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Preface

We all know that in mathematics there are proofs that are more
difficult than others, constructions that are more complicated than
others, and objects that are harder to describe than others. The objec-
tive of computable mathematics is to study this complexity, to measure
it, and to find out where it comes from. Among the many aspects
of mathematical practice, this book concentrates on the complexity of
structures. By structures, we mean objects like rings, graphs, or lin-
ear orderings, which consist of a domain on which we have relations,
functions, and constants.

Computable structure theory studies the interplay between com-
plexity and structure. By complezity, we mean descriptional or com-
putational complexity, in the sense of how difficult it is to describe
or compute a certain object. By structure, we refer to algebraic or
structural properties of mathematical structures. The setting of com-
putable structure theory is that of infinite countable structures and
thus, within the whole hierarchy of complexity levels developed by lo-
gicians, the appropriate tools come from computability theory: Turing
degrees, the arithmetic hierarchy, the hyperarithmetic hierarchy, etc.
These structures are like the ones studied in model theory, and we will
use a few basic tools from there too. The intention is not, however,
to effectivize model theory, and our motivations are very different that
those of model theory. Our motivations come from questions of the
following sort: Are there syntactical properties that explain why cer-
tain objects (like structures, relations, or isomorphisms) are easier or
harder to compute or to describe?

The objective of this book is to describe some of the main ideas
and techniques used in the field. Most of these ideas are old, but for
many of them, the style of the presentation is not. Over the last few
years, the author has developed new frameworks for dealing with these
old ideas — for instance, for forcing, r.i.c.e. relations, jumps, Scott
ranks, and back-and-forth types. One of the objectives of the book is
to present these frameworks in a concise and self-contained form.

vii



viii PREFACE

The modern state of the field, and also the author’s view of the sub-
ject, has been influenced greatly by the monograph by Ash and Knight
[AKOO0] published in 2000. There is, of course, some intersection be-
tween that book and this one. But even within that intersection, the
approach is different.

The intended readers are graduate students and researchers working
on mathematical logic. Basic background in computability and logic, as
is covered in standard undergraduate courses in logic and computabil-
ity, is assumed. The objective of this book is to describe some of the
main ideas and techniques of the field so that graduate students and
researchers can use it for their own research.

This book is part I of a monograph that actually consists of two
parts: within the arithmetic and beyond the arithmetic.

Part I, Within the arithmetic, is about the part of the theory that
can be developed below a single Turing jump. The first chapters in-
troduce what the author sees as the basic tools to develop the theory:
w-presentations, relations, and d-atomic structures, as treated by the
author in [Mon09, Mon12, Mon13c, Mona]. Many of the topics
covered in Part I (like Scott sentences, 1-generics, the method of true
stages, categoricity, etc.) will then be generalized through the transfi-
nite in part II. X-small classes, covered in the last chapter, have been
a recurrent topic in the author’s work, as they touch on many as-
pects of the theory and help to explain previously observed behaviors
[HM12, HM, Mon10, Mon13b].

Part II, Beyond the arithmetic, moves into the realm of the hyper-
arithmetic and the infinitary languages. To fully analyze the complex-
ity of a structure, staying within the arithmetic is not enough. The
hyperarithmetic hierarchy goes far enough to capture the complexity
levels of relations in almost all structures, though we will see there are
some structures whose complexity goes just beyond. The first half of
Part IT develops the basic theory of infinitary logic, II] sets, and the
hyperarithmetic hierarchy. In the second half, the main chapters are
those on forcing and the a-priority method. The exposition of forcing
is only aesthetically new (similar to that in [HTMM]). The presen-
tation of Ash’s a-priority method will be more than just aesthetically
different. It will use the method of a-true stages developed in [Mone].
We also draw connections with descriptive set theory, and some of
the more recent work from [Monl3a, Monb, MM]. The chapter on
comparability of classes treats old topics like Borel reducibility, but also
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Notation and Conventions

The intention of this section is to refresh the basic concepts of com-
putability theory and structures and set up the basic notation we use
throughout the book. If the reader has not seen basic computabil-
ity theory before, this section would be too fast an introduction and
we recommend starting with other textbooks like Cutland [Cut80],
Cooper [Coo04], Enderton [End11], or Soare [Soal6].

The computable functions

A function is computable if there a purely mechanical process to
calculate its values. In today’s language, we would say that f: N - N
is computable if there is a computer program that, on input n, out-
puts f(n). This might appear to be too informal a definition, but the
Turing-Church thesis tells us that it does not matter which method
of computation you choose, you always get the same class of functions
from N to N. The reader may choose to keep in mind whichever defi-
nition of computability feels intuitively more comfortable, be it Turing
machines, p-recursive functions, lambda calculus, register machines,
Pascal, Basic, C++, Java, Haskel, or Python.* We will not use any
particular definition of computability, and instead, every time we need
to define a computable function, we will just describe the algorithm in
English and let the reader convince himself or herself that it can be
written in the programing language he or she has in mind.

The choice of N as the domain and image for the computable func-
tions is not as restrictive as it may sound. Every hereditarily finite
object’ can be encoded by just a single natural number. Even if for-
mally we define computable functions as having domain N, we think
of them as using any kind of finitary object as inputs or outputs. This
should not be surprising. It is what computers do when they encode

*For the reader with a computer science background, let us remark that we
do not impose any time or space bound on our computations — computations just
need to halt and return an answer after a finitely many steps using a finite amount
of memory.

TA hereditarily finite object consist of a finite set or tuple of hereditarily finite
objects.

xi



xii NOTATION AND CONVENTIONS

everything you see on the screen using finite binary strings, or equiva-
lently, natural numbers written in binary. For instance, we can encode
pairs of natural numbers by a single number using the Cantor pairing
function {(x,y) — ((x +y)(z +y + 1)/2 4+ y), which is a bijection from
N? to N whose inverse is easily computable too. One can then encode
triples by using pairs of pairs, and then encode n-tuples, and then tu-
ples of arbitrary size, and then tuples of tuples, etc. In the same way,
we can consider standard effective bijections between N and various
other sets like Z, Q, Vi, L, ., etc. Given any finite object a, we use
Quine’s notation "a’ to denote the number coding a. Which method of
coding we use is immaterial for us so long as the method is sufficiently
effective. We will just assume these methods exist and hope the reader
can figure out how to define them.
Let

q)07 ®17®2a ¢)37

be an enumeration of the computer programs ordered in some effective
way, say lexicographically. Given n, we write ®.(n) for the output of
the eth program on input n. Each program &, calculates the values
of a partial computable function N — N. Let us remark that, on some
inputs, ®.(n) may run forever and never halt with an answer, in which
case ®.(n) is undefined. If @, returns an answer for all n, @, is said
to be total — even if total, these functions are still included within the
class of partial computable functions. The computable functions are the
total functions among the partial computable ones. We write ®.(n)| to
mean that this computation converges, that is, that it halts after a finite
number of steps; and we write ®.(n)? to mean that it diverges, i.e.,
it never returns an answer. Computers, as Turing machines, run on a
step-by-step basis. We use @, ;(n) to denote the output of ®.(n) after s
steps of computation, which can be either not converging yet (. s(n)1)
or converging to a number (P, s(n)| = m). Notice that, given e, s,n, we
can decide whether ®, ((n) converges or not, computably: All we have
to do is run ®.(n) for s steps. If f and g are partial functions, we write
f(n) = g(m) to mean that either both f(n) and g(m) are undefined,
or both are defined and have the same value. We write f = g if
f(n) = g(n) for all n. If f(n) = ®.(n) for all n, we say that e is an
index for f. The Padding Lemma states that every partial computable
function has infinitely many indices — just add dummy instructions at
the end of a program, getting essentially the same program, but with
a different index.
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In his famous 1936 paper, Turing showed there is a partial com-
putable function U: N? — N that encodes all other computable func-
tions in the sense that, for every e, n,

U(e,n) = &.(n).

This function U is said to be a universal partial computable function.
It does essentially what computers do nowadays: You give them an
index for a program and an input, and they run it for you. We will not
use U explicitly throughout the book, but we will constantly use the
fact that we can computably list all programs and start running them
one at the time, using U implicitly.

We identify subsets of N with their characteristic functions in 2N,
and we will move from one viewpoint to the other without even men-
tioning it. For instance, a set A < N is said to be computable if its
characteristic function is.

An enumeration of a set A is nothing more than an onto function
g: N — A. A set Ais computably enumerable (c.e.) if it has an enu-
meration that is computable. The empty set is computably enumerable
too. Equivalently, a set is computably enumerable if it is the domain
of a partial computable function.* We denote

We={neN:®.(n)]} and W.,={neN:o, (n)l}.

As a convention, we assume that W,  is finite, and furthermore, that
only on inputs less than s can ®, converge in less than s steps. One
way to make sense of this is that numbers larger than s should take
more than s steps to even be read from the input tape. We sometimes
use Lachlan’s notation: W,[s] instead of W, . In general, if a is an
object built during a construction and whose value might change along
the stages of the construction, we use a[s] to denote its value at stage
s. A set is co-c.e. if its complement is c.e.

Recall that a set is computable if and only if it and its complement
are computably enumerable.

The recursion theorem gives us one of the most general ways of
using recursion when defining computable functions. It states that for
every computable function f: N2> — N there is an index e € N such
that f(e,n) = pe(n) for all n € N. Thus, we can think of f(e,-) = p.(-)
as a function of n which uses its own index, namely e, as a parameter
during its own computation, and in particular is allowed to call and

If A = range(g), then A is the domain of the partial function that, on input
m, outputs the first n with g(n) = m if it exists.
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run itself.® An equivalent formulation of this theorem is that, for every
computable function h: N — N, there is an e such that W) = W..

Sets and strings

The natural numbers are N = {0, 1,2, ....}. For n € N, we sometimes
use n to denote the set {0,...,n — 1}. For instance, 2V is the set of
functions from N to {0, 1}, which we will sometimes refer to as infinite
binary sequences or infinite binary strings. For any set X, we use X <N
to denote the set of finite tuples of elements from X, which we call
strings when X = 2 or X = N. For 0 € X<N and 7 ¢ X<V, we use
0”1 to denote the concatenation of these sequences. Similarly, for
x € X, 0"z is obtained by appending x to 0. We will often omit the
~ symbol and just write o7 and cx. We use ¢ < 7 to denote that o
is an initial segment of 7, that is, that |o| < |7| and o(n) = 7(n) for
all n < |o|. This notation is consistent with the subset notation if we
think of a string o as its graph {{(i,o(i)) : i < |o|}. We use {) to denote
the empty tuple. If Y is a subset of the domain of a function f, we use
f 1Y for the restriction of f to Y. Given f € XN and n € N, we use
f I n to denote the initial segment of f of length n. We use f I n for
the initial segment of length n + 1. For a tuple . = (ny, ..., n;y € N<N,
we use f | n for the tuple {f(ng),...., f(ng)). Given a nested sequence
of strings o9 < oy < -+ -, we let | J,.y0; be the possibly infinite string
f e X<Nsuch that f(n) = m if o;(n) = m for some i.

Given f,ge XN we use f @ g for the function (f @ g)(2n) = f(n)
and (f ®g)(2n+ 1) = g(n). We can extend this to w-sums and define
@, ,cn fn to be the function defined by (@, fn)((m, k)) = fi (k).
Conversely, we define f"I to be the nth column of f, that is, fI"/(m) =
f(n,m)). All these definitions work for sets if we think in terms of
their characteristic functions. So, for instance, we can encode countably
many sets {A,, : n € N} with one set A = {(n,m): me A,}.

For a set A < N, the complement of A with respect to N is denoted
by A°.

A tree on a set X is a subset T' of X< that is closed downward,
ie.,if c € T and 7 < o, then 7 € T too. A path through a tree T is
a function f € X" such that f | n e T for all n € N. We use [T] to
denote the set of all paths through T'. A tree is well-founded if it has
no paths.

To prove the recursion theorem, for each i, let g(i) be an index for the par-
tial computable function pg(;)(n) = f(@i(i),n). Let eg be an index for the total
computable function g, and let e = g(ep). Then p.(n) = Pg(ey) = f(@e,(€0),n) =

f(g(eo),n) = fle,n).
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Reducibilities

There are various ways to compare the complexity of sets of natural
numbers. Depending on the context or application, some may be more
appropriate than others.

Many-one reducibility. Given sets A, B € N, we say that A is
many-one reducible (or m-reducible) to B, and write A <,,, B, if there
is a computable function f: N — N such that n€ A <= f(n) e B
for all n € N. One should think of this reducibility as saying that all
the information in A can be decoded from B. Notice that the classes
of computable sets and of c.e. sets are both closed downwards under
<. A set B is said to be c.e. complete if it is c.e. and, for every other
ce.set A, A<, B.

Two sets are m-equivalent if they are m-reducible to each other,
denoted A =,, B. This is an equivalence relation, and the equivalence
classes are called m-degrees

There are, of course, various other ways to formalize the idea of one
set encoding the information from another set. Many-one reducibility
is somewhat restrictive in various ways: (1) to figure out if n € A, one is
allowed to ask only one question of the form “m € B?”; (2) the answer
to “n e A?” has to be the same as the answer to “f(n) € B?”. Turing
reducibility is much more flexible.

One-one reducibility. I-reducibility is is like m-reducibility but
requiring the reduction to be one-to-one. The equivalence induced by
it, I-equivalence, is one of the strongest notions of equivalence between
sets in computability theory — a computability theorist would view sets
that are l-equivalent as being the same. Myhill’s theorem states that
two sets of natural numbers are 1-equivalent, i.e., each is 1-reducible
to the other, if and only if there is a computable bijection of N that
matches one set with the other.

Turing reducibility. Given a function f: N — N, we say that a
partial function g: N — N is partial f-computable if it can be computed
by a program that is allowed to use the function f as a primitive
function during its computation; that is, the program can ask questions
about the value of f(n) for different n’s and use the answers to make
decisions while the program is running. The function f is called the
oracle of this computation. If g and f are total, we write ¢ <p f
and say that g is Turing reducible to f, that f computes g, or that
g is f-computable. The class of partial f-computable functions can
be enumerated the same way as the class of the partial computable
functions. Programs that are allowed to query an oracle are called
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Turing operators or computable operators. We list them as @4, q,...
and we write ®/(n) for the output of the eth Turing operator on input
n when it uses f as oracle. Notice that ®,. represents a fixed program
that can be used with different oracles. When the oracle is the empty
set, we may write @, for 9 matching the previous notation.

As we already mentioned, for a fixed input n, if ®/(n) converges, it
does so after a finite number of steps s. As a convention, let us assume
that in just s steps, it is only possible to read the first s entries from
the oracle. Thus, if ¢ is a finite substring of f of length greater than s,
we could calculate ®7(n) without ever noticing that the oracle is not
an infinite string.

Convention: For ¢ € N<N ®9(n) is shorthand for
®?, (n), which runs for at most |o| stages.

g
elo]

Notice that given e, o, n, it is computable to decide if ®7(n)|.

As the class of partial computable functions, the class of partial
X-computable functions contains the basic functions; is closed under
composition, recursion, and minimization; can be listed in such a way
that we have a universal partial X-computable function (that satis-
fies the s-m-n theorem). In practice, with very few exceptions, those
are the only properties we use of computable functions. This is why
almost everything we can prove about computable functions, we can
also prove about X-computable functions. This translation is called
relativization. All notions whose definition are based on the notion of
partial computable function can be relativized by using the notion of
partial X-computable function instead. For instance, the notion of c.e.
set can be relativized to that of c.e. in X or X-c.e. set: These are the
sets which are the images of X-computable functions (or empty), or,
equivalently, the domains of partial X-computable functions. We use
WX to denote the domain of ®X.

When two functions are Turing reducible to each other, we say that
they are Turing equivalent, which we denote by =p. This is an equiv-
alence relation, and the equivalence classes are called Turing degrees.

Computable operators can be encoded by computable subsets of
N<¥ x N x N. Given ® € NN x N x N, ¢ € NN, n, m, we write
®?(n) = m as shorthand for {o,n,m) € ®. Then, given f € NV, we let

dl(n) =m <= (Foc f) ®°(n) = m.
We then have that g is computable in f if and only if there is a c.e.

subset ® = N<N x N x N such that ®/(n) = g(n) for all n e N. A
standard assumption is that {o,n,m) € ® only if n,m < |o|.
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We can use the same idea to encode c.e. operators by computable
subsets of NN x N. Given W < NN x N, o0 e NN, and f € NV, we let

W7 ={neN:{o,nye W} and W/ =|]w.

ocf

We then have that X is c.e. in Y if and only if there is a c.e. subset
W < N<N x N such that X = WY. A standard assumption is that
{o,nye W only if n < |o|.

Enumeration reducibility. Recall that an enumeration of a set
A is just an onto function f: N — A. Given A, B < N, we say that A
is enumeration reducible (or e-reducible) to B, and write A <. B , if
every enumeration of B computes an enumeration of A. Selman [Sel71]
showed that we can make this reduction uniformly: A <. B if and only
if there is a Turing operator ® such that, for every enumeration f of
B, ®/ is an enumeration of A. (See Theorem IV.12.) Another way
of defining enumeration reducibility is via enumeration operators: An

enumeration operator is a c.e. set © of pairs that acts as follows: For
B © N, we define

0F ={n: (3D <, B) ('D",n)e 6},

where <y, means ‘finite subset of.” Selman also showed that A <. B
if and only if there is an enumeration operator © such that A = ©5.

The Turing degrees embed into the enumeration degrees via the
map t(A) = A® A°. It is not hard to show that A <r B < 1(A) <.
L(B).

Positive reducibility. We say that A positively reduces to B, and
write A <, B, if there is a computable function f: N — (N<N)<N guch
that, for every n € N, n € A if and only if there is an ¢ < |f(n)| such
that every entry of f(n)(7) is in B [Joc68]. That is,

ned — \/ /\ f0))i)eB.
i<|f(n)] <[ f(n)(3)]
Notice that <, implies both Turing reducibility and enumeration re-
ducibility, and is implied by many-one reducibility. In particular, the
classes of computable sets and of c.e. sets are both closed downwards
under <.

The Turing jump. Let K be the domain of the universal partial
computable function. That is,

K ={{e,ny: ®.(n)]} = PW..

eeN
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K is called the halting problem.Y It is not hard to see that K is c.e. com-
plete. Using a standard diagonalization argument, one can show that
K is not computable.! Tt is common to define K as {e : ®.(e)|} instead
— the two definitions give 1-equivalent sets. We will use whichever is
more convenient in each situation. We will often write 0’ for K.

We can relativize this definition and, given a set X, define the
Turing jump of X as

X' ={eeN:dX(e)l}.

Relativizing the properties of K, we get that X’ is X-c.e.-complete,
that X <7 X', and that X’ €7 X. The Turing degree of X’ is strictly
above that of X — this is why it is called a jump. The jump defines
an operation on the Turing degrees. Furthermore, for X,Y € N, X <
Y < X'<,Y.

The double iteration of the Turing jump is denoted X", and the
n-th iteration by X .

Vocabularies and languages

Let us quickly review the basics about vocabularies and structures.
Our vocabularies will always be countable. Furthermore, except for a
few occasions, they will always be computable.

A wocabulary T consists of three sets of symbols {R; : i € Iy},
{fi - i e Ip}, and {¢; : ¢ € I¢}; and two functions agr: Ig — N and
arp: Ir — N. Each of Ig, Ir, and I is an initial segment of N. The
symbols R;, f;, and c; represent relations, functions, and constants,
respectively. For i € Ig, ar(i) is the arity of R;, and for i € I, ap(i) is
the arity of f;.

A vocabulary 7 is computable if the arity functions ar and arp are
computable. This only matters when 7 is infinite; finite vocabularies
are trivially computable.

Given such a vocabulary 7, a 7-structure is a tuple

M= (M ARM :ielg}, {fM:ielp},{cM:iels}),

where M is just a set called the domain of M, and the rest are interpre-
tations of the symbols in 7. That is, RM < Mer(®), M Mer®) — M,
and ¢cM e M. A structure is a T-structure for some 7.

Given two 7-structures A and B, we write A € B to mean that
A is a substructure of B, that is, that A € B, fA = fB | A0,

9The ‘K’ is for Kleene.

ITf it were computable, so would be the set A = {e : {e,e) ¢ K}. But then
A = W, for some e, and we would have that e € A <= (e,e) ¢ K < e ¢
W, < e¢ A.
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Rt = RE} A0 and ¢ff = ¢f for all symbols f;, R; and c. This
notation should not be confused with A € B which only means that the
domain of A is a subset of the domain of B. If A is a 1g-structure and B
a T1-structure with 79 € 7,** A < B means that A is a 7p-substructure
of B | 1y, where B | 7y is obtained by forgetting the interpretations of
the symbols of 71 \ 79 in B. B | 7y is called the my-reduct of B, and B
is said to be an expansion of B | 9.

Given a vocabulary 7, we define various languages over it. First,
recursively define a 7-term to be either a variable x, a constant symbol
c;, or a function symbol applied to other 7-terms, that is, f;(t1, ..., ta,)),
where each t; is a 7-term we have already built. The atomic 7-formulas
are the ones of the form R;(ty,...,%4,()) or t; = ta, where each ¢; is a
T-term. A T7-literal is either a 7-atomic formula or a negation of a 7-
atomic formula. A quantifier-free T-formula is built out of literals using
conjunctions, disjunctions, and implications. If we close the quantifier-
free T-formulas under existential quantification, we get the existential
T-formulas, of 3-formulas. Every T-existential formula is equivalent to
one of the form dz;---dx; ¢, where ¢ is quantifier-free. A universal
T-formula, or V-formula, is one equivalent to Vx;---Vxy ¢ for some
quantifier-free 7-formula ¢. An elementary 7-formula is built out of
quantifier-free formulas using existential and universal quantifiers. We
also call these the finitary first-order formulas.

Given a 7 structure A, and a tuple a € A<N, we write (A, a) for the
T U C-structure where € is a new tuple of constant symbols and ¢ = a.
Given R € N x A<N| we write (A, R) for the 7 structure where 7 is
defined by adding to 7 relations symbols R; ; of arity j for ¢, j € N, and
RA = {aeAl:{i,a)ye R}

Orderings

Here are some structures we will use quite often in examples. A
partial order is a structure over the vocabulary {<} with one binary
relation symbol which is transitive (z < y & y < z — x < 2), reflexive
(x < x), and anti-symmetric (x <y &y <z — z =y). A linear order
is a partial order where every two elements are comparable (Vz,y (z <
yvy <uz)). We will often add and multiply linear orderings. Given
linear orderings A = (A;<4) and B = (B; <p), we define A + B to be
the linear ordering with domain A 11 B, where the elements of A stand
below the elements of B. We define A x BB to be the linear ordering with
domain A x B where (a1, b;) <axp {ag,by) if either by <p by or by = by

**By 179 € 71 we mean that every symbol in 7 is also in 7; and with the same
arity



XX NOTATION AND CONVENTIONS

and a; <4 as — notice we compare the second coordinate first.”T We
will use w to denote the linear ordering of the natural numbers and Z
and Q for the orderings of the integers and the rationals. We denote
the finite linear ordering with n elements by n. We use A* to denote
the reverse ordering (A;=4) of A = (A,<4). Fora <4 b e A, we
use the notation A | (a,b) or the notation (a,b)4 to denote the open
{reA:a< gz <40b}. Wealso use Al a to denote the initial segment
of A below a, which we could also denote as (—o0,a) 4.

As mentioned above, a tree T is a downward closed subset of X <N,
As a structure, a tree can be represented in various ways. One is as
a partial order (7;<) using the ordering on strings. Another is as a
graph where each node o € T other than the root is connected to its
parent node o | |0 — 1|, and there is a constant symbol used for the
root of the tree. We will refer to these two types of structures as trees
as orders and trees as graphs.

A partial order where every two elements have a least upper bound
(x v y) and a greatest lower bound (x A y) is called a lattice. A lattice
with a top element 1, a bottom element 0, and where every element
x has a complement (that is an element z° such that z v 2¢ = 1 and
x A x¢ = 0) is called a Boolean algebra. The vocabulary for Boolean
algebras is {0,1, v, A,-°}, and the ordering can be defined by = <
Yy = y=2xVy.

The arithmetic hierarchy

Consider the structure (N;0,1,+, x,<). In this vocabulary, the
bounded formulas are built out of the quantifier-free formulas using
bounded quantifiers of the form Vx < y and 3z < y. A ¢ formula is
one of the form 3z ¢, where ¢ is bounded; and a II9 formula is one
of the form Vz ¢, where ¢ is bounded. By coding tuples of numbers
by a single natural number, one can show that formulas of the form
Jzodxy -+ ... 31, @ are equivalent to XY formulas. Post’s theorem as-
serts that a set A € N is c.e. if and only if it can be defined by a ¢
formula. Thus, a set is computable if and only if it is A?, that is, if it
can be defined by both a X and II{ formulas.

By recursion, we define the 39, formulas as those of the form 3z ¢,
where ¢ is I1%; and the I1% ; formulas as those of the form Vz ¢, where
pis XY A set is AY if it can be defined by both a XY formula and
a II) formula. Again, in the definition of X! , formulas, using one
existential quantifier or many makes no difference. What matters is
the number of alternations of quantifiers. Post’s theorem asserts that

T A times B is A B times.
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aset A S Nis ce. in 0™ if and only if it can be defined by a X2,
formula. In particular, a set is computable from 0’ if and only if it
is AY. The Shoenfield Limit Lemma says that a set A is AJ if and
only if there is a computable function f: N*> — N such that, for each
n € N, if n € A then f(n,s) = 1 for all sufficiently large s, and if
n ¢ A then f(n,s) = 0 for all sufficiently large s. This can be written
as xa(n) = lims_4 f(n,s), where x4 is the characteristic function of
A and the limit with respect to the discrete topology of N where a
sequence converges if and only if it is eventually constant.

The language of second-order arithmetic is a two-sorted language
for the structure (N,NY;0,1, 4+, x, <). The elements of the first sort,
called first-order elements, are natural numbers. The elements of the
second sort, called second-order elements or reals, are functions N — N.
The vocabulary consists of the standard vocabulary of arithmetic, 0, 1,
+, X, < which is used on the first-order elements, and an application
operation denoted F'(n) for a second-order element F' and a first-order
element n. A formula in this language is said to be arithmetic if it
has no quantifiers over second-order objects. Among the arithmetic
formulas, the hierarchy of X% and I1° formulas are defined exactly as
above. Post’s theorem that X{ sets are c.e. also applies in this context:
For every XY formula ¢ (F,n), where n a number variable and F is a
function variable, there is c.e. operator W such that n € WF «—
¥ (F,n). We can then build the computable tree T}, = {o € NN : n ¢
W7} and we have that ¢ (F,n) holds if and only if F' is not a path
through T,,. A TIY class is a set of the form {F € NN : ¢)(F)} for some
I19 formula ¢(F). The observation above shows how every I} class is
of the form [T] for some computable tree T < N<N.






CHAPTER 1

Structures

Algorithms, Turing machines, and modern computer programs all
work with finitary objects, objects that usually can be encoded by
finite binary strings or just by natural numbers. For this reason, com-
putability theory concentrates on the study of the complexity of sets
of natural numbers. To study the computational properties of a count-
able mathematical structure, the first approach is to set the domain of
the structure to be a subset of the natural numbers and then borrow
the tools we already have from computability theory. One issue comes
up: There might be many bijections between the domain of a struc-
ture and the natural numbers, inducing many different presentations
of the structure with different computability-theoretic properties. The
interplay between properties of presentations (computational proper-
ties) and properties of isomorphism types (structural properties) is one
of the main themes of computable structure theory.

We start this chapter by introducing various ways of represent-
ing structures so that we can analyze their computational complexity.
These different types of presentations are essentially equivalent, and
the distinctions are purely technical and not deep. However, they will
allow us to be precise later. At the end of the chapter we prove Knight’s
theorem that all non-trivial structures have presentations that code any
given set.

I1.1. Presentations

All the structures we consider are countable. So, unless otherwise
stated, “structure” means “countable structure.” Furthermore, we usu-
ally assume that the domains of our structures are subsets of N. This
will allow us to use everything we already know about computable
functions on N.

DEFINITION I.1. An w-presentation is nothing more than a struc-
ture whose domain is N.* Given a structure A, when we refer to an

*The use of the word presentation here has nothing to do with its use in group
theory. There, a presentation of a group consists a a list of generators and a list of
relations among them. You might have a group with a computable presentation,

1



2 I. STRUCTURES

w-presentation of A or to a copy of A, we mean an w-presentation M
which is isomorphic to A. An w-presentation M is computable if all its
relations, functions, and constants are uniformly computable; that is,
if the set 7™, defined as

(1) M= PR e e D"},

i€lp i€lp i€lo

is computable. Note that via standard coding, we can think of 7™ as
a subset of N.

I[.1.1. Atomic diagrams. Another standard way of defining when
an w-presentation is computable is via its atomic diagram. Let {¢;" :
i € N} be an effective enumeration of all atomic 7-formulas with free
variables from the set {xg,z1,...}. (An atomic T-formula is one of the

form R(ty, ..., t,), where R is either “=” or R; for j € I, and each t; is
a term built out of the function, constant, and variable symbols.)

DEFINITION 1.2. The atomic diagram of an w-presentation M is
the infinite binary string D(M) € 2V defined by

1 if e, —>j:7€eN

D(M)(Z)Z{ 1M):sz[xj j ]E ]

0 otherwise.

It is not hard to see that D(M) and 7 are Turing equivalent.
We will often treat the w-presentation M, the real 7™, and the real
D(M) as the same thing. For instance, we define the Turing degree of
the w-presentation M to be the Turing degree of D(M). When we say
that M is computable from a set X, that a set X is computable from
M, that M is AY, that M is arithmetic, that M is low, etc., we mean
D(M) instead of M.

Let us also point out that the quantifier-free diagram, which is
defined like the atomic diagram but using a listing of the quantifier-
free formulas instead, is Turing equivalent to D(M) too.

I.1.2. An example. Unless it is trivial, a structure will have many
different w-presentations — continuum many actually (see Theorem
[.16) — and these different w-presentations will have different com-
putability theoretic properties. For starters, some of them may be
computable while others may not. But even among the computable
copies of a single structure one may find different computability theo-
retic properties.

meaning that this list of relations is computable, but which has no computable
w-presentation in our sense.
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Consider the linear ordering A = (N; <), where < is the standard
ordering on the natural numbers. We can build another w-presentation
M = (N;<y) of A as follows. Let {k; : i € N} be a one-to-one
computable enumeration of the halting problem 0'. First, order the
even natural numbers in the natural way: 2n <;; 2m if n < m. Second,
place the odd number 2s + 1 right in between 2k, and 2k, + 2, that is,
let 2ks <ps 2s + 1 <)y 2ks + 2. Using transitivity we can then define
< on all pairs of numbers. Thus 2n <,; 2s + 1 if and only if n < k;,
and 2s + 1 <y 2t + 1 if and only if ks < k;. (Early codings of sets into
w-presentations of linear orderings appear in [Mar82].)

One can show that A and M are two computable w-presentations
of the same structure.! However, computationally, they behave quite
differently. For instance, the successor function is computable in 4 but
not in M: In A, Succ?(n) = n+ 1 is clearly computable. On the other
hand, in M, Succ™(2n) = 2n + 2 if and only if there is no odd number
placed <ys-in-between 2n and 2n + 2, which occurs if and only if n ¢ (.
Therefore, Succ™ computes 0/ and Succ™ does not.

The reason A and M can behave differently despite being isomor-
phic is that they are not computably isomorphic: There is no com-
putable isomorphism between them. To see this, note that if there
was one, we could use Succ? and the isomorphism to compute Succ™,
contradicting that Succ™ computes 0.

