C. Notice that E is now r.i. ∆0

2 in C. This is

150 IX. THE JUMP OF A STRUCTURE

because, to decide if xa, by P A2, we need to decide whether Ba,b – ω or
Ba,b – ω˚. For this, we need to decide whether there exists an element
in Ba,b without predecessors, or one without successors — both are Σc

2

questions.
The last step is to check that these two effective interpretations

form an effective bi-interpretation; i.e., that the composition of the
isomorphisms are r.i. computable in the respective structures. First,
notice that the interpretation of A inside C inside A is the identity, and
hence obviously r.i. computable in A. Second, for the interpretation
of C inside A inside C, the A-part stays the same. The copies of Ba,b
are not the same, but since they are isomorphic to either ω or ω˚, the
isomorphism between them can be computed within a jump of C. l

Historical Remark IX.5. For the case of Muchnik equivalence, this
theorem was proved independently on two occasions. One is due to Gon-
charov, Harizanov, Knight, McCoy, R. Miller, and Solomon by essentially
the same proof we gave above [GHK`05, Lemma 5.5 for α “ 2], although
they were not considering jumps of structures — their objective was to prove
various result like Theorem IX.8 below and their transfinite versions. The
other is due to Alexandra Soskova [Sos07, SS09]. Her construction is quite
different and uses Marker extensions. Stukachev [Stu10, Stu] proved that
Soskova’s constructions actually gives effective interpretations instead of just
Muchnik reductions.

IX.1.2. An application of the first jump-inversion theorem.

Definition IX.6. A computable structure A is ∆0
2-categorical if

there is a 01-computable isomorphism between it and any computable
copy. It is relatively ∆0

2-categorical if every copy B is isomorphic to A
via a DpBq1-computable isomorphism.

Notice that being ∆0
2-categorical is not the same as being 01-computably

categorical (i.e., computably categorical relative to 01). The latter
means that every 01-computable copy B is 01-computably isomorphic
to A, while the former only considers computable copies B.

Exercise IX.7. Show that pω;ďq is relatively ∆0
2-categorical.

Theorem IX.8 (Goncharov, Harizanov, Knight, McCoy, R. Miller,
and Solomon [GHK`05]). There is a structure that is ∆0

2-categorical
but not relatively so.

Proof. Relativizing Theorem VIII.14 to 01, let A be a 01-computable
structure that is 01-computably categorical, but not 01-relatively com-
putably categorical. Let C be the structure built from A in the proof
of the first jump-inversion theorem. From the proof of the theorem we

IX.1. THE JUMP-INVERSION THEOREMS 151

get that if A has an X 1-computable ω-presentation for some X P 2N,
then C has an X-computable presentation that is X 1-computably iso-
morphic to C. Thus, we may assume that C is computable and A is
obtained from the effective bi-interpretation with C 1. We claim that C
is ∆0

2-categorical but not relatively so.

To prove that C is ∆0
2-categorical, let pC be a computable copy of C.

Then pC 1 is associated via the effectively bi-interpretation with a copy
pA of A. Notice the ω-presentation pA is computable in 01. Since A is

01-computably categorical, 01 can compute an isomorphism between A
and pA. Using the effective bi-interpretations, 01 can then compute an

isomorphism from C to pC.
Let us now prove that C is not relatively ∆0

2-categorical. Since

A is not 01-relatively computably categorical, there is a copy pA of A
computable in some oracle Y ěT 01 that is not Y -computably iso-

morphic to A. Let pC be the copy of C associated via the effectively

bi-interpretation with pA. Use the Friedberg’s jump-inversion theorem
to get X P 2ăN with X 1 ”T Y . The oracle X might not compute the

ω-presentation pC, but as in the proof of the theorem, it computes a

copy rC of pC that is X 1-computably isomorphic to pC. We claim that

there is no X 1-computable isomorphism between C and rC. That would
prove that C is not relatively ∆0

2-categorical. As for the claim, if there

was an X 1-computable isomorphism between C and rC, there would be

one between C and pC, and using the effective bi-interpretations, we

would get an X 1-computable isomorphism between A and pA, which we
assumed does not exist. l

One can of course iterate this proof and produce, for each n P N, a
computable structure that is ∆0

n-categorical but not relatively so.

IX.1.3. The second jump-inversion theorem. This jump-inversion
theorem is not a generalization of the usual jump-inversion theorem to
a more general class of degrees, but a generalization in the sense that,
given X P 2N, it yields Y P 2N with Y 1 ”T X and some extra properties.

Theorem IX.9 (Soskov). If X P 2N computes a copy of B1, then
there is a Y P 2N satisfying Y 1 ”T X that computes a copy C of B.

Proof. By Lemma IV.14, there is a 1-generic enumeration g of B
computable in ~KB, and hence in X. Let C “ g´1pBq and Z “ DpCq.
Since ~KC “ g´1p~KBq, we have that

~KC
ďT

~KB
ďT X.

152 IX. THE JUMP OF A STRUCTURE

Since C is 1-generic,
~KC
”T DpCq1 “ Z 1,

as proved in Lemma IV.23. Thus, Z 1 ďT X. By the relativized Fried-
berg’s theorem, there is a Y P 2N such that Y ěT Z and Y 1 ”T X.
This Y computes C, a copy of B. l

For future reference, let us remark that X can compute the isomor-
phism g between C and B.

As a corollary, we get that the degree spectrum of the jump of a
structure is what it should be: the set of jumps of the degrees in the
spectrum of the original structure.

Corollary IX.10. For every structure B,

DgSppB1q “ tX P 2N : X ěT Y
1 for some Y P DgSppBqu.

Proof. For the right-to-left inclusion, it is clear that if X ěT Y
1

for some Y P DgSppBq, then X computes a copy of B1. For the left-to-
right inclusion, if X computes a copy of B1, then by the theorem, there
is a Y P DgSppBq such that X ěT Y

1. l

Historical Remark IX.11. Theorem IX.9 was first introduced by
Soskov at a talk at the LC’02 in Munster; a full proof then appeared in
[SS09]. It was also independently proved in [Mon09].

IX.1.4. Application of the the second jump-inversion the-
orem. First, let us note how second jump-inversion theorem can be
applied to structures for which we understand their jump. For in-
stance, we know from Lemma II.43 and Definition II.44, that the jump
of a linear ordering L “ pL;ďLq is effectively bi-interpretable with
pL;ďL, Ādj, 01q. It follows from the second jump-inversion theorem that
if pL, Ādjq has a 01-computable copy, then L must have a low copy (cf.
Lemma VII.26).

Anther application is the generalization of Theorem II.16 from r.i.c.e.
relations to r.i. Σ0

n relations for n P N.

Definition IX.12. A relation R Ď N ˆ AăN is relatively intrinsi-
cally Σ0

2 if RB is c.e. in DpBq1 for every copy pB, RBq of pA, Rq.

Theorem IX.13 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm
[Chi90]). Let A be a structure, and R Ď NˆAăN a relation on it. The
following are equivalent:

(1) R is relatively intrinsically Σ0
2.

(2) R is Σc
2 definable in A with parameters.

IX.1. THE JUMP-INVERSION THEOREMS 153

Proof. The upward direction follows from the observation that a
Σc

2 relation R Ď NˆAăN is always Σ0
2 relative to the diagram of DpAq.

We concentrate on the downward direction.
First, we claim that if R is relatively intrinsically Σ0

2 in A, it is
r.i.c.e. in A1. For this, let B1 be a copy of A1 computable in some
oracle X; We need to show that RB is c.e. in X. This would follow if
we knew that DpBq1 ďT X, but that might not be the case. Use the
second jump-inversion theorem with X “ DpB1q to get an oracle Y with
Y 1 ”T X and a Y -computable copy C of B. Recall from the remark
after the proof of the theorem that X can compute an isomorphism
between C and B. Since R is relatively intrinsically Σ0

2, RC is c.e. in
DpCq1 ”T Y 1 ”T X. Pushing RC through the isomorphisms, we get
that RB is c.e. in X as needed for our claim that R is r.i.c.e. in A1.

Now, by Theorem II.16, R is Σc
1-definable in A1 with parameters.

It follows that R is Σc
2-definable in A with parameters. l

One can, of course, iterate the proof of this theorem and prove that
r.i. Σ0

n relations are Σc
n definable with parameters.

A third application is the generalization of Theorem VIII.4 from
relative computable categoricity to relative ∆0

n categoricity for n P N.
We prove the case n “ 2 for simplicity. For the definitions of relative
∆0

2 categoricity and Scott families see definitions IX.6 and III.2.

Theorem IX.14 (Ash, Knight, Manasse, Slaman [AKMS89, The-
orem 4]; Chisholm [Chi90, Theorem V.10]). Let A be a computable
structure. The following are equivalent:

(1) A is relatively ∆0
2-categorical.

(2) pA, āq has a c.e. Scott family of Σc
2 formulas using a finite

tuple of parameters.

Proof. As in the ∆0
1 case, the implication from (2) to (1) follows

from Observation III.14, where, given B – A, one uses the Scott family
to build a set IA,B Ď AăN ˆBăN with the back-and-forth property. In
this case, one needs DpBq1 to enumerate IA,B and then compute an
isomorphism between A and B.

The other direction is the interesting one. Assume (1). We claim
that A1 is relatively computably categorical. For this, let B1 be a copy
of A1 computable from an oracle X; We need to show there is an X-
computable isomorphism between them. By the second jump inversion
Theorem IX.9, there is an oracle Y with Y 1 ”T X which computes a
copy C of B. Recall from the remark after the proof of the theorem
that X can compute an isomorphism between B and C. Since A is rel-
atively ∆0

2-categorical, there is a Y 1-computable isomorphism between

154 IX. THE JUMP OF A STRUCTURE

C and A. Composing these isomorphisms, we get an X-computable
isomorphism between B and A, and in particular between B1 and A1.
This proves the claim that A1 is relatively computably categorical.

Now, by Theorem VIII.4, A1 has a c.e. Scott family of D-formulas
over a finite tuple of parameters. It follows that A has a c.e. Scott
family of Σc

2 formula with parameters. l

IX.2. The jump jumps — or does it?

If we are going to call this operation a jump, we should ask whether
it actually jumps, or whether there is a structure that is equivalent to
its own jump. The answer is not straightforward and depends on the
notion of equivalence we use. For the strongest of the equivalences,
namely effectively bi-interpretability, the jump does jump.

Lemma IX.15. No structure is Medvedev equivalent to its own jump.
In particular, no structure is effectively bi-interpretable with its own
jump.

Proof. We know from Lemma VI.10 that if A1 were Medvedev
reducible to A, we would have D-ThpA1q ďe D-ThpAq. To show that this
is not the case, we claim that D-ThpA1q can enumerate the enumeration
jump of D-ThpAq. The enumeration jump of a set X is defined to be

JpXq ‘ JpXqc, where JpXq “ te : e P ΘX
e u

and tΘe : e P Nu is an effective list of the enumeration operators as in
page xvii. A standard diagonalization argument shows that X cannot
enumerate the set JpXqc.˚

Let us now prove the claim that JpD-ThpAqqc ďe D-ThpA1q. For
e P N, e P JpD-ThpAqqc if and only if there is no finite set D Ă N with
xxDy, ey P Θe and D Ď D-ThpAq. That is,

e P JpD-ThpAqqc ðñ A |ù
ľľ

DĎN
xD,eyPΘe

ľ

iPD

ϕDi ,

where ϕDi is the ith existential τ -sentence. The right-hand side is a Πc
1

sentence about A, and hence decided in the quantifier-free theory of
A1. We even get that JpD-ThpAqqc ďm D-ThpA1q. l

For the weaker notion of Muchnik equivalence, the answer gets more
interesting.

˚If JpXqc were enumeration reducible to X, we would have JpXqc “ ΘX
e for

some e. We would then have that e P JpXqc ðñ e P ΘX
e ðñ e P JpXq.

IX.2. THE JUMP JUMPS — OR DOES IT? 155

Theorem IX.16 (Puzarenko [Puz11], Montalbán [Mon13c]). There
is a structure that is Muchnik equivalent to its own jump.

The following proof, which was motivated by conversations with
Schweber and Turetsky, is new and different from the original proofs
of Puzarenko [Puz11] and Montalbán [Mon13c]. The three proofs
build similar looking structures. Puzarenko [Puz11]’s and Montalbán
[Mon13c]’s build an ill-founded ω-model A of ZF´ ` “V “ L” where,
for some α P ONA, pLαq

A – A. The structure we construct here is
simpler, but only in appearance, as it is bi-interpretable with theirs.
It is how such structures are built that makes the proofs so different.
Montalbán [Mon13c] uses the existence of 07, and his proof is a para-
graph long once the definition of 07 is understood. Puzarenko’s proof
[Puz11] does not need assumptions beyond ZFC, but it uses admis-
sibility theory and is much more complicated. The proof we present
here also works within ZFC, but is simpler. It uses a lemma we will
not prove until [MonP2]. This lemma is a special case of results of
Morley [Mor65], Lopez-Escobar [LE66], and Barwise [Bar69] on the
Hanf numbers of infinitary logic. It states that if a Πc

2 sentence has
a model of arbitrary large cardinality, then it has a countable model
with a non-trivial automorphism. The following proof uses ordinals
and transfinite recursion which we will review in depth in [MonP2].

Proof of Theorem IX.16. Consider the relational vocabulary
τ “ tďu Y tRi,j : i, j P Nu, where ď is of course binary and Ri,j is

j`1-ary. The symbols Ri,j will be used to encode Kleene’s predicate ~K
on the initial segments of the structures: We say that a τ -structure L
is a linear jump hierarchy if pL;ďLq is a linear ordering and, for every
i, j P N, b̄ P Lj, and a P L, with b` ăL a for all ` ă j,

L |ù Ri,jpb̄, aq ðñ L æ a |ù ϕ
Σc

1
i,j pb̄q,

where ϕ
Σc

1
i,j is the i-th Σc

1 τ -formula with j free variables, and L æ a is
the restriction of L to the domain tb P L : b ăL au. The key property
of a linear jump hierarchy is that, for every a P L, the jump of L æ a is
effectively interpretable in L using a as a parameter::

~KLæa
“ txi, b̄y P Nˆ pL æ aqăN : L |ù Ri,|b̄|pb̄, aqu.

The next step in the proof is to prove there is a linear jump hierarchy
L which has an element a such that L – L æ a. This will imply that

:Furthermore, its not hard to show that pL æ aq1 is effectively bi-interpretable
with pL ææ a, aq.

156 IX. THE JUMP OF A STRUCTURE

the jump of L is effectively interpretable in L with parameter a, and
in particular that L1 is Muchnik reducible to L.

It will be enough to show that there is a linear jump hierarchy
L with a non-trivial automorphism. For if there is an automorphism
mapping a to b with a ăL b, then Læa – Læb and we can then use Læb
instead of L. The lemma we mentioned above, the one we will prove in
[MonP2], states that if a Πc

2 sentence has models of arbitrary large size,
then it has a countable model with a non-trivial automorphism. The
class of linear jump hierarchies can be axiomatized by a Πc

2 sentence. To
see that there are linear jump hierarchies of arbitrary size, let pL;ďLq
be any ordinal you want and then define the relations Ri,jp¨ ¨ ¨ , aq by
transfinite recursion on a P L. l

Even more surprising than the theorem itself is the complexity nec-
essary to prove it. We show below that a construction of a structure
that is Muchnik equivalent to its own jump must use an uncountable
object. To show this we prove that Theorem IX.16 is not provable
in second-order arithmetic. It is known that second-order arithmetic
proves exactly the same Π1

4 sentences as ZFC without the power set
axiom (see [MS12] for a proof). Thus, Theorem IX.16 would also not
be provable in ZFC without using the power set axiom.