I1.1.3. Relaxing the domain. In many cases, it will be useful to
consider structures whose domain is a subset of N. We call those (Cw)-
presentations. If M, the domain of M, is a proper subset of N, we can
still define D(M) by letting D(M)(i) = 0 if ;" mentions a variable
x; with j ¢ M. In this case, we have

D(M) =T M(—BTM

To see that D(M) computes M, notice that, for j € N, j € M «
D(M)("z; = ;') = 1, where "¢' is the index of the atomic formula ¢
in the enumeration {¢;" : i € N}.

The following observation will simplify many of our constructions
later on.

OBSERVATION [.3. We can always associate to an infinite (Cw)-
presentation M, an isomorphic w-presentation A: If M = {my < m; <
my < ---} € N, we can use the bijection i — m;: N — M to get a
copy A of M, now with domain N. Since this bijection is computable

"To show that M is isomorphic to the standard ordering on N, one has to
observe that every element of M = N has finitely many elements <p;-below it: 2n
has at most 2n, and 2s + 1 has at most 2k;.
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in M, it is not hard to see that D(A) < D(M), and furthermore that
D(A)@® M =p D(M).

One of the advantages of (Sw)-presentations is that they allow us
to present finite structures.

I.1.4. Relational vocabularies. A vocabulary is relational if it
has no function or constant symbols, and has only relational symbols.
Every vocabulary 7 can be made into a relational one, 7, by replacing
each n-ary function symbol by an (n + 1)-ary relation symbol coding
the graph of the function, and each constant symbol by a l-ary re-
lation symbol coding it as a singleton. Depending on the situation,
this change in vocabulary might be more or less significant. For in-
stance, the class of quantifier-free definable sets changes, but the class
of 3-definable sets does not (see Exercise 1.4). For most computational
properties, this change is nonessential; for instance, if M is an w-
presentation of a 7-structure, and M is the jssociated w-presentation
of M as a T-structure, then D(M) =7 D(M) (as it follows from Ex-
ercise 1.4). Because of this, and for the sake of simplicity, we will often
restrict ourselves to relational vocabularies.

EXERCISE 1.4. Show that the 3-diagram of M as a T-structure is m-
equivalent to its 3-diagram as a T-structure. More concretely, let {¢; :
i € N} and {@] : i € N} be the standard effective enumerations of the
existential 7-formulas and the existential 7-formulas on the variables
Zg, X1, ... . Show that

{ieN: M glfe;—j:jeNl} = {ieN: M@l —j:jeN]).
One could also show these sets are =;-equivalent.

1.1.5. Finite structures and approximations. We can repre-
sent finite structures using (Sw)-presentations. However, when work-
ing with infinitely many finite structures at once, we often want to be
able to compute things about them uniformly, for instance the sizes of
the structures, which we could not do from (Sw)-presentations (see Ex-
ercise 1.5). For that reason, we sometimes consider (Zw)-presentations,
which are (Cw)-presentations whose domains are initial segments of N.
Given a finite (Ew)-presentation, we can easily find the first k& that is
not in the domain of the structure.

EXERCISE L.5. Show that there exists a computable list {M,, :
n € N} of (Cw)-presentations of finite structures whose sizes cannot be
computed uniformly, that is, a list such that the domains and relations
of the M,,’s are uniformly computable, but there is no computable
function f such that f(n) is the size of M,,.
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When 7 is a finite vocabulary, finite 7-structures can be coded by
a finite amount of information. Suppose M is a finite 7-structure with
domain {0, ..., k—1}, and 7 is a finite relational vocabulary. Then there
are only finitely many atomic 7-formulas on the variables xg, ..., xx_1,
let us say /) of them. Assume the enumeration {¢;" : i € N} of the
atomic 7-formulas is such that those ¢, formulas come first, and the
formulas mentioning variables beyond x;, come later. Then D(M) is
determined by the finite binary string of length ¢, that codes the values
of those formulas. We will often assume D(M) is that string.

When dealing with infinite structures, very often we will want to
approximate them using finite substructures. We need to take care
of two technical details. First, if 7 is an infinite vocabulary, we need
to approximate it using finite sub-vocabularies. We assume that all
computable vocabularies 7 come with an associated effective approx-
imation 79 < 74 < --- < 7T, where each 7, is finite and 7 = |, 7.
In general and unless otherwise stated, we let 7, consist of the first s
relation, constant and function symbols in 7, but in some particular
cases, we might prefer other approximations. For instance, if 7 is al-
ready finite, we usually prefer to let 7, = 7 for all s. Second, to be able
to approximate a 7-structure M using 7s-substructures, we need the
Ts-reduct of M to be locally finite, i.e., every finite subset generates a
finite substructure. To avoid unnecessary complications, we will just
assume 7 is relational and, in particular, locally finite. Even if 7 is not
originally relational, we can make it relational as in Section [.1.4.

DEFINITION [.6. Given an w-presentation M, we let M, be the
finite 7g-substructure of M with domain {0,...,s — 1}. We call the
sequence { M, : s € N} a finite approzimation of M. We identify this
sequence with the sequence of codes {D(M,) : s € N} < 2<N which
allows us to consider its computational complexity.

In general, when we refer to a 7).-structure, we mean a 7,-structure
where s is the size of the structure itself. For instance, the structures
M, above are all 7). -structures.

OBSERVATION [.7. Here is a simple, but very important observation
we will use throughout the book. For each s, D(My) = D(M) | (g,
and hence

D(Mg) € D(My) € D(Ms) € -+ and  D(M) = || D(M,).

The convention here is that for each s, the 7,-atomic formulas on
the variables {x, ..., zs_1} are listed before the rest; that is, they are
©5 - Py for some £, € N.
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Also, let us remark that the inclusion is an inclusion of stings, not
of sets, and so is the union, as defined on page xiv.

Thus, from a computational viewpoint, having an w-presentation is
equivalent to having a finite approximation of a structure M. This is
why, when we are working with an w-presentation, we often visualize
the structure as being given to us little by little.

OBSERVATION 1.8. Another simple but important observation is
that an 3-formula is true of a tuple m in M if and only if it is true
in some finite substructure M that contains m. Thus, if 3-Th(M)
denotes the set of 3-7-sentences true of M, and 3-T'h(My) the set of
J-7,-sentences true of M., then

FTh(M) = | J3-Th(M,),
seN
where the union here refers to the union of sets, not sequences.
As a useful technical device, we define the atomic diagram of a finite
tuple as the finite binary sequence coding the set of atomic formulas

true of the tuple restricted to the smaller vocabulary. Again, we assume
that 7 is relational.

DEFINITION 1.9. Let M be a 7-structure and let a = {ay, ...,as_1) €
M=. We define the atomic diagram of a in M, denoted Dy(a), as the
string in 2% such that
1 if./\/l):@?t[l’j'—)aj,j<8],

0 otherwise.

Dm(a)(i) = {

So, if M were an w-presentation and ayg, ...as, ... were the elements
0,...,8,... € M =N, then Dy ({ag, ...,as_1)) = D(My) as in Definition
L.6.

OBSERVATION L.10. For every o € 2<N and every s with £, > |o],
there is a quantifier-free 7-formula ' (zo, ..., zs_1) such that

A gt (@) « o< Da@)
for every 7-structure A and tuple a € A®, namely

p(z) = AN @A AN\ —e@

i<|o|,o(i)=1 i<|o|,0(i)=0
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I.1.6. Congruence structures. It will often be useful to con-
sider structures where equality is interpreted by an equivalence rela-
tion. A congruence T-structure is a structure M = (M; =™ {RM :
i€ Igh,{fM i€ Ip},{cM i€ Is}), where =M is an equivalence
relation on M, and the interpretations of all the 7-symbols are invari-
ant under =M (that is, if @ =™ b, then a € RM <= be RM and
JM(a) =M f;(b) for all relations symbols R; and function symbols f;).
If M = N, we say that M is a congruence w-presentation. We can
then define D(M) exactly as in Definition 1.2, using =™ to interpret
equality.

Given a congruence T-structure, one can always take the quotient
M /=M and get a T-structure where equality is the standard N-equality.
To highlight the difference, we will sometimes use the term injective
w-presentations when equality is N-equality.

LEMMA [.11. Given a congruence w-presentation M with infin-
itely many equivalence classes, the quotient M/=™ has an injective
w-presentation A computable from D(M). Furthermore, the natural
projection M — A is also computable from D(M).

PROOF. All we need to do is pick a representative for each =M-
equivalence class in a D(M)-computable way. Just take the N-least
element of each class: Let

A={aeM:Ybe M (b<ya=b+"a)}

be the domain of A. Define the functions and relations in the obvious
way to get a (Sw)-presentation of M. To get an w-presentation, use
Observation 1.3. O]

Therefore, from a computational viewpoint, there is no real differ-
ence in considering congruence structures or injective structures.

ExaAMPLE 1.12. Suppose that R is a computable ring, and [ < R is
a computable ideal. The quotient ring R/I has a natural congruence
w-presentation where the domain and the operations stay as in R, but
the equality relation ="/ is the equivalence relation induced by I,
namely r =R/ ¢ «— r —ge I. We can then use the lemma above to
get a computable injective w-presentation of R/I.

EXERCISE 1.13. Given a sequence of structures {A4; : i € N} and
sequence of embeddings f;;+1: A; — Aiq1, the direct limit of such a
sequence is a structure A, for which there are embeddings f; »: A; —
Ay that commute with the previous embeddings (i.e, fio = fit1.0 ©
fiis1 for all ¢ € N), with the property that there is a increasing se-
quence of structures By < By < -+ < By, with By, = |, B, that is
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isomorphic to the original sequence, in the sense that there are isomor-
phisms g;: B; — A; for i € N U {oo0} such that f;;0¢; = g; | B; for
all i < j € Nu {oo}. Prove that if the sequences {A; : i € N} and
{fii+1 11 € N} of structures and embeddings are computable, then A,
has a computable copy.

I.1.7. Enumerations. Assume 7 is a relational vocabulary. An
enumeration of a structure M is just an onto map g: N — M. To
each such enumeration we can associate a congruence w-presentation

g 1 (M) by taking the pull-back of M through g:
g7 M) = (N~ (REY sie Ta)),

where a ~ b <= g(a) = g(b) and Rf_l(M) = g ' (RM) < N*®. The
assumption that 7 is relational was used here so that the pull-backs
of functions and constants are not multi-valued. Let us remark that if
g is injective, then ~ becomes =y, and hence g~!(M) is an injective
w-presentation. In this case, the assumption that 7 is relational is not
important, as we can always pull-back functions and constants through
bijections.
It is not hard to see that

D(g (M) <1 g@® D(M).

Furthermore, D(g7'(M)) <r g@®7M, where 7™ is as in Definition L.1.
As a corollary we get the following lemma.

LEMMA 1.14. Let A be a computable structure in a relational vo-
cabulary and M be an infinite c.e. subset of A. Then, the substructure
M of A with domain M has a computable w-presentation.

PRrOOF. Just let g be an injective computable enumeration of M.
Then g—!(M) is a computable copy of M. O

Throughout the book, there will be many constructions where we
need to build a copy of a given structure with certain properties. In
most cases, we will do it by building an enumeration of the structure
and then taking the pull-back. The following observation will allow us
to approximate the atomic diagram of the pull-back, and we will use it
countless times.

OBSERVATION 1.15. Let g be an enumeration of M. Notice that
for every tuple a € M=V,
Dy-1my(@) = Dam(g(a))-
For each k, use g | k to denote the tuple (g(0), ..., g(k—1)) € M*. Then
Dy-1a (0, ...,k = 1)) = Dag(g | k) and the diagram of the pull-back
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can be calculated in terms of the diagrams of tuples in M as follows:

D(g' (M) = | Dulg I k).

keN
1.2. Presentations that code sets

In this section, we show that the Turing degrees of w-presentations
of a non-trivial structure can be arbitrarily high. Furthermore, we
prove a well-known theorem of Julia Knight that states that the set of
Turing degrees of the w-presentations of a structure is upwards closed.
This set of Turing degrees is called the degree spectrum of the structure,
and we will study it in detail in Chapter V. Knight’s theorem applies
only to non-trivial structures: A structure A is trivial if there is a finite
tuple such that every permutation of the domain fixing that tuple is
an automorphism. Notice that these structures are essentially finite in
the sense that anything relevant about them happens within that finite
tuple.

THEOREM [.16 (Knight [Kni98]). Suppose that X can compute
an w-presentation of a non-trivial T-structure M. Then there is an
w-presentation A of M of Turing degree X.

Before proving the theorem, let us remark that if instead of an w-
presentation we wanted a (Sw)-presentation or a congruence w-presentation,
it would be very easy to code X into either the domain or the equality
relation of A: Recall that D(A) = A® (=*) ® 7*. Requiring A to be
an injective w-presentation forces us to code X into the structural part
of A, namely 74.

Proor. We will build an X-computable injective enumeration g
of M and let A = g~ '(M). Since g and M are X-computable, that
already gives us D(A) <r X; the actual work comes from ensuring
that D(A) =7 X. We build g as a limit

g:UﬁSEMN’

where the p, are a nested sequence of injective tuples py < p; < -+
in M<N. Recall from Observation 1.15 that we can approximate the
atomic diagram of A by the atomic diagrams of the tuples p:

D(A) = | Du(p.).

Let pg = . Suppose now we have already defined p,. At stage s+1,
we build ps11 2 ps with the objective of coding the bit X (s) € {0, 1}
into D(A). The idea for coding X (s) is as follows: We would like to
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find a,b € M \ ps such that Da(psa) # Da(psh). Suppose we find
them and D (psa) <iex Dat(Dsh), where <, is the lexicographical
ordering on strings in 2<N. Then, depending on whether X (s) = 0 or
1, we can define p,y1 to be either psab or psba. To decode X(s), all
we have to do is compare the binary strings D 4{0, ..., ks — 1, ks) and
D40, ... ks — 1, ks + 1) lexicographicaly, where kg = |pg|.

The problem with this idea is that such a and b may not exist,
and Da(psa) might be the same for all @ € M. Since M is non-
trivial, we know there is some bijection of M preserving ps which is
not an isomorphism, and hence there exist tuples @ and b € (M ~ p,)=N
of the same length with Dy(p.a) # Da(psb). Furthermore, there
exists disjoint such @ and b: To see this, take a third tuple disjoint
from a@ and b. Its diagram must be different from that of either @ or
b (as those diagrams are different) and we can replace it for b or a
accordingly, two get two disjoint tuples with different diagrams. So we
search for such a pair of tuples a,b, say of length h. We also require
the pair @,b to be minimal, in the sense that D (psag, ..., a;—1) =
Da(psbo, ..., bi—1) for i < h — if they are not, truncate them. Suppose
Da(ps@) <iex Daq(psh) (otherwise replace a for b in what follows). If
X(S) = O, let }53+1 = ﬁsaobgalbl, ...,ah,lbh,l. If X(S) = 1, let ﬁerl =
Psboagbiay, ..., bp_1ap_1. Finally, to make sure g is onto, we let ps, 1 =
Ps+1¢, where ¢ is the N-least element of M ~\ pgy1.

To recover X from D(.A), we need to also simultaneously recover
the sequence of lengths {k; : s € N}, where ks = |ps|, for which we use
the minimality of @ and b. Given k,, we can compute k,,; uniformly
in D(A) as follows: kg1 is the least k > k; such that

D0, ... ks — 1, kg ks +2,ks+4,...,k—3) #
Da(0,.ccsks — 1, kg + 1, ks + 3, ks + 5, ..., k — 2).

Once we know which of these two binary strings is lexicographically
smaller, we can tell if X(s) is 0 or 1: It is 0 if the former one is <.~
smaller than the latter one. ]

Notice that for trivial structures, all presentations are isomorphic
via computable bijections, and hence all presentations have the same
Turing degree. When the vocabulary is finite, all trivial structures are
computable.



CHAPTER 1II

Relations

A relation is nothing more than a set of tuples from a structure. The
study of the complexity and definability of this basic concept is one of
the main components of computable structure theory. In model theory,
a relation on a structure A is usually a subset of A™ for some fixed n.
Here, we allow ourselves to consider infinitely many relations at once,
and hence consider subsets of A<N and even N x A<N as relations.
Thus, while in model theory one is interested in structures of lesser
computational complexity than the natural numbers, here we purposely
allow our relations to interact with the natural numbers.

Many of the notions of computability on subsets of N can be ex-
tended to such relations on a structure, but the space of relations is
usually much richer than the space of subsets of N, and understanding
that space allows us to infer properties about the underlying struc-
ture. In this chapter we will introduce the analogues of the notions of
c.e.ness, Turing reducibility, join, and jump for the space of relations.
These tools will be used throughout the book.

From now on, unless otherwise stated, when we are given a struc-
ture, we are given an w-presentation of a structure. Throughout this
chapter, A always denotes an w-presentation of a 7-structure.

II.1. Relatively intrinsic notions

We start by defining a notion of c.e.-ness for relations on a given
structure. This will open the door for generalizing other notions of
computability theory from subsets of N to relations on a structure.

II.1.1. R.i.c.e. relations. Let us try to capture what is happen-
ing underneath the following examples:

ExamMpPLE II.1. Consider Q-vector spaces where the vocabulary
contains a constant 0 for the zero vector, a binary operation + for
vector addition, and, for each rational ¢ € Q, a unary operation ¢- _ for
scalar multiplication by ¢. The field Q is not part of the domain of the
structure, only the vectors are. Over a Q-vector space V, the relation

11
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LD < V=N of linear dependence® is always c.e. in V. To enumerate
LD in a D(V)-computable way, go through all the possible non-trivial
@-linear combinations qq - vg + - - - + gk - vx of all possible tuples of vec-
tors (g, ..., vy € V=N and if you find one that is equal to 6, enumerate
(v, ..., v} into LD.

ExAMPLE I1.2. Over aring R, the relation that holds of (rg, ..., ;) €
R=N if the polynomial ry + 71z + ... + r,2* has a root is c.e. in R: As
in the previous example, search for a root of the polynomial by eval-
uating the polynomial (which can be done D(R)-computably) on all
the possible values of x € R, and if you ever find one that makes the
polynomial 0, enumerate {ry, ..., 7 ) into the relation.

DEFINITION I1.3. Let A be a structure. A relation R € N x A<N
is relatively intrinsically computably enumerable (r.i.c.e.) if, for every
copy (B, RP) of (A, R), the relation RP (viewed as a subset of N<V) is
c.e. in D(B).

The relations from Examples I1.1 and I1.2 are both r.i.c.e. A relation
like linear independence, whose complement is r.i.c.e., is said to be co-
T.1.C.€.

Notice that the notion of being r.i.c.e. is independent of the presen-
tation of A, and depends only on its isomorphism type.

Let us remark that we can view (A, R) as a structure in the sense
we defined on page xviii, by thinking of R as an infinite sequence of
relations (R, : m,n € N), where R,,,,, = {r € A" : (m,7) € R} is a
relation of arity n. The original definitions of r.i.c.e. (see [AKO00, Page
165] [Mon12, Definition 3.1]) are only on n-ary relations for fixed n,
but that is too restrictive for us. The reason we choose to define r.i.c.e.
on subsets of N x A<N is that it is a simple enough setting which, at
the same time, is fully general. This is the same reason we choose to
develop computability theory on sets of natural numbers instead of on
the set of hereditarily finite sets: The natural numbers are simpler, and
yet every finite object can be encoded by a single natural number. We
will get back to this point in Section I1.4.

EXAMPLE I1.4. Let A be a linear ordering (A; <). We say that z
and y € A are adjacent, and write Adj(x,y), if z < y and there is no
element in between them. Notice that the complement of this relation,
—Adj(a,b) = A?,is c.e. in D(A): At stage s, we are monitoring the first
s elements of the w-presentation of A, and if we see an element appear
in between a and b, we enumerate the pair {a,b) into —Adj(a, b). This

*LD is the set of tuples {(vg, ..., vx» € V=N of vectors that are linearly dependent.
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is also the case for any other w-presentation of A. Therefore, —Ad]
is r.i.c.e. There is something intrinsic about —Adj that makes it c.e.
in whatever w-presentation we consider. The reason is actually quite
explicit: It has an 3-definition, namely

—Adj(z,y) <= z<yvIz(r<z<y).
There are, however, r.i.c.e. relation that do not have 3-definitions:

ExAMPLE I1.5. Consider a linear ordering with the adjacency rela-
tion as part of the structure A = (A; <, Adj). We call these structures
adjacency linear orderings. On it, consider the set R of pairs of ele-
ments from A for which the number of elements in between them is
a number that belongs to 0’. We note that R < A? is r.i.c.e.: Given
a,be A, wait to find elements ay, ..., a, with Adj(a,a;) A Adj(as, as) A
. AAdj(an_1,a,) A Adj(a,,b), and if we ever find them, wait to see if n
enters 0, and if that ever happens, enumerate {a,b) into R. The rela-
tion R cannot be defined by an 3-formula in the vocabulary {<,Adj}.
But it can be defined by a computable infinite disjunction of them.

ExXAMPLE I1.6. On the standard computable w-presentation of the
rationals @ = (Q;0,1, +, x), a relation R € N x Q<N is r.i.c.e. if and
only if it is c.e. This is because if A is a copy of Q, then there is a
D(A) computable isomorphism between A and Q, and hence if R is
c.e., R4 is c.e. in D(A).

OBSERVATION II.7. For the definition of r.i.c.e., it does not mat-
ter whether we use w-presentations or congruence (Sw)-presentations.
That is, a relation R < N x A<N is r.i.c.e. as in Definition II.3 if and
only if, for every congruence (Sw)-presentation (B, R®) of (A, R), we
have that R® is c.e. in D(B).

I1.1.2. R.i. computability. The same way we generalized the no-
tion of c.e.ness to define r.i.c.e. relations, we can extend other standard
concepts from computability theory to the space of relations on a struc-
ture.

DEFINITION I1.8. A relation R € N x A<N is relatively intrinsically
computable (r.3. computable) if RP is computable in D(B) whenever

(B, RB) is a copy of (A, R).

Observe that R is r.i. computable if and only if it is r.i.c.e. and co-
r.i.c.e. The reader can imagine how to continue in this line of definitions
for other notions of complexity, like relatively intrinsically AS, relatively
intrinsically arithmetic, etc. These notions relativize in an obvious way
to produce a notion of relative computability:
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DEFINITION I1.9. Given R € N x A<N and Q < N x A<V, we say
that R is r.i.c.e. in @ if R is r.i.c.e. in the structure (A, @), that is, if
RB is c.e. in D(B) @ QF for every copy (B, RP,QP) of (A, R,Q). R is
r.i. computable in @), and we write R <,7 @, if R is r.i. computable in
the structure (A, Q).

The ‘T stands for “relatively Turing.”

ExamPLE I1.10. Let A = (4; <) be a linear ordering, and consider
the relation given by the pairs of elements which have at least two
elements in between:

T ={{a,bpe A*:a<bnicdla<c<d<b)}

Then T <,7 Adj: Suppose we are given {(a, by € A% with a < b and we
want to decide if {a,b) € T using Adj. If Adj(a,b), we know {(a,b) ¢ T.
Otherwise, search for ¢ in between a and b, which we know we will find.
If Adj(a, c) and Adj(c, b), we know that (a,b) ¢ T. Otherwise, we must
have {a,b) e T.

On the linear ordering of the natural numbers w = (N; <), we also
have Adj <,r T: To decide if a and b are adjacent wait either for
an element to appear in between them or for an element ¢ > b with
—T'(a,c). In the former case we know that a and b are not adjacent,
while in the latter case we can deduce that they are.

On the other hand, there are linear orderings where Adj <, T. As
an example, consider the linear ordering

A=2Q0+3+2Q+3+2Q+3+---,

where 2Q is built by replacing each element of Q by a pair of adjacent
elements, obtaining densely many copies of 2. To show that Adj <, T,
it is enough to build a computable copy B of A, where T? is com-
putable, but Adj® is not. To do this, let us start by fixing a computable
w-presentation C of the linear ordering 2Q = 2Q+1+14+2Q+1+14-- -,
and picking a computable increasing sequence of adjacent pairs ¢, o, ¢ 1
for n e N.

C = 2@ + {0070} + {00’1} + 2@ + {0170} + {0171} + 2@ + {0270} + {6271} + -

To build the w-presentation B of A, we will add an element in between
cno and ¢, if and only if n € 0'; we can then decode 0’ from Adj® by
checking if ¢, ¢ and ¢, 1 are adjacent in B. More formally, to define B,
put a copy of C on the even numbers in the domain of B, and use the odd
numbers to add those “in-between” elements. Let 2s+1 be <g-between
k.0 and cg, 1, where {ks : s € N} is a computable enumeration of 0.
Notice that <z is computable. The relation T7 is also computable,
as it holds between any two elements of C which are not in the same
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2-block, and holds between 2s + 1 and any other element, except for
ck,0 and cg, 1. The adjacency relation is not computable because k €
0 < —Adj(cxo,cx1) for all ke N.

EXERCISE II.11. On a linear ordering, let T, be the n-in-between
relation that holds of a pair {(a,b) if a < b and there are at least n
elements in between a and b.

(a) Show that on every linear ordering, T},,1 <,r T, for all n € N.

(b) Show that there is a linear ordering on which 7T,,.; <, T, for
all n.

I1.1.3. A syntactic characterization. R.i.c.e. relations can be
characterized in a purely syntactical way using computably infinitary
formulas and without referring to the different copies of the structure.
We will define computably infinitary formulas in [MonP2]. For now,
we define just the class of computably infinitary ¥, formulas or 3%
formulas.

DEFINITION IL.12. An infinitary 3, formula (denoted X1*) is a
countable (finite or infinite) disjunction of 3-formulas over a finite set
of free variables. A computable infinitary ¥, formula (denoted ) is
a finite or infinite disjunction of a computable list of 3-formulas over a
finite set of free variables.

Thus, a 3§ formula is one of the form
v(E) = Waﬂi%(i’ay_i)v
i€l
where each ¢; is quantifier-free, I is an initial segment of N, and the
Godel indices ("p;': i € Iy can be listed computably, i.e. it is a c.e. set
of indices. The definition of satisfaction is straightforward: A |= v (a)
if and only if there exist i € I and b € A%l such that A = ¢;(a,b).
Using the effective enumeration {W, : e € N} of the c.e. sets, we can
enumerate all 3§ formulas as follows: If {¢} (71,...,2;) : i € N} is an
effective enumeration of the existential 7-formulas with j free variables,

we define
¢, _ _
pos@ = \N/ ¢,@
(i,5)EWe

for each e € N. We then get that {(pflj : e € N} is an effective enumer-

ation of the X$ 7-formulas with j free variables. Note that if ¢(Z) is
¥¢ then {a e A : A= (a)} is c.e. in D(A), uniformly in ¢ and A.

In other words, there is a c.e. operator W such that

(P ay e WP — A= 4(a)
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for all 7-w-presentations A, X$ 7-formulas ¢, and tuples a € Al®l.

ExaMPLE I1.13. In a group G = (G, #), the set of torsion elements
can be described by the X formula:

tOl"SiOIl(J,’) = \X/ TxTxTx---xT =¢€]|,
\ e
N i times

where e is the identity of the group.

ExAMPLE IL1.14. On a graph G = (V; E), the relation of being
path-connected can be described by the ¥ formula:

connected(z,y) = \X/Hzl, v zi(tBEzy A z1Ezg A - A 2iBY) .
1eN
We would like to consider ¥ definability, not only for n-ary rela-
tions, but also for subsets of A<N.

DEFINITION I1.15. A relation R = N x A<N is ¥¢-definable in A
with parameters if there is a tuple p € A<N and a computable sequence’
of ¥f formulas v; ; (1, ..., Z|5), Y1, ..., ¥;), for 4,5 € N, such that

R={Gi.By e N x A™: A=, 5B D).

The elements in p are the parameters in the definition of R.

From the observation before Example I1.13, it is not hard to see
that if R = N x A<N is X3¢ definable in A with parameters, it is r.i.c.e.
The next theorem shows that this is a characterization. The theorem
was proved for n-ary relations by Ash, Knight, Manasse, and Slaman
[AKMS89], and independently by Chisholm [Chi90]. The proof for

subsets of N x A<N is no different.

THEOREM I1.16 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm
[Chi90)). Let A be a structure, and R = Nx AN a relation on it. The
following are equivalent:

(1) R is r.i.ce.
2) R is X35 definable in A with parameters.
(2) 1 p

PROOF. As we mentioned above, (2) easily implies (1). We prove
the other direction. We will build a copy B of A by taking the pull-
back of an enumeration g: N — A that we construct step by step, and
we will apply (1) to that copy. We define ¢ as the union of a nested
sequence of tuples {p, : s € N} € A<N where p, is defined at stage s.

"When we say “computable sequence of ¥$ formulas,” we of course mean a
computable sequence of indices of ¥§ formulas.
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Then we define B to be the pull-back g~!(A) as in Subsection I.1.7.}
Thus, we will have

Po S <SS p S 5g and D(B)=]Dalps).

Throughout the construction, we try as much as possible to make R”
not c.e. in D(B). But, because of (1), this attempt will fail somewhere,
and we will have that

g (R) = R = WP

for some e € N.5 We will then turn this failure into a %$ definition of
R.

Here is the construction of B. Let py be the empty sequence. At odd
stages, we take one step towards making g onto: At stage s+1 = 2e+1,
if the eth element of A is not already in p, we add it to the range of
Ps+1 (€., we let psy1 = ps~e), and otherwise let psi 1 = ps.

At the even stages, we work towards making R not c.e. in D(B):
At stage s+ 1 = 2e, we try to force wh®) ¢ ¢! (R) for which we need

a tuple (i, j1, ..., jo> € WP with (i, g(j1), ..., g(je)) ¢ R. We do this as
follows: Ask if there is an extension ¢ of p, in the set
Qe = {(76 A<N : Ewui7j17 "'7j€ < |(j|
(<i7j17 "'7j€> € WeDA((D and <Z7 qj17 HS) q]é> ¢ R)}

If there is one, we let ps,1 = ¢. If not, we do nothing and let p,1 = ps.
This ends the construction of g and B.

Nx BN - NxNN_?2 _NxA<N
ul Ul
wh® R
w B~

.o . q .
<Zaj17 "'7]€> e <Z, Qj1s -+ QJe>
Notice that if at a stage s + 1 = 2e, we succeed in defining ps; =
g € Q., then we succeed in making wP® g '(R): This is because

‘Let us observe that the fact that the congruence w-presentation B is non-
injective is not important here by Observation I1.7. Alternatively, we can make g
one-to-one by requiring the tuples ps to be injective.

‘By g~ !(R) we of course mean

{€i, oy s jep) € N x N2 (i, {g(jo), -, 9(je))) € R}.
We will use (i, ji, ..., j¢y as shorthand for (i, {(j1, ..., je))-
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we would have ¢ € g and hence that
<i7j1a"'>jé>€ WeDA(Q) = WeD(B) ﬂWhﬂe <Zag(]l)7vg(jf)> = <7;7Qj17"-7qj2>¢ R.

However, we cannot succeed at all such stages because R? = WP® for
some e € N. Thus, for that particular e, at stage s + 1 = 2¢, there was
no extension of p, in Q..

Cramv 11.16.1. If BB = WP™® and there are no extensions of p in
Q., then R is ¥$-definable in A with parameters p.

PROOF OF THE CLAIM. Notice that if we find some ¢ 2 p and a
sub-tuple (i,ay = {i,¢j,, ..., q;,) such that (i, ji,...,je) € WeD““(Q), then
we must have (i,a) € R, as otherwise we would get ¢ € Q.. This is the
key idea we use to enumerate elements into R.