Let us quickly describe what second-order arithmetic is. It has two
sorts of elements, the first-order sort for numbers and the second-order
sort for sets of numbers. Lower case letters are used for number vari-
ables and upper case roman letters for second-order variables. The
vocabulary is t0, 1,ď,`,ˆ, Pu. The axioms are those of Peano arith-
metic plus comprehension for all formulas. That is, for each formula
ϕpxq of second-order arithmetic with one free number variable x, plus
maybe other free variables that we view as parameters, we have the
axiom

CApϕq ” DX @n pn P X Ø ϕpnqq .

The axiom of induction is stated as a single axiom:

IND ” @X
´

`

0 P X ^ @npn P X Ñ n` 1 P Xq
˘

Ñ @n pn P Xq
¯

.

Theorem IX.17 (Montalbán [Mon13c]). Second-order arithmetic
cannot prove that there exists a structure A which is Muchnik equivalent
to its own jump.

Proof. We show, within second-order arithmetic, that using such
a structure A we can build a model of second-order arithmetic. This
would prove the consistency of second-order arithmetic, which, by

IX.2. THE JUMP JUMPS — OR DOES IT? 157

Gödel’s incompleteness theorem, cannot be proved within second-order
arithmetic.

The model we build is an ω-model, that is, a model where the first-
order part is the standard pN; 0, 1,ď,`,ˆq. We define the second-order
part of our model to be

M “ tX Ď N : X is r.i.c.e. in Au.
Let us remark that, by Corollary II.23, every X P M is of the form

Θ
D-tpApp̄q
e for some c.e. operator Θe and tuple p̄ P AăN. Thus, we can

use the pair xe, p̄y P Nˆ AăN to name this element X of M. We need
to prove that pN,Mq satisfies the axioms of second-order arithmetic.
Since the first-order part of the model is standard, we immediately
get that the axioms of Peano arithmetic, including induction, hold in
pN,Mq. What is left to show is that the comprehension axioms hold
in pN;Mq. That is, for each formula ϕpxq of second-order arithmetic
with parameters from M, we need to show that the set

Cϕ “ tn P N : pN;Mq |ù ϕpnqu

is r.i.c.e. in A, where n is the term 1` 1` ¨ ¨ ¨ ` 1 added n times. The
idea is to translate ϕ to the language of A. What we want is, for some
k P N, a computable sequence of Σc

k sentences χn, for n P N, such that

A |ù χn ðñ pN;Mq |ù ϕpnq.

This would then imply that Cϕ is r.i. computable in Apkq. We claim
that A is not only Muchnik equivalent to A1, but also to Apkq for all
k P N. This would imply that the set Cϕ is r.i. computable in A and
hence belongs to M. To prove the claim, let X0 be a real that computes
a copy of A. We can recursively build a sequence of reals Xi for i ď k
such that X 1

i ”T Xi´1 and Xi computes a copy of A. To do this, once
we have Xi´1 computing a copy of A, we know it must also compute a
copy of A1, and we can get Xi from the second jump-inversion theorem
(Theorem IX.9). Once we have that Xk computes a copy of A and

X
pkq
k ”T X0, we have that X0 computes the kth jump of a copy of A.

This proves the claim.
The last step is to define the sequence of χn’s from the formula ϕpxq.

Fix n P N, and replace the occurrences of x in ϕpxq by n. Replace each

second-order parameter Z P M that shows up in ϕ with Θ
D-tpApp̄Zq
eZ ,

where eZ and p̄Z are such that Z “ Θ
D-tpApp̄Zq
eZ . Replace each second-

order variable X by a name xeX , p̄Xy P N ˆ AăN: That is, replace

@X ψpXq with @eX P N @p̄X P A
ăN ψpΘ

D-tpApp̄Xq
eX q. Do the same for

existential second-order quantification. We are now left with no second-
order variables in our formula. Replace each first-order quantification

158 IX. THE JUMP OF A STRUCTURE

@e P N ψpeq with
ŹŹ

mPN ψpmq. Replace each first-order quantification
De P N ψpeq with

ŽŽ

mPN ψpmq. We are now left with no variables at
all in our formula. Replace each atomic arithmetic sub-formula, which
by now looks something like n ` m ď k, with its truth value J or

K. Finally, replace each sub-formula of the form n P Θ
D-tpApp̄q
e by the

equivalent Σc
1 formula

łł

DĂfinN
xxDy,nyPΘe

ľ

kPD

ϕDk,|p̄|pp̄q

(Recall that enumerator operators were defined so that n P ΘY ðñ

DD Ďfin N pxxDy, ny P Θ^D Ď Y q, and that ϕDk,j is the k-th D-formula
with arity j.) We have eliminated all traces of arithmetic and ended
up with a τ -formula χn that is equivalent to the original ϕpnq. It is not
hard to see that the formula χn has finite depth in terms of alternations
of quantifiers. This depth k depends only on the quantifiers that show
up in ϕ and not on n. l

Generalizing this to higher orders, Montalbán [Mon13c] proved
that the ω-jump of any presentation of A computes a countably coded
ω-model of higher-order arithmetic, i.e., with a sort for n-th order sets
for each n P N. This implies that at least ω many iterations of the
power-set axiom are needed to prove such a structure A exists. Both,
our proof and Puzarenko’s proof, use ωCK1 iterations of the power-set
axiom. It is still unknown exactly how many iterates of the power-set
axiom are needed to prove Theorem IX.16.

CHAPTER X

Σ-small classes

An D-type ppx̄q is said to be sharply realized in a class K of structures
if there exists a tuple ā in some structure A P K such that ppx̄q “
D-tpApāq.

˚

As we saw in previous chapters, existential types capture important
computability theoretic information. There are continuum many exis-
tential types realized among all τ -structures. If a class of τ -structures
K is rich enough, there will also be continuum many existential types
sharply realized in K. If, on the contrary, the number of D-types is
less than continuum, then something interesting must be going on.
Descriptive set theoretic facts (which we will see in [MonP2]) imply
that on definable classes of structures, the number of D-types that are
sharply realized is either countable or continuum, but never in be-
tween.: Classes for which this number is countable have particularly
nice computability theoretic properties.

Definition X.1 ([Mond]). A class K of structures is Σ-small if
there are only countably many D-types sharply realized among all the
structures in K.

A simple observation is that Σ-small classes can also be defined as
the ones sharply realizing countably many @-types.;

The first one to analyze Σ-small classes was, indirectly, Richter with
her analysis of the computable extendability condition (Definition V.2).

Observation X.2. A class is Σ-small if and only if there is an
X P 2N relative to which all structures in the class have the computable
embeddability condition.§

˚A type ppx̄q is realized by a tuple ā in a structure A if ā satisfies all its formulas.
Thus, if ppx̄q is an D-type, ppx̄q is realized by ā if and only if ppxq Ď D-tpApāq.

:If a class is defined as the set of models of an infinitary sentence, the set of D-
types sharply realized in it is Σ1

1, and hence its size is either countable or continuum
by Suslin’s theorem [Sus17].

;This is because tuples with the same D-type have the same @-type: @-tpApāq “
t ϕ : ϕ is an D-formula, ϕ R D-tpApāqu.

§If all structures in K have the computable embeddability condition relative
to X, it is Σ-small because there are only countably many X-computable sets.

159

160 X. Σ-SMALL CLASSES

If K is a natural example of a Σ-small class, this oracle X always
turns out to be 0, and all structures in K have the computable embed-
dability condition. Thus, all structures in K would then have all the
properties we proved in Section V.1, for instance that they never have
non-trivial enumeration degree, and that their degree spectra contain
c.e.-minimal pairs. Richter [Ric81] showed that all linear orderings and
all trees viewed as orderings have the computable embeddability con-
dition. We will show that these classes of structures are Σ-small using
a general technique inspired by Richter’s proofs. Our technique will
also show that Boolean algebras, adjacency linear orderings (Knight
[Kni86]), and equivalence structures are also Σ-small. There are other
techniques used to show classes are Σ-small: Trivially, if a class K has
only countably many structures, it is Σ-small — algebraically closed
fields and vectors spaces over a fixed field are thus Σ-small. Differ-
entially closed fields of characteristic 0 are Σ-small because they are
ω-stable. All the iterates of the jump of Boolean algebras are also Σ-
small (Harris and Montalbán [HM12]). Abelian p-groups are another
interesting example (Khisamiev [Khi04]).

Example X.3. Here is an example of a class that is not Σ-small:
torsion free abelian groups. For each set X of prime numbers, consider
the subgroup of pQ;`q with domain

tr{q : r P Z, q P N satisfying that all prime factors of q are in Xu.

The D-type of x “ 1 contains the formulas pDzq p ¨ z “ x if and only if
p P X, where p ¨ z is shorthand for z added to itself p times. Different
sets or prime numbers give rise to different D-types. Thus, we have
continuum many D-types among all the torsion-free abelian groups.

X.1. Infinitary Π1 complete relations

Understanding what the r.i.c.e. relations on a structure look like
often gives us key insights into the structure’s computational proper-
ties. For instance, in the case of linear ordering, we know that Ādj

c
‘01

is a r.i.c.e.-complete relation, a fact that has been extremely helpful
in proving results about linear orderings. We know of other classes of
structures where the r.i.c.e.-complete relations can also be easily under-
stood. But there are also many other classes for which we know of no
such nice r.i.c.e.-complete relation. We want to understand why some
classes have nice r.i.c.e.-complete relations and some do not. For that,

Conversely, if K is Σ-small, let X be an oracle that computes all D-types sharply
realized in K.

X.1. INFINITARY Π1 COMPLETE RELATIONS 161

we need to find a way to formalize what we mean by ‘nice.’ Every struc-

ture A has a r.i.c.e.-complete relation, namely ~KA (Definition II.30). In

contrast to Ādj
c
‘ 01, the relation ~KA is much harder to visualize. One

problem with Kleene’s relation ~KA is that it is not necessarily struc-
turally r.i.c.e. complete (Definition II.41), i.e., it is not always r.i.c.e.-
complete relative to all oracles. We will see below that every structure
A has a structurally r.i.c.e. complete relation, and structurally r.i.c.e.
complete relations tend to provide the structural information we are
looking for. These structurally r.i.c.e. complete relations have a disad-

vantage over relations like Ādj
c

or ~KA: They may be defined by different
Σin

1 formulas on different structures. If we are working within a class,
we would like to have a structurally r.i.c.e. complete relation that is
defined the same way on all structures in the class. The question now
becomes: On which classes of structures do we have relations that are
uniformly definable and structurally r.i.c.e.-complete? The answer is
— as you might have guessed — Σ-small classes.

Definition X.4. A sequence of Πin
1 formulas tϕipx̄iq : i P Nu is

Πin
1 -complete on a class K of structures if every Πin

1 formula ψpx̄q is
equivalent to a Σin

1 formula over τ Y tϕipx̄iq : i P Nu, that is, there
exists a Σin

1 formula χpx̄q over the vocabulary τ 1 “ τ Y tRi : i P Nu
where Ripx̄iq is interpreted as ϕipx̄iq, such that @x̄ pχpx̄q Ø ψpx̄qq holds
on all structures in K.

If you negate all formulas in a Πin
1 -complete sequence of formulas,

you get a Σin
1 -complete sequence of formulas. For a structure A P K,

a Σin
1 -complete sequence of formulas defines a structurally u.r.i.c.e.-

complete relation on A: A relation R is structurally u.r.i.c.e. if it is
u.r.i.c.e. in pA, Xq for some X P 2N — this is equivalent to R being
Σin

1 -definable without parameters. R is structurally u.r.i.c.e.complete
if also, for every other structurally u.r.i.c.e. relation Q Ď N ˆ AăN, Q
is u.r.i. computable in pA, R, Y q for some Y P 2N — this is equivalent
to Q being ∆in

1 -definable in pA, Rq without parameters. (C.f. Section
II.2.3, where we introduced the non-uniform versions.)

Lemma X.5. If K is Σ-small, the set of formulas of the form
ŹŹ

p,
where p is a @-type sharply realized in K, is a Πin

1 -complete sequence of
formulas.¶

Proof. Enumerate the @-types sharply realized in K as p0, p1, ...
For every Πin

1 formula ψpx̄q, let

Iψ “ ti P N : all the conjuncts of ψ are in piu.

¶ŹŹ p stands for
ŹŹ

χpx̄qPp χpx̄q.

162 X. Σ-SMALL CLASSES

We claim that

@x̄

˜

ψpx̄q ðñ
łł

iPIψ

´

ľľ

pipx̄q
¯

¸

holds on all structures in K. This would show that ψ is equivalent to a
Σin

1 formula over t
ŹŹ

pi : i P Nu. As for the proof of the claim: clearly,
if i P Iψ, then

ŹŹ

pi ñ ψ. Thus
ŽŽ

iPIψ

ŹŹ

pi ñ ψ. Conversely, if ψ

holds of some tuple ā in some A P K, let pi be the @-type of ā in A.
Then all conjuncts in ψ are part of pi, and hence i P Iψ and ā satisfies
ŽŽ

iPIψ

ŹŹ

pi. l

Corollary X.6. On every structure A, there is a structurally
r.i.c.e.-complete sequence of formulas.

Proof. Just take the class K “ tAu. l

In all natural examples of Σ-small classes, not only are all D-types
computable, they are uniformly computable. In that case, the struc-
turally r.i.c.e.-complete sequence of formulas also defines a r.i.c.e.-complete
relation.

Corollary X.7. Let K be a Σ-small class for which there is a
computable listing tpi : i P Nu of all the @-types sharply realized in K.}

Then, for every A P K, the relation

txi, āy : A |ù
ľľ

pipāqu ‘ 01

is u.r.i.c.e. complete in A.

Proof. The relation txi, āy : A |ù
ŹŹ

pipāqu is u.r.i.c.e. be-
cause the formulas

ŹŹ

pipx̄q are uniformly Σc
1. To see they are

u.r.i.c.e. complete once we add 01, we refer to the proof of Lemma X.5
above. There, it is shown that if ψ is a Πc

1 formula, it is equivalent to
ŽŽ

iPIψ

ŹŹ

pipx̄q. Notice that this formula is Σc,01

1 over t
ŹŹ

pi : i P Nu,
as Iψ is Π0

1, and hence computable in 01. l

Let us now prove the reversal: If a Πin
1 -complete sequence of for-

mulas exists, then the class is Σ-small.

Definition X.8. Given a formula ψpx̄q, the @-type generated by ψ
over K is the set of all @-formulas ϕpx̄q that are implied by ψpx̄q on all
structures in K.

}A computable listing of @-types is coded by a computable set C Ď N2 such
that xi, jy P C if and only if the jth @-formula belongs to pi.

X.1. INFINITARY Π1 COMPLETE RELATIONS 163

Lemma X.9. Let tϕipx̄iq : i P Nu be a Πin
1 -complete sequence of

formulas over a class K. Then every @-type sharply realized in K is
generated by a D-formula over τ Y tϕipx̄iq : i P Nu.

Proof. Let p be a @-type sharply realized in K. By the complete-
ness of tϕipx̄iq : i P Nu,

ŹŹ

p must be equivalent to a Σin
1 formula χ

over τ Y tϕipx̄iq : i P Nu. We claim that p is generated by one of the
disjuncts of χ. Consider a tuple ā with @-type p in some structure
A P K. Then one of the disjuncts of χ must be true of ā — call it ψ.
On the one hand, ψ implies χ, and χ implies

ŹŹ

p. On the other hand,
ψ cannot imply any other @-formula, as ā satisfies ψ and no @-formula
outside of p. Thus ψ generates p. l

Corollary X.10. A class K of structures is Σ-small if and only
if there exists a sequence of Πin

1 formulas that is Πin
1 -complete on K.

Proof. If K is Σ-small, we showed that the formulas formed as the
conjunctions of the @-types form a Πin

1 -complete sequence of formulas
in Lemma X.5. The other direction follows from the previous lemma,
as there are only countably many finitary D-formulas over a countable
vocabulary. l

This corollary answers our original question about which classes of
structures have nice r.i.c.e.-complete relations — somewhat. It def-
initely proves that if a class is not Σ-small, it does not have a nice
r.i.c.e.-complete relation. However, in the case when the class is Σ-
small and we do have a Πin

1 -complete sequence of formulas, it might
still be a bit of a stretch to say that the formulas we get from Lemma
X.5 are nice. In practice, they usually are. Let us look at linear order-
ings. A @-type ppx̄q is determined by a permutation of |x̄| that describes
the order among the variables, and a tuple of numbers saying, for each
pair of variables xi, xj, that there are no more than so many elements
in between them, to their left, and to their right. These are nice enough
relations. As we know, the co-adjacency relation alone is already struc-
turally r.i.c.e. complete. This is because all these relations defined from
@-types are r.i. computable from Ādj.

Exercise X.11. Consider the Πc
1-definable relation

txi, āy : A |ù
ľľ

pipāqu,

as in Corollary X.7, for the class of linear orderings. Prove that it is
r.i. computably equivalent to the adjacency relation.

Exercise X.12. Consider the Πc
1-definable relation txi, āy : A |ù

ŹŹ

pipāqu, as in Corollary X.7, for the class of Boolean algebras.

164 X. Σ-SMALL CLASSES

Prove that it is r.i. computably equivalent to the atom relation. (An
element in a Boolean algebra is an atom if it is non-zero and has no
elements below it other than zero. Recall that in Exercise II.46 we
showed that the atom-relation is structurally complete.)

In these two examples, we have r.i.c.e. complete relations of arity
two and one, respectively. This is quite nice, but not very common.
We do not know much about which structures have structurally r.i.c.e.
complete relations of bounded arity. We know this is the case for adja-
cency linear orders [Mon12, Lemma 7.1], Boolean algebras and their
jumps [HM12], and equivalence structures [Mon12, Section 7.4]. On
the other hand, it follows from Exercise II.47 that the infinite dimen-
sion Q-vector space does not have a r.i.c.e. complete relation of bounded
arity (i.e., a subset of Nˆ Aďk for k P N).

X.2. A sufficient condition

In this section, we give a sufficient condition for a class of structures
to be Σ-small. This condition has a stronger consequence than just Σ-
smallness: It implies that every infinitary Π1 formula is equivalent to
a finitary @-formula. This implies that there are countably many @-
types, as the conjunction of all the formulas in a @-type would then be
equivalent to a single @-formula, and there are only countably many
@-formulas. Despite not being necessary, this is still quite a useful
condition, as it holds in many of the examples of Σ-small classes we
know.

Throughout this section, let τ be a finite vocabulary and let K be
a uniformly locally finite˚˚ class of τ -structures. Let Kfin be the set of
all finite substructures of structures in K.:: Given a set A, define τA by
augmenting the vocabulary τ with new constant symbols, one for each
element of A. A τA-structure is thus determined by a τ -structure B
and a map f : AÑ B describing the assignments of the new constants.
Given a finite structure A P Kfin, let KA be the set of τA-structures
that consists of a τ -structure B in K together with a τ -embedding from
A to B. Let Kfin

A be the set of finite τA-substructures of structures in

˚˚A is locally finite if every finitely generated substructure of a structure in A
is finite. K is uniformly locally finite if, for every n P N, there exists an m P N
such that every substructure of a structure in K generated by n elements has size
at most m. For a finite vocabulary, this implies that the number of quantifier-free
types on a fixed tuple of variables is finite.

::Kfin was defined in III.25 to be the set of diagrams of the finite τ|¨|-
substructures of the structures in K. That is still the formal definition, but in
this section, it is easier to visualize Kfin as a set of structures. Also, since we
assume τ is finite, τ|¨|-structures are just τ -structures.

X.2. A SUFFICIENT CONDITION 165

KA. Kfin
A is essentially a set of pairs xf,By, where B P Kfin and f is a

τ -embedding from A into B.
Before stating our theorem, we need one more definition.

Definition X.13. A partial ordering is well-quasi-ordered if it has
no infinite descending sequences and no infinite anti-chains.

It is not hard to show that a partial ordering is well-quasi-ordered
if and only if every subset X has a finite subset F Ď X such that
@x P X Dy P F py ď xq. Such an F can be chosen to be an anti-
chain—the anti-chain of the minimal elements of X. It is also not
hard to show that the product of well-quasi-orderings is a well-quasi-
ordering. Then, for instance, we get Dickson’s lemma, which says
that Nk is well-quasi-ordered, with the ordering where a tuple is be-
low another if each coordinate of the first tuple is below the corre-
sponding one of the second. Here are two well-known results about
well-quasi-orderings we will use: One is Higman’s lemma [Hig52],
which says that NăN is well-quasi-ordered under the embeddability par-
tial ordering: xx0, ..., xky ď xy0, ..., y`y if there is an increasing map
f : t0, ..., ku Ñ t0,, `u such that, for all i ď k, xi ď yfpiq. The other
is Kurskal’s theorem [Kru60], which says that the set of finite trees is
well-quasi-ordered by embeddability even if we require the embeddings
to preserve meets (i.e., greatest lower bounds). Here, by embeddability,
we mean as partial orderings, that is, a tree is below another if there
is a one-to-one, order-preserving map which preserves meets.

Theorem X.14. Let K be a uniformly locally finite class of struc-
tures over a finite vocabulary. Suppose that, for every finite substruc-
ture A P Kfin, Kfin

A is well-quasi-ordered under the embeddability re-
lation. Then, in K, every Σin

1 formula is equivalent to a finitary D-
formula.

Recall that this implies that K is Σ-small.

Proof. Consider a Σin
1 formula ψpx̄q. Since K is a uniformly lo-

cally finite class over a finite vocabulary, there are only finitely many
quantifier-free types on the variables x̄: Call them q0px̄q, ..., qkpx̄q. Since
ψ ”

Ž

iďkpψ ^
Ź

qiq, it is enough to show that each of the formulas
ψpx̄q ^

Ź

qipx̄q for i ď k is equivalent to a finitary D-formula. Fix
i ď k and let A P Kfin be the finite substructure generated by a tuple
ā that satisfies the type qipx̄q. Let S Ď Kfin

A be the set of τA-structures

B that satisfy ψpāq. S is closed upwards under inclusion. Since Kfin
A

is a well-quasi-ordering, there is a finite subset S of minimal elements
F0, ...,Fk. Thus, for a structure B P Kfin

A , we have that B P S if and

166 X. Σ-SMALL CLASSES

only if there is a τA-embedding from one of the Fi’s into B. Now, for
a structure C P K, a tuple c̄ P C |x̄| satisfies ψpx̄q ^

Ź

qipx̄q if and only
if there is an embedding of A into C mapping ā to c̄ so that one of
the Fi’s τA-embeds into CA, where CA is, of course, the τA-structure
corresponding to C and the embedding from A to C. This is equivalent
to saying that there exists a tuple ȳ P CăN that, together with c̄, has
the atomic diagram of Fi. Since K is uniformly locally finite and the
vocabulary is finite, this can be expressed by a finitary D-formula:

ł

iďk

Dȳ Dpx̄, ȳq “ DpFiq.

This D-formula is equivalent to ψpx̄q ^
Ź

qipx̄q. l

Let us remark that Kfin
A is always well-founded: These structures are

finite, so we could never have an infinite descending sequence. Thus,
stating that Kfin

A is well-quasi-ordered is equivalent to saying that it
contains no anti-chains.

Exercise X.15. Let K be a uniformly locally finite class of struc-
tures over a finite vocabulary. Suppose that K is the class of models of
a Πin

1 sentence. Prove that the theorem above reverses. That is, that

if every Πin
1 formula is equivalent to a finitary @-formula, then Kfin

A is
is well-quasi-ordered for every finite substructure A P Kfin. Hint in
footnote.;;

Lemma X.16. Let LO be the class of all linear orderings. Then,
for every finite linear ordering L, LOfin

L is well-quasi-ordered by embed-
dability.

This gives a new angle on the proof that LO is Σ-small.

Proof. This is essentially what was happening in Claim II.43.2.
Fix a finite linear ordering L. Note that each structure in LOfin

L can
be described by a tuple in N|L|`1 saying how many elements there are
between each pair of consecutive elements of L, how many there are to
the left of the first element of L, and how many there are to the right
of the last. It is not hard to see that a structure from LOfin

L embeds
in another if and only if the tuple corresponding to the first struc-
ture is below the tuple for the latter. When we say ‘below,’ we mean
coordinate-wise; That is, for each i ď |L|, the i-th entry of the first
tuple is less than or equal to the i-th element of the second. Dickson’s

;;Use that Kfin Ď K and that finitary D-formulas can be expressed in terms of
embedding structures from Kfin.

X.2. A SUFFICIENT CONDITION 167

lemma, which follows from the closure of well-quasi-orders under prod-
ucts, states that Nk`1 is well-quasi-ordered under this coordinate-wise
ordering. l

Let ALO be the class of adjacency liner orderings, which consists of
linear orderings together with a relation Ādj for adjacency. (Recall that
Ādj consists not only of the usual binary adjacency relation Adj, but
also includes the relations for first and last elements — see Definition
II.44.)

Lemma X.17. For every finite L P ALOfin, ALOfin
L is well-quasi-

ordered by embeddability.

This shows that ALO is Σ-small [Kni86]. Recall that ALO ‘ 01

is effectively bi-interpretable with the jump of LO. Notice that the
finite structures L P ALOfin need not be adjacency linear orderings
themselves: There might be consecutive elements a ăL b P L for which

Ādj
L

does not hold because L is a subset of a larger linear ordering
where a and b are not adjacent. The structures in ALOfin satisfy that

if Ādj
L
pa, bq, then a and b are consecutive, but not vice versa.

Proof. For this proof, we need to use Higman’s theorem that NăN
is well-quasi-ordered under the following partial ordering:

xx0, ..., xky ď xy0, ..., y`y

ðñ Df : t0, ..., ku Ñ t0,, `u increasing, @i ď k
`

xi ď yfpiq
˘

.

We will show that the well-quasi-orderness of ALOfin
L can be reduced

to the well-quasi-orderness of a product of orderings of the form N and
NăN. Recall that well-quasi-orderness is preserved under products.

A set of elements of a finite adjacency linear ordering is said to
be an adjacency chain if it is a maximal sequence of Ādj-adjacent el-
ements. Every A P ALOfin can be partitioned into adjacency chains.
Let xlA, āA, rAy P N ˆ NăN ˆ N be the tuple of sizes of the adjacency
chains in A, ordered from left to right, where lA is the size of the adja-
cency chain of ´8, rA is the size of the adjacency chain of `8, and āA
is the tuple of non-zero sizes of the adjacency chains in between. That
is, lA is the size of the adjacency chain containing the element f satis-
fying Ādjp´8, fq if there is any, and lA “ 0 if there is no such element.
Same with rA and `8. It is not hard to see that if we have lA ď lB,
rA ď rB, and āA ď āB (the latter as in the Higman’s ordering), then
A embeds into B preserving Ādj. This is not an if-and-only-if equiv-
alence. But this implication is enough to conclude that ALOfin is a
well-quasi-ordering: Because if tAi : i P Nu were an anti-chain of finite

168 X. Σ-SMALL CLASSES

adjacency linear orderings, then txlAi , āAi , rAiy : i P Nu would be an
anti-chain in the well-quasi-ordering NˆNăNˆN (where NˆNăNˆN
is ordered by the product ordering, using Higman’s ordering on NăN).
We already know that ALOfin has no infinite descending sequences, as
its structures are all finite.

Now, fix a finite linear ordering L “ t`1 ăL ¨ ¨ ¨ ăL `ku. A structure

in ALOfin
L is determined by the intervals between consecutive elements

of L, by the interval to the left of `1, and by the interval to the right
of `k. Thus, ALOfin

L is, in a sense, isomorphic to the k ` 1-cartesian

power of ALOfin. Assign to each A P ALOfin
L a tuple

xl0, ā0, r0, l1, ā1, r1, . . . , lk, āk, rky P pNˆ NăN ˆ Nqk`1,

where xli, āi, riy is the tuple of sizes of adjacency chains corresponding
to the interval in A between `i and `i`1 as in the first part of the
proof. Of course, xl0, ā0, r0y corresponds to the interval to the left of
`1 and xlk, āk, rky corresponds to the interval to the right of `k. Now,

given A,B P ALOfin
L , if the tuple corresponding to A is below that of

B in the product ordering, where the NăN’s are ordered according to
Higman’s ordering, then A embeds into B. As in the argument for
ALOfin, we can then deduce that ALOfin

L is well-quasi-ordered using
that well-quasi-orderness is preserved by products. l

Exercise X.18. Let BA be the class of Boolean algebras. Prove
that for every finite Boolean algebra B, BAfin

B is well-quasi-ordered by
embeddability.

Harris and Montalbán [HM12] proved that all the finite jumps

BApnq of the class of Boolean algebras are also Σ-small.

Definition X.19. Let T be the class trees viewed as partial order-
ings. That is, T is the class of partial orderings pT ;ď, rq which have
a least element denoted r and satisfy that the set of predecessors of
every t P T , namely ts P t : s ď tu, is finite and linearly ordered.

Lemma X.20. For every finite tree T , Tfin
T is well-quasi-ordered by

embeddability.

It follows that T is Σ-small [Ric81].

Proof. Kruskal’s lemma [Kru60] states that Tfin is well-quasi-
ordered by embeddability even if we require the embeddings to preserve
meets (i.e., greatest lower bounds). We now need to prove that Tfin

T
is well-quasi-ordered by embeddability for any given finite tree T . We
prove this by induction on the size of T . In the case when T contains

X.3. THE CANONICAL STRUCTURAL JUMP 169

just one element, namely the root, Tfin
T is exactly the same as Tfin.