More formally, we will show that R is equal to the set

S = {{,qj,, . q;,) € Nx AN . for some ge A=Y and ¢,4, 71, ..., jo < |q
satisfying ¢ 2 p and (i, ji, ..., jo) € WPA@},

If (i,a) € R, let ji,...,jja be indices such that a = {g(j1),..., 9(Jja|))
and we get that {(i,a) € S witnessed by a long enough segment g of
g. For the other direction, if a = {(i,g¢j,,...,q;,) € S, then we must
have (i,a) € R: Otherwise we would have ¢ € Q., contradicting the
assumption of the claim.

Now that we know that R = S, let us show that S is 2§ definable
with parameters p. For every i € N and a € A<V,

(i,aye S < IG2p \/ ({g;,, s Gy =@ & (g1, Jlal) € WEDA(Q)) _
J1seodja<lal

But “{7, ji, ..., jja|) € WP4@» s not a formula in the language. So we
need to re-write it as:

GoayeS «—= \X/ 'V 3220 (@, =8 & “0<Da@)").
0€2<N (i,j1,....5)a) EWS

Recall that, for each o € 2<N, there is a quantifier-free formula with
the meaning “c < D 4(z)” (Observation 1.10). o

Thus, R is X{-definable in A with parameters p;. O

Let us comment on where the parameters come from. We just
showed that: either for every e, every p € A<N can be extend to a tuple
q € Q., in which case we can satisfy every diagonalization requirement
getting that R® is not c.e. in D(B); or there exists some e and some

YObserve that since D(B) = U, Da(ps), we have that wh® - U, Wwlhal:),
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tuple p which cannot be extended in ()., in which case R is X{ definable

in A with parameters p. This tuple p forces R to be equal to wh®)
as we will see in Chapter IV.

Very often, we will deal with relations that are ¥¢-definable without
parameters. These relations are not just r.i.c.e., but uniformly r.i.c.e.:

DEFINITION IL.17. A relation R = N x A<N is uniformly r.i.c.e.
(denoted w.r.i.c.e.) if there is a c.e. operator W such that RE = WP®)
for all (B, RP) ~ (A, R).

The difference between r.i.c.e. and u.r.i.c.e. relations is just that the
former needs parameters in its X§ definition — parameters that one
may not be able to find computably and hence require “non-uniform”
information.

COROLLARY I1.18. Let A be a structure and R € Nx A<N g relation
on it. The following are equivalent:

(1) R is u.r.i.c.e.
(2) R is X definable in A without parameters.

PROOF. It is easy to see that (2) implies (1). For the other direc-
tion, let W, be the c.e. operator witnessing that R is u.r.i.c.e.. Let
Q. be as in the proof of Theorem I11.16. No tuple § € A<N can be
in ). because, otherwise, any extension of ¢ to an enumeration g of
A would satisfy WeD(gil(A)) ¢ g Y(R), contradicting our choice of W,.
The corollary then follows from Claim I1.16.1 where p is the empty
tuple. L]

EXERCISE 11.19. Show that a relation R < A* is u.r.i.c.e. if and
only if there exists a c.e. set W < 2<N such that, for a € A*,

aeR < \X/37€ A™" (0 < Da(aq)).

oeW

Hint in footnote.!

II.1.4. Coding sets of natural numbers. Another feature that
is useful when working with subsets of N x A<N is that we can code
subsets of N in an obvious way: We represent X € N by X x {(} <
Nx A<N where () is the empty tuple. We will sometimes abuse notation
and refer to a set X N as if it was a subset of N x A<N. For instance,
if we say that X is r.i.c.e. in A, we would formally mean that X x {()}
is r.i.c.e. in A. Thus, X x {{)} is r.i.c.e. in A if and only if X is c.e.

IProve it first for atomic formulas, then quantifier free formulas, then 3-
formulas, and then 3§ formulas.
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in every w-presentation of A. If that is the case, we say that X is
c.e.-coded by A [Monl0, Definition 1,8]. If X x {(}} r.i. computable
in A, or equivalently if X is computable in every w-presentation of A,
we say that X is computably coded by A. A characterization of the
sets that are c.e.-coded by a given structure was first given by Knight
[Kni86, Theorem 1.4’]. We get it as a corollary of Theorem I1.16. Let
us first see an example.

EXAMPLE 11.20. Given X < N, let G be the group @, _y Z,,, where
p; is the ith prime number and Z, is the cyclic group of size p, namely
Z,/pZ. We then have that X is c.e.-coded by G, as i € X if and only if
there is an element of G of order p;.

A more general family of examples are the 3-types of tuples from
the structure.

DEFINITION I1.21. Given @ € A=Y, we define the 3-type of @ in A
as

Ftpa(a) = {i e N: A= ¢ 5 (a)}
where {¢; ; : i € N} is an effective enumeration of the 3-7-formulas with
j-free variables.

Clearly, for any tuple @ € A<N, we can enumerate 3-tp4(a) from
any w-presentation of A once we recognize where the tuple a is in
the w-presentation (non-uniformly). Knight’s theorem essentially says
that 3-types are essentially all that a structure can c.e.-code. To state
Knight’s results, we need to review enumeration reducibility.

DEFINITION I1.22. An enumeration of Y is an onto function f: N —
Y. Aset X < Nis e-reducible to Y < N if every enumeration of Y com-
putes an enumeration of X. See page xvii in the background section
for more on e-reducibility.

Suppose we have a set X < N that is e-reducible to the 3-type
of some tuple p in A. Then any w-presentation of A can enumerate
IF-tpa(p) and hence also X. Thus, X is c.e.-coded by A. Knight showed
that these are all the sets A codes:

COROLLARY I1.23 (Knight [Kni86, Theorem 1.47], see also [AKO00,
Theorem 10.17]). Let X < N. The following are equivalent:

(B1) X is c.e.-coded by A (i.e., X is c.e. in every copy of A).

(B2) X is e-reducible to 3-tp(p) for some pe AN,

PrROOF. We have already mentioned how (B2) implies (B1). We
prove the other direction.
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As we mentioned before, X is c.e. in every copy of A if and only
if X x {O}isri.cee. in A. By Theorem I1.16, we have a X$ definition
of X x {{)} over some parameters p. This means that we have a com-
putable list {1, : n € N} of X sentences such that ne€ X <= A
¥,. We can then transform this ¥ definition into an enumeration op-
erator ® that outputs X when 3-tp4(p) is given as input: The operator
® enumerates n into ®¥P4P) if (the index of) one of the disjuncts of
¥y, appears in 3-tp4(p). If the reader wants to be very explicit: if the
3¢ definition of X x {()} with parameters p is of the form

e X x{Q} &= Apy, «= Ak \X/ ¢ijy(®)

iy ieW
for some c.e. set W. Then
neX < JieN((n,iye W nieItpas(p)),
and hence X is e-reducible to 3-tp4(p). ]

EXERCISE 11.24. Let A be a structure and X a set c.e.-coded by A.
Let ¢)(xo, ..., 7x—1) be a X{* formula of the form \X/ .y ¢} ,(Z) where Y’

is e-reducible to X. Show that {a e A*: A = ¢(a)} is r.i.ce.

EXERCISE 11.25. We say that X < N is uniformly c.e.-coded by A
if X x ()isuri.c.e. in A. Show that X is uniformly c.e.-coded by A
if and only if X <. 3-Th(A).

I1.1.5. Joins. The use of subsets of N x A<N allows us to consider
not only natural numbers and all n-tuples simultaneously, but also all
finite objects that can be built over A. We will see more on this in
Section I1.4. For now, we see how to code many relations using just
one.

DEFINITION I1.26. Given R,Q = N x AN we define R&® Q by
{(m,b) € R® Q if either m = 2n and (n,b) € R, or m = 2n + 1 and
{(n,b) € Q.

It is not hard to see that @ defines a least-upper-bound operation for
r.i. computability. That is, R and () are r.i. computable in R® @, and
whenever both R and @ are r.i. computable in a relation S € N x A<N,
R ® (@ is r.i. computable in S too.

We can then take joins of N-sequences of relations in a straightfor-
ward way too. We can keep on pushing this idea much further. For
instance, given Q < (A<N)2, we can encode it by a relation N x R <
N x A<M as follows: (n,by € R if {((by, ..., bp—1), {bps -, 1)) € Q. In

a similar way, the reader can imagine how to code subsets of (A<N)<N
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by subsets of A<N. We will see the most general form of this in Section
I1.4.1.

REMARK I1.27. Given Q < N x A<V, define R € A=N as follows:
b € R if and only if |b| is a number coding a pair (n,m) € N? and
(n,bm)e Q. We then have that Q is r.i.c.e. if and only if R is r.i.c.e.
Thus, working in the setting of subsets of A<N would have been as
general as working in the setting of subsets of N x A<N,

I1.2. Complete relations

So far we have notions of c.e.-ness, computability, and join on the
subsets of N x A<N. The next step is to get an analogue for the Turing
jump.

11.2.1. R.i.c.e. complete relations.

DEFINITION IL1.28. A relation R < N x A<N is complete in A if
every 1.i.c.e. relation Q < N x A<N is r.i. computable in R. R is r.i.c.e.
complete if it is also r.i.c.e. itself.”*

If we view 0’ as a subset of N x A<N as in Section I1.1.4, 0/ is always
ri.c.e. in A and hence every complete relation must r.i. compute it.
For some structures A, 0’ is r.i.c.e. complete itself, but in most cases,
it is not. This is not surprising as 0’ contains no structural information

about \A.

ExAMPLE 11.29. On a Q-vector space, LD @ (' is r.i.c.e. complete,
and LD is not r.i. computable from 0' when the space has infinite
dimension. Recall that LD is the linear dependence relation (Example
I1.1).

On a linear ordering, (—Adj)@®0 is r.i.c.e. complete, and —Adj is not
r.i. computable from 0" unless there are only finitely many adjacencies.
We will prove these facts in Lemmas 11.43 and 11.42.

These examples of complete relations are particularly nice and clean,
but we will not always be able to find such simple complete relations.
Simple or not, r.i.c.e. complete relations always exist. We consider the
analogue of Kleene’s predicate K by putting together all 3{-definable
relations. Recall from Section I1.1.3 that {gofi : i € N} is an effective
enumeration of the 3§ 7-formulas with j free variables.

**This is the analogue of Turing-complete and not of m-complete.
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DEFINITION I1.30. [Monl2] The Kleene relation relative to A,
KA < N x A<N_ is defined by

By eRA — Ak ¢ ().

It is clear that KA is r.i.c.e. It follows from Theorem I1.16 that,
for every r.i.c.e. relation R € A", there are i € N and @ € A=Y such
that R = {b e A" : (i,a"b) € KA}. The following lemma shows K* is
complete among all r.i.c.e. relations in N x A<N,

LEMMA IL.31. For every r.i.c.e. R € N x A<N, there is a tuple a
and a computable function f: N — N such that

(m,bye R < (f(m),a"byeK*  forallmeN andbe AN

Proor. It follows from Theorem II.16 that, for every r.i.c.e. R <

N x A<N there is a tuple @ such that each column of the form R n

{m} x A™ is uniformly > definable with parameters a. More precisely,

there is a computable function m, j — e, ; such that R n ({m} x A7)
is definable by the e,, ;-th 3{ formula using a as parameters:

(m,bye R — A=

em,

. |a13\(a’ b) for all m e N and be AN,

Notice that the right-hand-side is equivalent to {e,, 3, aby € RA, which
is almost what we want — what is left is to remove the dependence of
€m7‘5| on |b|

The rest of the proof uses a standard technical argument to define
f(m) so that is does not depend on |b|. Recall that gojlj () was defined
as \W/ i jew, #i,(Z) where j = |z|. Given m, define f(m) to be the
index of a c.e. set, Wy, such that

G, lal +ny e Wiy < (i, |a| +n)e W, for all i,n € N.

m,n

¢ »¢
Then, we get (Ym,n € N) P rim)falin = Pom o falin> 20d that
(m,bye R < {(f(m),ab) e K* for all be AN, O

REMARK I1.32. In particular, it follows that, given an enumeration
of all tuples in A, we can get an enumeration of all r.i.c.e. subsets of
N x A<N. Furthermore,

KE = (e, @), (i, b)) : Du(i)] & (D.(i),ab) € KA} = (Nx AN x (Nx A<N)

is a r.i.c.e. relation such that every other r.i.c.e. relation R € N x A<N,
is a column of K*. That is, R = {r : {(s,r) € K{!} for some s € N x A<V,
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In terms of Turing degrees, it is easy to see that KA <g D(AY
for any w-presentation A. The reverse reducibility holds in some w-
presentations (Lemma IV.23) but not in others:

EXERCISE I1.33. Show that any non-trivial structure has an w-
presentation A with D(A) = KA. Hint in footnote.'

By relativizing Kleene’s relation, we can define a jump operator on
subsets of N x A<N.

DEFINITION I1.34. Given Q € N x A<N, we define the jump of Q in
A to be K@) that is, Kleene’s relation as in Definition I1.30 relative
to the structure (A, Q). We denote it by Q.

OBSERVATION I1.35. The jump operator on relations is well-defined
on <,p-degrees. Furthermore, if @ <,r R, then @)’ <, R’. This is
because if Q <,r R, then QF is computable in D(B, RP) for any w-
presentation B of A, and hence @’ is c.e. in D(B, RP), getting that @’
is r.i.c.e. in (A, R). From the completeness of R', it follows that @ is
r.i. computable in (A, R').

I1.2.2. Diagonalization. We now prove that, on the space of sub-
sets of N x A<N_ the jump operation actually jumps.

THEOREM 11.36. For every structure A, KA is not r.i. computable
in A.

ProoOF. This proof is essentially the same as Kleene’s diagonaliza-
tion argument for showing that 0’ is not computable (see footnote in

page xviii), but adapted to this setting. Suppose that KA is co-r.i.c.e.
— we will produce a contradiction by finding a pair that is supposed
to be in K4 if and only if it is supposed to be out.

We consider the following relation reminiscent of the complement
of the diagonal in Kleene’s argument:

R=1{byeNx AN &,(i)| and (D;(i),bb) ¢ K*}.

Since we are assuming KA is co-r.i.c.e., R is rice. By the r.i.c.e.-
completeness of K as in Lemma I1.31, we have that there is an index
e € N for a total computable function ®. and a tuple @ € A< such that

(i,bye R «— (®,(i),aby e K*  for all (i,bye N x A<N,
If we use {e,a) for (i,b), we then get the following contradiction:
(e,a)ye R « (®,(e),aa) e K* «— (e,a)¢ R,
the latter equivalence coming from the definition of B ]

TUse Theorem 1.16.
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COROLLARY I1.37. For every Q € N x A<N Q <4. Q'; that is, Q
is r.1. computable in Q', but Q' is not r.i. computable in Q).

PROOF. It is easy to see that ) <,r Q' because the ¥{ diagram of
(A, Q) clearly computes the atomic diagram of (A, Q) in any copy of
A. That @)’ is not r.i. computable in @ follows from the theorem above
applied to the structure (A, Q). ]

HisTORICAL REMARK I1.38. The proof of Theorem II.36 given above
is from [Mlon12], although it is clearly similar to the standard proof of the
incomputability of the halting problem. Theorem I1.36 had been previously
proved for a different, yet equivalent, notion of jump by Vatev in [Vat11].
Vatev’s proof, restated in our terms, goes by showing that if B is a generic
copy of A, then KB has degree D(B)’ (which, of course, is not computable
in D(B)), and hence KA is not r.i. computable in A. From a personal
communication, Stukachev has another proof which has not been translated
into English yet.

I1.2.3. Structural versus binary information. As we saw in
Section I1.1.4, we can trivially code reals X < N with relations X x
{O} @ N x A<N. There is no structural information on the relation
X x {{}. The information content in X x {()} is purely binary:

DEFINITION 11.39. A relation R € N x A<N is purely binary if there
is an X € 2V such that R is r.i. computable in (A, X).

ExaMPLE 11.40. Let £ = (L; <, Adj) be an adjacency linear order-
ing isomorphic to Z, and let R < L? be the set of pairs {(a, b) for which
the number of elements in between a and b is a number in 0’. R is not
r.i. computable, but it is clearly r.i. computable in 0'. Its information
content is purely binary.

In contrast, relations like Adj on a linear ordering contain struc-
tural information and no binary information. Relations like the r.i.c.e.-
complete relation on a linear ordering, K~ =, —Adj® 0/, are a mix of
both. In many occasions, one is interested only in structural behavior.
In that case, one should consider the structural versions of the notions
from earlier in this chapter by modding out the binary information: A
relation R € Nx A<N is structurally r.i.c.e. in Aifitisr.i.cee. in (A, X)
for some X € 2V. R is structurally r.i. computable from @ within A if R
is 1.i. computable in (A, Q, X) for some X € 2. We sometimes refer to
these versions as the boldface versions or the on-a-cone versions. The
following notion is particularly important:

DEFINITION I1.41. A relation R is structurally complete if every
structurally r.i.c.e. relation is structurally r.i. computable in R. R is
structurally r.i.c.e. complete if it is also structurally r.i.c.e. itself.
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We will see below that the linear dependence relation is structurally
r.i.c.e. complete in Q-vector spaces, and that the adjacency relation is
structurally co-r.i.c.e. complete on linear orderings, among other exam-
ples. We will further analyze structurally complete relations in Section
X.1 once we have more tools at hand.

I1.3. Examples of r.i.c.e. complete relations

In this section, we consider structures that have nice structurally
complete relations. The first example, linear dependence on vector
spaces, is rather simple. The proof for the second example, adjacency
on linear orderings, is quite interesting.

LEMMA I1.42. The relation LD of linear dependence on a Q-vector
space is structurally complete. Moreover LD@®0' is r.i.c.e. complete.*

PRrROOF. The key point is that any Q-vector space has a canonical
computable copy, and using LD, one can find an isomorphism with
that particular copy. One can then move c.e. relations through that
isomorphism.

All the countable Q-vector spaces are of the form Q" for some
n € N u {w0}. Each Q" has a standard, nicely behaved computable
w-presentation. Assume n = oo as the other cases are even simpler.
Let R < N x (Q®)<N be a r.i.c.e. relation. We want to show that R is
r.i. computable in LD @ 0.

Let W be a copy of Q, and let R"Y be the image of R — we need to
show that R" is computable from LD" ®0’. We can use LD to find
a basis for W and hence compute an isomorphism ¢g: Q* — W, which
maybe be different from the original isomorphism we had between W
and Q% that we used to define R" from R. What we do have is that

(Q”, R) = (W,R") = (Q*,g7(R™)).

Since R is r.i.c.e., that g7*(R") is c.e. in D(Q®), and hence c.e., and
hence computable from 0. We then get that R" is computable from
g @0, and hence from LDY @ 0 as needed. ]

The same argument above can be used to show that the “algebraic

dependence” relation is structurally complete on algebraically closed
fields.

HRecall from Example II.1 that the field Q is not part of the structure and we
use the vocabulary that includes a unary scalar multiplication symbol ¢ - _ for each

qe€ Q.
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LEMMA 11.43. Let A = (A; <) be a linear ordering. Then
Adj = {{a,bye A? :a < b& fic (a < c < b)}.
is structurally complete. Furthermore, —Adj@® 0 is r.i.c.e. complete.

PROOF. The proof goes by showing that every ¥ formula over the
vocabulary {<} is equivalent to a finitary universal formula over the
vocabulary {<,Adj}, and that 0’ can find these equivalent V-formulas
uniformly. We then get that every 3$-definable relation is co-r.i.c.e.
in Adj @ 0’ and hence r.i. computable in it. One could prove this in a
purely syntactical way in the style of a quantifier-elimination argument.
Instead, we give a more model-theoretic proof.

Let ¢(x1,...,x%) be a 3¢ formula about linear orderings (i.e., over
the vocabulary {<}). Let ¢ = {¢y, ...., ¢x) be new constant symbols and
7 ={<,¢1,...,c}. We will use the term ¢-linear ordering to refer to
a linear ordering where the constants from ¢ have been assigned. As
a preview of the rest of the proof, let us mention that one of the key
points is that the finite ¢-linear orderings form a well-quasi-ordering
under embeddability. The proof is divided into three claims:

Cramv I1.43.1. Two X§ 7'-sentences are equivalent on é-linear or-
derings if and only if they hold on the same finite ¢-linear orderings.

The left-to-right direction is obvious; we prove the other direction.
Let ¢ and 1 be two X sentences which hold on the same finite ¢-linear
orderings. Consider an infinite ¢-linear ordering £ where ¢ holds. Then
one of the 3-disjuncts of ¢ holds in £, and hence holds on a finite 7'-
substructure of £. By the assumption, 1 holds on that same finite
c-linear ordering, and by upward-persistence of ¥$ formulas, ¢ holds
in £ too.

Cramm I1.43.2. For every 3§ 7'-sentence ¢, there is a finite set of
finite c-linear orderings Ly, ..., L4, such that, for any c-linear ordering
A, A = ¢ if and only if one of those finite ¢linear orderings Ly,
7'-embeds’ into A. Furthermore, 0’ can find those ¢-linear orderings
uniformly in .

Given a permutation {(my,...,my of {(1,....,k) and k + 1 numbers
n = {ng,...,nky, let L5 be the finite ¢-linear ordering with ¢, <
Cry < -+ < Cp, that has exactly ng elements less than c,,, n; elements
between c,, and ¢y, ,, and n; elements greater than c,,. Consider the
ordering < on S, x N*+1 given by

(m,ny <{o,m)y < 7=o0& (Vi<k)n <m,,

"By 7'-embed we meant that it embeds as a 7/-structure.
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where Sy is the set of permutations of {1, ..., k}. We then have that
(m,ny < {o,m)y = Lrn embedsin L.

By upward-persistence of $ formulas, it follows that the set D of
(m,fy € S x N1 such that L, = ¢ is <-upwards closed. Now,
by Dickson’s Lemma, the ordering < is a well-quasi-ordering.* (See
Definition X.13.) That means that every subset of Sy x N1 has a
finite set of minimal elements, and hence that for every upward-closed
subset D < S;, x NF*1 there is a finite set of elements dy,...,d, € D
such that

feD «— \/djgf for all f e S, x NF*1,

j<t

The oracle 0 can find this finite set {d, ..., d;} because it can check
that every L, satisfies ¢ and that every £y with (Vj <) d; < f does
not satisfy . This proves our second claim.

Let ¢n(x,y) be the I-formula that says that there are at least n
elements strictly in between x and y:

Up(x,y) =321, 0y 2p (T <21 <29 <+ < 2z, <Y).

We write 1, (—o0,y) for the unary 3-formula that says that there are
at least n elements less than y, and analogously with v, (x, o0). Given
a permutation 7 € Sy, and 1 = (ny, ..., Ny € N1 we let

A ¢-linear ordering satisfies ¢; 5 (¢, ..., ¢;) if and only if £, 5 embeds in
it. Then we get from the claim that every X$ formula ¢(xy, ..., z) is
equivalent to a finite disjunction of formulas of the form ¢ 7 (21, , ..., Zx, )
Furthermore, 0 can find these formulas uniformly. The following claim
is all that is left to prove the lemma.

Cramv 11.43.3. The formulas v, (x,y) are equivalent to V-{<, Adj}-
formulas, and hence so are the formulas ¢ 7 (21, ..., Tg).

A well-quasi-ordering is a partial ordering which has no infinite descending
sequences and no infinite antichains. Equivalently, it is a partial ordering on which
every set has a finite subset of minimal elements. Dickson’s Lemma states that N™
is well-quasi-ordered under the coordinate-wise ordering.
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Just observe that 1, (z,y) is equivalent to the following universal
formula over the adjacency predicate:

j—1
Up(z,y) <= /\ﬂzo, ey Zj (:B =2 <<z =yA (/\ (Adj(2i72i+1)>

j<n i=0
This proves the claim. We should still observe that the unary formulas
tp(—00, ) are equivalent to V-{<,Adj}-formulas only once we know
who the first element is, and if there is one. That is, using the first
element as parameter, say f, we have that ¥, (—o0, x) = ¢,,_1(f, ), and
if there is no first element, then v, (—o0,x) is always true. Knowing
what are the first and last elements, and if they exists, is non-uniform
information that we need.

It follows that the formulas .7 (z1,...,2;) are equivalent to V-
formulas over the vocabulary {<,Adj, fi,la}, where fi and la are unary
relations identifying the first and last elements if they exist. Then
so are all 3§ formulas, though 0" is necessary to find the equivalent
formula. Therefore, every 3§ formula is uniformly r.i. computable in
Adj@ fi®la® 0/, and in particular r.i. computable in Adj @ (', as fi
and la are either empty or singletons, and thus (non-uniformly) r.i.
computable. ]

The unary relations fi(y) and la(z) for first and last elements are,
in a sense, extreme cases of the adjacency relation:

fi(y) & Adj(—o0,y) and la(z) < Adj(z, +0).

Of course, —o0 and +oo0 are not elements of the linear ordering, nor
symbols of our vocabulary. When we use these symbols in a formula,
an atomic sub-formula of the form x < 400 should always be read as
true, and a sub-formula +o0 < z should always be read as false.

DEFINITION 11.44. We define a new relation symbol Adj that en-
capsulates these three uses of the adjacency relation into one:

Adj = Adjefi@la. ?

From the proof above we get that, if what we want is a relation
that is structurally r.i.c.e. complete in a uniform way across all linear
orderings, we need to consider Adj instead of Adj.

This technique of proving the the finite substructures with added
constants are well-quasi-ordered by embeddability can be used on some

§We defined the join @ of relations in Definition I1.26. In this case, on a linear
ordering A, Adj can be seen as a subset of (2 x A) L A, where (0, a) € Adj if fi(a),
(1,ay € Adj if la(a), and {a, b) € Adj if Adj(a,b), for a,b € A.

)
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other classes too. We will study this technique in more generality in
Section X.2.

An equivalence structure is a structure £ = (D; F), where F is a
equivalence relation on the domain D. Define the following relations
on &:

(1) for ke N, F}, = {z € D : there are > k elements equivalent to
x}, and

(2) the character of E:
G = {{(n, k) € N* : there are > n equivalence classes with > k
elements}.

EXERCISE I1.45. (a) Show that the relation F = @Dy Fr =N x D
is structurally complete.
(b) Show that F'@ G @ (' is r.i.c.e. complete. Hint in footnote. ¥

EXERCISE 11.46. Show that the atom relation on a Boolean algebra
is structurally complete. (An element in a Boolean algebra is an atom
if it is non-zero and has no elements below it other than zero.)

EXERCISE 11.47. (Hard) (a) [Sho78, Theorem 2.2] Show that LD, 1 €1
LD, in the co-dimensional Q-vector space, where LD, is the linear de-
pendence relation on n tuples.

(b) [Mon12, Theorem 7.2] Show that no relation of fixed arity is
structurally complete in the co-dimensional Q-vector space.

I1.4. Superstructures

The notion of r.i.c.e. relation is equivalent to other notions that were
known many decades ago. In this section, we study one of them — the
Y-definable subsets of the hereditarily finite superstructure HF 4. There
are some advantages to working in this setting: One is that r.i.c.e.
relations are now defined by finitary formulas instead of computably
infinitary ones. Another one is that there is almost no coding required;
while subsets of (A<N)<N can be coded by subsets of A<N as in Section
I1.1.5, subsets of (HIF4)<N are already subsets of HIF 4. Nevertheless,
the advantage of working with N x A<V is that it is easier to visualize.
At the end of the day, all these advantages and disadvantages are purely
aesthetic and not really significant.

9The proof of (b) follows a somewhat similar outline to that of Lemma I1.43.
You need to use that the set of finite subsets of N? ordered by A < B <= V{(z,y) €
A’ y'y e B (x < 2’ & y < y') is well-quasi-ordered.
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I1.4.1. The hereditarily finite superstructure. Another ap-
proach to the study of r.i.c.e. relations is using >-definability on admis-
sible structures. We will not consider admissible structures in general,
but just the hereditarily finite extension of an abstract structure A.
The elements of this extension are the finite sets of finite sets of - - - of
finite sets of elements of A.

DEFINITION I1.48. Let Py, (X) denote the collection of finite sub-

sets of X. Given a set A, we define:

(1) HF4(0) = o,

(2) HFa(n + 1) = Pfin(A U HF 4(n)), and

(3) HF A = Upen HF A(n).
Now, given a 7-structure A, we define the 7 U {€, D}-structure HF 4
whose domain has two sorts, A and HIF 4, and where the symbols from
T are interpreted in the A-sort as in A, ‘€’ is interpreted in the obvious
way, and D is a unary relation coding the atomic diagram of A as
defined below. The need for adding D is slightly technical, so we will
explain it later.

A quantifier of the form Vx € y or dz € y is called a bounded
quantifier. A 3-formula is a finitary 7 U {€, D}-formula that is built
out of atomic and negation-of-atomic formulas using disjunctions, con-
junctions, bounded quantifiers, and existential unbounded quantifiers.
A subset of HF 4 is A-definable if it and its complement are both Y-
definable.

Clearly, on HF 4 we have the usual pairing function (x, y) = {{z}, {z,y}},
and we can encode n-tuples, strings, etc. Notice also that HF 4 in-
cludes the finite von Neumann ordinals (denoted by n, where 0 = &
andn + 1 = {0,...,n}). We use w to denote the A-definable set of finite
ordinals of HF 4. The operations of successor, addition, and multiplica-
tion on w are also A-definable, and hence so is Kleene’s T predicate. It
follows that every c.e. subset of w is ¥-definable, and every computable
function is A-definable in ‘HF 4 (for more details, see [Bar75, Theorem
11.2.3]).

We define D to be the satisfaction relation for atomic formulas,
that is

D ={(,a): A= y; (a)} < HF 4,
where {py, ¢}, ...} is an effective enumeration of all the atomic 7-
formulas. Notice that if the vocabulary of A is finite and relational,
this is a finite list of formulas, and hence D is A-definable in HF 4
without using D. In that case, there is no need to add D to the vo-
cabulary HF 4. On the other hand, when 7 is infinite, if we do not add
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D, Y-formulas could only involve finitely many symbols from 7 which
would be too restrictive. An important consequence of having D in the
vocabulary is that the 3-diagram of A is X-definable in HF 4./

Given any R € N x AN, we can view it directly as a subset of
HIF(A). Conversely, there is also a natural way of going from relations
in HF 4 to subsets of N x A<N. Let X = {xg,21,...} be a list of vari-
able symbols. Every t € HFx is essentially a term over a finite set
of variables, and we write ¢(Z) to show the variables that appear in ¢.
Observe that HF 4, = {t(a) : t(z) € HFx,a € A"}, Let {t; : i € N} be
an effective enumeration of HF xy u X. Now, given )  HF 4, we define

s(Q) = {¢,a) : t;(a) e Q) < N x A=,

OBSERVATION 11.49. The relation {(b,n,ay : b € HF4,n € N,a €

AN & b = t,(a)} € HF 4 x w x A<N is A-definable in HF 4. This is

not completely trivial, and is proved by recursion on terms. We leave
the details to the reader.

THEOREM I1.50. Given Re N x A<N| the following are equivalent:

(1) R is r.i.ce. in A.
(2) R is X-definable in HF 4 with parameters.

Given Q <€ A U HIF 4, the following are equivalent:
(1) s(Q) is r.i.c.e. in A.
(2) Q is X-definable in HF 4 with parameters.

HisTORICAL REMARK I1.51. This theorem is credited to Vaitsenavichyus
[Vai89] in [Stu] and appears in some form in [BT79].

PrROOF. We only prove the second part; the proof of the first part
is very similar. Suppose first that s(@) is r.i.c.e. in A. Using Theorem
I1.16, we get a c.e. set W and a tuple p € A<N such that

Grayes(Q) < Ak \X/ ¢ipa(pa) forallieNandae A=,
e:(i,e,|alyeW

where {p;; : e € N} is an effective enumeration of the 3-7-formulas
with j free variables. Then

beQ@ < Ji,eeNJaecA™ (b=tia)& (e a)ye W & Al @] 15 /(p,a)) .

Using that deciding whether b = ¢;(a) is A-definable and that both
W and the existential diagram of A are Y-definable, we get that @ is
Y.-definable with parameters p.

IThe X-definition of the 3-diagram of A says that, given an 3-formula ¢, there
exists a variable assignment and a truth valuations of the sub-formulas of ¢ that
makes ¢ true, using D on the atomic sub-formulas.
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Conversely, suppose now that () is X-definable in HF 4 with pa-
rameters; we want to prove that s(Q) is r.i.c.e.. Let B be a copy of
A. Computably in D(B), build HFz and a copy of HF 5, and then use
the Y-definition of @ to enumerate Q**#. We end up with a D(B)-
computable enumeration of ¥, which we can then use to produce a
D(B)-computable enumeration of s(Q). O

HisTORICAL REMARK II.52. In [Mos69], Moschovakis introduces
what we now call the Moschovakis enrichment of a structure A, denoted
A*. For our purposes, there is no real difference between A* and HF 4. The
difference is that in the iterative definition of the domain of A* we take pairs
instead of finite subsets as we did for HF 4. Moschovakis [Mos69] then de-
fines a class of partial multi-valued functions from (A*)"™ to A* which he calls
search computable functions. This class is defined as the least class closed
under certain primitive operations, much in the style of Kleene’s definition
of primitive recursive and partial recursive functions, where instead of the
Kleene’s least-element operator 1, we have a multivalued search operator v.
A subset of A* is search computable if its characteristic function is, and it
is semi-search computable if it has a definition of the form Jy (f(z,y) = 1),
where f is search computable.

The definition of search computable allows us to add a list of new prim-
itive functions to our starting list (so long as they are given in an effective
list, with computable arities), obtaining a sort of relativized version of search
computability. If we have a structure A, we would add to the list of prim-
itive functions the characteristic functions of the relations in A to obtain a
notion of partial, multi-valued, search computable functions in A.

Much in the same way as we did for HF 4 above, we have a natural way
of encoding relations R < N x A<N by subsets of A*, and vice versa. Maybe
even more directly, one can go from subsets of A* to subsets of HF 4 and
back. Gordon [Gor70] proved that the notions of search computable in A
and semi-search computable in A for subsets of A* coincide with the notions
of A-definable and Y-definable for subsets of HF 4. Therefore, when we add
parameters, they also coincide with the notions of r.i. computable and r.i.c.e.
for relations in N x A<N,






CHAPTER III

Existentially-atomic models

The key notion in this chapter is that of existentially atomic struc-
tures: these are atomic structures where all the types are generated
by existential formulas. They are the best-behaved structures around.
Given a structure, typical questions in computable structure theory
include: How difficult is it to compute isomorphisms between different
w-presentations? How difficult is it to identify it syntactically? Can
we characterize the set of oracles that can compute an w-presentation
of it? In these three senses, existentially atomic structures are the
simplest ones. Not only are they simple, they are also general: every
structure is 3-atomic if one adds enough relations to the vocabulary,
as for instance, if one adds enough jumps, as we will see in [MonP2].
This means that the results we present in this chapter apply to all
structures relative to those relations.

In this chapter, we will also introduce a variety of tools that will
be useful throughout the book, for instance, the Cantor back-and-forth
argument and the notion of a structure having enumeration degree.

ITI.1. Definition

Let A be a 7-structure. The automorphism orbit of a tuple a € A<N
is the relation

orb4(a) = {b e Al : there is an automorphism of A mapping @ to b}.
DEFINITION III.1. A structure A is 3-atomic if, for every tuple

a € AN, there is an 3-formula* o5 (7) which defines the automorphism
orbit of a; that is,

orb(a) = {be APl A= pa(b)}.

We say that A is 3-atomic over parameters if there is a finite tuple
a € A=N such that the structure (A, a) is -atomic.

These structures were studied by Simmons in [Sim76, Section 2],
and he cites [Pou72]| as their first occurrence in the literature.

*Recall that an 3-formula is one of the form 3§ ¢(Z,7) where ¢ is quantifier
free.

35
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The set {pg : @ € A<N} of all these defining formulas makes what
we call a Scott family:

DEFINITION II1.2. A Scott family for a structure A is a set S of
formulas such that each a € A<N satisfies some formula ¢(z) € S, and
if @ and b satisfy the same formula ¢(z) € S, they are automorphic.

Thus, a structure is 3-atomic if and only if it has a Scott family of
J-formulas. Having access to a Scott family for a structure A allows
us to recognize the different tuples in A up to automorphism. This is
exactly what one needs to build isomorphisms between different copies
of A. As we will see in Theorem III.18, if we want to build a computable
isomorphism, we need the Scott family to be computably enumerable.

DEFINITION II1.3. We say that a Scott family is c.e. if the set of
indices for its formulas is c.e. A structure A is effectively 3-atomic if it
has a c.e. Scott family of 3-formulas.

ExAMPLE III.4. A linear ordering is 3-atomic if and only if it is
either finite or dense without end points:

If a linear ordering has n elements, the ith element can be charac-
terized by the 3-formula that says that there are i — 1 elements below
it and n — ¢ — 1 elements above it. If a linear ordering is dense with-
out endpoints, then two tuples are automorphic if and only if they are
ordered the same way.

Suppose now that we have a linear ordering that is neither dense nor
finite. We claim that there must exist a tuple a, b, ¢ such that: either
a < b < c, aand b are adjacent, and there are infinitely elements to the
right of ¢; or ¢ < b < a, a and b are adjacent, and there are infinitely
many elements to the left of ¢. To prove the claim, we consider three
cases: If there is only one adjacency pair in the whole linear ordering,
then the linear ordering must have a dense segment; let a and b be the
elements of the adjacency pair and take ¢ from the dense segment. If
every element has finitely many elements to its right or to its left, then
the linear ordering has either an initial segment isomorphic to w or a
final segment isomorphic to w*; either let a < b < ¢ be the first three
elements, or let ¢ < b < a be the last three. If neither of the above is
the case, take ¢ so that it has infinitely many elements to both its left
and its right, and let a, b be an adjacency pair disjoint from ¢. Now that
we have proved that a,b, c always exist, we claim that no existential
formula defines the orbit of the pair {(a, b). For this, we notice that any
F-formula true of (a, b) is true of (a, c): This follows from the analysis
of d-formulas we did in Lemma I1.43, and the fact that the number
of elements in each of the intervals (—o0,a), (a,b), and (b, +00) is less
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than or equal to the number of elements in (—0, a), (a,c), and (¢, +o0)
respectively. But {a,b) and {a, c¢) are not automorphic because a and
b are adjacent, and a and ¢ are not. This proves the claim that no
I-formula defines the orbit of (a, b).

ExaMPLE II1.5. Augment the vocabulary {<} of linear orderings by
adding a symbol Adj for the adjacency relation.” Call these structures
(L; <, Adj), adjacency linear orderings. It follows from work of McCoy
[McCO03, Theorem 2.6] that the 3-atomic adjacency linear orderings
over parameters are exactly the ones of the form

Ao +1+ A +1+ -+ 14 Ay,

where each A; is isomorphic to one of the following: 0, w, w*, w + w*,
or m-Q, for m e N.

EXERCISE I11.6. (a) Prove that the adjacency linear ordering m-Q
is 3-atomic. (b) Prove that the adjacency linear orderings w, w*, w+w*
are 3-atomic over parameters. (c) Prove that if my # my, mo-Q+m;-Q
is not J-atomic even over parameters.

I11.2. Existentially algebraic structures

We will see that fields of finite transcendence degree, graphs of
finite valence with finitely many connected components, and torsion-
free abelian groups of finite rank are all 3-atomic over a finite set of
parameters. The reason is that they are 3-algebraic.

DEFINITION IIL.7. An element a € A is 3-algebraic in A if there is
an 3-formula ¢(x) true of a such that {be A : A |= ¢(b)} is finite. A
structure A is 3-algebraic if all its elements are.

ExAMPLE II1.8. A field that is algebraic over its prime sub-field is
J-algebraic because every element is one of finitely many that is a root
of a polynomial over the prime field. We will develop this example
further in Example I11.45.

A connected graph of finite valence with a selected root vertex is 3-
algebraic because every element is one of finitely many that are at a
given distance from the root.

An abelian torsion-free group with a selected basis is 3-algebraic
because every element is the only one for which a certain non-trivial
Z-linear combination of it and the basis evaluates to 0.

fRecall from Definition I1.44, that Adj is the version of the adjacency relation
that allows for the three uses of the adjacency relation: Adj(z,y), Adj(—o0,y), and
Adj(z, +00), where Adj(—o0,y) only holds of the first element if there is any, and
Adj(z, +0) of the last.
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We prove that F-algebraic structures are 3-atomic in two lemmas.
The core of the arguments is an application of Konig’s lemma that
appears in the first one.

DEFINITION II1.9. The 3-theory of a structure .4, denoted 3-T'h(A),
is the set of (indices) of 3-sentences true about A.

Notice that, as opposed to the diagram, or even the J-diagram
of a structure, the 3-theory is independent of the presentation of the
structure.

LEmMMA II1.10. Two structures that are 3-algebraic and have the
same d-theories are isomorphic.

PRrROOF. Let A and B be F-algebraic structures with the same 3-
theories. To prove that A and B are isomorphic, we will define a tree of
finite approximations to possible isomorphisms from A to B, and then
use Konig’s lemma to show this tree has a path.

List the elements of A as {ag, a1, ...}. For each n, let ,(xq, ...., Tp_1)
be an I-formula which is true of tuple {aq, ..., a,—1) and has finitely
many solutions. (A solution to a formula is a tuple that makes it true.)
By taking conjunctions if necessary, we may assume that ¢, (xg, ...., 1)
implies ¢, _1(xq, ..., Tn_2). Let

T = {be B~ : Dg(b) = D4(ay, map-1) & B opd)}

We will prove that a path through 7' gives us an isomorphism from A
to B. But before that, let us prove T" has a path.

T is clearly a tree in the sense that it is closed under taking initial
segments of tuples. It is finitely branching because, for each n, ¢, has
finitely many solutions in A, say k£ many, and thus it cannot have more
than k solutions in B, as otherwise, the d-sentence saying that ¢,, has
at least k£ + 1 different solutions would be true in B but false in A. To
show that T is infinite, notice that, for each n,

AE3Jxg, .2, 1(D(Z) = 0 & ¢,(T)), where o = D 4(ag, ..., ap_1),

as witnessed by aq, ..., a,_1. Since A and B have the same 3-theories, B
models this 3-sentence too, and the witness is an n-tuple that belongs
to T'. Konig’s lemma states that every infinite finitely branching tree
must have an infinite path. Thus, 7 must have an infinite path P € BY.
This path determines a map g: A — B mapping a,, to P(n). That map
is an embedding as it preserves finite atomic diagrams: This is because
since {g(ag), ..., (an)) € T, Dg(g(ap), ..., (a,)) = D4lag, ..., a,) for all n.
This map must also be onto: If b € B is a solution of an 3-formula
¢ with finitely many solutions, then ¢ must have the same number of
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solutions in A (because 3-Th(A) = 3-Th(B)), and since 3-formulas are
preserved under embeddings, one of those solutions has to be mapped
to b. ]

LEmMA II1.11. Every 3-algebraic structure is 3-atomic.

PROOF. Let A be 3J-algebraic and take a € A<N. Let o(Z) be
an J-formula true of a with the least possible number of solutions,
say k solutions. We claim that every solution to ¢ is automorphic
to a. Suppose, toward a contradiction, that b satisfies ¢ but is not
automorphic to @. Then there must be an 3-formula ¢ (Z) that is true
of either @ or b, but not of both. This is because if (A,a) and (A,b)
satisfied the same 3-formulas, the previous lemma would imply they
are isomorphic. If ¥ () is true of a, then ¢(Z) A ¥(Z) would be true
of a and have fewer solutions than ¢, contradicting our choice of . If
¥ () is not true of @ and it is true of i out of the k solutions of ¢, then
the formula of = saying

(13

©(Z) and there are i solutions to ¢ A 1 all different
from z”

is an J-formula true of a with k£ — ¢ solutions — getting the desired
contradiction. H

HisToORICAL REMARK II1.12. The statements of the lemmas in this
section are new, but the ideas behind them are not. Proofs like that of
Lemma I11.10 using Konig’s lemma have appeared in many other places
before, for instance [HLZ99]. The ideas for the proof of Lemma I11.11
are similar to those one would use in a proof that algebraic structures
are atomic (without the 3-), except that here one has to be slightly
more careful.

I11.3. Cantor’s back-and-forth argument

Before we move on with more on J-atomic structures, we take an
interlude to introduce a tool we will use throughout the book.

DEFINITION III.13. Given structures A and B, we say that a set
I < A<N x B=N has the back-and-forth property if, for every (a,b) € I,
e Dy(a) = Dg(b) (i.e., |a| = |b| and @ and b satisfy the same
Ta|-atomic formulas);
e for every c € A, there exists d € B such that {ac, bd) € I; and*
e for every d € B, there exists ¢ € A such that {ac, bd) € I.

‘Recall that we are using the notation ac for the concatenation @ c.
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The canonical example is the following. If A and B are isomorphic,
then the set

{(@a,bye AN x BN : (A,a) = (B,b)},
has the back-and-forth property. We let the reader verify this fact.

OBSERVATION III.14. It follows immediately from the example above,
that if A and B are isomorphic and S is a Scott family for A, then the
set

Iy = {a,bye AN x BN : (for some p € S) A | ¢(a) & B = ¢(b)}
has the back-and-forth property.

LeEMmMA IIL.15. If I < A<N x B=<N has the back-and-forth property,
then for every {a,by € I, there is an isomorphism g: A — B map-
ping @ to b. Moreover, such an isomorphism can be computed from an
enumeration of 1.

PROOF. The map g: A — B is defined by stages. Let ag = a
and by = b. At each stage s + 1, we define tuples a,.; € A<N and
bsr1 € BN with @y S @41, bs S bsi1, and {(Gsi1,bey1) € I. The back-
and-forth property will allow us to build such sequences in a way that,
for every c € A, there is some s such that ¢ is one of the entries of a,
and, for every d € B, there is some s such that d is one of the entries of
bs: All we have to do is take turns choosing elements from A and B in
such a way that we eventually choose them all. At the end of stages,
we define g: A — B so that g(as) = bs. Since a, and b, satisfy the
same T|g,-atomic formulas, we get that g preserves all the relations,
functions, and constants and hence that it is an isomorphism. (Notice
that D4(as) = Dp(bs) also implies that, if two entries in as are equal,
so are the corresponding ones in b, and hence there is no issue defining
g so that it maps a, to b,.)

It is clear that g can be computed from an enumeration of I.  []

EXERCISE II1.16. Let I be a subset of A<N x A<N which (a) has
the back-and-forth property, (b) is an equivalence relation, and (c)
satisfies the following condition: for every n,m € N and 7: n — m, if

<<a0, ey am_1>, <b(), cees bm_1>> € I, then <<a,r(0), ceeny aﬂ(n,1)>, <bﬂ-(0), vy bﬂ.(n,l)>> €
I. Prove that there is a relation R € N x A<N such that

I ={(@b): (A R,a)= (A RDb)}
I11.4. Uniform computable categoricity

An issue we have to be constantly aware of when working with
computable structures is that different copies of the same structure may
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behave differently computationally. Computably categorical structures
are the ones where this issue does not show up. They are the ones whose
computable copies all have the same computability theoretic properties.
We will study them in Chapter VIII. For now, we consider the stronger
notion of uniform computable categoricity.

DEFINITION III.17. A computable structure A is uniformly com-
putably categorical if there is a computable operator that, when given
the atomic diagram D(B) of a computable copy B of A as an oracle,
outputs an isomorphism from B to A. A computable structure A is
uniformly relatively computably categorical if there is a computable op-
erator that, when given D(B) for a (not necessarily computable) copy
B of A, outputs an isomorphism from B to A.

Notice that if a structure A has a c.e. Scott family of 3-formulas,
and B is a copy of A, then the set 14 5 from Observation II1.14 is c.e. in
D(B) and has the back-and-forth property. Then, by Lemma I11.15, we
get that A and B are D(B)-computably isomorphic. Furthermore, the
definition of 143, and the construction of the isomorphism in Lemma
II1.15 are completely uniform, and produce a computable operator as
needed in the definition of uniform relative computable categoricity.

THEOREM II1.18 (Ventsov [Ven92]). Let A be a computable struc-
ture. The following are equivalent:

(1) A is effectively 3-atomic (Definition I11.3).
(2) A is uniformly relatively computably categorical.
(3) A is uniformly computably categorical.

Proor. That (1) implies (2) was observed in the previous para-
graph — it is just a back-and-forth construction using the set I45
from Observation III1.14. It is obvious that (2) implies (3). The proof
that (3) implies (1) is quite a bit more elaborate.

Suppose I is a computable operator such that T'’®) is an isomor-
phism from B to A for every computable copy B of A. We need to
find 3-formulas defining each tuple in A. Here is the key observation:
suppose that for ¢ € A<N we have that I'?4@ converges on 0, ...,k — 1
for some k € N, then, the automorphism orbit of ¢ | £ is determined
by Da(q) € 2=N in the sense that if D4(p) = D(q) then p | k is auto-
morphic to ¢ | k. To prove this, we first claim that for every k € N and
every tuple ¢ € A<N such that IT'P4@ converges on 0, ..., k — 1, we have
that
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g | k is automorphic to ['P4@ | k. §

To see this, extend ¢ to a computable onto map g: N — A. For
B = g'(A), TP® is an isomorphism from B to .A. Since g is also
an isomorphism from B to A, the two images of {0, ...,k — 1) through
those isomorphisms must be automorphic; namely ¢ | k and I'P®) | k
(see figure below). Since g © G, g | k = ¢ | k, and since D(B) > D4(q),
[PB) | | = TPa@ ) k.

A

| <

erk<—0<0,...,k—1>|—>FDA(§) ¥

Now, given a tuple @ € A<N, we need to produce an 3-formula
defining its orbit, and we need to find this formula computably. Let
k = |a|. Search for § € A<N extending a such that ['P4(@ converges
on 0, ...,k — 1. We now claim that the following 3-formula defines the
orbit of a:

va(@) = By22)“D(y) =0, where o = Dy(q) e2<N.

Clearly, a satisfies ¢, using y = ¢. Suppose now that A = ¢z(¢); we
need to show that a and ¢ are automorphic. From ¢z(¢) we get a tuple
P 2 ¢ such that D4(p) = 0 = D4(q). So

Pa®) Mk = 1Pa@ M k.

By our first claim above, the left-hand-side is automorphic to p [ k = ¢,
and the right-hand-side is automorphic to ¢ [ k = a.

We conclude that {p;(Z) : @ € A<N} is a c.e. Scott family of 3-
formulas for A. ]

EXERCISE I11.19. Build the uniformly computably categoricity op-
erator explicitly for the case of a computable connected graph of finite
valance with a root node (identified with a constant symbol).

HistoricAL REMARK III.20. The theorem above is due to Ventsov
[Ven92]. Other notions of uniform categoricity were studied by Kudi-
nov [Kud96a, Kud96c, Kud97] and by Downey, Hirschfeldt and
Khoussainov [DHKO03].

9As the reader may expect: ['P4(@ } k = (TP4@(0), TPA@) (1), ... TPA@ (E —
1)) e Ak,

YRecall from Observation 1.10 that, for each o € 2%=, there is a quantifier-free
formula % (z) which holds if and only if D(2z) = o.
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II1.5. Existential atomicity in terms of types

The usual definition of atomic models in model theory is in terms
of types (as in (A2) below). We show in this section that, for 3-atomic
models, it is enough to look at V-types instead of full first-order types.

We need to review some basic definitions. A V-type on the variables
X1, ..., Ty 18 a set p(T) of V-formulas with free variables among z1, ..., z,
that is consistent, i.e., that is satisfied by some tuple aq, ..., a, in some
structure. We say that a V-type is realized in a structure A if it is
satisfied by some tuple in A. Given a € A<V, the V-type of a in A is
the set of V-formulas true of a:

V-tpa(a) = {p(Z) : ¢ is a V-formula and A = p(a)}. |

The reason we allow types to be partial is that V-types are never
complete, as we could not add the negation of V-formulas. For the same
reason, instead of principal types, we have to deal with supported types.

DEFINITION II1.21. A type p(z) is 3-supported within a class K of
structures if there exists an 3-formula p(z) which is realized in some
structure in K and which implies all of p(z) within K; that is, A =
Vz(p(z) — (Z)) for every (Z) € p(z) and every A € K. We say that
p(z) is I-supported in a structure A if it is I-supported in K = {A}.

THEOREM 1I1.22. For every structure A, the following are equiva-
lent:
(A1) A is 3-atomic.
(A2) Every elementary first-order type realized in A is 3-supported
in A.
(A3) FEvery V-type realized in A is 3-supported in A.

PROOF. It is not hard to see that (A1) implies (A2) as the 3-formula
defining the orbit of a supports its type. Clearly (A2) implies (A3).
Let us prove that (A3) implies (A1l).

For each a € A<N| let (%) be an 3-formula supporting the V-type
of a. We show that S = {¢; : a € AN} is a Scott family for A. We start
by noticing that A = ¢z(a). This is because, otherwise, —¢z; would be
part of the V-type of a, and hence implied by ¢;, which cannot be the
case because ; is realizable in A. Consider the set

Iy ={@,bye AN x AN A= 0,(b)).

First, let us prove I4 is symmetric; that is, that if A = 4(b), then
A = ¢3(a). If not, then —p;(Z) would be part of the V-type of a, and

IThe obvious assumption here is that |z| = |a|.
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hence implied by ¢5. But we know this is not the case because b models
both ¢; and 3.

Second, we now claim that I 4 has the back-and-forth property (Def-
inition II1.13). Suppose (@, b) € I4. Observe @ and b must satisfy the
same V-types as they both satisfy ¢z and 7 which support their respec-
tive V-types. In particular, they satisfy the same 7)5-atomic formulas
and hence have the same atomic diagrams. To show the second con-
dition in Definition II1.13, take ¢ € A. If there was no d € A with
{ac,bd) € I, we would have that A = —3ypa.(b,y). This formula
would be part of the V-type of b, and hence implied by ;. But then,
since A = pj(a), we would have A = —3ypz.(a,y), which is not true
as witnessed by c. The third condition of the back-and-forth property
follows from the symmetry of 4.

Finally, to see that S is a Scott family for A, notice that if ¢, (b) and
©a(€) both hold, then, by Lemma III1.15, both b and ¢ are automorphic
to a, and hence automorphic to each other. O

EXERCISE 111.23. [DKLT13, Theorem 1.6] (a) Prove that the in-
dex set of all computable structures that are effectively 3-atomic after
adding some parameters, is 29.

(b) Prove that it is 33-complete. Hint in footnote.**

I11.6. Building structures and omitting types

Before we continue studying the properties of 3-atomic structures,
we need to make another stop to prove some general lemmas that will
be useful in future sections. First, we prove a lemma that will allow us
to find computable structures in a given class of structures. Second,
using similar techniques, we prove the type omitting lemma for V-types,
and its effective version.

We need one more level of the hierarchy of infinitary formulas:

DEFINITION TI1.24. An infinitary Iy formula (denoted II3%) is a
countable infinite (or finite) conjunction of formulas of the form Vi (g, z),
where each formula ¢ is X1*, and 7 is a fixed tuple of free variables.
That is, a TI3* formula is one of the form

/X\Vﬂi \X/ 3z ©i4(Z, 7, Z),
€N jeN
where the formulas ¢; ; are finitary and quantifier free. Such a for-

mula is computable infinitary Iy (denoted I1§) if the formulas ¢ are X§
and the list of indices of the formulas v is computably enumerable, or

**Use Q-vector spaces.
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equivalently, if the matrix {"¢;;": ¢,j € N} is computable. A class of
structures is 11§ if it is the class of all the w-presentations that satisfy
a certain II§ sentence. Given an oracle X, we use I3 to denote the
X-computable infinitary I, formulas.

As the reader may expect, an infinitary Yo formula (denoted %3*)
is a countable disjunction of formulas of the form 3y (y, Z), where each
formula ¢ is TI}*, and T is a fixed tuple of free variables.

Observe that every II§ formula on a structure A is equivalent to a
I formula on (A, K*), where K4 is Kleene’s relation defined in I1.30.

DEFINITION II1.25. Assume, without loss of generality, we are work-
ing with a relational vocabulary 7. Given a class of structures K, we
let K/ be — essentially — the set of all the finite substructures of the
structures in K: T

K" = {D(A) : A a finite 7)-substructure of some B € K}
= {Dg(a): Be K,ae BN} < 2=N.

OBSERVATION II1.26. An 3-sentence 9 holds of a structure A on a
relational vocabulary if and only if it holds on some finite substructure

of A.
EXERCISE II1.27. Show that
K" =pos | J{3-Th(A) : A€ K},

where =, is positive equivalence defined in page xvii. In particular,
they are both Turing and enumeration equivalent.

EXERCISE I11.28. Prove that K/ is the set of diagrams of all the
finite 7).-structures satisfying V-Th(K).* Recall that V-Th(K) is the
set of V-sentences true in all structures in K.

LEmMA II1.29. Let K be the class of models of a 11§ sentence and
suppose that K™ is c.e. Then there is at least one computable structure
n K.

Proor. We build a structure in K by building a finite approxima-
tion to it as in Definition 1.6. That is, we build an increasing chain of
finite structures A,, s € N, over increasing vocabularies. Each A, is a

"Recall from Definition 1.6 that a 7). -structure is a 7-structure for s = | Al
where 75 consists, usually, of the first s symbols of 7 when 7 is infinite and 74 = 7
when 7 is finite.

HOf course, we refer only to the sentences that use the vocabulary of the finite
structure. Thus, if A is a 7| 4j-structure, the claim is that D(A) € Kf™ if and only
if all V-7j 4-sentences in V-Th(K) are true in A.
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7).-structure whose domain is an initial segment of N. Furthermore, we
require that each A be in K™ (i.e., the diagram of A, be in K/™), and
that A, © A,y (as 74, -structures). At the end of stages, we define
the 7-structure A = (|, As.

Let /X\,o; Y7:%i(7;) be the IIS sentence that axiomatizes K, where
each 1; is X§. To get A € K, we need to guarantee that, for each i and
each a € A%l we have A k= ¢;(a). For this, when we build A,,;, we
will make sure that,

(%) for every i < s and every a € A% A, E ¥i(a).

Notice that since 1; is X5, A1 = ¢;(a) implies A = v;(a). Thus, we
would end up with A = M\..; Y7:1: (7).

Now that we know what we need to do, let us build the sequence
of A,’s. Suppose we have already built Ay,..., A, and we want to
define A, .1 2 A,. All we need to do is search for a finite structure in
K/™ satisfying (), which we can check computably. We need to show
that at least one such structure exists. Since Ay € K" there is some
B € K which has a substructure By 7).-isomorphic to A,. Since B &=

/X\ics Y9ii(9:), for every i < s and every be B‘Sy”, there exists a tuple
in B witnessing that B = ¢;(b). Let By;1 be a finite 7. -substructure
of B containing B, and all those witnessing tuples, and large enough so
that all the symbols in the 3-disjunct of the 1; witnessing B = v;(b)
for i < s appear in 7j3,,,|. Then B, satisfies (x) with respect to B
as needed. (]

COROLLARY II1.30. Let K be a II§ class of structures, and S be the
J-theory of some structure in K. If S is c.e. in a set X, then there is
an X -computable w-presentation of a structure in K with 3-theory S.

PROOF. Add to the IT§ axiom for K the IIS™ sentence saying that
the structure must have 3-theory S:

) - (o

peS ¢ 3I-formula:
PES

where the left-hand-side says of a structure A that S < 3-Th(A), and
the right-hand-side that 3-Th(A) < S. Let Kg be the new 115 class of
structures. It is nonempty because we are assuming that some structure
in K has d-theory S. All the structures in Kg have 3-theory S, and
hence Kgm is enumeration reducible to S, and hence it is c.e. in X
too. Applying Lemma II1.29 relative to X, we get an X-computable
structure in Kg as wanted. ]
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Not only can we build a computable structure in such a class K, we
can build one omitting certain types. The first one to prove an effective
version of the omitting types theorem was Terry Millar [Mil83]. Our
version below is different than hers, as she used first-order types over
complete decidable first-order theories.

LEMMA II1.31 (The V-type omitting theorem). Let K be an TI3*
class of structures. Let {p;(Z;) : i € N} be a sequence of V-types which
are not 3-supported in K. Then there is a structure A € K which omits
all the types p;(z;) for i e N.

Furthermore, if K is IIS, K™ is c.e. and the list {p;(%;) : i € N} is
c.e., we can make A computable.

PROOF. We construct A by stages as in the proof of Lemma IT1.29,
the difference being that now we need to omit the types p;. So, on
the even stages s, we do exactly the same thing we did in Lemma
IT1.29, and we use the odd stages to omit the types. That is, we build
a sequence of finite 7|.;-structures Ay € A; € -+ and at even stages
we define Ag,; so that it satisfies (x) from Lemma II1.29 guaranteeing
that A belongs to K. At odd stages s + 1 = 2{(i,j) + 1, we ensure
that the jth tuple a does not satisfy p; as follows. We are given A,
and we need to define A, so that a satisfies some I-formula whose
negation is in p;. Let ¢ be the tuple of elements of A, which are not in
a, and let 0 = Dy (a,¢). Then, a satisfies 3y (D(a,y) = o). Since p; is
not 3-supported in K, there exists a V-formula ¢(Z) € p; which is not
implied by 3yD(z,y) = o within K. That means that, for some B € K
and be B<N,

BE3D(b,y) =0 & —(b).
Then, there is a finite substructure B e Kfir of B containing such y
the witnesses for —(b) which also satisfies 3D (b, y) = o and —(b).
Since B = 3yD(b, ) = o, we can assume that A, S, 4, B and that

b = a. Since such B and ¥ exist, we can wait until we find them and
then define A, accordingly. ]

We will see how the classical first-order type omitting theorem is
a corollary of the V-type omitting theorem in [MonP2| once we see
Morleyizations.

II1.7. Scott sentences of existentially atomic structures.

Existentially atomic structures are also among the simplest ones in
terms of the complexity of their Scott sentences.
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DEFINITION II1.32. A sentence 1 is a Scott sentence for a structure
A if A is the only countable structure satisfying ¢). That is, ¢ is true
on a structure B if and only if B is isomorphic to A.

We will see in [MonP2] that every countable structure has a Scott
sentence in the infinitary language £, ,,. For now, we prove it only for
J-atomic structures.

LEMMA I11.33. Every 3-atomic structure has an TI3* Scott sentence.
Furthermore, every effectively 3-atomic computable structure has a 11§
Scott sentence.

PROOF. Let S be a Scott family of 3-formulas for A. For each
a € AN, let ¢4(z) be the I-formula defining the orbit of a. For the
empty tuple, let ¢ () be a sentence that is always true. Given any
other structure B, consider the set

I = {{a,bye AN x BN B = pa(b)}.
If I5 had the back-and-forth property, then, by Lemma II1.15, we would
know that B is isomorphic to A because ({),{)) € Iz. Recall from the
proof of Theorem II1.22 that [ 4 has the back-and-forth property. Thus,
if B is isomorphic to A, then Iz also has the back-and-forth property.
Therefore, we get that I has the back-and-forth property if and only

if B is isomorphic to .A. The Scott sentence for A says of a structure
B that Iz has the back-and-forth property:

/)(\V:L‘l,.. :L‘|a< (:L“) =

acA<N

(“D( ) = Daa ) (Vy\)(/soab zy ) A (/X\Hyso@b(fy))>,
beA beA

where “D(z) = Dy(a)” stands for 90%/4(&) () as in Observation I.10.