Suppose that now T contains more than just the root. If T has subtrees
T1, ..., Tk coming out of the root, then Tfin

T is isomorphic to TfinˆTfin
T1
ˆ

¨ ¨ ¨ ˆ Tfin
Tk : To see this, notice that every tree A in Tfin

T can be split
into k ` 1 trees A0,,Ak as follows. Let A0 consist of all the nodes
in A whose only predecessor in T is the root, and let Ai be the set
of nodes in A which have a predecessor in Ti other than the root. It
is not hard to see that for A,B P Tfin

T , A ď B if and only if Aj ď Bj
for each j ď k. Since well-quasi-orderness is preserved by products,
and we are assuming by the induction hypothesis that each Tfin

Ti is well-

quasi-ordered, we get that Tfin
T is well-quasi-ordered too. l

Exercise X.21. Prove that Lemma X.20 also holds for trees as
graphs of finite height. Hint in footnote.:

Exercise X.22. Prove that the class of all trees viewed as graphs
is not Σ-small. Hint in footnote.;

X.3. The canonical structural jump

As we argued in Section X.1, a class of structures has a nice r.i.c.e.-
complete relation if and only if it is Σ-small. What we actually proved
is that a class has a Πin

1 -complete sequence of formulas if and only if
it is Σ-small, and that these formulas are given by the conjunctions of
the @-types sharply realized in the class. That these formulas are nice
is arguable. Nice or not, what we do get is a canonical way to define a
structural jump. Structurally r.i.c.e. complete relations are unique up
to structurally r.i. computability, but not up to plain r.i. computabil-
ity. So, in principle, it is unclear what the canonical structural jump
of a structure should be. For instance, we want the structural jump
of a linear ordering to be the linear ordering together with the adja-
cency relation, and the structural jump of a Boolean algebra to be the
Boolean algebra together with the atom relation, without having to
add a relation for 01 or anything else.

Definition X.23. Let K be a Σ-small class of τ -structures and
tpi : i P Nu a computable listing of the @-types sharply realized in K.
We define the canonical structural jump of a structure A P K by adding
to A the relations tā P AăN :

ŹŹ

pipāqu for i P N. We denote this new
structure Ap1q, and we use Kp1q to denote tAp1q : A P Ku. We use τp1q to
denote the new vocabulary, defined by adding to τ relations symbols

:Prove it for trees of height bounded by a fixed k.
;Think of Y -shaped finite trees.

170 X. Σ-SMALL CLASSES

ŹŹ

pip¨q for i P N. The finite approximations to τp1q are defined by
τp1qs “ τs Y t

ŹŹ

pip¨q : i ă su.

If we add 01 as a relation to Ap1q, we get a structure effectively bi-
interpretable with A1. It follows from Exercise X.11 that, for a linear
ordering L, the class LOp1q is effectively bi-interpretable with ALO,
the class of adjacency linear orderings. One can also show that, for
Boolean algebras, the class BAp1q is effectively bi-interpretable with
ABA, the class of Boolean algebras with an added relation that distin-
guishes atoms. We think of the canonical structural jump as a structure
up to effective bi-interpretability. Thus, we think of adjacency linear
orderings as the canonical structural jumps of linear orderings, and
atom Boolean algebras as the canonical structural jumps of Boolean
algebras.

Notice that the definition of Ap1q depends on the enumeration of
the @-types sharply realized in K. In most natural Σ-small classes,
there is a natural such enumeration that is unique up to a computable
re-ordering, so this is not usually an issue. For such natural classes,
another effectiveness property we always get is that Kfin

p1q is computable.

Recall that Kfin
p1q is the set of diagrams of the finite τp1q|¨|-substructures of

the structures in K, and recall that a τp1q|¨|-structure is a τp1qs-structure
where s is the size of the structure.

Definition X.24. A Σ-small class K is effectively Σ-small if there
is a computable listing of the @-types sharply realized in K, and Kfin

p1q

is computable.

Of course, all the natural Σ-small classes we know are effectively
Σ-small. Proving that this is so sometimes takes a bit of work, as
it requires understanding the space of @-types and the compatibilities
between the different types. For instance, the class of differentially
closed fields of characteristic zero, denoted DCF0, is Σ-small just be-
cause there are countably many first-order types. Understanding the
structure of the @-types requires some model theory, as, for instance, it
requires proving that DCF0 has quantifier elimination. It can then be
shown that the Πc

1-relations Rm,npx, y1,, ymq, which say that x is not
a root of any differential polynomial of degree n over Qxy1, ..., ymy for
m P N and n P NY t8u, are enough to define the canonical structural
jump of DCF0.

Let us observe that if K is effectively Σ-small and Πc
2, then Kp1q is

also Πc
2. This is because the definitions of the new symbols in τp1q are

Πc
1.

X.4. THE LOW PROPERTY 171

X.4. The low property

Downey and Jockusch [DJ94] proved that Boolean algebras have
the low property, that is, that every low Boolean algebra has a com-
putable copy (Theorem X.44). Jockusch and Soare [JS91] showed this
is not the case for linear orderings. This property interests computabil-
ity theorists for two reasons. On the one hand, understanding when
structures have computable copies is a general theme of computable
structure theory, and these results give us useful information about it.
On the other hand, as we will see below in Lemma X.26, the low prop-
erty implies that the degree spectrum of the structure is determined
by the degree spectrum of its jump. Thus, in a sense, in terms of the
information encoded in the isomorphism type of a structure, the low
property says that no information is lost when taking a jump.

Definition X.25. A class K has the low property if, for every
X P 2N, every structure from K that has a copy that is low over X also
has a copy that is computable in X.

This is an interesting property of the degree spectra of all structures
in K. It implies that the degree spectra of the structures in K are
determined by the spectra of their jumps:

Lemma X.26. A class K has the low property if and only if, for
every structure A P K,

DgSppAq “ tX P 2N : X 1
P DgSppA1qu.

Proof. For the left-to-right direction, assume that K has the low
property. First, let us observe that the inclusion

DgSppAq Ď tX P 2N : X 1
P DgSppA1qu

always holds, as whenever X computes a copy of A, X 1 computes a
copy of A1. For the other inclusion, we need to use the low property.
If X 1 computes a copy of A1, by the Second Jump Inversion Theorem
IX.9, A has a copy that is low over X. Then, by the low property, X
computes a copy of A.

For the right-to-left direction, suppose that A has a copy that is low
over X. Then A1 has a copy computable in X 1, and by our assumption
regarding spectra, X P DgSppAq. Thus X computes a copy of A. l

One of the most interesting examples of a class with the low prop-
erty is differentially closed fields of characteristic zero. This was re-
cently proved by Marker and Miller [MM17]. They also showed that
the jump of DCF0 is universal for degree spectrum, that is, every de-
gree spectrum of a structure that computably codes 01 is equal to the

172 X. Σ-SMALL CLASSES

degree spectrum of the jump of a differentially closed field. This gives
a full description of the degree spectra of differentially closed fields of
characteristic zero: They are the jump inversions of all the possible
degree spectra.

As we mentioned above, the first example of a class with the low
property was the class of Boolean algebras [DJ94]. The following year,
Thurber [Thu95] showed that Boolean algebras have the low2 property,
that is, that every low2 Boolean algebra has a computable copy. This
is equivalent to stating that BA1 has the low property. A few years
later, Knight and Stob showed that Boolean algebras have the low4

property, that is, that every low4 Boolean algebra has a computable
copy, or, equivalently, that BA3 has the low property. It is not known
if Boolean algebras have the lown property for all n P N, or even if they
have the low5 property. Harris and Montalbán [HM] showed that the
low5 problem for Boolean algebras is qualitatively more difficult that
the previous ones: While for n “ 1, 2, 3, 4, every lown Boolean algebra
is 0pn`2q-isomorphic to a computable one, they built a low5 Boolean
algebra not 0p7q-isomorphic to any computable one.

As we will see in [MonP2], the class of ordinals satisfies much
more than the lown property for all n P N: Every arithmetic (even
hyperarithmetic) ordinal has a computable copy. We will see, also in
[MonP2], that the same behavior would occur on counterexamples to
Vaught’s conjecture — if there are any.

A sharper example is the class of linear orderings with finitely many
descending sequences.§ Kach and Montalbán [KM] showed that they
have the lown property for all n P N, but not much more: They built
a ∆0

2 intermediate linear ordering with exactly one descending cut and
with no computable copy.

The next theorem shows that classes with the low property are
necessarily Σ-small. Not all Σ-small classes have the low property
though. We will try to characterize the ones that do later. For now,
we need the following technical lemma, whose proof uses the techniques
from Chapter VII.

Lemma X.27. If A Ď N is not c.e., there is a G P 2N such that
G1 ěT A

1, but A is still not c.e. in G.

Proof. To getA1 ďT G
1, we will buildG P 2NˆN so that limtGpn, tq “

A1pnq for all n P N. At each stage s, we define an approximation
Grss P 2ksˆN for some ks P N. The approximations Grss will be com-
patible throughout the construction: That is, Grss “ Grs` 1s æ ksˆN

§By linear orderings with finitely many descending sequences, we mean linear
orderings with finitely many cuts which are limits from the right.

X.5. LISTABLE CLASSES 173

for all s P N. This will allow us to define G at the end of the con-
struction as the union of the Grss’s so that Grss “ G æ ks ˆ N. Note
that, even if Grss is a infinite binary string in 2ksˆN, it can be de-
scribed using only finitely much information, as it must satisfy that
limtGrsspn, tq “ A1pnq for all n ă ks.

At stage 0, let k0 “ 0 and Gr0s “ H. At each stage s ` 1 “ e, we
define Grs` 1s as to ensure the satisfaction of one more requirement:

Requirement Re: A ‰ WG
e .

Ask if there exists a finite string q̄ P 2ăNˆăN and an n P N such that q̄ is
compatible with Grss, n P W q̄

e , but n R A. If there is one, let Grs`1s be
an extension of Grss compatible with q̄ satisfying limtGrs` 1spn, tq “
A1pnq for all n ă ks`1. This ensures that n P WG

e rA, and in particular
that A ‰ WG

e . If there are no such q̄’s, we define Grs` 1s “ Grss and
we claim that Re is automatically satisfied. This is because the set of
n such that there exists a q̄ compatible with Grss for which n P W q̄

e is
a c.e. set, and hence it is different from A. If there is no such n outside
A, it means that that set must be properly included in A. It follows
that WG

e is properly included in A for any extension G of Grss, and in
particular that A ‰ WG

e . l

Theorem X.28. Let K be a Πin
2 class. If K has the low property,

then K is Σ-small.

Proof. Suppose K is not Σ-small. Let Z be such that Kfin is
Z-computable and the Πin

2 sentence defining K is Πc,Z . Since only
countably many sets are c.e. in Z, but uncountably many D-types are
sharply realized in K, one of those D-types must be not c.e. in Z — call
it q. Let G P 2N, G ěT Z, be such that G1 ěT pq‘Zq

1 but q is still not
c.e. in G — such a G is given by the previous lemma relativized to Z.
Now, using Corollary III.30, we get a structure A in K computable in
q ‘ Z and with a tuple having type q.¶ That structure has no copies
computable in G, as q is c.e.-coded in the structure and q is not c.e. in
G. Since pq‘Zq1 ďT G

1, A1 has a copy computable form G1. Thus, by
Lemma X.26, we get that K does not have the low property. l

X.5. Listable classes

Definition X.29. A class of infinite structures K is listable if there
is an operator Φ such that, for every X P 2N, ΦX is a sequence of ω-
presentations of structures in K listing all X-computable structures in
the class. Repetitions are allowed.

¶Corollary III.30 uses D-theories instead of D-types, so we have to add constants
to the language and turn the type into a theory.

174 X. Σ-SMALL CLASSES

Again, even if this definition is new as is, it is not a new idea.
Nurtazin [Nur74], four decades ago, considered a similar notion, but
it allowed the lists to have pĎωq-presentations of finite structures too.
She gave a sufficient condition for a class of structures to be listable
in her sense that includes the classes of linear orderings, Boolean alge-
bras, equivalence structures, Abelian p-groups, and algebraic fields of
characteristic p. Allowing for finite structures makes a huge difference
though. Even if we were to allow finite structures in our definition,
for our purposes we would have to use pĎωq-presentations instead of
pĎωq-presentations, the difference not being minor at all: In the case
of pĎωq-presentations, one is forced to eventually state that there are
no more elements in the domain, while with pĎωq-presentations, one
can always extend the domain later.

Goncharov and Knight [GN02, Section 5] considered a similar idea
as their “third approach” to defining what it means to have a com-
putable characterization for a class. Their notion is not the same as
ours, as they allow their listing of computable structures to be hyper-
arithmetic. An interesting variation we should mention is described in
[MonP2]: A class is hyperarithmetically listable if there is a hyperarith-
metic listing of all its hyperarithmetic structures — we will see that,
on a cone, this is equivalent to being a counterexample to Vaught’s
conjecture.

The objective of the rest of the section is to show that, under some
effectiveness conditions, a Σ-small class has the low property if and
only if its jump is listable.

Theorem X.30. Let K be an effectively Σ-small, Πc
2 class of infinite

structures. If K has the low property, Kp1q is listable relative to 01.

Proof. Let X P 2N be given. We need to build a list of all pX ‘

01q-computable structures in Kp1q in an pX ‘ 01q-computably uniform
way. Let Y be obtained from the Friedberg jump inversion theorem
(Theorem IV.6) so that Y 1 ”T X ‘ 01. Since K has the low property,
we have that for a structure A P K, A1 has an X-computable copy if
and only if A has a Y computable copy. Thus, what we need is a listing
of all the structures A1 for A P K with a Y -computable copy.

For every Y -computable ω-presentation A P K, we can build a Y -
computable approximation Ar0s Ď Ar1s Ď ¨ ¨ ¨ of A by finite structures
in Kfin in a way that, at each step, we satisfy more and more of the
Πc

2 sentence defining K, as we did in Lemma III.29. Let us call such
sequences witnessed approximations. Such a procedure is uniform: If
we are given a Y -partial computable function ΦY

e that outputs the
diagram of a structure in K, we can uniformly build such a witnessed

X.5. LISTABLE CLASSES 175

approximation Aer0s Ď Aer1s Ď ¨ ¨ ¨ to a structure Ae. We do it in a
way that if ΦY

e turns out to be either not total or not the diagram of
a structure in K, then there will be a step s in the sequence at which
Aerss is undefined, while at all the previous stages t, Aerts is defined
and satisfies (‹) from Lemma III.29.

For each e, we will build a structure Be P Kp1q so that if ΦY
e out-

puts the diagram of a structure Ae P K, then Be “ A1e. If the eth
partial computable function with domain Y is either not total or not
the diagram of a structure in K, we allow Be to be any structure in
Kp1q. Fix e — the rest of this construction is uniform in e. At stage s,

we define Berss to be a finite structure in Kfin
p1q which properly extends

Bers ´ 1s and is a τp1qs-expansion of Aerss as follows. We need to add
to Aerss interpretations for the new symbols of τp1qs that are not in τ .
These new symbols are given by the conjunctions of @-types. Given
such a type pipx̄q, deciding if it holds in Ae on a tuple ā is clearly Π0

1

in DpAeq “ ΦY
e and hence computable in Y 1 ”T X ‘ 01. However, we

need to be a bit careful, as ΦY
e might not be fully defined. Instead,

given such a tuple ā P Aerss
ăN, we ask if, for every t ě s for which

Aerts is defined, we have Aerts |ù pipāq. This question is still Π0
1 in

Y and gives the correct answer when Aerts is indeed defined for all t.
For the finitely many new relation symbols added to the vocabulary
of Brss, we can then decide their truth values to get Berss P Kfin

p1q. If

Aerts is not defined for all t, then Y 1 will eventually find out. It could
also happen that before Y 1 finds this out, the structure we would like
to define as Berss is not in Kfin

p1q. This could only be because Aerts was

not defined for all t and we were getting non-compatible answers to
which of the @-types hold. In this case, or in the case when we find out
that some Aerts is undefined, which Y 1 can detect, we need to build Be
in a different way. All we do is define Be to be any structure in Kp1q
extending Brs ´ 1s. We can do this because Kfin

p1q is computable and

Kp1q is Πc
2 (Lemma III.29). l

The following theorem is the key combinatorial core in the proof
that if Kp1q is listable, K has the low property.