As for the effectivity claim, if A is a computable w-presentation and S

is c.e., then the map a — g is computable, and the conjunctions and
disjunctions in the Scott sentence above are all computable. ]

To prove the other direction, we need to go through the type omit-
ting theorem for V-types.

THEOREM II1.34. Let A be a structure. The following are equiva-
lent:
(1) A is 3-atomic.
(2) A has an TI3* Scott sentence.
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PrROOF. We already know that (1) implies (2). For the other di-
rection, suppose 1 is an IT3* Scott sentence for A, but that A is not
J-atomic. By Theorem II1.22, there is a V-type realized in A which is
not 3-supported. But then, by Lemma II1.31, there exists a model of
1 which omits that type. This structure could not be isomorphic to A,
contradicting that ¢ was a Scott sentence for A. ]

LEMMA I11.35. Let A be a structure. The following are equivalent:

(1) A is 3-atomic over a finite tuple of parameters.
(2) A has an X3* Scott sentence.

As the reader might be able to guess by now, an X3* formula is a
countable disjunction of formulas of the form 371 (7, Z), where ) is TI3*
and T is a fixed tuple of variables.

PRrOOF. If A is 3-atomic over a finite tuple of parameters a, then
(A, a) has an IT3* Scott sentence ¢(¢). Then 35¢(7) is a Scott sentence
for A.

Suppose now that A has a Scott sentence \X/,oy 37:%:(9:). A must
satisfy one of the disjuncts, and that disjunct must then also be a Scott
sentence for A. So, suppose the Scott sentence for A is 37 ¢(y), where
¢ is TI3*. Let € be a new tuple of constants of the same size as . If
1(C) were a Scott sentence for (A, a), we would know A is 3-atomic
over @ — but this might not be the case. Suppose (B,b) }= 1(c). Then
B must be isomorphic to A as it satisfies 37 1 (), but we could have
(B,b) % (A,a). However, it is enough for us to show that one of the
models (B, b) of 1(c) is F-atomic over b. There are only countably many
models of ¥(c) because there are only countably many tuples in A<N
to which we can assign ¢. Therefore, there are countably many V-types
among the models of 1(¢). Thus, we can omit the non-3-supported ones
while satisfying ¢(c). The resulting structure would be J-atomic over ¢
by Theorem I11.22 and isomorphic to .4 because it satisfies 3y ¥ (y). [

II1.8. Turing degree and enumeration degree

To measure the computational complexity of a structure, the most
common tool is its degree spectrum, which we will study in Chapter V.
A much more natural attempt to measure the computational complex-
ity of a structure is given in the following definition — unfortunately,
it does not always apply.

DEFINITION II1.36 (Jockusch and Richter [Ric81]). A structure A
has Turing degree X € 2V if X computes a copy of A, and every copy
of A computes X.
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It turns out that if we look at a similar definition, but on the enu-
meration degrees, we obtain a better behaved notion.

DEFINITION II1.37. A structure A has enumeration degree X < N
if every enumeration of X computes a copy of A, and every copy of A
computes an enumeration of X. Recall that an enumeration of X is an
onto function f: N — X.

Equivalently, A has enumeration degree X if and only if, for every
Y,
Y computes a copy of A < X isce. inY.
Notice that the enumeration degree of a structure is unique up to enu-
meration equivalence. (See page xvii.)

ExampLE II1.38. Given X < N, the standard example of a struc-
ture with enumeration degree X is the graph Gx, which is made out of
disjoint cycles of different lengths and which contains a cycle of length
n+ 3 if and only if n € X. It is not hard to see that every presentation
of this graph can enumerate X: Whenever we find a cycle of length
n + 3, we enumerate n into X. For the other direction, if we can enu-
merate X, we can build a copy of Gx by enumerating a cycle of length
n + 3 every time we see a number n enter X.

ExAMPLE II1.39. Given X < N, consider the group Gx = @,y Z,,
as in Example I1.20, where p; is the ith prime number. Then Gx has
enumeration degree X: We can easily build Gy out of an enumeration
of X, and for the other direction, we have that n € X if and only if
there exists g € Gx of order p,.

EXERCISE II1.40. Show that both the graph and the group from
the previous examples are 3-atomic. Hint in the footnote."

Note that A4 has Turing degree X if and only if has enumeration
degree X @ X°} This is because X <7 ¥ «<—= X @ X°isce. inY.
So, in either of the examples above, we can get a graph or a group of
Turing degree X by considering Gxgxe. A set X is said to have total
enumeration degree if it is enumeration equivalent to a set of the form
Z @ Z¢. There are sets which do not have total enumeration degree
[Med55]. Those are exactly the sets X for which the set {Y € 2V :
X is c.e. in Y} has no least Turing degree.® It follows that if a structure

'Show they are 3-algebraic.

1X¢ denotes the complement of X.

SIf Z is the least Turing degree of the set {Y € 2V : X is c.e. in Y}, then X
would be enumeration equivalent to Z @ Z¢. This is because we have that, for all
Y, X isce. inY ifand only if Z <7 Y, if and only if Z@® Z°¢ is c.e. in Y, and thus
the same Y’s can enumerate both X and Z @ Z°€.
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has enumeration degree X and X does not have total enumeration
degree, then the structure does not have Turing degree.

The enumeration degree of a structure is indeed a good way to mea-
sure its computational complexity. Unfortunately, in general, struc-
tures need not have enumeration degree. Furthermore, there are whole
classes of structures, like linear orderings for instance, where no struc-
ture has enumeration degrees unless it is already computable (Section
V.1). Before getting into that, the rest of the section is dedicated to
classes whose structures all have enumeration degree.

THEOREM II1.41. Let K be a II§ class, all whose structures are 3-
atomic. Then every structure in K has enumeration degree given by its
d-theory.

The proof of Theorem II1.41 needs a couple of lemmas that are
interesting on their own right.

LEMMA II1.42. Let S be the 3-theory of a structure A. If A belongs
to some 11§ class K where A is the only structure with 3-theory S, then
A has enumeration degree S.

Proor. By Corollary II1.30, if X can compute an enumeration of
S, then it can compute an w-presentation of a structure B € K with
J-theory S. By the assumption on K, A and B must be isomorphic. So,
X can compute a copy of A. Of course, every copy of A can enumerate
S, and hence A has enumeration degree S. OJ

LEmMA I11.43. If A and B are 3-atomic and have the same 3-theory,
then they are isomorphic.

Recall that we already proved this lemma for 3-algebraic structures
in II1.10.

PRrROOF. We prove that A and B are isomorphic using a back-and-
forth construction. Let

I = {{a,b) : V-tpalaop,...,as) = Y-tpg(bo, ..., bs) }.

We need to show that I has the back-and-forth property (Definition
[11.13). Clearly, V-tp4(aq, ..., as) = V-tpg(bo, ..., bs) implies D 4(ayg, ..., as)
Dg(bg, ..., bs). By assumption, {{),()) € I. For the second condition
in Definition II1.13, suppose (a,b) € I, and let ¢ € A. Let v be
the principal 3-formula satisfied by ac. Since V-tpa(a) = V-tpg(b),
there is a d in B satisfying the same formula. We need to show that
V-tpa(ac) = V-tpp(bd). Let us remark that since we do not know A
and B are isomorphic yet, we do not know that 1 generates a V-type
in B.
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First, to show V-tp4(ac) < V-tps(bd), take 6(7y) € V-tpa(ac). Then

Vy((zy) — 0(zy))” € V-tpala) = V-tps(b),
and hence € V-tpg(bd). Let us now prove the other inclusion. Let
?Z(i’y) be the 3-formula generating V-tp;(bd). Then since ﬁJ ¢ V-tps(bd),
by our previous argument, ﬁqz ¢ V-tpa(ac) either, and hence A |
d(ac). The rest of the proof that V-tps(bd) = V-tpa(dc) is now sym-
metrical to the one of the other inclusion: For 8(zy) € V-tps(bd), we
have that “Vy(¢(Zy) — 0(zy))” € V-tpg(ac) = V-tpa(ac), and hence

0 e V-tpA(&c). L]
ProOF OF THEOREM III1.41. The proof is immediate from Lem-
mas I11.42 and 1I1.43. O

The following exercise gives a structural property that is sufficient
for a structure to have enumeration degree. The property is far from
necessary though.

EXERCISE II1.44. Suppose that a structure A has a X§ Scott sen-
tence. Prove that A has enumeration degree. Hint in footnote.’

ExampLE II1.45 (Frolov, Kalimullin and R. Miller [FKMO09)).
Consider the class K of fields of finite transcendence degree over Q.
We claim that every such field has enumeration degree. This class is
not II§, but if we consider K,, to be the class of fields of transcendence
degree n, and add n constant symbols to name a transcendence basis,
U1, ..., U, then we do get a II§ class. Since all these fields are algebraic
over Q(vy,...,v,), they are J-algebraic, and hence 3-atomic. It then
follows from Theorem II1.41 that every such field has enumeration de-
gree, namely the enumeration degree of the 3-type of a transcendence
basis.

Conversely, we claim that for every set X, there is an algebraic
field whose 3-theory is enumeration-equivalent to X: Take the field
that contains the p,th roots of unity if and only if n € X, where p,, is
the nth prime number. From an enumeration of X, one can build such
a field, and hence enumerate its 3-theory, and conversely, the 3-theory
of that field can enumerate X.

ExaMPLE I11.46 (Calvert, Harizanov, Shlapentokh [CHS07]). Torsion-
free abelian groups of finite rank always have enumeration degree. If
we add a basis of the group as parameters, then the class of torsion-
free abelian groups generated by such a basis is II5. All these groups

9Use Corollary II1.30
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are clearly 3-algebraic and 3-atomic, as every element is generated as a
Q-linear combination of the base. Thus, they have enumeration degree.

Furthermore, for every set X there is a torsion-free abelian group
of rank one with enumeration degree X: Consider the subgroup of Q
generated by 1/p, for ne X.

EXAMPLE II1.47 (Steiner [Stel3]). Graphs of finite valence with
finitely many connected components always have enumeration degree
and can have all possible enumeration degrees: Let G be such a graph.
Add a constant element for each connected component. Recall from
Example II1.8 that, with the added constants, G becomes 3-algebraic
and hence J-atomic. Saying that every element is connected to one
of these constants is II§. However, saying that G has finite valence is
not. But the V-theory of G says that it has finite valence: for each
constant element, and for each k£ € N, there is a V-formula that says
that exists no more than a certain finite number of nodes at distance
k from that constant. Since different 3-atomic structures must have
different 3-theories, the isomorphism type of G is determined by the II§
sentence saying every element is connected to one of the constants and
its 3-theory. It then follows from Lemma I11.42 that G has enumeration
degree.

One can show that for every X there is a connected graph of finite
valence and enumeration degree X. The graphs Gy from II1.38 are
not connected, but a small modification would work: make all of these
cycles sharing exactly one common node.

EXERCISE II1.48. Show that if a structure A has enumeration de-
gree, that degree is the enumeration degree of some J-type of some
tuple in A.

EXERCISE 111.49. Show that if A is 3-atomic and has enumeration
degree, then its enumeration degree is given by its 3-theory. Hint in
footnote. !

EXERCISE II1.50. Give an example of a structure which has enumer-
ation degree, but whose enumeration degree is not that of its 3-theory.

IShow that every 3-type is e-reducible to the 3-theory of A.






CHAPTER 1V

Generic presentations

Forcing and generics are useful tools all over computability the-
ory. The first forcing-style argument in computability theory can be
traced back to the Kleene-Post construction of two incomparable de-
grees [KP54], published a decade before the invention of forcing. In
this chapter, we give an introduction to forcing in computable struc-
ture theory. We will develop a more general framework for forcing in
[MonP2], once we gain more familiarity with infinitary languages. For
now, instead of looking at fully generic objects, we consider 1-generics,
which have relatively low computational complexity.

The notion of forcing was introduced by Cohen to prove that the
continuum hypothesis does not follow from the ZFC axioms of set the-
ory. Soon after, forcing became one of the main tools in set theory to
prove independence results of all kinds. Generic objects are “generic”
or “typical” in the sense that they do not have any property that is
satisfied by a meager class of objects, where meagerness is viewed as a
notion of smallness. This implies that if a generic satisfies a particular
property, it must belong to a class where most objects have that prop-
erty, and hence there is a clear reason why it has that the property.
Our forcing arguments will essentially have that form: If a generic w-
presentation has a certain computational property, then there must be
a structural reason for it.

Generic objects come in different shapes and sizes, but here, we will
only consider Cohen generics. A Cohen generic real is a real in NV that
does not belong to any meager set, where a subset of NV is meager if
it is contained in a countable union of nowhere-dense closed sets, and
a set is nowhere dense if it is not dense when restricted to any open
set. Meager sets are considered to be small sets — for instance, Baire’s
category theorem states that no countable union of meager sets can
cover all of N, If a real belongs to a particular meager set, belonging
to this set would be a property of this real that most reals do not have.
As we will see, the feature characterizing generics is the following: If
G € NV is generic, P < NV is a definable set viewed as a property, and
G € P, then there is a finite initial segment ¢ < G which forces G to
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belong to P in the sense that every generic extending o belongs to P.
Behind this is Baire’s theorem that says that if P is Borel, then there
is an open set such that, restricted to that open set, P is either meager
or co-meager. One problem that arises is that every real belongs to
a meager set, namely the singleton that contains itself. That is why
in set theory one has to work with generic reals that live outside the
universe of sets. For the purposes of computability theory, we do not
need to consider all meager sets, but only countably many of them.
Since countable unions of meager sets are still meager, we can find
object that are generic enough for our purposes.

We start this chapter by introducing 1-generic reals; these are the
ones that avoid all nowhere-dense closed sets given as the boundaries of
effectively open sets (Definition IV.1). The notion of 1-generic was iso-
lated by Jockusch [Joc80], though Kleene—Post’s construction [KP54|
already gives 1-generic reals 26 years earlier. See Exercise IV.8 below
for a proof of Kleene—Post’s result that every countable partial ordering
embeds into the Turing degrees using 1-generics. They were then used
in all kinds of embeddability results into the Turing degrees and other
kinds of degrees. They are also often used in effective randomness and
in reverse mathematics.

The objective of this chapter, though, is to introduce 1-generic enu-
merations and 1-generic presentations of structures. We will develop a
more general notion of forcing and generics later in [MonP2], which
is similar to the notion originally considered independently by Knight
[Kni86], and by Manasse and Slaman (later published in [AKMS89]).
For now, 1-generic presentations are enough for the results in this first
part of the book. We will use them in the next chapter to prove
Richter’s theorem V.10, Knight et al.’s theorem V.15, Andrews and
Miller’s theorem V.20, and other results later on.

IV.1. Cohen generic reals

We review the standard notion of 1-genericity for reals and prove
some of their basic properties. (For more background, see [Ler83,
Section IV.2] or [Soal6, Section 6.3].) We will extend these proofs to
generic enumerations of structures in the next sections.

For R < NN/ define the open subset of NN generated by R to be

[R]" ={XeNV:30eR (¢ c X))

In other words, if [¢]~ denotes the clopen set of extensions of o, namely
{X e NV: 0 < X}, then [R]” = ,.zlo]. A subset of NV is effectively
open if it is of the form [R]" for some c.e. R < N<N. A real G € NN is
1-generic if and only if it avoids the boundaries of all effectively open
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sets. Thus, for every effectively open set, either GG is well inside it or
well outside it. Here is the equivalent definition we will actually use:

DEFINITION IV.1 (Jockusch [Joc80]). Let R < N<N be closed up-
wards, that is, if 0 € 7 and 0 € R, then 7 € R too. We say that a string
v € N<N decides R if either y € Ror o ¢ R for all 0 2 v. If R is not
closed upwards, we say that v decides R if it decides its upward closure.
A real G € NV is I-generic if for every upward-closed c.e. subset R of
N<N. there is an initial string of G, G | k for some k, which decides R.

The reason we use the words “decide” and “force” is the following:
Let G be 1-generic and [R]™ be an effectively open set for R upward
closed. For v G, if v € R, we say that « forces G to be in [R]", while
if (Vo 27) o ¢ R, then we say that v forces G to be outside [R]". In
either case, v decides whether G' belongs to [R]~ or not.

One can require more genericity by requiring G to decide more sets,
e.g., a-generics decide all X0 sets R, as we will see in [MonP2]. Cohen
generics decide all sets R in the universe — we will not deal with these
in this book.

OBSERVATION IV.2. 1-generic reals are not computable: For each
computable C' € NY, consider Rc = {0 € N<V : o ¢ C}. Since there
is not enough room to force out of Rc in the sense that there is no
v € N=N all whose extensions are outside R¢, any 1-generic must be
forced to be in [Rc]™ and be hence different from C'.

LEMMA IV.3. There is a 1-generic real computable from 0.

Proor. This is essentially an effective version of the Baire category
theorem.

We build a 1-generic G as the union of an increasing sequence of
finite strings po € p; < --- € NN, Let py be the empty string. At stage
s+ 1 = e, we define p,,; so that it decides the eth c.e. set W, < N<N:
If there is a ¢ 2 p, with ¢ € W,, we let p,,1 = ¢. Otherwise, we let
Ds+1 = Ds. At the end of stages, we define G = | J, ps. It is not hard
to check that G is 1-generic. (To see that the lengths of the p,’s go
to infinity, notice that, for each n, the set {o € NN : |o| = n} is c.e.
and hence is eventually considered during the construction as one of
the W.’s.)

The only step in the construction that was not computable was
checking whether there existed § 2 ps with ¢ € W,. This is a question (/
can answer, and hence the whole construction is computable in 0/. [

For the next lemma, we need to consider the relativized version of
1-genericity. Given X € NV, we say that G € NV is X -1-generic if every
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X-c.e. subset of NV is decided by an initial segment of G. The next
lemma implies that the only sets that are c.e. in all generic sets are the
ones that are already c.e.

LEMMA IV.4. Let G, X € NN, Suppose that G is X -1-generic. Then
X is not c.e. in G, unless X is c.e. already.

PROOF. Suppose that X = WY for some e € N; we will show that
X is already c.e. Consider the set of strings which “force ‘W& & X’
by which we mean:

Q={geNN:In(neWiang¢X)).
Notice that @ is c.e. in X, and hence it is decided by some initial
segment of G — say by G | k. If we had G | k € @), we would get
n e W& and n ¢ X, contradicting our assumption that X = W,

Thus, G | k must force out of [Q]” and no extension of G | k is in Q.
We now claim that

X={neN:(3g2G k) ne Wi}

Notice that this would show that X is c.e. as needed. As for the claim:
For the left-to-right inclusion, if n € X, since X = WY, there is some
initial segment ¢ of G satisfying n € W4. For the other inclusion, if
there exists ¢ @ G | k with n € WJ, then n must belong to X as
otherwise ¢ would be an extension of G | k in Q). ]

In particular, we get that if G is X-1-generic, then G computes X
if and only if X is computable.* Thus, if G is X-1-generic, G and X
form a minimal pair, i.e., there is no non-computable set computable
from both. This is because if Y <7 X, then G is Y-1-generic too, so if
also Y <7 GG, Y must be computable.

The following lemma shows that 1-generics do not code much in-
formation on their jumps: For Z € N¥, basic properties of the Turing
jump imply that Z" > Z @ (0. We say that Z is generalized low if
Z'=r Z®0.

LEMMA 1V.5. Fvery I-generic real G is generalized low.

PROOF. That G' =7 G @ 0 is true for all reals G. Let us prove
that G' < G@® (0. Take e € N; we want to decide if ¢ € G’, that is, if
®%(e)| using G ® 0’ as oracle, uniformly in e. Consider the set

R, = {ge NN : ®l(e)]}.

Since R, is c.e., it is decided by G. Notice that 0" can tell if a string ~y
forces in (which is a X.? question), forces out (which is a I1{ question), or

*Here we are using that computable is equivalent to c.e. and co-c.e.
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does not decide [R,]”. Then, using G@®(', we can find k € N such that
G 1k decides R.. If G | k € R, we know that ®¢(e)| and hence e € G'.
If no extension of G | k is in R., then ®%(e)? and hence e ¢ G'. ]

An important application of 1-generics is Friedberg’s jump inversion
theorem which implies that every Turing degree above 0’ is the jump
of some degree.

THEOREM IV.6 (Friedberg’s jump inversion theorem [Fri57a)). For
every A e NN with A =7 0/, there is a 1-generic G such that

AET G, =7 G@O/

Proor. We follow the construction of a 1-generic computable from
0" (Lemma IV.3) but with extra steps to encode A into G.

We build G as the union of an increasing sequence of finite strings
Do S p1 S --- € NN Let py be the empty string. At an odd stage
s+1 = 2e+1 we define p,,; so that it decides the eth c.e. set W, < N<N:
Ask 0’ if there is a § 2 ps with g € W,. If yes, let p,,1 be the least such
g according to some enumeration of N<V — insisting that § was least
was not necessary in Lemma IV.3. If no, let p,y1 = ps. At an even
stage s + 1 = 2e, we let pg1 = ps~Ale).

Since A computes 0/, A can run the construction and thus G < A.
Conversely, G @ 0’ can recover all the steps of the construction and
recover the sequence py € p; < ---: This is because 0’ can figure out
how p,s,1 was defined at odd stages — using that ¢ was chosen to be
least — and, at even stages, ps,1 is just one bit longer than p,, i.e.,
Dst1 = G | |Ds| + 1. We can then recover A, as A(e) is the last entry
of pg.. This shows that A =7 G @ (0. Since we made G 1-generic,
G’ =7 G 0. ]

The following lemma shows that if we split a 1-generic in two pieces,
we get two 1-generics. Furthermore, the pieces are 1-generic relative to
each other.

LEMMA IV.7. Let G, H € NY. Then G@® H is 1-generic if and only
if G 1s 1-generic and H is G-1-generic.

This is essentially an effective version of the Kuratowski-Ulam The-
orem, that says that a set P < N¥ x NV is comeager if and only if the
set {z € NV : P~ {z} x NV is comeager in {x} x NV} is comeager.

PROOF. Suppose first that G @ H is 1-generic. Consider a c.e.
operator W which outputs subsets of N<N. To prove that H is G-1-
generic, we need to show that H decides W& using the genericity of



60 IV. GENERIC PRESENTATIONS

Y

G®H. Consider the c.e. set of pairs of strings that “force H € [WY]",
by which we mean:

R={y®5eNN:5e W}

G ® H must decide R. If we have y@ 0 < G @ H with y@ 0 € R, then
§ € WY and H is forced into [W¢]". If we have that (V7 2 7v®J) T ¢ R,
then (Vo 26) o ¢ WY and H is forced out of [WY]".

In exactly the same way we can show that G is H-1-generic, and in
particular 1-generic.

For the other direction, suppose G is 1-generic and H is G-1-generic.
Let R be an upwards-closed c.e. subset of N<Y; we must prove that

G @ H decides it. Define
S ={0eNN:(G|6])®Je R}

Sy is c.e. In G and thus H must decide it. If there is a §; < H with
§ € Sy, then G 1|6;|®d; forces G H to be in [R]~. Otherwise, suppose
there is §; € H no extension of which is in S;. Define

So={yeN":35eN" (520, &v®Ie R)}.

G must decide Sy. There cannot be a v < G with v € Sy, because the
witness § would be an extension of §; in S;. So, there is a 73 < G no
extension of which is in Sy. Thus, for v © v, and d 2 6, YD ¢ R.
We get that v, @ (H | |y1]) forces G @ H out of [R]". O

Such H and G are said to be mutually generic. Similarly, we can
get an infinite sequence of mutually generic reals by taking the columns
{GI"] : n e N} of a 1-generic G.

EXERCISE IV.8. Prove Kleene—Post’s theorem that every countable
partial ordering embeds into the Turing degrees. To prove it, given a
partial ordering (P; <), consider a bijection f: PxN — N, and consider
the pull-back H = f~}(G) of a 1-generic real G = N. Show that the
map p — P o<pH l9] from P to NN induces the desired embedding.

EXERCISE IV.9. Prove that the countable atomless Boolean algebra
embeds into the Turing degrees preserving joins and meets. Hint in
footnote.

EXERCISE IV.10. Prove that given a real A > (', there exist reals
G and H such that G’ =7 A =¢ H', and G and H form a minimal pair,
meaning that there is no non-computable set computable from both G
and H.

"Consider a 1-generic subset H of Q and then map an element a of the interval
algebra of Q to an H.



IV.2. GENERIC ENUMERATIONS OF SETS 61

IV.2. Generic enumerations of sets

Before diving into generic enumerations of structures, let us take a
quick look at generic enumerations of sets and give a proof of Selman’s
theorem about enumeration reducibility. (See page xvii.) Recall that
an enumeration of a set Z is nothing more than a function g: N —» Z
that is onto Z. We say that g € Z" is a 1-generic enumeration of Z if
for every subset R of Z<N that is enumeration reducible to Z, there is
an initial segment of ¢, g | k£ for some k, that decides it in the sense
that either g | k € R or no extension of g [ k£ is in R. Notice that a
1-generic enumeration of Z must be onto Z, because for each z € Z,
the set R = {oc € Z<N: 3i < |o| o(i) = 2} is dense and enumeration
reducible to Z and hence must be forced in. We relativize this notion
in the obvious way: ¢g € Z% is an X-1-generic enumeration of Z if for
every subset R of Z<N that is X-enumeration reducible to Z,* there is
an initial segment of g that decides it.

The next lemma implies that the only sets that are c.e. in all generic
enumerations of Z are the ones that are already enumeration reducible
to Z. It is the analog of Lemma IV.4, and the proof is almost the same
verbatim.

LEmMmA IV.11. Consider sets Z < N and X < N. Suppose that g
1s an X -1-generic enumeration of Z. Then X 1is not c.e. in g, unless
X is enumeration reducible to Z.

PROOF. Suppose that X = WY for some e € N; we will show that
X <. Z. Consider the set of strings which “force ‘W2¢ € X".” by which
we mean:

Q={qeZN:InneWirn¢X)}

Notice that () is X-enumeration reducible to Z, and hence it is decided
by some initial segment of g — say by g [ k. If we had gk € @), we would
get n € W2 and n ¢ X, contradicting our assumption that X = WJ.
Thus, g | k¥ must force out of [Q]” and we have that no extension of
gl kisin Q.

We now claim that

X={neN:(3geZNg2gk&neWi}.

If n € X, then, since X = WY, there is some initial segment g of g
satisfying n € WJ. For the other inclusion, if there exists ¢ € Z<N with
g2g¢g | kand ne W4, then n must belong to X as otherwise § would
be an extension of ¢ | k in Q.

*We say that R is X -enumeration reducible to Z if there is an X-c.e. enumera-
tion operator © such that R = ©Z, where ©Z = {n: (3D Sy, Z) {'D",n) € O}.
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Now, let us observe that the claim implies that X <, Z as needed.
Define the following c.e. enumeration operator:

O={{'D'ny:DcyyNneN,Bge D) g2gk&neWi}
From the claim above we get that X = ©%. O]

Selman’s theorem proves the equivalence between the different def-
initions of enumeration reducibility:

THEOREM V.12 (Selman [Sel71]). Let Y, Z be subsets of N. The
following are equivalent:

(1) Every enumeration of Z computes an enumeration of Y.

(2) There is a single computable operator that maps every enu-
meration of Z into an enumeration of Y.

(3) There is a c.e. enumeration operator © such that Y = ©7.

PRrOOF. The implications (3) = (2) and (2) = (1) are quite straight-
forward. The interesting direction is (1) = (3). For this, let g by a
Y-1-generic enumeration of Z. By (1), Y is c.e. in g, and hence from
the proof of the previous lemma we get a c.e. enumeration operator ©
such that Y = 67, O

IV.3. Generic enumerations of structures

We now turn to consider 1-generic enumerations of structures. The
main difference with 1-generic reals is that, instead of deciding the c.e.
subsets of N<N| we now decide the r.i.c.e. subsets of A<V,

We assume throughout the rest of the chapter that A is an w-
presentation of a 7-structure, and, of course, that 7 is a computable
vocabulary. Given a set A, let A* be the set of all finite strings from
A whose entries are all different:

A ={oe AN (Vi # j <|o|) o(i) # o(j)}.

DEFINITION IV.13. We say that v € A* decides an upward-closed
subset R < A* if either v € R or 0 ¢ R for all ¢ 2 7. We say that
a one-to-one function g € A" is a I-generic enumeration of A if, for
every r.i.c.e. set R € A*, there is an initial segment of g that decides
RS

The existence of 1-generic enumerations follows from the Baire cate-
gory theorem. As in Lemma IV.3, we can build a 1-generic enumeration

Let us remind the reader that we identify tuples v € A<N with functions
v: {0, ..., |v| — 1} — A. For instance, when we say that a tuple is an initial segment
of a function g: N — A, we are viewing the tuple as a function.



IV.3. GENERIC ENUMERATIONS OF STRUCTURES 63

of A computably in D(A)’" by finite approximations deciding all D(.A)-
c.e. sets, and hence all r.i.c.e. subsets of A<N = N<N. Since we only
need to decide the r.i.c.e. sets, we can do this with less than D(A)": The

lemma below says that KA is enough. See I1.30 for the definition of the
complete r.i.c.e. set KA, and recall that we always have KA <; D(A),

and that sometimes KA <7 D(A)’ (Exercise 11.33).

LEMMA IV.14. FEvery w-presentation A has a 1-generic enumera-
tion computable in KA,

PrROOF. We build g as the union of a strictly increasing sequence
{ps : s € N} with p, € A*. Using Remark I1.32 we get a D(A)-
computable enumeration {Ry, Ry, ....} of the r.i.c.e. subsets of A*. At
stage s + 1 = e, we define p,y1 to decide the eth r.i.c.e. set R, < A* as
follows: If there is a ¢ 2 ps with g € R., we let ps.1 = ¢. Otherwise, we
let ps1 = Ps. Finally, we let g = | J, ps € AY. It is not hard to check
that ¢ is one-to-one and 1-generic.

To carry on this construction, we need to check at each stage s + 1
whether there exists ¢ 2 ps with ¢ € R, or not. The set of p’s such that
3G 2 p (¢ € R.), namely the downward closure of R., is ¥$-definable
and its index can be obtained uniformly from e. Hence, KA can decide
whether ps belongs to the downward closure of R, or not, and thus,
the whole construction is computable in KA. ]

It is not hard to see that a l-generic enumeration must be onto:
Given a € A, the set {p € A" : \/,_;;p(i) = a} is r.i.ce. and dense,
in the sense that every ¢ € A* has a extension in it. Thus a 1-generic
enumeration must force into it. 1-generic enumerations are then bijec-
tions between N and A. Using the pull-back (see Section 1.1.7), each
1-generic enumeration induces what we call a 1-generic presentation:

DEFINITION IV.15. A 1-generic presentation of A is the pull-back
g 1(A) of some 1-generic enumeration g of A.

The reason we defined 1-generic enumerations of A using r.i.c.e.
sets, instead of D(A)-c.e. sets, is that we get a notion that is indepen-
dent of the given w-presentation of A:

LEMMA 1V.16. Let A and B be isomorphic. Any 1-generic presen-
tation of A is also a 1-generic presentation of B.

ProOOF. Let h: A — B be an isomorphism. The key point is that
h preserves 3§-definable sets.

Suppose that g: N — A is a 1-generic enumeration of A, and let
C = g '(A). We want to show that C is a 1-generic presentation of B
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too. Since C = (hog)~!(B), it is enough to show that hog is a 1-generic
enumeration of B. Let R € B* be ¥$-definable in B with parameters;
we need to show that h o g decides it. Since h is an isomorphism,
h~'(R) € A* is Y§-definable in A with parameters, and hence decided
by g. Let k € N be such that either g | k € h™'(R) or o ¢ h™(R) for
all 0 € A* with 0 2 g | k. Applying h, we get that (hog) | k decides
R, as wanted. ]

REMARK IV.17. In particular, a 1-generic presentation of a struc-
ture A is also a 1-generic presentation of itself. An w-presentation C is
a l-generic presentation if and only if every r.i.c.e. set R € C* = N* is
decided by some tuple of the form (0,1,...,k — 1).

EXERCISE IV.18. Suppose the vocabulary 7 consists of only one
unary relation symbol R and A is a 7-structure where R4 is infinite and
co-infinite. Prove an w-presentation C of A is a 1-generic presentation
if and only if the characteristic function of R¢, viewed as a real in 2,
is a 1-generic real.

EXERCISE IV.19. Let X compute a copy of a structure A and let G
be X-1-generic. Prove that X@G can compute a 1-generic presentation

of A.

IV.4. Relations on generic presentations

Generic presentations are useful because whatever happens to them
happens for a reason. For instance, we will see that if a relation is c.e. on
a generic presentation, it is because it was r.i.c.e. already (assuming the
w-presentation is generic relative to the relation too). In Theorem I1.16,
we showed that a relation R = A<N is ¥$-definable with parameters
if and only if R® is c.e. in D(B) for every (B, R®) = (A, R) (i.e., it is
r.i.c.e.). The following theorem, which is the analogue of Lemma IV.4,
shows that we do not need to consider all the copies of (A, R), but just
one that is 1-generic. The construction in the proof of Ash-Knight—
Manasse—Slaman—Chisholm’s Theorem I1.16 essentially already builds
a l-generic copy of (A, R).

THEOREM IV.20. Let A be a structure and R < A<N. Suppose
(A, R) is a 1-generic presentation. Then R is c.e. in D(A) if and only
if R is r.i.c.e.”

PRrROOF. Clearly, if R is r.i.c.e. it is c.e. in D(A). Let us prove the
other direction.

IThe same is true of relations R € N x A<N. By Remark I1.27 it is enough to
consider R < A<N.
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Suppose that R = WP for some e € N. Consider the same set
used in the proof of Theorem I1.16, in which we were trying to build a

copy C of A satisfying W€ ¢ RC:

Q = {qe A" Ew)jlu "'7j€ < |6| (<j17 "'7j€> € WeDA(q) and <qj17 "'7qj£> ¢ R)}

It is not hard to see that @ is r.i.c.e. in (A, R). So @ is decided by
some tuple of the form (0,.....k — 1) € A* as in Remark IV.17 above.
We cannot have (0, ....,k — 1) € @, as otherwise there would be a tuple
Gy Joy € WP with 1y -5 Joy € R, contradicting that R = WP,
Thus, no extension of {0,...,k — 1) isin Q. Let p = {0,....k — 1). It
now follows from Claim 1 from the proof of Theorem I1.16 that R is
Y.{-definable in A with parameters p as needed. To be more explicit,
recall that the proof of Claim 1 went through proving that

R ={{¢j,,...,qj,y: for ge A" and ¢, j1, ..., je < |q|,
with § 2 p and (jy, ..., jo» € WPA@} O

Recall that a set X < N is c.e.-coded by A if and only if it is c.e. in
every presentation of A (see Subsection I1.1.4). This is equivalent to
saying that X is r.i.c.e. in 4. Recall that we can view X as a subset
of N x AN as in Section II.1.4. Let us also remark that saying that
(A, X) is a 1-generic presentation is equivalent to saying that A is X-
1-generic, as the r.i.c.e. relations on (A, X) are exactly the X-r.i.ce.
relations on 4, which are the ones that need to be decided by the
X-1-generic enumeration of Al

COROLLARY IV.21. Let X < N and suppose A is a X-1-generic

presentation. Then X is c.e. in D(A) if and only if it is c.e.-coded by
A.

PrROOF. Immediate from the previous theorem. ]

COROLLARY 1V.22. For every w-presentation B, there is another
w-presentation A = B such that, a set X < N is c.e.-coded by B if and
only if it is c.e. in both D(A) and D(B).

Proor. If X is c.e.-coded by B, by definition it is c.e. in D(B) and
in D(A) for every copy A of B.

For the other direction, let Y = D(B)" and let A be Y-1-generic
presentation of B. If X is c.e. in D(B), then X <y Y and hence A is

IA relation R € N x A<N is X-r.i.c.e. if it is c.e. in D(B) @ X for all copies
B of A. A one-to-one enumeration g of A is X -1-generic if, for every X-r.i.c.e. set
R < A*, there is an initial segment of g that decides it.
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X-1-generic too. If X is also c.e. in D(.A), by the previous corollary,
X is c.e.-coded by A and hence also by B. ]

The next lemma is the analogue of Lemma IV.5 that says that 1-
generics are generalized low. Recall that always K® < D(B) and there
are w-presentations B with KB <, D(B)’ (Exercise 11.33).

LEMMA IV.23. [Vat11] If B is I-generic, then D(B) =1 K&.

PROOF. We already know that K& <, D(B)' for every presentation
B. Let us prove that D(B) <r KB. Take e € N; we want to decide if

CDE(B)(e)l using K5 as an oracle uniformly in e. Consider the set
R.={ge B": ®P*@(e)|}.
It is not hard to see that R, is r.i.c.e. The set of tuples which force
into [R.]”, namely
{peB*:3G<=p (7€ R.)},
is r.i.c.e.. The set of tuples which force out of [R,]”, namely
{pe B :Vq2p (3¢ Re)},
is co-r.i.c.e.. Since B is 1-generic, R, is decided by some tuple of the
form <0, ...,k — 1) as in Remark IV.17. Using KZ, we can then find
such a k and decide whether (0, ..., k — 1) forces into [R.]" and hence
that e € D(B)’, or (0,...,k — 1) forces out of [R,]” and hence that
e¢ D(B)" O
Vatev [Vat11] used this lemma to give the first proof that K5 is
never r.i. computable in B.



CHAPTER V

Degree spectra

Among the main objectives of computable structure theory is mea-
suring the computational complexity of structures. There are various
ways of doing this. The most common one is through degree spectra.

We already know how to assign a Turing degree to an w-presentation
(namely D(A), as in Subsection 1.1.1), but a structure may have many
w-presentations with different Turing degrees. We want a measure of
complexity that is independent of the particular w-presentation.

DEFINITION V.1. The degree spectrum of a structure M is the set
DgSp(M) = {X € 2V : X computes a copy of M}.

Degree spectra are closed upward under Turing reduction, and in
particular under Turing equivalence. Thus, we can think of them as
sets of Turing degrees rather than sets of reals. As it follows from
Knight’s Theorem 1.16, DgSp(.A) is the set of Turing degrees of all the
copies of A, provided A is non-trivial.

Understanding which subsets of the Turing degrees can be realized
as degree spectra is an important open problem in the area.

V.1. The c.e. embeddability condition

Our first approach to measuring the complexity of a structure was
by assigning it an enumeration degree (Definition I11.37), if possible.
In her Ph.D. thesis [Ric77], Linda Richter showed there are many
structures that do not have enumeration degree. She gave a general
sufficient condition for this to happen:

DEFINITION V.2. [Ric81, Section 3] A structure A has the com-
putable embeddability condition if each 3-type realized in A is com-
putable. A structure A has the c.e. embeddability condition if each
J-type realized in A is c.e.”

The reason Richter introduced this notion was to prove Theorem
V.7 and Corollary V.9 below.

*Recall that the I-type of a tuple is the set indices of all 3-formulas true about
it.

67
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ExAMPLE V.3. Richter then showed that linear orderings have the
computable embeddability condition. This is because the 3-type of a
tuple aq, ..., ax, or equivalently the set of finite extensions of a, namely
the finite a-linear orderings as in Example 11.43, is determined by the
ordering among the elements of the tuple a, how many elements are in
between each pair from the tuple, how many elements are to the left of
the whole tuple, and how many are to the right. By “how many,” we
mean either a finite number or infinity. Thus, the 3-type of a k-tuple is
determined by a permutation o of {1,2,...,k}, and a k + 1 tuple from
Nu {oo}, in the sense that given that information, one can computably
decide if an 3-formula belongs to the type or not.

ExaMPLE V.4. Richter also showed that trees when viewed as par-
tial orderings (i.e., as {<}-structures) also have the computable em-
beddability condition. We defer this proof to Chapter X, where we will
prove that the class of trees is »-small.

Other examples include Boolean algebras, Q-vector spaces, alge-
braically closed fields, differentially closed fields, abelian p-groups, and
equivalence structures.

HisToORICAL REMARK V.5. Richter’s original definition was not in
terms of types, but in terms of finite structures embeddable in A and extend-
ing a fixed tuple, as in the following exercise. She defined the computable
embeddability condition and not the c.e. one. However, Theorem V.7 be-
low has a more rounded statement when we consider the latter notion. In
Russia, structures with the c.e. embeddability condition are called locally
constructivizable.

EXERCISE V.6. For each tuple a € A<V, prove that the set
{D4(ab) : be AN} < 2<N

is positive equivalent to 3-tp4(a). In particular, they are both Turing
and enumeration equivalent. (For the definition of positive reducibility,
see page xvii.)

THEOREM V.7. (Richter) Let A be any structure. The following
are equivalent:
(1) A has the c.e. embeddability condition.
(2) Every set X < N that c.e.-coded by A is already c.e.

Recall from Section II.1.4 that X is c.e.-coded by A if X is c.e. in
every presentation of A.

PRrROOF. To show that (1) implies (2), recall Knight’s Theorem 11.23
that if X is c.e.-coded by A, it must be enumeration reducible to some
J-type realized in A. Since these are all c.e., X must be c.e. too.
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For the other direction, notice that every 3-type realized in A is
c.e.-coded by A, and hence (2) implies they are all c.e. ]

Recall that a structure A has enumeration degree Y if and only
if DgSp(A) = {X € 2V : Y is c.e. in X}, and A has Turing degree Y
if DgSp(A) = {X € 2% : Y =7 X}. Richter’s theorem allows us to
conclude many degree spectra do not have that shape.

COROLLARY V.8. If A has the c.e. embeddability condition, then it
does not have enumeration degree, unless it has a computable copy and
enumeration degree J.

PROOF. If A has enumeration degree Y, then Y must be c.e. coded
in A, and hence c.e. ]

COROLLARY V.9. If A has the c.e. embeddability condition, then
it does not have Turing degree, unless it has a computable copy and
Turing degree (5.

PROOF. Apply the previous corollary to X @ X°¢. O

Richter’s original result is actually stronger than Theorem V.7. We
say that X and Y from a c.e.-minimal pair if no set is c.e. in both X
and Y, unless it is already c.e. Notice that a c.e.-minimal pair is also
a mintmal pair in the sense that whenever a set is computable in both
X and Y, it is already computable.

THEOREM V.10. (Richter) Let A have the c.e. embeddability con-
dition. Then, for every non-computable set X, there is a copy B of A
that forms a c.e.-minimal pair with X.

PROOF. Let B be an X’-1-generic presentation of A. Let Y be c.e.
in both X and D(B). Since Y is c.e. in X, B is Y-1-generic. Then,
since Y is c.e. in D(B), Y must be c.e.-coded by A (Corollary IV.21)
and thus be c.e. H

V.2. Co-spectra

The degree spectrum of a structure measures how difficult it is
to present the structure. If instead we want to measure how much
information is encoded in a structure, the first approach is to use co-
spectra. This is not the only approach because, as we will see later,
information can be coded within a structure in many different ways —
as for instance, it can be coded in the jump of the structure without
getting reflected in the co-spectra.
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DEFINITION V.11. The co-spectrum of a structure A is the set
coDgSp(A) = {X < N: X is c.e.-coded by A}.

Recall that X is c.e.-coded by A if and only if X is r.i.c.e. in A, if
and only if X <, 3-tp4(p) for some p € A<V and if and only if X is
c.e. in every Y € DgSp(A) (see Section I1.1.4). Note that a structure
has a trivial co-spectrum (i.e., the class of just the c.e. sets) if and only
if it has the c.e. embeddability condition.

DEFINITION V.12. A set S < P(N) is an ideal in the enumeration
degrees if it is closed downward under enumeration reducibility and
closed under joins.

Co-spectra are always ideals in the enumeration degrees. The re-
verse is also true.

LEMMA V.13 (Soskov [Sos04]). Every countable ideal in the enu-
meration degrees S < P(N) is the co-spectrum of some structure.

PRroOOF. Given a set X, let Gx be the graph from Example I11.38
with one modification: Gx is made out of cycles of length n + 3 for
n € X and all of these cycles share exactly one common node — we
call it a flower graph because the cycles look like petals coming out
of a center node. Recall that in Example II1.38 we showed that Gx
has enumeration degree X. For a set S < P(N), let G& be the graph
formed by the disjoint and disconnected union of the graphs Gy for
X € S, each one repeated infinitely often. We call it a bouquet graph.
Clearly S < coDgSp(G%), as for every X € §, X is c.e. in every copy
of Gx. Conversely, we claim that the 3-type of any tuple p € g§0<N is
e-reducible to a finite join of X’s in &, which would imply that every
set c.e.-coded in GZ is in §. To see this, let X;,...,X,, € § be such
that the elements of p are in | J;, Gx,. Let G consist of U, Gx, and
infinitely many copies of Gy (i.e., Gy for Y = N), and let ¢ be the
tuple in G corresponding to p (i.e., under the isomorphism between the
pieces of the form | J;_, Gx,). We claim that 3-tpg= (p) = I-tpg(q): For
the left-to-right inclusion, observe that there is an embedding G3 — G
matching p and ¢, mapping each Gx for X # X; into a copy of Gy, and
recall that 3-formulas are preserved forward under embeddings. For the
other inclusion observe that G is a sub-graph of G&', just because N e §
(since S contains all c.e. sets), and recall that 3-formulas are preserved
upwards. One can easily build a copy of G from an enumeration of
X1 @@ X, and hence enumerate the 3-type of ¢. Thus 3-tps(q) <.
Xi1®---® X, €S. We conclude that F-tpgz(p) € S. 0
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FiGURE V.1. Bouquet Graph

Richter’s Theorem V.10 can be generalized to arbitrary structures
without the c.e. embeddability condition because, in a sense, every
structure has the c.e. embeddability condition relative to its co-spectra:

LEMMA V.14. Suppose that every set in coDgSp(A) is c.e. in Y.
Then there is a copy B of A such that D(B) and Y are a c.e.-exact
pair for coDgSp(A); that is, such that, for Z =< N, Z € coDgSp(A) if
and only if Z is c.e. in both D(B) and Y .

PROOF. Let B be a Y'-1-generic copy of A. Suppose now that X
is c.e. in both Y and D(B). Since X is a column in Y’', B is also X-
1-generic. Then, by Corollary IV.21, X must be c.e.-coded by B, and
hence belong to coDgSp(A). O

Recall from Corollary IV.22, that we can actually get two copies B
and C of a structure A such that a set Z is c.e. in in both if and only
if it is in coDgSp(A). That is, D(B) and D(C) form a c.e.-exact pair
for coDgSp(A).

V.3. Degree spectra that are not possible

In this section, we look at degree-theoretic properties degree spectra
must have.

The first observation along these lines is that degree spectra are
always Borel. This will follow from results in [MonP2], where we
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prove that every structure has an infinitary Scott sentence. But among
upward closed Borel sets of Turing degrees, we know very little about
which ones can be degree spectra and which ones cannot.

V.3.1. No two cones. One of the best-known results in this vein
is due to Knight and her group in the 90’s and says that no degree
spectrum can be a non-trivial union of two upper cones of Turing de-
grees — not even the union of countably many upper cones. Her result
also applies to cones of the following kind: the enumeration upper cone
with base X, namely the set {Z € 2V : X is c.e. in Z}.

THEOREM V.15 (Knight et al.). No degree spectrum is the union
of countably many enumeration upper cones, unless it is equal to just
one enumeration upper cone.

PROOF. Suppose that we have X7, X5,... € N and a structure A

with
DgSp(A) = U{Z e 2V: X, is cee. in Z}.
neN

Let X = @, X,. Let C be a copy of A such that C is X-1-generic.
Since D(C) € DgSp(A), there exists an n such that X, is c.e. in D(C).
From Lemma IV.21, we get that X, is c.e.-coded by C. But then
DgSp(A) € {Z € 2V : X, is c.e. in Z}, and hence DgSp(A) = {Z €
2N X, is c.e. in Z} is a single enumeration upper cone. O

OBSERVATION V.16. No degree spectrum is the union of countably
many Turing upper cones, unless it is equal to just one Turing upper
cone: To see this, replace X,, by X,, ® X¢ in the proof of the theorem
above.

V.3.2. Upward closure of F,. We can generalize Observation
V.16 quite a bit by extending some ideas of U. Andrews and J. Miller
[AM15]. Recall that we give NN and 2N the product topology of the
discrete topology on N and 2 respectively. Thus, the topology on N is
generated by the basic open sets [0]” = {X e NV : o < X} for 0 € N<V,
and similarly on 2. Open set are then of the form [R]™ = |, x[o]”
for some R < N<N. The complement of [R]™ can then be viewed as
the set of paths through the tree T = {r € NN : (Vo < 7) 0 ¢ R}.
We thus have that a set P < NV is closed if and only if it is the set
of paths [T'] through some tree T'< N<N. A closed set can be defined
by a boldface IT{ formula ¢(X) of arithmetic with a parameter for the
tree T. Conversely, one can show that every boldface IT{ formula ¢(X)
of arithmetic defines a closed set. Furthermore, a set P < NV can be
defined by a lightface I19 formula (X)), i.e., without real parameters, if
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and only if it is the set of paths through a computable tree T', and the
tree T' can be computed uniformly from ¢.We call such sets I1{ classes:

DEFINITION V.17. A set P = NV is a II9 class if there exists a
computable tree T' such that P = [T].

A subset of NV is said to be F, if it is a countable union of closed
sets, or equivalently, if it can be defined by a boldface X9 formula ¢(X)
of arithmetic. For F' € NN, we define the Turing-upward closure of F'
tobe {X e NV:3Y <7 X (Y € F)}.

THEOREM V.18. A degree spectrum is never the Turing-upward clo-
sure of an F, set of reals in NV, unless it is an enumeration-cone.

We will prove this theorem on page 76. Let us first notice that we
get Observation V.16 as a corollary:

COROLLARY V.19 (Knight et al.). A degree spectrum is never the
countable union of countably many Turing cones, unless it is a single
Turing cone.

Proor oF COROLLARY. Every countable set is F,, as singleton
sets are closed. So, by the theorem, if a degree spectra is the Turing-
upper closure of a countable set, it must be an e-cone. But no e-cone is
the Turing-upper closure of a countable set unless it is a Turing cone:
To see this, consider the e-cone above a set Z < N, and suppose that
Xo, X1, ... are such that, for all Y € NV, Z is c.e. in Y if and only if
Y >p X, for some n. This is equivalent to: Z <. X, ® X¢ for all
n, and, for all Y >, Z, Y =, X,, ® X¢ for some n. Let g € ZN be a
@,, Xn-1-generic enumeration of Z as in Section IV.2. One of the X,,’s
must be computable in g. In other words, X,,® X, is c.e. in g for some
n € N — say ng. Since g is X,,,-1-generic, using Lemma IV.11, we get
that X,, ® X <. Z. Therefore, Z =. X,,, ® X, , and the e-cone
above Z is the Turing-cone above X,,. ]

Another corollary we will see below is that the following familiar
classes of degrees are not degree spectra: DNC degrees, M L-random
degrees, and PA degrees — they are are all F), classes of reals. We will
get this and a bit more below in Corollary V.22, after we prove the
following theorem, which contains some of the main ideas needed for
Theorem V.18.

THEOREM V.20 (U. Andrews, J. Miller [AM15, Proposition 3.9]).
Let A satisfy the c.e. embeddability condition. Then A has a copy B
such that, for every 119 class P < NY without computable members,
D(B) computes no real X € P.
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To prove this theorem we need to introduce 2-generic enumerations
— they are not really a new concept:

DEFINITION V.21. An enumeration g of A is said to be 2-generic if
it is a 1-generic enumeration of (A, K4). (Recall that K4 is a complete
r.i.c.e. relation on A. The r.i.c.e. subsets of (A, K4) are exactly the
ones that are 3$-definable with parameters over A.)

ProOOF OoF THEOREM V.20. Let g be a 2-generic enumeration of
A and let B be the 2-generic presentation obtained as the pull-back of
A through g . Consider a I1{ class P and let T'< N<N be a computable
tree with P = [T]. Suppose D(B) computes a path through 7" — we
need to prove that 7" has a computable path.

Let ® be a computable operator such that ®°®) is a path through
T,ie., ®PB)(n) e N*nT and ®PB)(n) < &PB)(n+1) for every n. Let
us start by finding an initial segment of g that forces ®”®) to output
the right kind of values. For this, consider the set of strings that do
not:

Qo ={pe A" : IneN (®P4P(n)| & dPAP)(n) ¢ N A T)}.

(Remember that A* is the set of strings from A=N without repetition.)
The set Qg is r.i.c.e. in A, and hence decided by some initial segment of
the enumeration g. No initial segment of g is in Qg because @B (n)| e
N" n T, and recall that D(B) = U,y Da(g | k). So there must be
an initial segment by € A* of g such that no extension of by is in
Qo. This means that whenever p € A* extends by, if ®P4®)(n)|, then
PPAP () e N* N T.

Second, we force the values of ®PB) to be compatible. For this,
consider the set of strings that force them to be incompatible:

Qi={peA :IneN (PP (n)| & P4V (n+1)] &
q)DA(ﬁ)(n) ¢ q)DA(ﬁ)<n + 1))}_

The set @ is r.i. computable in A, and hence decided by some initial
segment of the enumeration g. Again, since ®?®B) e [T, no initial
segment of ¢ is in ()1, and hence there must be an initial segment,
by € A*, of g none of whose extensions is in @;. We may assume
by 2 by.

Third, we force that ®”®) is total: For this, consider the set of
strings which force ®P®) to be undefined at some n € N:

Q:={pe A :IneNVge A* (7 2p — &P4D(n)1)}.
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The set @2 is X5 in A, and hence r.i.c.e. in (A, RA) and decided by
an initial segment of g." We cannot have an initial segment of g in Q,
because we would have that ®P®)(n)1 for some n. So, for some initial
segment by of g, we have that for every p € A* extending b, and every
n, there is a g € A* extending p for which ®”5@(n)|. We may assume
by D by.

Now, using 3-tpg(by), which we know is c.e., we define a computable
path through P. We define a path {o, : n € N} < T step by step as
follows. Let oy be the empty string. Given o, chose 0, € N**1 AT
with 0,,1 2 0, so that

A 3(@P2®2"D (4 1) = 0,,14),
or, in other words, wait to find 7 € 2N with ®"(n + 1) = 0,4 for
which the formula 3z(D(by"Z) = 7) is in I-tp(bs), and then let 0,41 =
®7(n+1). We know 0,11 exists because, if a,, was the witness to define
o (ie., ®Pal2"00) () = ) then we know there is an extension a4, of
ay, such that @241 (n41) | We also know that ®PAG2"ans1) (n 1 1)
must be in N**! A T and must extend ®P4®273) (). That is our 0,4 ;.
(,, on is then a computable path through 7' O

The following corollary is for the reader familiar with the following
notions. A real X € 2" is said to be diagonally non-computable (DNC)
if V(X (n) # ®,(n)); areal is M L-random if it does not belong to any
effectively-null G set; and a real is PA if it computes a complete, con-
sistent theory extending the axioms of Peano arithmetic. See [Nie09)]
for more background on these classes.

COROLLARY V.22 (U. Andrews, J. Miller [AM15]). The class of
DNC degrees, the class of M L-random degrees, and the class of PA
degrees are not degree spectra. Furthermore, if a structure has the c.e.
embeddability property, its degree spectrum is not contained in any of
these classes.

PRrROOF. All these classes are easily seen to be F,, and hence they
cannot be degree spectra by Theorem V.18. Furthermore, The classes
of DNC and PA reals are both IT{ classes without computable members,
and the class of M L-random reals is an effective countable union of
19 classes without computable members. We will refer to [AM15,
Proposition 3.6] for a proof that if a set is c.e. in all members of a
given non-empty I1{ class, it is c.e. already. It follows that neither the
DNC, the PA, nor the ML-random degrees are contained in any proper
e-cone.

Tﬁ € QQ — A ': \X/neN(vé;p) /><\¢7€2<N:<I>°(n)l D.A((D # 0.
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The second part of the corollary follows from Theorem V.20. [

Let us now give the proof of V.18 — we recommend reading the
proof of Theorem V.20 first.

PROOF OF THEOREM V.18. Suppose A is a structure whose de-
gree spectrum is the Turing-upper closure of an F, set F' < 2N, As-
sume F = | J,.y P where each P, = [T;] for trees T; < 2=N. Let g be a
(@,en T3)-2-generic enumeration of A and let B be the pull-back struc-
ture. There is a computable functional ® and an ¢ such that ®°®) is a
path through Tj, i.e., ®”®)(n) e N* A T; and ®PB)(n) < dPB)(n + 1)
for every n. As in the proof of Theorem V.20, there is an initial seg-
ment b € A* of the enumeration ¢ which has no extensions in Qq, @1,
and Q.. That is, the tuple b satisfies:

(1) (Vg 2b,qe A*), if ®PA@(p )l then ®P4@(n) e T; A 2"
(2) (Vg 2 b, € A*), if ®P2@D(n)| & <1>DM( + 1)|, then
PPAD (n) < PPAD(n + 1),
(3) (\neNVG2bge A*)(3Fp2q,pe A*) ®PAP)(n)].
Consider now the tree of possible values of ®:
S={oe2N:(372b,ge A*) 0 < PP4D},

We claim that A has e-degree S. From its definition we get that S is
r.i.c.e. in A. On the other hand, by the assumptions on b, we get that
S is a subtree of T; without dead ends. Thus, every enumeration of S
can compute a path through S, and hence a path through 7}, which
must then compute a copy of A. L]

Let us remark that Theorem V.18 cannot be improved by replacing
Turing-cone with enumeration-cone in its statement. That is, there are
enumeration cones, and hence degree spectra, that are the Turing up-
ward closure of closed sets but are not Turing cones. J. Miller and M.
Soskova proved this is the case for all continuous enumeration degrees
which are not total. (The continuous degrees are a sub-class of enu-
merations degrees larger than the total degrees introduced by J. Miller
[Mil04].) Furthermore, E. McCarthy [McC] later characterized the
enumeration degrees whose upper cone is the Turing upper closure of
a closed set as exactly the co-total degrees, which have been recently
shown to be a robust class within the enumeration degrees [AGK™].

EXERCISE V.23. (a) Prove that no degree spectrum can be the up-
ward closure of a lightface I13 subset of N, unless it is an enumeration
cone. Hint in footnote.*

"Try to make the II9 set into a II{ one.
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(b) Furthermore, show that it cannot even be the upward closure
of a countable union of lightface IT subsets of N, unless it is an enu-
meration upper cone.

Notice that the degree spectrum of any 3-atomic structure is always
the Turing upward closure of a boldface TTIJ set, namely the set of
presentations satisfying the TI3® Scott sentence of the structure. See
Exercise V.28 for the existence of an 3-atomic structure whose degree
spectrum is not an enumeration cone.

V.4. Some particular degree spectra

We already saw that all upper cones and enumeration cones can
be realized as degree spectra (Examples I11.38 and I11.39). In this
section, we look at another easy-to-describe though more surprising
degree spectrum.

V.4.1. The Slaman—Wehner Family. The Slaman—Wehner struc-
ture is one that has no computable copy, but is computable in any
non-computable set. The easiest way to describe it is using families of
sets.

DEFINITION V.24. We say that X can enumerate a family S <
P(N) if there is an X-c.e. set W such that S = {W . n e N}

OBSERVATION V.25. For every countable family S < P(N), there
is a graph G such that, for every oracle X, X can compute a copy of
GZ if and only if X can enumerate S: As in the proof of Lemma V.13,
consider the bouquet graph G¥ = Uy s.en Yy, where Gy is the flower
graph coding Y, that is Gy contains a cycle of length n + 3 for each
n €Y, and all the cycles intersect at one node, a node common to all
cycles in Gy. Notice that each Gy appears infinitely often in Gg.

THEOREM V.26 (Slaman [Sla98], Wehner [Weh98]). There is a
structure W whose degree spectrum is {X € 2V : X not computable}.

Proor. Consider the family
F={F®{n}: F <N finite & F # W,},
and let VW be the bouquet graph G¥ as in the observation above. Then,
DgSp(W) = {X e N¥ : X can enumerate F}.

We claim that X can enumerate F if and only if X is not computable.
Suppose F had a computable enumeration. We could then build a
function g that, on input n, outputs the c.e. index of a finite set Wy,

$Note that columns may be repeated.
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with Wy, # Wy: given n, just look through the enumeration of F
until you find a column of the form F'® {n} for some F' and let g(n) be
the c.e. index of that F.Y This contradicts the recursion theorem (see
page xiii).

For the other direction, suppose X is not computable. We need to
define an X-computable enumeration of F. Let Y = X @ X¢, which
we know is not c.e. since X is not computable. Here is the general
intuition: At the beginning of stage t, enumerate into F all the sets of
the form F' @ {n} for all ' ¢, and all n < ¢t. If, among the columns
that have been enumerated so far, one is of the form F @ {n} with
F = W,[t] (the stage-t approximation to W,,), we take it as a threat,
and we add to F' the least element of Y that is not in F' already. The
idea is that no column can be threatened infinitely often because that
would imply that W,, = FF U 'Y, which we know is not c.e.

More formally: Fix n € N; we want to enumerate the family F,, =
{F : F < N finite & F' # W,} uniformly in n. For each finite set F' and
every s € N, we will enumerate a set Rp with the objective of having

{Rps: F < N finite, s € N} = F,.

We define Ry, by stages as Rps = |,y REs[t], where each Rp[t] is
finite. For t < s, let Rps[t] = F. At stage t +1 > s, if Rp[t] = W,[t],
we take it as a threat and let Rp [t + 1] = Rps[t] U {y}, where y is
the least element of Y \ Rp;[t]. The threats to Rps must eventually
stop, as otherwise we would have W,, = J,. Rrs[t] = F @Y, which
is not c.e. Thus, Rp, will end up being finite and not equal to W,
and hence Rps belongs to F,. On the other hand, for every finite
set [ # W, we have Rp, = F for large enough s: Take s so that
(Vt > s) W,[t] # F. O

Kalimullin [Kal08] showed that the non-AJ degrees are a degree
spectrum (see Exercise VII.22). On the other hand, U. Andrews, M.
Cai, I. Kalimullin, S. Lempp, J. Miller, and A. Montalbdn showed
[ACK™] that the class of non-A? degrees cannot be a degree spectrum,
for n > 3. It remains open whether the non-arithmetic degrees from a
degree spectrum.

EXERCISE V.27. Instead of GF', there are many other structure that
code a countable family of sets S < P(N). We define a structure Ag
in the vocabulary with three unary relations S, N, and C', a binary
relation R, and a constant symbols ¢, for each n € N. The relations
S, N, and C partition the domain of Ag in three sets. Every constant

9That is, if F/ € N? is the enumeration of F, look for a column c € N such that
2n + 1 € Flel and let g(n) be such that Wy ={meN:2me Flel}.



V.4. SOME PARTICULAR DEGREE SPECTRA 79

¢, belongs to N and every member of N is one of the constants. We
define an w-presentation of Ag as follows: Let N = N, § = S x w,
C={{X;m)y,ny:{(X,myeSneX}<SxN, and R = {{{x,ny,n):
{x,ny € C} v {{x,n),z) : {x,n) € C}. Prove that an oracle can
compute a copy of Ag if and only if it can enumerate S.