Theorem X.31. Let K be an effectively Σ-small class of τ -structures.
Suppose we have a computable operator Cp1q that, given an oracle X P

2ω, outputs the diagram of a structure CX
p1q in Kp1q in a way that if

X ”T Y , then CX
p1q – CY

p1q. Then for every X P 2N, CX 1 has an X-
computable copy.

176 X. Σ-SMALL CLASSES

A small clarification is in order. The structure CX 1 is the τ -structure
corresponding to X 1. This is not CX

p1q, which would be the canonical

structural jump of CX . Cp1q is an operator that builds τp1q-structures in
Kp1q, while C outputs the τ -restrictions that belong to K.

Proof. Since Cp1q : 2N Ñ Kp1q is a computable operator, we can

assume we have a computable map Cp1q : 2ăN Ñ Kfin
p1q such that

δ Ď γ P 2ăN ñ Cδp1q Ď Cγ
p1q

and that, on every path Y P 2N, it produces a structure CY
p1q “

Ť

s C
Y æs
p1q

in Kp1q.
Assume X “ H. The general case is a straightforward relativiza-

tion. We need to produce a computable copy of C01 . Instead of using
01, we will define an oracle Y P 2N that is Turing equivalent to 01 and
produce a computable copy of CY , which by assumption is isomorphic
to C01 . We will define Y as the pointwise limit of a computable se-
quence of finite strings tπpσsq : s P Nu. To get Y to compute 01, we will
make sure the 1s in Y are so far apart that the function that lists the
positions of the 1s dominates the settling-time function ∇ for 01 (see
Definition VII.2).

To simplify the notation, we will work with strings in NăN instead
of 2ăN: Given σ P NďN, let

πpσq “ 0σp0qa1a0σp1qa ¨ ¨ ¨ a0σp|σ|´1q
P 2ďN, and π˚pσq “ πpσqa1a0N

P 2N.

Notice that, as k grows to infinity, the finite structures Cπpσq
ak

p1q form a

nested increasing chain converging to Cπ
˚pσq
p1q .

The core of the proof is the computable construction of tσs P NăN :
s P Nu. We will then define Y as the pointwise limit of πpσsq as
s Ñ 8, i.e, Y piq “ lims σspiq for all i P N. This sequence must satisfy
the following properties:

(S1) For each s and i ă |σs|, σspiq ě ∇spiq (see Definition VII.15).
(S2) There are infinitely many stages t satisfying that p@s ě tq σs Ě

σt. We call these the true stages of the sequence of σs’s.
(S3) For every s, there is a τembedding fs,s`1 : Cπpσsq ãÑ Cπpσs`1q

that keeps Cπpδq fixed, where δ is the largest common initial
segment of σs and σs`1.

The first two conditions make the σs’s behave similarly to the ∇s’s.
If t0 ă t1 ă t2 ă ¨ ¨ ¨ is the sequence of all the true stages, then σt0 Ď
σt1 Ď σt2 Ď ¨ ¨ ¨ is an increasing sequence. The union Z “

Ť

j σtj P NN

is the pointwise limit of the σs’s, and hence it is ∆0
2. By (S1), Z

X.5. LISTABLE CLASSES 177

dominates ∇ and hence computes 01. The sequence Y “ πpZq P 2N is
then Turing equivalent to 01.

(S3) allows us to build a computable copy of CY : For s ă r, we can
define embeddings fs,r : Cπpσsq ãÑ Cπpσrq by composing the intermediate
embeddings. Consider the direct limit of this sequence. By Exercise
I.13, the direct limit of a computable sequence of embeddings is com-
putable. Note that these are τ|¨|-embeddings and not τp1q|¨|-embeddings,
and therefore we end up with a computable τ -structure in the limit
whose canonical structural jump might not be computable. If t is a
true stage, then fs,s`1 preserves Cπpσtq for all s ě t. Taking composi-
tions, we can see that Cπpσtq is also preserved by fs,r for all r ą s ě t.
It follows that, along the true stages, the embeddings ft0,t1 , ft1,t2 ,...
are the inclusion embeddings. Thus the direct limit coincides with the
limit of the increasing sequence Cπpσt0 q Ď Cπpσt1 q Ď ¨ ¨ ¨ , namely CπpZq.
This shows that CY has a computable copy.

Before we move on to building the sequence of σs’s, there is an issue
we need to examine. Suppose that after defining σ0, ..., σs, we find out
that ∇s`1 has changed its value at some i, and we need σs`1 to update
the value of σspiq. What we have to do is define σs`1 to be pσs æ iq

ak
for some large enough k. But we need to do it in a way that Cπpσsq
embeds into Cπpσs`1q fixing Cπpσsæiq. There is no reason why such an
embedding would exist unless we take precautions ahead of time.

We say that γ is a good extension of σ if γ Ą σ and there is an
embedding from Cπpγq to Cπ˚pσq fixing Cπpσq. We call a string σ good
if it is a good extension of σ æ i for every i ă |σ|. To resolve the
issue mentioned above, we need to make sure we only work with good
strings. Notice that being good is a Σ0

1 property, so we can always wait
for verification that a string is good before we use it. The next claim
shows that there are plenty of good strings.

Claim X.31.1. For every σ P NăN, there is a kσ P N such that every
γ Ą σ with γp|σ|q ě kσ is a good extension of σ.

Consider the @-type of the elements of Cπpσq within the structure
Cπ˚pσq. That is, let c̄σ be the tuple that consists of all the elements of
Cπpσq and let

pσpx̄q “ @-tpCπ˚pσqpc̄
σ
q.

Recall that the vocabulary of Cπpσq
p1q is τp1qs, the step-s approximation to

τp1q, where s “ |Cπpσq|. This finite vocabulary might not have a symbol
for

ŹŹ

pσ yet. Let kσ be large enough so that the relation symbol for
ŹŹ

pσ appears in the vocabulary of C
πpσakσq
p1q . Since Cπpσ

akσq
p1q Ď Cπ

˚pσq
p1q ,

178 X. Σ-SMALL CLASSES

we have that

C
πpσakσq
p1q |ù

ľľ

pσpc̄
σ
q.

Let us now show that kσ is as wanted. Consider γ Ą σ with γp|σ|q ě kσ.

Cπpγq � u
((

C
πpσq
p1q

Ď Cπpσ
akσq

p1q

Ď
Ď Cπ

˚pσq
p1q

Since Cπpγq
p1q extends Cπpσ

aksq
p1q , we have that Cπpγq |ù

ŹŹ

pσpb̄
σq too.

In particular, the D-formula ψσ,γpx̄q that says that c̄σ has an extension
that looks like Cπpγq, namely

ψσ,γpx̄q ” Dȳ pDpx̄, ȳq “ DpCπpγqqq,

(where |x̄| “ |c̄σ|) is obviously true in Cπpγq. Hence its negation is not
part of pσpx̄q. The formula ψσ,γpx̄q is then true of c̄σ in Cπ˚pσq too.
This implies that Cπpγq embeds into Cπ˚pσq preserving c̄σ, and finishes
the proof of the claim.

We are now ready to define the sequence of σs’s. Suppose we have
defined σ0, ..., σs already. We want to find appropriate i ď |σs| and
k ą σspiq to define σs`1 “ pσs æ iq

ak. (We could have i “ |σs| and
σs`1 “ σs

ak.) We say that a pair xi, ky is appropriate for σs`1 if:

(A1) k ě ∇s`1piq and σspjq ě ∇s`1pjq for all j ă i.
(A2) σs æ i

ak is good.

(A3) There is an embedding Cπpσsq ãÑ Cπpσsæiakq keeping Cπpσsæiq

fixed.
(A4) If i ă |σs|, then either σspiq ă ∇s`1piq or σspiq ă kσæi.

As soon as we find such i and k for which we have verification that they
are appropriate, we go ahead and define σs`1 “ pσs æ iq

ak. For most
of the items above, it is clear what we mean by “having verification.”
The only item we should comment on is σspiq ă kσæi: This means that
the symbol for the @-type of c̄σæi in Cπ˚pσæiq has not yet appeared in

the vocabulary of Cπpσææiq
p1q (recall that σ ææ i “ σ æ i` 1). A verification

for this would be to find a symbol on τp1q for a @-type p true of c̄σæi

in Cπ˚pσæiq, but which is not implied by any of the @-types q which are
true of c̄σæi and whose relation symbols

ŹŹ

q appear in the vocabulary

of Cπpσææiq
p1q . A verification that a symbol for a @-type does not imply

another would be a finite structure in Kfin
p1q which has a tuple satisfying

the former but not the later.

X.5. LISTABLE CLASSES 179

If we manage to define such a sequence, it clearly satisfies conditions
(S1) and (S3). To see why (S2) holds, first observe that, for fixed i,
σspiq is non-decreasing in s and grows at most once beyond ∇piq or
kσæi. It thus eventually stabilizes. Let t be the last stage at which the
value of σtpiq changes. Then |σt| “ i` 1. From then on, σt is an initial
segment of all σs, and hence t is a true stage.

Finally, we need to show that appropriate i and k exist. Once we
know they exist, we know we will find them. Let i0 ď |σs| be the
greatest i such that for all j ă i, σspjq ě ∇s`1pjq. Notice that if
i0 ă |σs|, then σspi0q ă ∇s`1pi0q. Let i1 ď i0 be the greatest i such
that for all j ă i, there exists no verification that σspjq ă kσsæj. Notice
that if i1 ă i0, then such a verification exists for i1. Thus i1 satisfies
(A4) one way or the other. Let k ě ∇s`1pi1q be such that there is an

embedding Cπpσsq ãÑ Cπpσsæi1akq keeping Cπpσsæi1q: We know such a k
exists because σs is good, and hence it is a good extension of σs æ i1.
The pair xi1, ky now satisfies (A1), (A3), and (A4). We need to show
that γ “ σs æ i1

ak is good. Suppose it is not, and that γ is not a good
extension of γ æ j for some j ă i0. That means that the @-formula
 ψγæj,γpx̄q saying that c̄γæj has no extension that looks like Cπpγq is true
in Cπ˚pγæjq, and hence belongs to the @-type pγæjpx̄q. Since this formula
is not true in Cπpγq, it must be that the relation symbol for

ŹŹ

pγæj
is not in the vocabulary of Cπpγææjq

p1q yet. Remember we defined kγæj so

that the symbol for
ŹŹ

pγæj would be in the vocabulary of Cπpγæj
akγæjq

p1q .

Thus, we have found verification that γpjq ă kγæj. Recall that we have
chosen i1 so that there are no verifications that γpjq ă kγæj for j ă i1.
It follows that σs æ i1

ak is good, and (A2) holds. l

Corollary X.32. Let K be an effectively Σ-small Πc
2 class of struc-

tures. If Kp1q is listable, K has the low property.

Proof. Let S be the class of structures that consist of infinitely
many disjoint copies of structures in K. That is, the vocabulary of S
consists of the vocabulary of K plus a binary symbol E which defines
an equivalence relation so that, on each equivalence class, we have a
structure from K.

Since Kp1q is listable, we can build an operator SX
p1q that outputs

a structure in Sp1q that contains copies of all X-computable structures
in Kp1q, each one repeated infinitely often. (We will see below that
the canonical jumps of structures in S are essentially given by the
canonical jumps of their components in K.) This map is Turing-to-
isomorphism invariant, that is, if X ”T Y , then SX – SY , as the lists
of X-computable structures and Y -computable structures in Kp1q are

180 X. Σ-SMALL CLASSES

the same. We want to apply the previous theorem and get that for
every X, SX 1 has an X computable copy. This would imply that K
has the low property as follows: Consider a structure A that has a
presentation that is low over X. Then X 1 computes a copy of Ap1q,
and hence Ap1q is one of the structures that appears within one of the

equivalence classes in SX 1
p1q. Since SX 1 has an X-computable copy, so

does A.
To be able to apply the previous theorem we need to verify that

S is effectively Σ-small. This requires us to modify the definition of S
slightly. For a structure to be in S we impose the additional condition
that for each D-theory that is sharply realized in K, there are infinitely
many equivalence classes which have that theory. Remember that an
D-theory is an D-0-type, and since K is effectively Σ-small, we have a
computable list of all D-theories. Since Kp1q is Πc

2 and Kfin
p1q computable,

we can use Lemma III.29 to build a list of computable structures in
Kp1q with all possible D-theories. Adding these structures to the ones in
SX
p1q, we get an operator that outputs a structure in the new Sp1q. We

claim that, with this modification, S is effectively Σ-small. The D-type
of a tuple x̄ is determined by the following information:
‚ first, a partition of the variables x̄ into E-equivalence classes x̄1, x̄2,
... x̄k (i.e., the variables within each sub-tuple x̄i are E-equivalent
to each other and E-inequivalent to the rest);
‚ second, the D-type of each tuple x̄i within its equivalence class,
which is one of the D-types of K;
‚ third, the D-theory of the rest of the structure, the part that consists
of the equivalence classes that do not intersect x̄. Since each D-theory
repeats infinitely often, this D-theory is independent of the tuple x̄,
and is the same as the D-theory of all the structures in S. It is not
hard to see that this D-theory is computable.

It is then not hard to analyze these types and show that if K is ef-
fectively Σ-small, then so is S. Such analysis would also yield that
the canonical structural jump of a structure in S is determined by the
canonical structural jumps of its components. l

Exercise X.33. Show that being listable is preserved by effective
bi-interpretability of classes.

X.6. The copy-vs-diagonalize game

The copy-vs-diagonalize game provides a structural way of speak-
ing about the listability property without having to refer to Turing

X.6. THE COPY-VS-DIAGONALIZE GAME 181

operators or lists of X-computable structures. This game is the com-
binatorial core behind any proof that a class is listable or not. It was
introduced in [Mon13b], where different variants of the game were
analyzed. We only introduce the plain version and the 8-version. The
latter is the one that provides a notion equivalent to listability.

Fix a class K of infinite structures. Let us define the game GpKq.
Two players, C and D, play alternatively. It does not matter who
starts. On the sth move, D plays a finite τ|¨|-structure Drss P Kfin, and
C plays a finite τ|¨|-structure Crss P Kfin. Structures must be nested,
i.e., Drss Ď Drs ` 1s and Crss Ď Crs ` 1s. If a player does not follow
this rule, he or she loses. At the end of stages, we end up with two
structures: C “

Ť

s Crss and D “
Ť

sDrss.
Player D Dr0s Ď Dr1s Ď Dr2s ¨ ¨ ¨ D “

Ť

sDrss
Player C Cr0s Ď Cr1s Ď Cr2s Ď ¨ ¨ ¨ C “

Ť

s Crss
The winner of GpKq is decided as follows:

(1) If C R K, then D wins.
(2) If C P K, but D R K, then C wins.
(3) If D, C P K and D – C, then C wins.
(4) If D, C P K and D ­– C, then D wins.

Definition X.34. We say that K is copyable if C has a winning
strategy in the game GpKq, and that K is diagonalizable if D has a
winning strategy.}

Notice from the winning conditions that if neither player builds a
structure in K, then D wins. This seemingly minor point is actually
what creates the tension between the players. It allows D to “pass”
(i.e., play Drs`1s “ Drss) and wait for C to make a move she can take
advantage of. On the contrary, C does not have the luxury of “passing,”
as if both C and D pass forever, they will end up with structures outside
K, and D will win. Then, for instance, it would be safe for D to pass
whenever C passes. Thus, we may very well assume C is never allowed
to pass, while D is. This forces C to build ahead of D, making his job
of copying D harder.

As an example, let us show that the class of infinite linear orderings
is diagonalizable. This proof is the combinatorial core of Jockusch and
Soare’s proof that there is a low linear ordering without a computable
copy [JS91]. We will show later that the class of atom Boolean algebras
with infinitely many atoms is effectively copyable and deduce that BA
has the low property [DJ94].

}Assuming enough determinacy, one of the two players must have a winning
strategy. K is effectively copyable if C has a computable winning strategy.

182 X. Σ-SMALL CLASSES

Lemma X.35 (Kach–Montalbán [Mon13b, Lemma 7.3]). The class
of infinite linear orderings is diagonalizable.

Proof. The strategy for player D is the following: Before we even
start, we pledge that the structure D will be isomorphic to either ω or
m ` ω˚ for some m P N. Every time C passes, we, namely player D,
pass too. So we may assume C starts and then never passes. Pick an
element c in Cr0s, which we fix for the rest of the construction. At each
stage s, let nrss be the number of predecessors of c in Crss. Throughout
the construction, we keep track of an auxiliary restraint-function mrss;
we will never add elements to Drss below its mrss’th element. Start
by setting mrss “ 0. Throughout the game, we will make sure that
mrss ď nrss.

Here is what we do at stage s` 1:
(1) If C enumerates an element to the left of c, we pass, unless nrss

becomes greater than |Drss|. In that case, we take this opportunity to
move one step towards building D “ ω: For this, we set mrss “ |Ds|,
ensuring that every element enumerated in the future is to the right of
all the elements of Drss. Notice that if this happens infinitely often,
we will end up with D “ ω, while c will end up having infinitely many
elements to its left in C.

(2) If C enumerates an element to the right of c at stage s ` 1, we
define Drs` 1s by adding one more element to the right of the mrss’th
element of Drss. That is, we take one step towards enumerating a copy
of mrss ` ω˚. Note that if this happens from some point on without
ever changing the value of mrss, then c in C will have infinitely many
elements to its right and nrss many to its left, while no element in
mrss ` ω˚ will have this property.

If C is actually building an infinite linear ordering, then either (2)
will occur infinitely often or (1) will occur from some point on without
mrss changing. As we already argued, in either case, D ­– C. l

Exercise X.36. Show that linear orderings with no maximal ele-
ments are copyable.

Exercise X.37. Show that the properties of being copyable or
diagonalizable are preserved by effective bi-interpretability of classes.

The notion of listability, which we already know is connected to
the low property, is connected to a modification of this game. Fix a
class of structures K. The new game is called G8pKq. Two players,
C and D, play alternatively, and it does not matter who starts. Here
comes the new feature: On the sth move, D plays a finite τ|¨|-structure
Drss P Kfin, and C plays s`1 many finite τ|¨|-structures Cjrs´ js P Kfin

X.6. THE COPY-VS-DIAGONALIZE GAME 183

for j “ 0, ..., s. Structures must be nested, i.e., Drss Ď Drs ` 1s, and
Cjrss Ď Cjrs` 1s. If a player does not follow this rule, he or she loses.
At the end of stages, we end up with structures Cj “

Ť

s Cjrss and
D “

Ť

sDrss.
Player D Dr0s Ď Dr1s Ď Dr2s ¨ ¨ ¨ D “

Ť

sDrss
C0r0s Ď C0r1s Ď C0r2s Ď ¨ ¨ ¨ C0 “

Ť

s C0rss
Player C C1r0s Ď C1r1s Ď ¨ ¨ ¨ C1 “

Ť

s C1rss
C2r0s Ď ¨ ¨ ¨ C2 “

Ť

s C1rss
. . .

...
...

The winner of G8pKq is decided as follows:

(1) If for some j, Cj R K, then D wins.
(2) If for all j, Cj P K, but D R K, then C wins.
(3) If D, C0, C1, ... P K and, for some j, D – Cj, then C wins.
(4) If D, C0, C1, ... P K and, for all j, D ­– Cj, then D wins.

Definition X.38. We say that K is 8-copyable if C has a winning
strategy in the game G8pKq, and that K is 8-diagonalizable if D has
a winning strategy. K is effectively 8-copyable if C has a computable
winning strategy in the game G8pKq.

If a class is copyable, it is clearly 8-copyable. The reverse direction
does not hold. For instance, the class of infinite linear orderings is
8-copyable (see exercise below), though diagonalizable. However, the
few proofs of 8-copyability we know usually proceed by splitting the
class K (maybe with possible added constants) into countably many
copyable classes Kn, n P N, and building Cn by following the strategy
for GpKnq.

Exercise X.39. [Mon13b, Lemma 7.2] Show that infinite linear
orderings are 8-copyable by, first adding two constant symbols, a and
b, and then partitioning the class of infinite linear orderings according
to the following properties, and treating each case separately:

‚ no maximal elements
‚ no minimal elements
‚ a is a limit from the right
‚ b is a limit from the left
‚ the interval between a and b looks like ω ` ω˚

‚ the whole linear ordering looks like ω ` Z ¨Q` ω˚

The connection with the low property comes from the following
theorem. The connection is actually quite straightforward, and it seems
that one is not adding much by considering 8-games instead of just
working with listability. However, the proofs of listability can usually

184 X. Σ-SMALL CLASSES

be understood as a copy-vs-diagonalize game. We feel that visualizing
these proofs as game proofs helps to see what is really going on.

Theorem X.40. A class K of infinite structures is listable if and
only if it is effectively 8-copyable.

Proof. Suppose first that K is 8-copyable. For each e P N, we
build an infinite sequence of structures tCje : j P ωu in K such that if ΦY

e

is the diagram of a structure in K, then one of the Cje ’s is isomorphic to
it. To do this, we let D play the diagram of ΦY

e so long at it converges,
and we let D pass while we wait for convergence. Independently of
whether ΦY

e is total or in K, player C is forced to play a structure in K.
The answer by player C given from the effective strategy gives us the
desired list. Putting together all these lists over all e P N, we get a list
of structures in K that includes all the structures which have diagrams
of the form ΦY

e for some e.
Suppose now that K is listable; we need to define a strategy for C.

Let X be the sequence of indices of the finite structures played by D.
We let C play the X-computable list of all X-computable structures in
K in response. Since D is computable in X, it will be isomorphic to
one of the structures played by C. l

Jockusch and Soare’s proof that linear orderings do not have the
low property is, in essence, a proof that adjacency linear orderings are
8-diagonalizable. About that proof, let us just say that it requires an
adaptation of the proof of Lemma X.35 to show that adjacency linear
orderings are 02-diagonalizable [Mon13b, Lemma 7.4], and then uses
02-separators to split an ordering into infinitely many disjoint intervals.

Definition X.41. K has the low property on a cone if there is
Y P 2N such that, for every X ěT Y , if some structure from K has a
copy that is low over X, it also has an X-computable copy.

Theorem X.42. ([Mon13b]) Let K be a Πin
2 class of structures.

The following are equivalent:
(1) K has the low property on a cone.
(2) K is Σ-small and K1 is listable on a cone.
(3) K is Σ-small and K1 is 8-copyable.

X.6.1. Low Boolean algebras. In this section, we prove Downey
and Jockusch’s result that every low Boolean algebra has a computable
copy. The original proof uses interval algebras and is very hands on.
We give a different presentation using the machinery we just devel-
oped. This will allow us to recognize the different parts of the proof

X.6. THE COPY-VS-DIAGONALIZE GAME 185

and isolate its combinatorial core, namely the proof that ABA is ef-
fectively 8-copyable. Recall that ABA is the class of Boolean alge-
bras with an added relation that recognizes atoms, which we call atom
Boolean algebras. From Exercise X.12, we get that BAp1q is effectively
bi-interpretable with ABA. By Exercise X.37, we get that it is enough
to show that ABA is effectively 8-copyable.

The following technical lemma will be quite useful.

Lemma X.43 (Remmel [Rem81b]). Suppose A Ď B are Boolean
algebras with infinitely many atoms satisfying that

‚ every atom of A is a finite sum of atoms of B
‚ B is generated by A together with the atoms of B that are below

the atoms of A.˚˚

Then A and B are isomorphic.

Proof. Let I be the set of finite partial embeddings p from a finite
sub-algebra of A to B that satisfy that, for every a P domppq,

‚ a and ppaq are finitely apart in B (i.e., a M ppaq is a finite sum
of atoms in B), and

‚ the number of atoms below a in A is the same as the number
of atoms below ppaq in B (this number could be infinite).

Observe that the trivial partial embedding that maps 0A to 0B and
1A to 1B belongs to I because of our assumption that both A and B
have infinitely many atoms. We claim that I has the back-and-forth
property.:: Consider p P I with domain A0 and c P A. We want to
build q P I which extends p and whose domain includes c. Let A0rcs be
the finite sub-Boolean algebra of A generated by A0 and c. We want q
to have domain A0rcs. If a1, ..., ak are the minimal non-zero elements
of A0, then the minimal elements of A0rcs are a1 ^ c, a1 ^ c

c,...,ak ^ c,
ak ^ cc. Let us divide the proof into k steps and work first below a1,
then below a2, etc. For the first step, let us just assume that c is below
the minimal element a1 of A0. The other steps work the same way. To

˚˚We say that a subset X of a Boolean algebra B generates B if every element
of B can be written as a Boolean combination of elements of X.

::This is not exactly the same back-and-forth property from Definition III.13,
but almost. Of course, one can think of a finite partial embedding p as the pair
of tuples xā, b̄y P AăN ˆ BăN, where ā is the domain of p and b̄ “ ppāq. That
they satisfy the same atomic formulas follows from p being an embedding. The
versions of the back-and-forth properties we need are as follows: For every p P I
and c P A, there exists a q extending p whose domain includes c; and for every
p P I and d P B, there exists a q extending p whose image includes d. That every p
in a back-and-forth set extends to an isomorphism is proved exactly as in Lemma
III.15.

186 X. Σ-SMALL CLASSES

define an extension q of p with domain A0rcs, all we need to do is to
find an appropriate element d P B to define d “ ppcq. Such a d needs
to satisfy that d ă ppa1q, that c M d is a finite sum of atoms, that the
number of atoms below c and d are the same, and that the number of
atoms below ai ^ c

c and ppa1q ^ d
c are also the same.

The first candidate for d is ppaiq ^ c, which is finitely apart from
c since ai is finitely apart from ppaiq. However, ppaiq ^ c and c might
have a different number of atoms below. Since ai and ppaiq have the
same number of atoms below, by adding or removing a few atoms to
ppaiq^ c, we can find a d ă ppaiq which has the same number of atoms
below as c, and so that the number of atoms below ai^c

c and ppaiq^d
c

are also the same.
The proof of the back condition of the back-and-forth property is

the same. We conclude that I has the back-and-forth property and
that A and B are isomorphic. l

Before going into the proof that atom Boolean algebras are 8-
copyable, we need to look more closely at how we approximate Boolean
algebras. In Definition I.6, we defined finite approximations for struc-
tures only for relational vocabularies. We could make the vocabulary of
Boolean algebras relational, for instance by considering only ď, but we
would then have to deal with partial Boolean algebras, which causes
unnecessary complications. However, since Boolean algebras are lo-
cally finite,;; we can assume every step in a finite approximation to
a Boolean algebra is a finite Boolean algebra. That is, B has a com-
putable copy if and only if there is a computable sequence of finite
Boolean algebras B0 Ď B1 Ď ¨ ¨ ¨ whose union is B. The same is true
for atom Boolean algebras. In the case of atom Boolean algebras, the
finite approximations are not atom Boolean algebras themselves: There
might be minimal elements (i.e., non-zero elements with only zero be-
low them) which are not labeled atoms because they will not remain
minimal in the later steps of the approximation. Even though minimal
elements and atoms are the same thing, when we are working with
ABAfin, we use the word atom to refer to the elements that are labeled
as atoms, and use the word minimal for the ones that are minimal in
the given finite approximation, even if they do not stay minimal later.

A useful way to visualize this dynamic approximation process is
via trees. Suppose we are given a finite approximation B1 Ď B2 Ď ¨ ¨ ¨

to a Boolean algebra B. Assume that each Bs`1 is generated by Bs
and at most one extra element cs`1. We define a finite approximation

;;Finitely generated Boolean algebras are finite: n elements generate a Boolean
algebra of size at most 22n .

X.6. THE COPY-VS-DIAGONALIZE GAME 187

T0 Ď T1 Ď ¨ ¨ ¨ to a binary tree T so that, for every s P N, the leaves
of Ts are in one-to-one correspondence with the minimal elements of
Bs. Think of these trees as growing downwards. Let T0 be the tree
that contains just a root node. Suppose we have defined Ts. In Bs`1,
some of the minimal elements from Bs get split in two, and some stay
minimal: That is, if a is a minimal element of Bs, it splits into a^ cs`1

and a ^ ccs`1 unless one of these is 0, in which case a stays minimal
in Bs`1. For the minimal elements that split in two, we add in Ts`1

two extensions to the corresponding leaf in Ts. For the ones that stay
minimal, we leave the corresponding leaf in Ts a leaf in Ts`1. Notice
that the new elements of Ts`1 always come in pairs as children of some
leaf of Ts.

When we approximate atom Boolean algebras, we also use an atom
relation symbol on the trees which does not change throughout the
Ts’s. Notice that only leaves can be labeled atom. When we have a
leaf with an atom label, that leaf will remain a leaf in all subsequent
trees. If a leaf does not have an atom label, it must eventually split.
By slightly modifying the trees, we may assume that if a leaf of Ts is
not labeled atom, it must always split into two leaves in Ts`1. We may
thus assume that a leaf of a tree Ts is labeled atom if and only it does
not split in Ts`1.

Theorem X.44 (Downey, Jockusch [DJ94]). Atom Boolean alge-
bras are effectively 8-copyable.

It follows from Theorem X.40 and Corollary X.32 that Boolean
algebras have the low property.

Proof. We need to describe an effective strategy for C in the game
G8pABAq. For each n P N, there is a unique Boolean algebra with
exactly n atoms, denoted by Intpn ` 1 ` Qq,: which can be built
computably uniformly in n. For n ą 0, player C builds Cn to be that
algebra. We only need to concentrate on building C0, trying to copy
D under the assumption that D has infinitely many atoms. Thus it is
enough to show that the class of atom Boolean algebras with infinitely
many atoms is copyable. We describe a strategy for C in that game.

As we mentioned above, we can assume the players play atom finite
trees T C

0 Ď T C
1 Ď T C

2 Ď ¨ ¨ ¨ and TD
0 Ď TD

1 Ď TD
2 Ď ¨ ¨ ¨ as in the

paragraph before the theorem. These trees satisfy that the minimal

:IntpLq denotes the interval Boolean algebra of L whose elements are the subsets
of L which are finite unions of left-closed, right-open intervals. An easy back-and-
forth argument shows that the interval algebra of 1 ` Q is the unique countable
Boolean algebra without atoms.

188 X. Σ-SMALL CLASSES

elements of Crss are in one-to-one correspondence with the leaves of
T C
s and some of those leaves are labeled atom. If a leaf is not labeled

atom, it must split in T C
s`1. The same happens with TD

s .
We are now ready to define player C’s strategy when responding

to a sequence TD
0 Ď TD

1 Ď TD
2 Ď ¨ ¨ ¨ played by D. At each stage s

of the game, C will build a tree T C
s and an embedding fs : TD

s Ñ T C
s .