EXERCISE V.28. (Hirschfeldt [Hir06]) A tree T' < 2=V is said to
be a PAC tree if it has no dead ends and all its paths are computable.
(PAC is for “paths all computable.”) Goncharov and Nurtazin, and
Millar proved the existence of a computable PAC tree for which there
is no computable listing of its isolated paths.

(a) Prove that every non-computable real can compute a listing of
all the isolated paths through a PAC tree. Hint in footnote.!

(b) Use this to build a structure whose degree spectrum is the non-
computable degrees.

(¢) Build such a structure so that it is also 3-atomic.

From any given point in the tree, try to climb up the tree following the direction
of the non-computable real.






CHAPTER VI

Comparing structures and classes of structures

A common way to measure the complexity of an object is compar-
ing it to other objects. If our objects are sets of natural numbers, there
are various ways to compare their complexity: Turing reducibility, enu-
meration reducibility, many-one reducibility, etc. For structures, the
situation is a bit more complicated due to the fact that structures have
many different presentations. In this chapter we will look into Much-
nik reducibility, Medvedev reducibility, effective interpretability (also
known as ¥-definability), and effective bi-interpretability.

VI.1. Muchnik and Medvedev reducibilities

Let us start by defining these reducibilities on classes of reals:

DEFINITION VIL.1. A class R < 2V is Muchnik reducible to a class
S < 2N if every real in S computes a real in R [Mué63]. If so, we write
R <, S, where the ‘w’ stands for “weak,” in contrast to the following
stronger reducibility. A class R < 2" is Medvedev reducible to a class
S < 2V if there is a computable operator ® such that ®* € R for every
X € S [Med55]. If so, we write R <, S, where the ‘s’ is for strong,.

Here is the idea behind these notions. Suppose we have two prob-
lems, R and S, which consist of finding reals with certain properties.
Let R and S be the sets of reals which are solutions to R and S re-
spectively. For either of the two reductions above, R reduces to § if
and only if we can produce a solution for R using a solution for S.
In the case of Medvedev reducibility, we need to produce a solution
to R uniformly from one to S, while for Muchnik we can use different
procedures for different solutions to S.

Both notions generalize both Turing reducibility and enumeration
reducibility: For X,Y < N, we have that X <; Y if and only if
{X} < {Y}, and also if and only if {X} <; {Y}. We have that
X <. Y if and only if the set of enumerations of X (i.e., the set of onto
functions f: N — X)) is Muchnik reducible to the set of enumerations
of Y, and also, but less trivially, if and only if the set of enumerations
of X is Medvedev reducible to the set of enumerations of Y (Selman
[Sel71], see Theorem IV.12).

81
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ExAMPLE VI.2. Observe that a structure A c.e.-codes a set X € N
if and only if the set of enumerations of X is Muchnik reducible to the
set of w-presentations of A. This is just a re-writing of the definition
of c.e. coding a set (see page 20).

When we are considering countable structures, we apply these re-
ducibilities to the set of their w-presentations.

DEFINITION VI.3. A structure A is Muchnik reducible to a structure
B if every w-presentation of B computes an w-presentation of A or, more
precisely, the atomic diagram of every w-presentation of B computes
the atomic diagram of an w-presentation of A. If so, we write A <,
B. A structure A is Medvedev reducible to a structure B if there is
a computable operator ¢ such that, for - every w- presentation B of B,
PDB) = D(A) for some w-presentation A of A. If so, we write A <, B.
We denote the respective notions of equivalence by =, and =; (i.e,
A=,B «— A<, B&B<, Aand A=,8 «— A<, B&B <,
A).

OBSERVATION VI.4. Muchnik reducibility is nothing more than
comparability of the degree spectra:

A<, B <=  DgSp(A) 2 DgSp(B).

ExAaMPLE VI.5. Given linear a ordering A, every segment [a, b] 4 of

A, is Muchnik reducible to A, but not necessarily Medvedev reducible
to A.*

ExXAMPLE VL.6. Given a ring R, R[z] <, R.

ExaMPLE VL.7. Given a structure A, there exists a graph G4 such
that A =, G4. We will develop this example later in Section VI1.3.2.

ExamMpPLE VI.8. For a group G, G <, G, but not necessarily G <,
G“, where G“ is the sum of w many copies of G. Take G = @%N L, D
®Pcoe Zp, ! We then get that G¥ = @), Z% which has a computable
copy, while G computably codes 0'.

These reducibilities form upper-semi-lattices; that is, given struc-
tures A and B, if we define A@ B by putting together disjoint copies of
A and B and adding a unary relation A that holds only of the elements
in the copy of A, then A @ B is the least upper bound of A and B

*Such examples are not easy to build. Schweber showed there are ordinals
which have initial segments which are not Medvedev reducible to them [Sch16,
Section 8.3].

10’ = N\ 0’ and p, is the n-th prime number.
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according to both Muchnik and Medvedev reducibilities. In both cases
there is a least degree: If a structure has a computable copy, it reduces
to every other structure. Another interesting observation is that there
is a least non-computable structure:

OBSERVATION VI.9. The Slaman—Wehner structure W from The-
orem V.26 has no computable copies and is Medvedev reducible to all
other structures without computable copies. All we have to observe is
that the construction in V.26 is uniform in X, i.e., that it produces a
computable operator ® such that, for every non-computable X, ®¥ is
the atomic diagram of a copy of W.

The following lemma shows how we can obtain structural informa-
tion from knowing that a structure is Muchnik or Medvedev reducible
to another.

LEMMA VIL10. If A <, B, then for every tuple a € AN there is
a tuple b € B=N such that 3-tpa(a) <. I-tps(b). If also A <, B, then
3-Th(A) <. 3-Th(B).

PRrROOF. For the first part, suppose that A <,, B and take a € A<N.
Since 3-tp4(a) is c.e. in every copy of A, it is also c.e. in every copy of B,
and hence it is c.e.-coded by B. By Knight’s Lemma I1.23, 3-tp4(a) <.
3-tpp(b) for some tuple b e B=<N,

Suppose now that A <; B. Since 3-Th(A) is uniformly c.e.-coded
in A, it is also uniformly c.e.-coded in B: That is, from the diagram
of a copy of B we can uniformly produce the diagram of a copy of
A, from which we can uniformly enumerate 3-T'h(A). Then, using
Exercise 11.25, we get that 3-Th(A) <. 3-Th(B). n

So far, Muchnik and Medvedev reducibilities seem to behave in
a similar way. However, one of the main differences is that adding
constants to the structures does not affect Muchnik reducibility, while
the following lemma shows that it does affect Medvedev reducibility.

LEMMA VI.11. There are structures B and C and an element c e C
with B < (C, ¢), but B £, C.

Notice that B <, (C, ¢) implies B <,, C, and hence this is an example
where the Muchnik and Medvedev reducibilities differ.

PROOF. Let Z be a non-c.e. set. Recall from Observation V.25
and Lemma V.13 that to each family of sets S we can assign a bouquet
graph GZ such that G& has an X-computable copy if and only if X
can enumerate S. We consider the following families of sets and their
respective bouquet graphs:
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e So ={F:F c N finite} and A = G .

e S1 ={Z}and B=GZ.

o 82 ZS()USl andC=(]§02.
The family Sy has a c.e. enumeration. Thus, A has a computable copy
and 3-Th(A) is c.e. The family S; does not have a c.e. enumeration.
Furthermore, an oracle X can compute an enumeration of S; if and only
if X can enumerate Z. Thus, DgSp(B) = {X € 2V : Z is c.e. in X} is
the e-cone above Z. The same is true for C: clearly, from a copy of
B, we can produce one of C by attaching a computable copy of A, and
conversely, given a copy of C, we can produce a copy of B if we can
identify the component of C that corresponds to Gz. This implies that
if ¢ is the center of the flower corresponding to the component G, we
get that B =, (C, ¢).

However, every finite substructure of C is isomorphic to some finite
substructure of A, and vice versa. Since an 3-formula is true of A if
and only if it is true of some finite substructure of A, this implies that
3-Th(C) = 3-Th(A), which is c.e. On the other hand, 3-Th(B) can
enumerate Z, and hence is not c.e. It follows from Lemma VI.10 that

B« C. 0

EXERCISE VI.12 (Stuckachev [Stu07]). Prove that if a structure
A has Turing degree and B <, A, then for some tuple a € A=Y,
B < (A, a).

Kalimullin [Kal09] showed that this is not true if we only assume
that A has e-degree.

The difference between Muchnik and Medvedev reducibility is more
than just adding constants, as shown in the corollary below. The fol-
lowing theorem gives a version of the Slaman—Wehner structure which
is computable from every non-computable oracle, but not in a uniform
way.

THEOREM VI.13 (Faizrahmanov and Kalimullin [FK]). There is a
structure A that has an X-computable copy for every non-computable
X, but not uniformly. That is, there is no single computable operator
® such that X is copy of A for each non-computable X.

CoroOLLARY VI.14 (Kalimullin [Kal09]). There are structures A
and W such that A=, W, but A £, W, w) for any tuple w € W=V,

PrROOF OF COROLLARY VI.14. The structure W is the Slaman-—
Wehner structure from Theorem V.26 whose degree spectrum is the
non-computable sets and for which there exists a Turing operator that
outputs a copy of WW whenever a non-computable set is used as an or-
acle. Moreover, for any w € W=N, we can produce such an operator
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that outputs a copy of (W, w): Recall that W = | J,, .y Wh, where W,
is the disjoint union of the flower graphs Grgy,, for F' = N finite with
F # W, each appearing infinitely often. There are finitely many com-
ponents W,, which contain an element of w, so we can fix a computable
enumeration of them. The rest of W is isomorphic to W, so we can
use the construction of Theorem V.26.

The structure A is the one from Theorem VI.13. It is Muchnik
equivalent to WW: On the one hand it is computable from any non-
computable oracle. On the other hand, it has no computable copies, as
otherwise we could produce a computable operator that always outputs
the same computable w-presentation of A ignoring the oracle. A is not
Medvedev reducible to (W, w) for any w € W=N because the set of
presentations of (W), w) is Medvedev reducible to the set {X € NV : X
non-computable}, but the set of presentations of A is not. OJ

Proor orF THEOREM VI.13. We modify Wehner’s construction from
Theorem V.26. We still consider a family of finite sets of the form
F@®{n}, but the difference with Wehner’s construction is that we think
of F' as a finite subset of Q instead of N, and instead of requiring F' to
be different from the n-th c.e. set, we just require its maximum to be
different from the maximum of the n-th c.e. subset of Q. It works.

Let {Q, : n € N} be an effective enumeration of the c.e. subsets of
Q. (For example, given an effective Godel numbering g —"¢": Q — N,
let Q, ={qe Q:"¢'e W,}.) Consider the family of sets

F={F®{n}: F < Q finite,n € N, max(F') # max(Q,)},

where the formula max(F') # max(Q,) is assumed to be vacuously true
when (),, does not have a greatest element. Let A be the associated
bouquet graph G¥ as in Observation V.25. Recall that the existence of
an X-computable presentation of G¥ is equivalent to the existence of
an X-c.e. enumeration of F, that is, an X-c.e. set V with F = {V["l .
n € N}.

First, let us show that F is computably enumerable in every non-
computable set X. A real is said to be left c.e. if it is of the form
sup(Q.) for some c.e. set Q. € Q. Let a be X-left c.e., but not left c.e.
To see that such an a exists, consider fy = 3}, 27 and 1 = 3. 27"

They cannot be both left c.e., as otherwise X would be computable.?
Let a be whichever of £y or (3 is not left c.e. — this is the only step

If By and B; are both left c.e. with effective approximations By[s] and $3[s],
we can compute X | n by searching for some F < {0,...,n — 1} and stage s € N so
that both Bo[s] = > cp 27" and 1s] = 2jenF 277 — we then know X [ n=F.
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in the construction that is not uniform in X. Let {a; : i € N} € Q be
an X-computable increasing sequence with limit a.
Fix n. We want to enumerate the family

Fno={F: F < Q finite, max(F") # max(Q,)}

uniformly in n. The idea is to enumerate a new component of the form
F for each finite set F' < Q at each stage, and if, at a certain stage t, we
are threatened by having max(F') = max(Q,.), we add max(F) + a; to
that component changing its maximum value. A component cannot be
threatened infinitely often because we would end up having sup(Q,,) =
max(F) + «, which is not left-c.e. Let us explain this in more detail.
For each finite set F' € Q and s € N, we will enumerate a set Rp
uniformly in X, with the objective of getting

fn = {RF,S . Fgf’m @7SEN}7

where Cy;, means that I is a finite subset of Q. The idea is that Rp
starts by being F' at stage s and then every time it is threaten, we add
a new element to Rp, so as to change its maximum value. To define
Ry, we will define a non-decreasing sequence {rgs[t] : t € N} < Q and
then let
RF,S =Fu {Tp’s[t] 1 te w}.

Let rps[t] = max(F) for all t < s. At stage t + 1 > s, if rp4[t] =
max(Qn+), let rps[t+1] = max(F)+a:, where @, and oy are the stage-
t approximation to ),, and a. We claim that this sequence eventually
stabilizes. Otherwise, we would have that

sup(Q,) = 11?1 max(Qn:) = li%n rrs[t] = max(F) + «,

contradicting that max(F) + a is not left c.e. Let rps = lim; rp,[t].
Then rps # max(Q,) and Rrs € F,. On the other hand, for every
finite F' < Q for which max(F) # max(Q),), we have that Rp, = I for
large enough s: Take s so that max(Q,:) # max(F) for all £ > s, and
hence so that rp[t] = max(F) for all ¢t € N.

For the second part of the theorem, let us assume that V' is a c.e. op-
erator such that V¥ is an enumeration of F for every non-computable
X, and let us try to get a contradiction. For this, we will define a
uniformly c.e. sequence {M, : n € N} of finite subsets of Q with
max(M,) # max(Q,). This will give us a contradiction because, if
f is a computable function such that Q) = M,, then the recursion
theorem (see page xiii) gives an ng with Wy, = W,,, and hence with
Mno = Qf(no) = Qno‘

Using the operator V', we can easily produce a uniform family of
c.e. operators {U, : n € N} such that UX < Q is finite and max(UX) #
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max(Q),,) for all non-computable X and n € N: Search for a column of

VX of the form F @ {n} for some F (i.e., a column that contains the

number 2n + 1), and let UX be the left side of that column, namely F.
For X e 2V, let

mX = sup(U;) e R u {0},

n
which we know is actually a maximum in Q when X is non-computable.
For 0 € 2<N let m? = max(U?) € Q u {—o0}, where U? is the step-|o|
approximation to UX for X o o, and where m? = —o0 if U7 = (J. The
map o — m¢ has the following properties:

e o T=my <m,.

e If X € 2" is non-computable, then m
ox < X.
e If X € 2" is non-computable, mX # max(Q,,).

X

~ = moX for some finite

Let T < 2<N be a computable tree with no computable paths.’
The idea is to use T to define {M,, : n € N} so that M,’s maximum
element is the minimum value of m;X among all the X € [T]. Since such
X € [T] would be non-computable, we would have that max(M,,) =
mX # max(Q,). Let

v =inf{m} : X e [T]} e R U {—0};

we will show that 7 is actually a minimum. Consider the following
sequence approximating :

v[k] = min(m? : o0 e T n 2F).

Since mX > mX'* for all X and k, we get that v > ~[k]. First, we
claim that this sequence becomes constant and equal to v from some
point on. To see this, let us observe that the sub-tree {o € T : mJ < v}
must be finite: Otherwise, by Konig’s lemma, it would have a path
Y € [T]. But then m}) = m%" < ~ contradicting the definition of +.
So if kg bounds the lengths of all the strings in that tree, v[k] = v for
all & > k.

Second, we claim that v = mX for some X € [T]. To see this,
let us observe that the tree {o € T : m? < ~} must have a path:
Otherwise, by Konig’s lemma, the tree would be finite, and if ky bounds
the lengths of all the strings in that tree, we would get v[ko] > 7,
which we know does not happen. So, if X is a path through that tree,

X

m;. = m3X < v and hence m;" is minimum among all X € [T]. It

follows that v = m;X # max(Q,).

“For instance, let T' = {0 € 2<% : Ve < |o] (0(e) # ®.,s|(€))} whose paths are
called 2-diagonally non-computable.
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Finally, let
M, = {v[k]: k e N}.

Then M,, must be finite and have maximum element v # max(Q,). It
is not hard to see that {M,, : n € w} is c.e. uniformly in n. This finishes
the construction of M, and the proof that G¥ cannot be uniformly
computed from all non-computable sets. O

V1.2. Turing-computable embeddings

Medvedev reductions can also be used to compare the complexity
of classes of structures. One of the objectives of this reducibility is
to reduce the problem of deciding if two structures in a class K are
isomorphic to the problem of deciding if two structure in another class
S are isomorphic.

DEFINITION VI.15. [CCKMO04, KMVBO07]| A Turing-computable
embedding from class of structures K to a class of structures S is a
Turing operator ® such that, for every w-presentation A € K, P
outputs the diagram D(B) of some w-presentation B € S and satisfies
that

Ax A — d(A) =~ d(A)

for all structures A, A € K, where ®(A) denotes the w-presentation B
with P = D(B).

Turing-computable embeddings are useful to compare the complex-
ity of the isomorphism problems of different classes of structures. Later
we will see stronger notions of embeddings between structures where
we can reduce more properties from one class to the the other. The
weaker notion that inspired the definition of Turing-computable em-
beddings is that of Borel embedding, where ® is allowed to be Borel. It
was introduced by Friedman and Stanley in [FS89], a seminal paper
for what today is the field of Borel equivalence relations in Descriptive
Set Theory — we will see more about this in [MonP2].

Let us see some examples.

VI.2.1. Examples. Let VS be the class of Q-vector spaces (as in
Example I1.1) and let LO be the class of linear orderings. The following
is a simple example that gives a clear picture of how the isomorphism
problem for vector spaces is coded into linear orderings.

LEMMA VI.16. There is a Turing-computable embedding from VS
to LO.
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Proor. We build a Turing operator that, given a vector space,
produces a linear ordering isomorphic to w x (1+n),¥ where n € Nu {0}
is the dimension of the vector space. The construction goes as follows.
Let V be an w-presentation of a vector space that we receive as the
oracle for our Turing operator. The first step is to analyze V and try
to guess its dimension. List the vectors in V as vy, vy, v, ..., and assume
Vg is the zero vector. As we discover more and more about V, we try to
pick out a basis of V. Of course, we will make plenty of mistakes in the
process, as deciding if a tuple of vectors is linearly independent requires
checking an infinite amount of linear combinations. We say that a
tuple of vectors is s-linearly independent if there is no non-trivial linear
combination of them that equals zero and where all the coefficients
are among the first s rational numbers. At each stage s, we define
OUr GUESS Ug[s], Vty[s], -+-» Uty [5] for a basis of V as follows: We always
include v; in our basis — thus, let to[s] = 1. Given to[s], t1[s], ..., t:[s],
let t;,1[s] be the first ¢ > t;[s] which is s-linearly independent with
Vto[s]> Vi1 [s]» - Vui[s]- 1f there is no such ¢ < s, we leave t;,1[s] undefined
and let k[s] = i. Notice that if V has dimension n € N u {oo}, then
for each i < n, v eventually stabilizes to the first vector in the list
that is linearly independent from the previous ones. These eventually
stable vectors will end up forming a basis for V.

Let us now build our linear ordering. The idea is to assign a copy
of w to each basis element, ending up with n copies of w, plus an extra
one used for garbage collection. At each stage s we will assign, to
each vector that looks like it is in the basis, a linear ordering of size
s which grows to the right. Thus, for the vectors that remain in the
basis for ever, we end up building a copy of w. For some vectors we will
eventually stop believing they are in the basis. To them we associate a
finite linear ordering that will become part of the w-chain to its right.
Let us repeat this construction a bit more carefully. To each vector v,
we associate a non-trivial linear ordering £; in a uniformly computable
way, in such a way that £, > w if v, is a basis vector and L; is finite
otherwise. To do this, we build £; by adding a new element to its right
at every stage s that v; is among the vectors we believe are in the basis,
namely vy, [s], Ve [s], -+ Uty [5]- We then define

L=L+Lo+Ly+ -+ L +---.

If V has finite dimension n, then n of the £;’s will end up being iso-
morphic to w, and the rest will stay finite though non-zero, ending up

Yw x m consist of m copies of w, one after the other.
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with £ =~ w x n + w. If V has infinite dimension, then infinitely many
of the £,’s will be isomorphic to w, ending up with a copy of w x w. []

The reversal is obviously not true, i.e., LO does not embed into
VS, as there are only countably many countable Q-vector spaces while
there are continuum many linear orderings.

The class of linear orderings is actually as complicated as it can be
in terms of Turing computability in the following sense:

DEFINITION VI.17. A class K is said to be on top for Turing com-

putability if any other class of structures Turing-computably embeds in
K.

We will see in Section VI.3.2 that the class of graphs is on top
for Turing computability — actually graphs are universal in a much
stronger sense. We will use that result here to prove Friedman and
Stanley’s result that linear orderings are top for Turing computability.
They also showed that fields are on top.

LEMMA VI.18 (Friedman and Stanley [FS89]). Linear orderings
are on top for Turing computability.

PROOF. As a first intermediate step, consider the class LT of la-
beled trees, where the trees are viewed as directed graphs and each
node in the tree is labeled with a natural number.| We claim that LT
is on top for Turing computability: Given a structure A, let A* be the
structure with domain A*, which consist of the tuples from A with-
out repeated entries, viewed as a tree, where each o € A* is labeled
with the number "D 4(¢)" coding the atomic diagram of o within A.**
This transformation from A to A* is clearly Turing computable. It
is obvious from the construction that the isomorphism type of A* is
independent of the w-presentation of A — that is, that if A =~ B, then
A* = B*. We need to prove the converse, that if A* >~ B*, then A =~ B.

Given a labeled tree A* = (A*; P,{), where P is the parent relation
and ¢: A* — 2% is the labeling function, we will recover a copy of the
original structure A. To each path g € [A*] < AN through the tree
A*, we associate a congruence-w-presentation A, with atomic diagram
Upeg £(0) = Uyey Dalo). Equivalently, A, = g~'(A). If g is onto A,
and hence a bijection, then g is actually an isomorphism from 4, to A.
The problem is that we cannot recognize which paths g through A* are
onto if all we are given is A* as a labeled tree, and hence, in general,

I That is, the structures in LT are of the form (T; P,¢) where P: T — T is the
parent function of the tree and ¢: T'— N.
**That is, A* = (A*; P,{) where P(0) =0 | |o| —1 and (o) ="D 4(0)".
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A, need not be isomorphic to 4. However, we claim that for almost all
g € [A*], in the sense of category, g is onto. To see this, observe that
for each a € A, the set of g which contain a in its image is dense and
open in [A*]. The intersection of these sets among all a € A is thus
comeager.!” By the Baire category theorem, a countable intersection
of dense open sets cannot be empty, thus A is the unique structure for
which there is a co-meager set of ¢’s such that A, =~ A. This finishes
the proof of the claim that LT is on top for Turing computability.

For the rest of the argument, we need a small modification of the
construction above to make each branch repeat infinitely often. Define
A*® to be the structure with domain

{c®Te A" xNN:|o| = ||}

We view A** as a tree where the parent relation comes form the prod-
uct of the parent relations in A* x N<N. We label a node o @7 with the
number "D 4(0)". Is easy to see that the same proof as above shows
that A ~ B < A** =~ B**. We call these structures infinitely
repeated labeled trees.

As a second intermediate step, let us consider the class of labeled
dense linear orderings LDILQ. These are dense linear orderings without
endpoints (i.e., copies of the rationals) where each node is labeled with
a natural number. We claim that LDLO are also on top for Turing
computability: For this, we produce a Turing-computable embedding
from infinitely repeated labeled trees to label dense linear orderings.
Consider an infinitely repeated labeled tree T < N<N with labeling
function ¢7: T'— N. As domain for our labeled linear ordering we will
use Q<N ordered lexicographically, which is isomorphic to Q. We now
need to add the labels. By recursion on the length of the strings, define
a length-preserving map f: Q<N — T as follows. Start by mapping
the empty string to the root of 1. Suppose we have already defined
f(o). To define f on 60~Q = {67q : ¢ € Q}, let f, be a map from
Q onto {7 € T : P(1) = o} such that, for each 7 in the image of
fo, the pre-image f,;'(7) is dense in Q. Then, for each ¢ € Q, define
f(e™q) = f5(q). Let us observe that, even though f is not one-to-one,
(T, 0r) and (Q<N, f7 o f) are isomorphic as labeled trees, because T is
an infinitely repeated labeled tree. Label each o € Q<N with a number
coding the corresponding label in the tree and the length of the node,
namely ((7(f(0)), |o]).

It is easy to see that this is a computable procedure. To see that
isomorphic trees yield isomorphic labeled linear orderings, start from

TA set X < NV is comeager if it contains a countable intersection of dense open
sets. See page 55 for the connection with generic sets
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an isomorphism between two labeled trees and build an isomorphism
between their images by recursion on the length of the strings, using the
fact that two dense labeled linear orderings with infinitely many dense
labels are isomorphic. For the converse, suppose we have a labeled
dense linear ordering £ = (L; <y, /) that is in the image of this map.
We need to define a labeled tree that is isomorphic to the one used to
build £. For this, we define a tree structure on L by defining a parent
relation between elements of L as follows. Recall that for s € L, its
label records two numbers, the second coordinate mo (€L (s)) being the
length of the string ¢ in the tree that was associated with s. We say
that t € L is the parent of s if t <p s, mo(€1(t)) = m2(¢1(s)) — 1, and for
all r e L, with t <, r <p s, ma(L(r)) = m2(¢1(s)). Now that we have a
tree structure with domain L, we define a labeling function: For s € L,
let ¢7(s) = m(£L(s)). We have built the original labeled tree back.
The third step is to reduce LDLO to unlabeled ILO. This is the
easiest step. Given a labeled dense linear ordering, replace each element
s € L by a finite linear ordering with ¢(s) + 2 elements. O

We saw above that a structure A can be recovered from its tree
of tuples A** but in a rather cumbersome way. Harrison-Trainor and
Montalban [HTM] recently showed that A cannot be recovered com-
putably, that there is a non-computable structure A for which A** has
a computable copy.

When a class of structures in not on top for Turing computability, it
must have a special property not all classes have. Thus, understanding
why a class of structures is not on top can give valuable information
about it. As we mentioned above, vector spaces are not on on top be-
cause there are only countably many of them. The same reason holds
for algebraically closed fields. Equivalence structures, of which there
are continuum many, are not on top for a different reason: Their iso-
morphism problem is too simple. Deciding whether two equivalence
structures are isomorphic requires four jumps, as all one needs to do is
to count how many equivalence classes are of each size.* There are
classes of structures whose isomorphism problems are much more com-
plex than that. For instance, in [MonP2] we will see tools for showing
that deciding whether a linear ordering is isomorphic to either w” or
W is II9, ., -complete. Furthermore, deciding if two w-presentations
of linear orderings are isomorphic is X1-complete. Another class whose
isomorphism problem is too simple is finitely branching trees: They
are J-atomic and hence their isomorphism types are determined by

HThe index set of the equivalence structures with infinitely many infinite equiv-
alence classes is T19-complete.
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their 3-diagrams. The same applies to torsion-free abelian groups of
finite rank (i.e., subgroups of (Q";+) for some n € N). Deciding if
two such groups is isomorphic is ¥9-complete. Whether torsion-free
abelian groups of arbitrary rank are on top is not known and has been
open since [FS89|. The class of abelian p-groups is also not on top
[FS89]| because of a much more complicated reason which we will see
in [MonP2].

VI.3. Computable functors and effective interpretability

Let us go back to reducibilities between structures. There is a
third important notion of reducibility between structures. It has more
structural consequences and even has a structural characterization in
terms of interpretations. The idea is to require a Medvedev reduction
® to preserve isomorphisms effectively.

DeFINITION VI.19 (R. Miller, B. Poonen, H. Schoutens, and A.
Shlapentokh [MPSS, Definition 3.1]). Given structures A and B, a

computable functor from B to A consists of two computable operators,
® and W, such that:

(1) ® is a Medvedev reduction witnessing A <, B; that is, for
every copy B of B, &P B) is the atomic diagram of a copy of
A.

(2) For every isomorphism f between two copies B and B of B,
gPB)£DB) s an isomorphism between the copies of A ob-
tained from ®PB) and LB,

We also require that the operator W preserve the identity and compo-
sition of isomorphisms:

(3) PD(B)id.DB) — ;i for every copy B of B.

(4) WO(B0).00of.D(B2) — DB 3.DB:) o YPB)LLBD  for copies By,
By and B, of B and isomorphisms f: By — B; and g: B; — Bs.

The pair ®, ¥ is a functor in the sense of category theory. It is
a functor from the category of w-presentations of B where morphisms
are the isomorphisms between the copies of B, to the category of w-
presentations of A.

ExXAMPLE VI.20. Let B be an integral domain (i.e., a commutative
ring without zero-divisors) and let A be the field of fractions of B. That
is, A consists of element of the form § for p,q € B, g # 0. Equivalence,
addition, and multiplication of fractions is defined as in the standard
construction of Q from Z. One can easily build a computable functor
that produces a copy of A out of a copy of B and maps isomorphisms
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between copies of B to the respective copies of A. We let the reader
check the details. We will develop this example further in Example
VI1.22 below.

We will prove that having a computable functor is equivalent to hav-
ing an effective interpretation. Informally, a structure A is effectively-
interpretable in a structure B if there is an interpretation of A in B as
in model theory, but where the domain of the interpretation is allowed
to be a subset of N x B<N instead of just B", and where all sets in
the interpretation are required to be “effectively definable” instead of
elementary first-order definable.

Before giving the formal definition, we need to review one more con-
cept. Recall that a relation R on A<N is uniformly r.i.c.e. (u.r.i.c.e.) if
there is a c.e. operator W such that RZ = WP® for every copy (B, RE)
of (A, R). These are exactly the X§-definable relations without param-
eters (Corollary 11.18). Analogously, R is uniformly r.i. computable if
there is a computable operator ® such that RZ = ®P®B) for every copy
(B, RP) of (A, R). Recall that a relation is u.r.i. computable if and only
it it is Af-definable without parameters.

DEFINITION VI.21. Let A be a 7-structure, and B be any structure.
Let us assume that 7 is a relational vocabulary 7 = {P; : i € I} where
P; has arity a(i). So A = (A; P, P, ...) and PA < A0,

We say that A is effectively-interpretable in B if, in B, there are
w.r.i. computable relations A%, ~5 and {R? : i € I} such that

e AB = N x BN (the domain of the interpretation of A in B),

e ~Bc AB x AB is an equivalence relation on A (interpreting
equality),

e cach RE < (AP)20) is closed under the equivalence ~% (inter-
preting the relations P;),

and there is a function f§: A® — A which induces an isomorphism:
(A ~5 RG RY, ) = (A B P L),

Let us clarify this last line. The function f 5. AP — A must be an onto
map such that f5(a) = f5(b) < {(a,by € ~F and f5(a) e PA —
a € RB for all a,b e (A®)<N. Notice that there is no restriction on the

complexity or definability of f§. We use A® to denote the structure
(AB/ NB; R(l)sv R?a )

If we add parameters, this notion is equivalent to that of X-definability,
introduced by Ershov [Ers96] and is widely studied in Russia. Ershov’s
definition is quite different in format: it uses HF g instead of N x B<N
(see Section I1.4.1) and sets that are 3-definable over HF 5 instead of
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Y¢-definable subsets of N x B<N (which we know are equivalent; The-
orem I1.50).