This is a tree-as-a-graph embedding; that is, the root is mapped to the
root, and the two children of a node t are mapped to the children of
fsptq. Furthermore, we require that if a leaf ` in TD

s is labeled atom,
then all the leaves below fsp`q are also labeled atoms, and if ` is not
labeled atom, then none of the leaves below fsp`q are labeled atom.
(This way we get that the image of an atom ` in Drss is mapped to
a finite sum of atoms in Crss.) Building such a sequence of trees is
rather straightforward: Whether D passes (i.e., TD

s`1 “ TD
s) or not, we,

namely player C, always extend the non-atom leaves of T C
s by adding

two non-atom children. If D does extend his tree, we need to extend
fs to the new domain. If D adds leaves `1 and `2 below a leaf t of TD

s ,
we know fsptq was not labeled atom, and hence it splits in T C

s`1 into
two nodes which are not labeled atom either. If `1 or `2 are not labeled
atom, we can just map them to children of fsptq in T C

s`1. If `1 is labeled
atom, let fs`1p`sq be one of those two children, add new leaves in T C

s`1

below all the leaves in T C
s below fs`1p`q and label them atoms. Same

for `2.
At the end of the game, we end up with an embedding f “

Ť

s fs
from TD “

Ť

s T
D
s to T C “

Ť

s T
D
s . This can be viewed as an embedding

between the corresponding Boolean algebras C and D. By construction,
it is easy to see that f maps atoms to finite sums of atoms. To see that
it is almost onto, one needs to prove that every element c of T C either
is eventually in the image of fs, or there is a stage where a predecessor
of c is assigned to an atom of TD and all successors of c that are leaves
are labeled atom. We then get that every element in T C that is not
in the image of f is a finite sum of atoms that are below the image of
an atom from TD. We thus get that the Boolean algebras fpCq Ď D
satisfy the hypothesis of Remmel’s Lemma X.43, and thus C and D are
isomorphic. l

The proofs of the low2, low3, and low4 Boolean algebra theorems
by Thurber [Thu95], and Knight and Stob [KS00] essentially give
an understanding of BApnq for n “ 2, 3, 4 even if the concept was not
defined yet. For instance, for n “ 2, Thurber worked with BA with
added relations for atom, atomless (i.e., no atoms below), and infinite
(infinitely many elements below). It turned out that with these three

X.6. THE COPY-VS-DIAGONALIZE GAME 189

extra relations, we get a class that is effectively bi-interpretable with
BAp2q [HM12]. For n “ 3, Knight and Stob added relations for atomic
(not atomless elements below), 1-atomic (infinite, but without splitting
into two infinite elements), and atominf (infinitely many atoms below).
It turned out that with these three extra relations, we get a class that
is effectively bi-interpretable with BAp3q [HM12]. They then added
five more relations for BAp4q. The copy-vs-diagonalize game was not
known by then, but Thurber’s and Knight and Stob’s proofs become
clearer when seen in terms of games. Harris and Montalbán [HM12]

gave an in-depth analysis of BApnq and BAfin
pnq for all n P N.

Whether BAp5q, of BApnq for n ą 5, is 8-copyable remains open.

Bibliography

[ACK`] U. Andrews, M. Cai, I. Kalimullin, S. Lempp, J. Miller, and A. Mon-
talbán. The complements of lower cones of degrees and the degree spec-
tra of structures. To appear in the Journal of Symbolic Logic.

[AGK`] Uri Andrews, Hristo Ganchev, Ruitger Kuyper, Steffen Lempp,
Joseph S. Miller, A. Soskova, and M. Soskova. On cototality and the
skip operator in the enumeration degrees. submitted for publication.

[AK00] C.J. Ash and J. Knight. Computable Structures and the Hyperarith-
metical Hierarchy. Elsevier Science, 2000.

[AKMS89] Chris Ash, Julia Knight, Mark Manasse, and Theodore Slaman.
Generic copies of countable structures. Ann. Pure Appl. Logic,
42(3):195–205, 1989.

[AM15] Uri Andrews and Joseph S. Miller. Spectra of theories and structures.
Proc. Amer. Math. Soc., 143(3):1283–1298, 2015.

[Bad77] S. A. Badaev. Computable enumerations of families of general recursive
functions. Algebra i Logika, 16(2):129–148, 249, 1977.

[Bal06] V. Baleva. The jump operation for structure degrees. Arch. Math. Logic,
45(3):249–265, 2006.

[Bar69] Jon Barwise. Infinitary logic and admissible sets. J. Symbolic Logic,
34(2):226–252, 1969.

[Bar75] Jon Barwise. Admissible sets and structures. Springer-Verlag, Berlin,
1975. An approach to definability theory, Perspectives in Mathematical
Logic.

[BT79] V. Ja. Beljaev and M. A. Tăıclin. Elementary properties of existentially
closed systems. Uspekhi Mat. Nauk, 34(2(206)):39–94, 1979.

[CCKM04] W. Calvert, D. Cummins, J. F. Knight, and S. Miller. Comparison of
classes of finite structures. Algebra Logika, 43(6):666–701, 759, 2004.

[Chi90] John Chisholm. Effective model theory vs. recursive model theory. J.
Symbolic Logic, 55(3):1168–1191, 1990.

[CHS07] Wesley Calvert, Valentina Harizanov, and Alexandra Shlapentokh. Tur-
ing degrees of isomorphism types of algebraic objects. J. Lond. Math.
Soc. (2), 75(2):273–286, 2007.

[Coo04] S. Barry Cooper. Computability theory. Chapman & Hall/CRC, Boca
Raton, FL, 2004.

[Cut80] Nigel Cutland. Computability. Cambridge University Press, Cambridge-
New York, 1980. An introduction to recursive function theory.

[DHK03] R. Downey, D. Hirschfeldt, and B. Khoussainov. Uniformity in the
theory of computable structures. Algebra Logika, 42(5):566–593, 637,
2003.

191

192 BIBLIOGRAPHY

[DHK`07] Downey, Hirschfeldt, Kach, Lempp, A. Montalbán, and Mileti. Sub-
spaces of computable vector spaces. Journal of Algebra, 314(2):888–894,
August 2007.

[DJ94] Rod Downey and Carl G. Jockusch. Every low Boolean algebra is iso-
morphic to a recursive one. Proc. Amer. Math. Soc., 122(3):871–880,
1994.

[DK92] Rodney Downey and Julia F. Knight. Orderings with αth jump degree
0pαq. Proc. Amer. Math. Soc., 114(2):545–552, 1992.

[DKL`] R. Downey, A. Kach, S. Lempp, A.E.M. Lewis-Pye, A. Montalbán, and
D. Turetsky. The complexity of computable categoricity. Submitted for
publication.

[DKLT13] Rodney G. Downey, Asher M. Kach, Steffen Lempp, and Daniel D.
Turetsky. Computable categoricity versus relative computable cate-
goricity. Fund. Math., 221(2):129–159, 2013.

[End11] Herbert B. Enderton. Computability theory. Elsevier/Academic Press,
Amsterdam, 2011. An introduction to recursion theory.

[Erš77] Ju. L. Eršov. Theorie der Numerierungen. III. Z. Math. Logik Grund-
lagen Math., 23(4):289–371, 1977. Translated from the Russian and
edited by G. Asser and H.-D. Hecker.

[Ers96] Yuri L. Ershov. Definability and computability. Siberian School of Al-
gebra and Logic. Consultants Bureau, New York, 1996.

[Fel76] Stephen Martin Fellner. RECURSIVENESS AND FINITE AXIOMA-
TIZABILITY OF LINEAR ORDERINGS. ProQuest LLC, Ann Arbor,
MI, 1976. Thesis (Ph.D.)–Rutgers The State University of New Jersey
- New Brunswick.

[FF09] Ekaterina B. Fokina and Sy-David Friedman. Equivalence relations on
classes of computable structures. In Mathematical theory and compu-
tational practice, volume 5635 of Lecture Notes in Comput. Sci., pages
198–207. Springer, Berlin, 2009.

[FFH`12] E. B. Fokina, S. Friedman, V. Harizanov, J. F. Knight, C. McCoy,
and A. Montalbán. Isomorphism relations on computable structures.
Journal of Symbolic Logic, 77(1):122–132, 2012.

[FK] Marat Faizrahmanov and Iskander Kalimullin. Limitwise monotonic
sets of reals. submitted for publication.

[FKM09] Andrey Frolov, Iskander Kalimullin, and Russell Miller. Spectra of al-
gebraic fields and subfields. In Mathematical theory and computational
practice, volume 5635 of Lecture Notes in Comput. Sci., pages 232–241.
Springer, Berlin, 2009.

[Fri57a] Richard Friedberg. A criterion for completeness of degrees of unsolv-
ability. J. Symb. Logic, 22:159–160, 1957.

[Fri57b] Richard M. Friedberg. Two recursively enumerable sets of incomparable
degrees of unsolvability (solution of Post’s problem, 1944). Proc. Nat.
Acad. Sci. U.S.A., 43:236–238, 1957.

[FS89] Harvey Friedman and Lee Stanley. A Borel reducibility theory for
classes of countable structures. J. Symbolic Logic, 54(3):894–914, 1989.

[FSS83] Harvey M. Friedman, Stephen G. Simpson, and Rick L. Smith.
Countable algebra and set existence axioms. Ann. Pure Appl. Logic,
25(2):141–181, 1983.

BIBLIOGRAPHY 193

[GD80] S. S. Gončarov and V. D. Dzgoev. Autostability of models. Algebra i
Logika, 19(1):45–58, 132, 1980.

[GHK`05] Sergey Goncharov, Valentina Harizanov, Julia Knight, Charles McCoy,
Russell Miller, and Reed Solomon. Enumerations in computable struc-
ture theory. Ann. Pure Appl. Logic, 136(3):219–246, 2005.

[GLS03] Sergey S. Goncharov, Steffen Lempp, and Reed Solomon. The com-
putable dimension of ordered abelian groups. Adv. Math., 175(1):102–
143, 2003.

[GN02] S. S. Goncharov and Dzh. Năıt. Computable structure and antistruc-
ture theorems. Algebra Logika, 41(6):639–681, 757, 2002.

[Gon75a] S. S. Gončarov. Selfstability, and computable families of constructiviza-
tions. Algebra i Logika, 14(6):647–680, 727, 1975.

[Gon75b] S. S. Goncharov. Some properties of the constructivization of boolean
algebras. Sibirskii Matematicheskii Zhurnal, 16(2):264–278, 1975.

[Gon77] S. S. Gončarov. The number of nonautoequivalent constructivizations.
Algebra i Logika, 16(3):257–282, 377, 1977.

[Gon80] Sergey S. Goncharov. Autostability of models and abelian groups. Al-
gebra i Logika, 19(1):23–44, 132, 1980.

[Gor70] Carl E. Gordon. Comparisons between some generalizations of recur-
sion theory. Compositio Math., 22:333–346, 1970.

[Har78] Leo Harrington. Analytic determinacy and 07. J. Symbolic Logic,
43(4):685–693, 1978.

[Hig52] Graham Higman. Ordering by divisibility in abstract algebras. Proc.
London Math. Soc. (3), 2:326–336, 1952.

[Hir06] Denis R. Hirschfeldt. Computable trees, prime models, and relative
decidability. Proc. Amer. Math. Soc., 134(5):1495–1498, 2006.

[HKSS02] Denis R. Hirschfeldt, Bakhadyr Khoussainov, Richard A. Shore, and
Arkadii M. Slinko. Degree spectra and computable dimensions in alge-
braic structures. Ann. Pure Appl. Logic, 115(1-3):71–113, 2002.

[HLZ99] Bernhard Herwig, Steffen Lempp, and Martin Ziegler. Constructive
models of uncountably categorical theories. Proc. Amer. Math. Soc.,
127(12):3711–3719, 1999.

[HM] Kenneth Harris and A. Montalbán. Boolean algebra approximations.
To appear in the Transactions of the AMS.

[HM12] Kenneth Harris and Antonio Montalbán. On the n-back-and-forth types
of Boolean algebras. Trans. Amer. Math. Soc., 364(2):827–866, 2012.

[HS07] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles
weaker than Ramsey’s theorem for pairs. J. Symbolic Logic, 72(1):171–
206, 2007.

[HTM] Matthew Harrison-Trainor and Antonio Montalbán. The tree of tuples
of a structure. submitted for publication.

[HTMM] M. Harrison-Trainor, R. Miller, and A. Montalbán. Generic functors
and infinitary interpretations. In preparation.

[HTMMM] M. Harrison-Trainor, A. Melnikov, R. Miller, and A. Montalbán. Com-
putable functors and effective interpretability. submitted for publica-
tion.

[Joc68] Carl G. Jockusch, Jr. Semirecursive sets and positive reducibility.
Trans. Amer. Math. Soc., 131:420–436, 1968.

194 BIBLIOGRAPHY

[Joc80] Carl G. Jockusch, Jr. Degrees of generic sets. In Recursion theory:
its generalisation and applications (Proc. Logic Colloq., Univ. Leeds,
Leeds, 1979), volume 45 of London Math. Soc. Lecture Note Ser., pages
110–139. Cambridge Univ. Press, Cambridge-New York, 1980.

[JS91] Carl G. Jockusch, Jr. and Robert I. Soare. Degrees of orderings not
isomorphic to recursive linear orderings. Ann. Pure Appl. Logic, 52(1-
2):39–64, 1991. International Symposium on Mathematical Logic and
its Applications (Nagoya, 1988).

[Kal08] I. Sh. Kalimullin. Almost computably enumerable families of sets. Mat.
Sb., 199(10):33–40, 2008.

[Kal09] I.Sh. Kalimullin. Uniform reducibility of representability problems for
algebraic structures. Sibirskii Matematicheskii Zhurnal, 50(2):334–343,
2009.

[Khi04] A. N. Khisamiev. On the Ershov upper semilattice LE . Sibirsk. Mat.
Zh., 45(1):211–228, 2004.

[KM] A. Kach and A. Montalbán. Linear orders with finitely many descending
cuts. in preparation.

[KMVB07] Julia F. Knight, Sara Miller, and M. Vanden Boom. Turing computable
embeddings. J. Symbolic Logic, 72(3):901–918, 2007.

[Kni86] Julia F. Knight. Degrees coded in jumps of orderings. J. Symbolic Logic,
51(4):1034–1042, 1986.

[Kni98] J. F. Knight. Degrees of models. In Handbook of recursive mathematics,
Vol. 1, volume 138 of Stud. Logic Found. Math., pages 289–309. North-
Holland, Amsterdam, 1998.

[KP54] S.C. Kleene and E.L. Post. The upper semi-lattice of the degrees of
recursive unsolvability. Annals of Mathematics, 59:379–407, 1954.

[Kru60] J. B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi’s
conjecture. Trans. Amer. Math. Soc., 95:210–225, 1960.

[KS98] Bakhadyr Khoussainov and Richard A. Shore. Computable isomor-
phisms, degree spectra of relations, and Scott families. Ann. Pure Appl.
Logic, 93(1-3):153–193, 1998. Computability theory.

[KS00] Julia F. Knight and Michael Stob. Computable Boolean algebras. J.
Symbolic Logic, 65(4):1605–1623, 2000.

[KSS07] Bakhadyr Khoussainov, Pavel Semukhin, and Frank Stephan. Applica-
tions of Kolmogorov complexity to computable model theory. J. Sym-
bolic Logic, 72(3):1041–1054, 2007.

[Kud96a] O. V. Kudinov. An autostable 1-decidable model without a computable
Scott family of D-formulas. Algebra i Logika, 35(4):458–467, 498, 1996.

[Kud96b] O. V. Kudinov. An autostable 1-decidable model without a computable
Scott family of D-formulas. Algebra i Logika, 35(4):458–467, 498, 1996.

[Kud96c] O. V. Kudinov. Some properties of autostable models. Algebra i Logika,
35(6):685–698, 752, 1996.

[Kud97] O. V. Kudinov. The problem of describing autostable models. Algebra
i Logika, 36(1):26–36, 117, 1997.

[Lac73] A. H. Lachlan. The priority method for the construction of recursively
enumerable sets. In Cambridge Summer School in Mathematical Logic
(Cambridge, 1971), pages 299–310. Lecture Notes in Math., Vol. 337.
Springer, Berlin, 1973.

BIBLIOGRAPHY 195

[Lav63] I. A. Lavrov. The effective non-separability of the set of identically true
formulae and the set of finitely refutable formulae for certain elementary
theories. Algebra i Logika Sem., 2(1):5–18, 1963.

[LE66] E. G. K. Lopez-Escobar. On defining well-orderings. Fund. Math.,
59:13–21, 1966.

[Ler83] Manuel Lerman. Degrees of unsolvability. Perspectives in Mathematical
Logic. Springer-Verlag, Berlin, 1983. Local and global theory.

[LMMS05] Steffen Lempp, Charles McCoy, Russell Miller, and Reed Solomon.
Computable categoricity of trees of finite height. J. Symbolic Logic,
70(1):151–215, 2005.

[LR78] Peter E. La Roche. Contributions to Recursive Algebra. ProQuest LLC,
Ann Arbor, MI, 1978. Thesis (Ph.D.)–Cornell University.

[Mal62] Anatolii I. Mal’cev. On recursive Abelian groups. Dokl. Akad. Nauk
SSSR, 146:1009–1012, 1962.

[Mar68] Donald A. Martin. The axiom of determinateness and reduction prin-
ciples in the analytical hierarchy. Bull. Amer. Math. Soc., 74:687–689,
1968.

[Mar75] Donald A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363–
371, 1975.

[Mar82] David Marker. Degrees of models of true arithmetic. In Proceedings of
the Herbrand symposium (Marseilles, 1981), volume 107 of Stud. Logic
Found. Math., pages 233–242. North-Holland, Amsterdam, 1982.

[McC] Ethan McCarthy. Cototal enumeration degrees and the Turing degree
spectra of minimal subshifts. To appear in the Proc. Amer. Math. Soc.
DOI: 10.1090/proc/13783.

[McC03] Charles F. D. McCoy. ∆0
2-categoricity in Boolean algebras and linear

orderings. Ann. Pure Appl. Logic, 119(1-3):85–120, 2003.
[Med55] Yu. T. Medvedev. Degrees of difficulty of the mass problem. Dokl. Akad.

Nauk SSSR (N.S.), 104:501–504, 1955.
[Mil83] Terrence Millar. Omitting types, type spectrums, and decidability. J.

Symbolic Logic, 48(1):171–181, 1983.
[Mil04] Joseph S. Miller. Degrees of unsolvability of continuous functions. J.

Symbolic Logic, 69(2):555–584, 2004.
[MM] A. Melnikov and A. Montalbán. Computable Polish group actions. Sub-

mitted for publication.
[MM17] David Marker and Russell Miller. Turing degree spectra of differentially

closed fields. J. Symb. Log., 82(1):1–25, 2017.
[MN79] G. Metakides and A. Nerode. Effective content of field theory. Ann.

Math. Logic, 17(3):289–320, 1979.
[Mona] A. Montalbán. Effectively existentially-atomic structures. Submitted

for publication.
[Monb] Antonio Montalbán. Analytic equivalence relations satisfying

hyperarithmetic-is-recursive. Submitted for publication.
[Monc] Antonio Montalbán. Classes of structures with no intermediate isomor-

phism problems. Submitted for publication.
[Mond] Antonio Montalbán. Computability theoretic classifications for classes

of structures. Submitted for publication.

196 BIBLIOGRAPHY

[Mone] Antonio Montalbán. Priority arguments via true stages. Submitted for
publication.

[Mon09] Antonio Montalbán. Notes on the jump of a structure. Mathematical
Theory and Computational Practice, pages 372–378, 2009.

[Mon10] Antonio Montalbán. Counting the back-and-forth types. Journal of
Logic and Computability, page doi: 10.1093/logcom/exq048, 2010.

[Mon12] Antonio Montalbán. Rice sequences of relations. Philosophical Trans-
actions of the Royal Society A, 370:3464–3487, 2012.

[Mon13a] Antonio Montalbán. A computability theoretic equivalent to Vaught’s
conjecture. Adv. Math., 235:56–73, 2013.

[Mon13b] Antonio Montalbán. Copyable structures. Journal of Symbolic Logic,
78(4):1025–1346, 2013.

[Mon13c] Antonio Montalbán. A fixed point for the jump operator on structures.
Journal of Symbolic Logic, 78(2):425–438, 2013.

[MonP2] Antonio Montalbán. Computable structure theory: Beyond the arith-
metic. In preparation, P2.

[Mor65] Michael Morley. Omitting classes of elements. In Theory of Mod-
els (Proc. 1963 Internat. Sympos. Berkeley), pages 265–273. North-
Holland, Amsterdam, 1965.

[Mor04] A. S. Morozov. On the relation of Σ-reducibility between admissible
sets. Sibirsk. Mat. Zh., 45(3):634–652, 2004.

[Mos69] Yiannis N. Moschovakis. Abstract first order computability. I, II. Trans.
Amer. Math. Soc., 138:427–464, 1969.

[MPSS] R. Miller, B. Poonen, H. Schoutens, and A. Shlapentokh. A computable
functor from graphs to fields. To appear.

[MS12] A. Montalbán and Richard A. Shore. The limits of determinacy in
second order arithmetic. Proceedings of the London Math Society,
104(2):223–252, 2012.

[Muc56] A. A. Muchnik. On the unsolvability of the problem of reducibility in
the theory of algorithms. Dokl. Akad. Nauk SSSR, N.S., 108:194–197,
1956.

[Muč63] A. A. Mučnik. On strong and weak reducibility of algorithmic problems.
Sibirsk. Mat. Ž., 4:1328–1341, 1963.

[Nie09] André Nies. Computability and randomness, volume 51 of Oxford Logic
Guides. Oxford University Press, Oxford, 2009.

[Nur74] A. T. Nurtazin. Strong and weak constructivizations, and enumerable
families. Algebra i Logika, 13:311–323, 364, 1974.

[Pos44] Emil L. Post. Recursively enumerable sets of positive integers and their
decision problems. Bull. Amer. Math. Soc., 50:284–316, 1944.

[Pou72] Maurice Pouzet. Modèle universel d’une théorie n-complète: Modèle
uniformément préhomogène. C. R. Acad. Sci. Paris Sér. A-B,
274:A695–A698, 1972.

[Puz09] V. G. Puzarenko. On a certain reducibility on admissible sets. Sibirsk.
Mat. Zh., 50(2):415–429, 2009.

[Puz11] Vadim Puzarenko. Fixed points of the jump operator. Algebra and
Logic, 5, 2011. to appear.

[Rem81a] J. B. Remmel. Recursively categorical linear orderings. Proc. Amer.
Math. Soc., 83(2):387–391, 1981.

BIBLIOGRAPHY 197

[Rem81b] Jeffrey B. Remmel. Recursive Boolean algebras with recursive atoms.
J. Symbolic Logic, 46(3):595–616, 1981.

[Ric77] Linda Richter. Degrees of unsolvability of models. PhD thesis, Univer-
sity of Illinois at Urbana-Champaign, 1977.

[Ric81] Linda Jean Richter. Degrees of structures. J. Symbolic Logic, 46(4):723–
731, 1981.

[RS] M. Rabin and D. Scott. The undecidability of some simple theories.
Unpublished notes.

[Sch16] Noah Schweber. Interactions between computability theory and set the-
ory. PhD thesis, University of California, Berkeley, 2016.

[Sel71] Alan L. Selman. Arithmetical reducibilities. I. Z. Math. Logik Grund-
lagen Math., 17:335–350, 1971.

[Sho78] Richard A. Shore. Controlling the dependence degree of a recursively
enumerable vector space. J. Symbolic Logic, 43(1):13–22, 1978.

[Sim76] H. Simmons. Large and small existentially closed structures. J. Sym-
bolic Logic, 41(2):379–390, 1976.

[Sla98] Theodore A. Slaman. Relative to any nonrecursive set. Proc. Amer.
Math. Soc., 126(7):2117–2122, 1998.

[Smi81] Rick L. Smith. Two theorems on autostability in p-groups. In Logic
Year 1979–80 (Proc. Seminars and Conf. Math. Logic, Univ. Connecti-
cut, Storrs, Conn., 1979/80), volume 859 of Lecture Notes in Math.,
pages 302–311. Springer, Berlin, 1981.

[Soa16] Robert I. Soare. Turing computability. Theory and Applications of
Computability. Springer-Verlag, Berlin, 2016. Theory and applications.

[Sos04] Ivan N. Soskov. Degree spectra and co-spectra of structures. Annuaire
Univ. Sofia Fac. Math. Inform., 96:45–68, 2004.

[Sos07] Alexandra Soskova. A jump inversion theorem for the degree spectra.
In Proceeding of CiE 2007, volume 4497 of Lecture Notes in Comp.
Sci., pages 716–726. Springer-Verlag, 2007.

[SS09] Alexandra A. Soskova and Ivan N. Soskov. A jump inversion theorem
for the degree spectra. J. Logic Comput., 19(1):199–215, 2009.

[Ste13] Rebecca M. Steiner. Effective algebraicity. Arch. Math. Logic, 52(1-
2):91–112, 2013.

[Stu] A. I. Stukachev. Effective model theory via the Σ-definability approach.
To appear in the Proccedings of EMU 2008, Lecture Notes in Logic,
vol 41.

[Stu07] A. I. Stukachev. Degrees of presentability of models. I. Algebra Logika,
46(6):763–788, 793–794, 2007.

[Stu09] A. I. Stukachev. A jump inversion theorem for semilattices of Σ-degrees.

Sib. Èlektron. Mat. Izv., 6:182–190, 2009.
[Stu10] A. I. Stukachev. A jump inversion theorem for the semilattices of Sigma-

degrees [translation of mr2586684]. Siberian Adv. Math., 20(1):68–74,
2010.

[Sus17] M. Ya. Suslin. Sur un définition des ensembles measurables b sans nom-
bres transfinis. C. R. Acad. Sci. Paris, 164:88–91, 1917.

[Thu95] John J. Thurber. Every low2 Boolean algebra has a recursive copy.
Proc. Amer. Math. Soc., 123(12):3859–3866, 1995.

198 BIBLIOGRAPHY

[Văı89] Rimantas Văıtsenavichyus. Inner-resolvent feasible sets. Mat. Logika
Primenen., 1(6):9–20, 1989.

[Vat11] Stefan Vatev. Conservative extensions of abstract structures. In
Benedikt Löwe, Dag Normann, Ivan N. Soskov, and Alexandra A.
Soskova, editors, CiE, volume 6735 of Lecture Notes in Computer Sci-
ence, pages 300–309. Springer, 2011.

[Ven92] Yu. G. Ventsov. The effective choice problem for relations and reducibil-
ities in classes of constructive and positive models. Algebra i Logika,
31(2):101–118, 220, 1992.

[Weh98] Stephan Wehner. Enumerations, countable structures and Turing de-
grees. Proc. Amer. Math. Soc., 126(7):2131–2139, 1998.

	Preface
	Acknowledgements

	Notation and Conventions
	The computable functions
	Sets and strings
	Reducibilities
	Many-one reducibility
	One-one reducibility
	Turing reducibility
	Enumeration reducibility
	Positive reducibility
	The Turing jump

	Vocabularies and languages
	Orderings
	The arithmetic hierarchy

	Chapter I. Structures
	I.1. Presentations
	I.1.1. Atomic diagrams
	I.1.2. An example
	I.1.3. Relaxing the domain
	I.1.4. Relational vocabularies
	I.1.5. Finite structures and approximations
	I.1.6. Congruence structures
	I.1.7. Enumerations

	I.2. Presentations that code sets

	Chapter II. Relations
	II.1. Relatively intrinsic notions
	II.1.1. R.i.c.e. relations
	II.1.2. R.i. computability
	II.1.3. A syntactic characterization
	II.1.4. Coding sets of natural numbers
	II.1.5. Joins

	II.2. Complete relations
	II.2.1. R.i.c.e. complete relations
	II.2.2. Diagonalization
	II.2.3. Structural versus binary information

	II.3. Examples of r.i.c.e. complete relations
	II.4. Superstructures
	II.4.1. The hereditarily finite superstructure

	Chapter III. Existentially-atomic models
	III.1. Definition
	III.2. Existentially algebraic structures
	III.3. Cantor's back-and-forth argument
	III.4. Uniform computable categoricity
	III.5. Existential atomicity in terms of types
	III.6. Building structures and omitting types
	III.7. Scott sentences of existentially atomic structures.
	III.8. Turing degree and enumeration degree

	Chapter IV. Generic presentations
	IV.1. Cohen generic reals
	IV.2. Generic enumerations of sets
	IV.3. Generic enumerations of structures
	IV.4. Relations on generic presentations

	Chapter V. Degree spectra
	V.1. The c.e. embeddability condition
	V.2. Co-spectra
	V.3. Degree spectra that are not possible
	V.3.1. No two cones
	V.3.2. Upward closure of F

	V.4. Some particular degree spectra
	V.4.1. The Slaman–Wehner Family

	Chapter VI. Comparing structures and classes of structures
	VI.1. Muchnik and Medvedev reducibilities
	VI.2. Turing-computable embeddings
	VI.2.1. Examples

	VI.3. Computable functors and effective interpretability
	VI.3.1. Effective bi-interpretability
	VI.3.2. Making structures into graphs

	VI.4. Reducible via effective bi-interpretability

	Chapter VII. Finite-injury constructions
	VII.1. Priority constructions
	VII.2. The method of true stages
	VII.2.1. The increasing settling-time function
	VII.2.2. Domination properties
	VII.2.3. A couple of examples

	VII.3. Approximating the settling-time function
	VII.4. A construction of linear orderings

	Chapter VIII. Computable categoricity
	VIII.1. The basics
	VIII.2. Relative computable categoricity
	VIII.3. Categoricity on a cone
	VIII.4. When relative and plain computable categoricity coincide
	VIII.5. When relative and plain computable categoricity diverge

	Chapter IX. The jump of a structure
	IX.1. The jump-inversion theorems
	IX.1.1. The first jump-inversion theorem
	IX.1.2. An application of the first jump-inversion theorem
	IX.1.3. The second jump-inversion theorem
	IX.1.4. Application of the the second jump-inversion theorem

	IX.2. The jump jumps — or does it?

	Chapter X. -small classes
	X.1. Infinitary 1 complete relations
	X.2. A sufficient condition
	X.3. The canonical structural jump
	X.4. The low property
	X.5. Listable classes
	X.6. The copy-vs-diagonalize game
	X.6.1. Low Boolean algebras

	Bibliography