ExaMPLE VI.22. Recall Example VI.20 above where B is an in-
tegral domain and A its field of fractions. We claim that A is ef-
fectively interpretable in B. Let A® = {(p,q) € B* : q # 0}. Let
(po, qoy ~ {p1,q1) if po xB q1 = p1 xP qo. Define the graph of addition
for AP to be the set of triplets of pairs ((pg, q0), {p1, q1), P2, @2)) € B?
that satisfy (po xZ q1 +8 p1 x8 qo) xP qa = qo xP q1 xP ps. Define
the graph of multiplication for AB to be the set of triplets of pairs
{po; 40y, {p1, 1), (P2, q2)) that satisty po x” p1 x¥ g2 = go X7 q1 7 py.

LEMMA VI1.23. An effective interpretation of A in B induces a com-
putable functor from B to A.

PRrROOF. Since AP, ~F and {RP : i € I} are u.r.i. computable in
B, we have a computable operator that gives us those sets within any
copy B of B, using D(B) as an oracle. Thus we have a computable

A~

operator ® that, given B =~ B, outputs D(AF), the atomic diagram
of the congruence (€ N x N<N)_presentation AP of A with domain
AB < B<N = N x N<V. Fixing a bijection between N and N x N<N,
and using Lemma 1.11, we get a computable operator T transforming
congruence (S N x N<N)-presentations into injective w-presentations.
Both of these computable operators ® and T preserve isomorphisms
effectively; in other words, they can be easily made into computable
functors. Composing these computable functor we get the computable
functor T o ® we wanted. ]

The following theorem shows the reversal. Furthermore, given a
computable functor, we can get an effective interpretation that induces
the original functor back, up to effective isomorphism of functors.

THEOREM VI.24 (Harrison-Trainor, Melnikov, Miller, Montalban
[HTMMM]). Let A and B be countable structures. The following are

equivalent:

(1) A is effectively interpretable in B.
(2) There is a computable functor from B to A.

We will prove this theorem in [MonP2] once we have developed
more forcing techniques. The original proof from [HTMMM)] does
not use forcing, and the reader should be able to follow it with what
we have learned so far. The proof using forcing [HTMM] is much
more informative and can be generalized to a broader setting.
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VI1.3.1. Effective bi-interpretability. Effective interpretability
and Y-definability induce notions of equivalence between structures as
usual: two structures are equivalent if they are reducible to each other.
Y-equivalence, the equivalence notion that comes from X-definability,
has been widely studied. However, it still does not really capture the
idea of two structures being “the same from a computability view-
point.” In this section, we introduce the more recent notion of effectively-
bi-interpretability, which is a strengthening of Y-equivalence. For this
strengthening, we require the composition of the isomorphisms inter-
preting one structure inside the other and then interpreting the other
back into the first one to be effective. We will show how most com-
putability theoretic properties are preserved under this equivalence,
and see some examples that show how it matches our intuitive notions
of when two structures are essentially the same. Here is the formal
definition:

DEFINITION VI.25. [Mond, Definition 5.1] Two structures, .4 and
B, are effectively-bi-interpretable if there exist effective-interpretations
of each structure inside the other as in Definition VI.21 such that the
compositions

ff;ofﬁ:BAB—»B and ffof?:ABAaA

are u.r.i. computable in B and A, respectively.

Let us explain this messy notation. BA” = N x (A%)<N < N x (N x
B=N)<Nis the domain of the interpretation of B within the interpre-
tation of A within B, and f§: N x (A%)<N - N x A<N is the obvious
extension of f§: AP — A from elements to tuples: ffz(i,ao, Q) =
(i, fB(ao), ..., fB(ax)). Notice that since fg o f5 is a partial function
from N x (N x B<N)<N to B it can be coded by a relation on N x B<N
which we require it to be u.r.i. computable.

Let us make a quick comment on non-relational vocabularies. We
have defined bi-interpretability for relational vocabularies, because func-
tion symbols do not work well on congruence presentations. When
the interpretations are injective, Definition VI.25 goes through with-
out problems for non-relational vocabularies too.

In the next lemma, we see how effective-bi-interpretability preserves
most computability theoretic properties.

LEMMA VI.26. Let A and B be effectively-bi-interpretable.
(1) A and B have the same degree spectrum.
(2) A is 3-atomic if and only if B is.
(3) A is rigid if and only if B is.
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(4) The automorphism groups of A and B are isomorphic.

(5) A is computably categorical if and only if B is.

(6) A and B have the same computable dimension.

(7) A has the c.e. extendibility condition if and only if B does.

(8) The index sets of A and B are Turing equivalent, provided A and
B are infinite.

(Of course, items (5), (6), and (8) assume A and B are computable.)

PRrROOF. Throughout this proof, assume that A is already the pre-
sentation AB that is coded inside N x B=N, i.e., with domain A®, and
B is the copy of B coded inside N x A<V i.e., with domain B4 = BA”.
We let f be the isomorphism from B to B obtained by f = fio ffj
which is X{-definable.

For part (1), recall from Lemma VI.23 that there are computable
functors between A and B, and in particular, that they are Medvedev
equivalent, and hence also Muchnik equivalent.

For part (2), suppose A is 3-atomic, and hence that every automor-
phism orbit in A is 3-definable. Take a tuple b € B<N; we will show its
orbit is also 3-definable. Let e B<N = (BA%)<N be such that f(¢) = b.
The orbit of ¢ is 3-definable inside A®, and since AP is A$-definable
in B, the orbit of ¢ is also X¢ definable in B." Since f is X¢-definable
in B, the orbit of b is also ¢ definable.* If an orbit is definable by a
disjunction, it must be defined by one of its disjuncts,® and hence the
orbit of b is 3-definable in B. It follows that B is 3-atomic.

Part (3) is a particular case of (4), but its proof is still informative.
Suppose B is not rigid, and let A be a nontrivial automorphism of B.
The automorphism / induces an automorphism of B<N, which then in-
duces an automorphism g, of A®, which then induces an automorphism
hg, of BA?. Since f: BA® - Bis ur.i computable, it is invariant; that
is, f(a) = b < f(hy,(a)) = h(b). In other words, foh, = ho f,
and since h is nontrivial and f a bijection, hy, must be nontrivial too.
It follows that the automorphism g, of A cannot be trivial either.

To define the orbit of ¢ in B3, replace, in its ¢ definition inside .A®, each symbol
in the vocabulary of A either by its 3§ definition or its II§ definition depending on
whether the atomic sub-formula appears positively or negatively, and restrict the
existentially quantified variables using the ¥ definition of the domain of A5,

A tuple 7 is in the orbit of b if there exists a tuple Z in the orbit of ¢ such that
{Z, ) is in the graph of f.

SIf orbit of a tuple is defined by a disjunction, one of the disjuncts must be true
of the tuple, and it implies the whole disjunction, so it also defines the orbit.
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For part (4), notice that in the previous paragraph we showed that
the homomorphism A — hy, : Aut(B) — Aut(B*°) has the same ef-
fect as the conjugation homomorphism induced by f, namely A —
floho f: Aut(B) — Aut(BA). Therefore, the composition of
the following three maps is the identity on Aut(B): first the homo-
morphism h +— g,: Aut(B) — Aut(AP); second the homomorphism
g — hy: Aut(AP) — Aut(B4"); and third the inverse of the conju-
gation homomorphism induced by f. We thus get that they are all
isomorphisms, and that Aut(B) =~ Aut(A5).

For part (5), we need the following observation. Let B; and Bs
be copies of B. The point we need to make here is that if A% and
APB2 are computably isomorphic, then so are B; and By: A computable
isomorphism between A® and A®? induces a computable isomorphism
between BA™ and BABQ, each of which is computably isomorphic to
By and By, respectively. Thus, if A is computably categorical, so is
B. For (6), we have that if B has k non-computably isomorphic copies
By, ..., By, then the respective structures A5, ..., A%* cannot be com-
putably isomorphic either. So the effective dimension of A is at least
that of B, and hence, by symmetry, they must be equal.

For part (7), recall that we can decide if a structure has the c.e.
embeddability condition by looking at its degree spectrum, which we
already proved is preserved under effective bi-interpretability.

In part (8), by the index set of a structure A, we mean the set of all
1’s such that ®;: N — 2 is the atomic diagram of a structure isomorphic
to A. Suppose we are given an index of a computable structure C, and
we want to decide if it is isomorphic to B using the index set of A
as an oracle. Using the formulas in the effective interpretation of A
in B, we can produce a structure AC such that A¢ =~ AP if C =~ B.
We can then produce an index for A€, and use the index set of A
to check if it is isomorphic to A. If it is not, then we know C is
not isomorphic to B. Otherwise, we need to check that the function
fato ffl: BA° — ( from the the bi-interpretability does produce an
isomorphism between BA° and C. This would be enough because, since
AC¢ ~ A, we know BA” ~ B. Checking this is not computable though
— it is 0”-computable. However, all index sets compute 0” because we
can use them to check totality of functions.’ ]

9An index set of a non-empty family of total functions is always I13-hard. To
see this, let ® be a computable function in the family. Given e, we can check if
W, = N which is a II3-complete question, by asking whether the index of ® | W,
belongs to the index set.
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We will see later that effectively-bi-interpretable also preserves Scott
rank in [MonP2] and is preserved under taking jumps (see Remarks
[X.3).

VI1.3.2. Making structures into graphs. In this section, we
show how every structure is effectively-bi-interpretable with a graph.
This result will allow us to reduce statements about structures in gen-
eral to statements about graphs, sometimes making proofs simpler.
Within the following classes of structures we can also effectively-bi-
interpret all other structures: partial orderings, lattices, [HKSS02]
and fields [MPSS]; and if we add a few constants to the vocabulary
also: integral domains, commutative semigroups, and 2-step nilpotent
groups [HKSS02]. These classes are said to be universal for effective-
bi-interpretability.

THEOREM VI1.27. For every structure A, there is a graph G that
is effectively-bi-interpretable with A.

Furthermore, the interpretations are independent of the given struc-
ture. That is, given a vocabulary 7, the X{ formulas used to define the
sets involved in the interpretations are the same for all 7-structures A.

PRrOOF. We only sketch the construction and let the reader verify
the details.

Similar constructions can be found in [HKSS02]. The earliest ref-
erences we know of this type of coding into graphs are Rabin and Scott
[RS] and Lavrov [Lav63].

Assume that 7 is a relational vocabulary. The first step is to show
that A is effectively-bi-interpretable with a structure H in the vocab-
ulary {U, E'}, where U is a unary relation and E a symmetric binary
relation. The unary relation U picks out the elements that represent
the domain of A. The elements outside U are going to be used to
code the relations in A. Enumerate the domain of A as {ag,ay, ...}
and let hg, hi, ... be the corresponding elements in U?. For each tuple
Qi ..oy a;, satisfying the nth relation R, in 7 (of arity k), we attach the
following configuration to h;,, ..., h;, in H, where the top cycle has size
2n + 5.

So that both the interpretation of R and that of its complement
are J-definable, to each tuple a;,, ..., a;, not satisfying R,, we attach an
(2n + 4)-spider. (See Figure VI.1.)

It is clear that A can be effectively interpreted in H: the domain of
the interpretation is U*, and the interpretation of R, is given by the set
of tuples in (U™)* that have a (2n + 5)-spider attached to them, which
can be expressed by an 3-formula. This set is also V-definable, because

ik

k
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Ficure VI.1. We call this configuration an m-spider,
where m is the size of the top loop. (In this case m =7
and k = 4.) The edges represent the pairs of elements
that satisty E. Let ¢, be the number of nodes in the
spider (¢,, = 14 in this case).

it is the set of tuples which do not have a (2n + 4)-spider attached to
them.

Conversely, H can be interpreted in A as follows. Use A to inter-
pret UM and, for each m-spider attached to a tuple h;,, ..., h;, , use the
elements

(m,i,{a,, ..;a;, )y € Nx N x AN fori < {,

to interpret its elements. The domain of this interpretation is u.r.i.
computable because, given a tuple of the form (m,i,{a;,, ..., a;, )y with
i < L, the tuple belongs to the interpretation if and only if {a;,, ..., a;, ) €
RM_ where n = |(m — 3)/2|. Similarly, we can also decide which pairs
of these elements are E-connected.!

Checking that the compositions of the interpretations are u.r.i.
computable is also straightforward: the composition of the interpre-
tations going from A to H and back is the identity; the interpretation
going from H to A=N and back to H=N is a bit more tedious, but not
much harder to analyze.

The second step is to show that every {U, E}-structure # is effectively-
bi-interpretable with a graph G = (G; R) without using an extra unary
relation. Within G, we will use a subset, Gy, to interpret the domain of
H. We use the other elements of G to encode the relations U and E on
Go. Enumerate the elements of H as {hg, hy, ...} and the corresponding

IRecall from Remark I1.27 that it makes no difference to deal with subsets of
AN or of N x N x A<N,
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ones of Gy as go, g1, ... . Attach to each element g; € G either an A-flag
or a B-flag as in Figure VI.2 depending on whether h; € U™ or not.

./\ 3 gi/ \ .

FicURE VI.2. We call these configurations A-flags, B-
flags, 2-connectors, and 3-connectors. We attach A-flags
to the elements that are in U and B-flags to the ones out
of U. We use 2-connectors to encode F, and 3-connectors
for the complement of F.

Connect two elements of Gy using a 2-connector if and only if the
corresponding elements in ‘H are connected by E. (See Figure VI.2.)
Connect them using a 3-connector if and only if the corresponding
elements in ‘H are not connected by E. The reason we cannot connect
the elements of G directly to code E is that we do not want to confuse
the elements of Gy with the ones used for the flags. This way, every
element of G is either part of a flag (and hence out of Gy), attached to
a flag (and hence in Gy), or attached to something that is attached to
a flag (and hence part of either a 2-connector or a 3-connector, and out
of Gp). Each of these three sets is 3-definable, and hence Gy is u.r.i.
computable. Notice that the connectors coding the graph E among the
elements of H do not get confused with these flags because since each
edge in E is replaced by at least a 2-connector, the smallest cycles one
could produce are 6-cycles coming from triangles in H.

The relation F is coded by the pairs of elements of Gy which are
connected by a 2-connector or, equivalently, not connected by a 3-
connector. This is u.r.i. computable.

Again, checking that the composition of the interpretations are u.r.i.
computable is straightforward. O
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VI1.4. Reducible via effective bi-interpretability

We just defined a reduction that, for every structure A, produces a
graph G 4 effectively bi-interpretable with A, making the class of graphs
universal in any computability theoretic sense possible. Furthermore,
the ¢ formulas used in the effective bi-interpretation to define the
domains and relations are always the same: They are independent of
the 7-structure A and depend only on the vocabulary 7.

DEFINITION VI.28. A class of structures K is reducible via effec-
tiely bi-interpretability to a class S if there are 3§ formulas defining the
domains, relations, and isomorphisms of an effective bi-interpretation
as in Definitions VI.21 and VI.25 so that every structure in K is bi-
interpretable with a structure in S.

If we also have that, under the backward direction of the bi-interpretation,
every structure in S is interpreted by some structure in K, we say that
K and S are effectively bi-interpretable.

Classes that are effectively bi-interpretable are considered as the
same class for computability theoretic purposes. Most, if not all, com-
putability theoretic properties of classes of structures are invariant un-
der effectively bi-interpretability.

Notice that K is reducible via effectively bi-interpretable to S if and
only if K is effectively bi-interpretable with a sub-class of S, the sub-
class given by the image of the reduction. The next lemma shows that
the complexity of this sub-class is similar to the complexity of K.

LEMMA VI.29. If K and S are effectively bi-interpretable and K is
11§, then S s 11§ too.

PRrOOF. Given a structure § that may or may not belong to S, we
can try to use the X$ formulas in the effective bi-interpretation to define
a structure AS and then use the other direction of the interpretation
to get SA IS happens to be in S, this would all work out and we
would have that AS is in K and that SA° is isomorphic to S. We claim
that this characterizes S. That is, that S € S if and only if

e the X formulas in the effective bi-interpretation define an ac-
tual bi-interpretation on S,
e and the structure A% is in K.

When we say that the Xf formulas in the effective bi-interpretation de-
fine an actual bi-interpretation on S we mean three things: First that
the pairs of ¥$ formulas used to define the A§ relations that interpret
the domain and relations of A actually define A¢ relations, that is,
define complementary ¥ relations — this can be checked with a II§
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sentence. Second, the same needs to be true about SA° inside AS —
this can also be checked with a II§ about A°, which can be translated
into a II§ sentence about S once we know the definition of AS within
S is A§. Third, that the maps defined as compositions of the interpre-
tations are actual isomorphisms between & and SA°, and between AS

and ASAS — this again can be stated as a II§ sentence.

There might be structures S outside S where these formulas still
produces a bi-interpretation. In that case, the structure AS would not
be in K, as if AS was in K, then SA% would be in S, and hence so
would S =~ §A°. Since K is IIS, one can write a II sentence about S
saying that A° in in K.

The conjunction of all these II§ sentences gives us a II§ sentence
describing the structures in S. O

Theorem VI.27 above shows that every class of structures is re-
ducible via effective bi-interpretability to the class of graphs. The
lemma above shows that every II§ class of structures is effective bi-
interpretable with a II§ class of graphs.

DEerFINITION VI.30. A class of structure S is on top for effective
bi-interpretability if every other class of structures reduces to it via
effective bi-interpretability.™*

A class that was recently shown to be on top for effective bi-
interpretability is the class of fields. This was proved by R. Miller,
B. Poonen, H. Schoutens, and A. Shlapentokh [MPSS] using functors.
Fields were known to be on top for Turing-computable embeddings
much earlier [FS89], though that proof did not produce effective bi-
interpretations.

Classes of structures that are on top for effective bi-interpretability
present all the possible computability theoretic behaviors. Thus, once
one proves that a class is on top for effective bi-interpretability, one
knows that those structures will not have any particular computabil-
ity theoretic property that was not already present on graphs. That
is not to say that computability has nothing to say about them. For
instance, there are sub-classes of the class of fields with various interest-
ing properties. When a class of structures is not on top under effective
bi-interpretability, it is because it has some special property not all
classes have. If the class is already not on top for Turing-computable
embeddings, then it is not on top for effective bi-interpretability. We
mentioned various reasons why a class would not on top for Turing-
computable embeddings at the end of Section VI.2.1. There are classes

**Such classes are sometimes called universal for effective bi-interpretability.
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that are on top for Turing-computable embeddings but not for effective
bi-interpretability. An example is linear orderings. Linear orderings are
not top for for effective bi-interpretability because they have the com-
putable embeddability condition, a property that is preserved under
effective bi-interpretability (Lemma VI.26, (6)). The same is true for
differentially closed fields.



CHAPTER VII
Finite-injury constructions

The technique of finite-injury constructions is among the most im-
portant ones in computability theory, and is used throughout the field.
It was introduced independently by Friedberg [Fri57b] and Muchnik[Muc56]
to solve Post’s problem, as we explain below. This technique is used to
build computable objects using 0’-computable information. On a com-
putable construction, we can only only guess at this non-computable
information, so we will often be taking steps in a wrong direction based
on wrong guesses. We will then need to be able to recover from those
mistakes.

We will see two kinds of finite-injury constructions: priority con-
structions and true-stage constructions. Depending on the situation,
one might be better than the other.

In a priority construction, one needs to build an object satisfying an
infinite list of requirements whose actions are in conflict with one an-
other — when we act to satisfy a requirement, we may injure the work
done to satisfy other requirements. To control these injuries, require-
ments are listed in order of priority: Requirements are only allowed to
injure weaker-priority requirements. In the type of constructions we
will see, each requirement will be injured at most finitely many times,
and hence there will be a point after which it is never injured again.

A true-stage construction works in quite a different way. It is based
on a combinatorial device, the approximation of the true stages, which
organizes our guesses on (0’-computable information. One advantage of
this combinatorial device is that it can be generalized to the iterates
of the jump, even over the transfinite, as we will see in [MonP2].

VII.1. Priority constructions

To show how priority constructions work, we give a full proof of
the Friedberg—Muchnik solution to Post’s problem — a seminal re-
sult in computability theory. Post [Pos44]| asked whether there was
a computably enumerable set that was neither computable nor Turing

105



106 VII. FINITE-INJURY CONSTRUCTIONS

complete. That question was open for more than a decade, until Fried-
berg and Muchnik solved it independently by developing the method
of finite-injury priority constructions.

We will see two other finite-injury priority constructions in Chap-
ter VIII on computable categoricity. The reader interested in learning
priority constructions should read Theorem VIII.11 after fully under-
standing the proof below. The third finite-injury priority construction
in the book, Lemma VIII.21, is a beautiful construction, though is a
bit more complicated.

THEOREM VIL.1 (Friedberg [Fri57b]|, Muchnik[Muc56]). There is
a low, non-computable, computably enumerable set.

A set A € Nis lowif its jump is as low as possible, namely A" =1 0.
Low sets cannot be complete. Note that for sets below 0/, being low is
equivalent to being generalized low.

PRrRoOOF. We build A as the union of a computable sequence of finite
sets Ag € A; € Ay € - - - satisfying the following requirements for each
eeN:

Negative requirements Ng: If @ (e)| for infin-

itely many s’s, then ®4(e)|.
Satisfying the N, requirements for all e € N ensures that A is low: We
would get that e € A" if and only if ®';(e)| for infinitely many s's.
This makes A’ a IT9 set.™ Since A’ is already 29, we get that A" is AY.

Positive requirements P.: If W, is infinite, then
AnW, # .

Satisfying the P, requirements for all e € N ensures that the comple-
ment of A is different from all the W,’s and hence A is not computable
— well, that is unless A is co-finite. We will also make sure during the
construction that A is co-infinite. Co-infinite c.e. sets which satisfy all
the P, requirements are said to be simple sets.

We list these requirements in decreasing order of priority as follows:

N07P07N17P17N27P27 sy

the ones to the left having stronger priority than those to the right.
Notice that each requirement has only finitely many requirements that
are stronger than it. We think of each requirement as an individual
worker trying to achieve its goal. Except for possible injuries, the
different requirements will work almost independently of each other.
Let us look at each of these requirements individually.

*Because a € A’ if and only if Vk € N 3s > k (925(e)]).
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Negative requirements N,: The only way in which N, would
not be satisfied is if @é;(e) goes back and forth between converging
and not converging infinitely often. What N, needs to do if it sees
that q)é;(e) converges, is to try to preserve this computation forever
by restraining elements from going into A below the use of this com-
putation. Here is what N, does at a stage s of the construction. Let
r. be the use of @ég(e)l, that is, the length of the initial segment of
the oracle A, used in the computation ®/s(e)|. If the computation
diverges, let r. = 0. During the construction, N, does not enumerate
any number into A. Instead, it imposes a restraint on weaker-priority
P; requirements, not allowing them to enumerate elements below r,
into A. (This is why we call the N; negative requirements.) N, is not
allowed to impose anything on stronger-priority requirements, which
may enumerate elements below r. and injure N,.

Positive requirements P,: It is the P, requirements that enumer-
ate elements into A. (This is why we call them positive requirements.)
They will enumerate at most one element each. The plan to satisfy P,
is to wait until we see some number enter W, and enumerate it into A.
However, we cannot enumerate just any number, as there are a couple
things we need worry about. First, P, is not allowed to injure stronger-
priority requirements. In other words, if we let R, = max;<.;, then
P, is not allowed to enumerate any number below R, into A. Second,
we want to make sure A is co-infinite. To do this, we only allow P,
to enumerate numbers that are greater than 2e. The plan for P, can
now be restated as follows: At a stage s > e, if W, n A, # J, we
consider P, done, and we never do anything else for P, again. Other-
wise, if there is an x € W, ; greater than 2e and greater than R., we
say that P, requires attention. Once P, requires attention, it acts by
enumerating such an x into A.

The construction: Let us now describe the full construction. At
each stage s we define a finite set A,,1 2 A,, and at the end of stages
we define A = (J, A;. Let Ay = J. At each stage s > 0, do the
following. First, define r. for each e < s; recall that r. is the use
of @é;(e). Second, check which requirements P,, for e < s, require
attention, and let them act; that is, for each e < s, if W, n Ay = &
and there exists x € W, , with > max(2e, R.), add = to Asq. If
no requirement requires attention, move on to the next stage without
doing anything.

Verification: Each requirement P, acts at most once. Therefore,
a requirement N, can be injured at most e — 1 times, and there is a
stage after which it is never injured again. After this stage, if ®Z;(e)
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never converges again, N, is satisfied. Otherwise, @é;(e)l for some
later stage t. At that stage ¢, N, will define r. to be the use of this
computation. After ¢, no requirement of weaker priority is allowed
to enumerate numbers below r.. Since we are assuming all stronger-
priority P; requirements that ever act have acted already, we get that
Ay I re is preserved forever (i.e. Ay [ r. = A I r.), and hence so is the
computation @2 ()], getting ®2(e)|. N, is then satisfied. In either
case, 1. is eventually constant; it is either eventually equal to zero if
d4(e)?, or eventually equal to the use of ®“'(e)|. Since this is true for
all e, R, is eventually constant too.

Let us now verify that the requirements P, are all satisfied. If a
requirement P, ever requires attention, it acts, and it is then satisfied
forever. Suppose that, otherwise, there is a stage t after which P,
never requires attention again. Assume ¢ is large enough so that R, has
reached its limit already. Either P, does not require attention because
it is done, in which case we are done, or because all the numbers in
W, are below max(2e, R.). In that case, P, is satisfied because W, is
finite.

Finally, let us notice that A is co-infinite, as it can have at most e
elements below 2e for each e. This is because only the requirements P;
for i < e are allowed to enumerate numbers below 2e. ]

VII.2. The method of true stages

Often in computability theory, we want to use A information to
construct computable objects. We then need to computably approxi-
mate or guess the AY information. This can get messy, and there are
various ways to organize this guessing system. We will concentrate
on the method of true stages for the enumeration of 0, introduced by
Lachlan in [Lac73]. There are slightly different definitions in the liter-
ature — we use our own, which is quite flexible and applies to a large
variety of situations. The reason for our choice is that, in [MonP2],
we will be able to extend this notion throughout the hyperarithmetic
hierarchy, obtaining a very powerful technique.

One way of approximating the halting problem (' is by the sequence
of finite sets

00 ={eeN: P, (e)|} =N
Notice 0/ is finite. It is then natural to view 0 as a finite string, say
by considering 0’, [} m, € 2™s*!, where m, = max(0.)." A problem with
0, Il ms is that it may be always wrong: It could happen that at no

"Recall that X 1 m is {z < m : x € X}, or, when viewed as strings, it is the
initial segment of X of length m + 1.
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stage s > 0 is 0, [l m, an initial segment of 0/, viewed as a sequence
in 2. This might be a problem for some constructions. Lachlan’s idea
was to consider 0, | ks, where kq is the least element enumerated into
0 at stage s (i.e., ks = min(0,\0,_,)). The key difference is that there
are infinitely many stages where 0. [I k; is correct, in the sense that
0. I ks is an initial string of 0/ € 2. Stages where our guesses for 0/
are correct are called true stages.

We introduce a different approximation to the jump that enjoys
better combinatorial properties. Instead of 0’, we will use the increasing
settling-time function for 0’, which we call V. At each stage s, we will
computably define a finite string V, € N<N which tries to approximate
V e NN, A true stage will be one where V, is correct; i.e., it is an
initial segment of V. One of the main advantages of using V and V;

is that they relativize easily, allowing us to iterate them, as we will see
in [MonP2].

VII.2.1. The increasing settling-time function. The settling-
time function of a c.e. set measures the speed at which its elements are
enumerated. That is, the settling time of an enumeration {Ay : s € N}
of a c.e. set A at n is the least s such that A [In = A [l n. The settling-
time function has many uses in various constructions, and we will see a
couple of examples in Subsection VII.2.3. We will deviate slightly from
the standard settling-time function to consider the strictly increasing
version. For now, let us fix an enumeration of the halting problem, and
concentrate on it.

VII.2.1.1. The definition of V. The settling-time function of a set
measures the time a given enumeration takes to settle on an initial
segment of the set. The increasing settling-time function is the least
strictly-increasing function V such that O’v(i) i =011foreveryieN:

DEFINITION VIIL.2. The i-th true stage (in the enumeration of 0),
denoted V(i), is defined by recursion on ¢ by any of the following three
equivalent definitions:*

V(i) = theleastt > V(i — 1) such that 0; [l i = 0" | 4,
= the least t > V(i — 1) such that ®;(i)] < &,.(7)],
V(i—1)+1 if ®;(i) diverges,
= <V(@—1)+1 if ®;(i) converges by stage V(i — 1),
pt (P;4(i)])  if ®;(i) converges after stage V(i — 1).

'Recall that ut ¢(t) denotes the least ¢ that satisfies ¢(t).
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We use the value V(—1) = —1 as the base case for the recursion, so
that V(0) = 0. We call t a true stage if t = V(i) for some i. We call V
the increasing settling-time function for (.

Observe that V =7 0": Clearly V <¢ 0’. For the other reduction,
notice that i€ () < ic O’V(i).

LEMMA VIIL.3. The set of true stages is co-c.e., and the set
{(i,t) e N* 1 t < V(4)}
18 C.e.

PROOF. Let us first observe that the set of initial segments of V,
{V1i:ieN} < NN isII9 To see this, note that given o € 2<%,
o < V if and only if, for every e < |o]|,

e cither ®.(e)1 and o(e) =o(e — 1) + 1,

e or ., (e)l and o(e) is the least t > o(e — 1) such that

D, 4(e)].

Notice the first item is II{ and the second computable. It follows that
the set of true stages, i.e., the image of V, is IT): This is because t is a
true stage if and only if there exists an increasing finite string o whose
last value is ¢ (and the previous values are less than ¢) that is an initial
segment of V.

As for the second part of the statement, ¢ > V(i) if and only if
some o € (t + 1)"™! is an initial segment of V. O

VII.2.2. Domination properties. One of the useful properties
of V is that it grows rapidly when compared to computable functions.
We characterize it below as the fastest w-c.a. function up to computable
speed up. For functions f,¢g: N — N, we say that

o [ majorizes g if (Ym) f(m) = g(m);
e f dominates g if (In) (Ym =n) f(m) = g(m).
The function V is fast growing in this sense: It dominates all com-

putable functions (Exercise VIL.6), and every function that dominates
V computes 0 (Lemma VIL.4).

LEMMA VII4. If g: N — N dominates V, then g computes (.

Proor. First, modify the first few values of g to get a function
f =r g that majorizes V. Given z € N, we can decide whether x € 0’
by checking if = € O’f(x). OJ

COROLLARY VIL5. Every infinite subset of the set of true stages
computes 0.
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PRroOF. If we enumerate in increasing order the elements of a sub-
set of the set of true stages, we obtain a function that majorizes V. []

EXERCISE VIL.6. (Hard) Prove that V dominates every computable
function. Hint in footnote.®

We can still talk about domination in the case of partial computable
functions: A function f majorizes a partial function g if f(n) = g(n)
for every m at which g(n) is defined. The exercise above is not true
for partial computable functions, although, V is still faster than the
partial computable functions in the following sense.

DEFINITION VIL.7. We say that f: N — Nis faster than g: N - N
up to computable speed up if there is a computable function h: N — N
such that f o h majorizes g.

LEMmMA VIL.8. V is faster than every partial computable function
up to a computable speed up.

PROOF. Let g be a partial computable function. We define the
computable speed-up function as follows: Let h(i) be the index of a
computable function that, independently of the input, converges after
(i) converges; that is, if g(7)1, then ®4;(x)1, and if g(2)|, then @y, ()
converges in at least ¢(i) steps. Since V(j) is larger than the time-use
of ®,(j), we get that V(h(i)) > ¢g(i) whenever g(i)]. n

DEeFINITION VIL.9. A function f: N — Nis said to be w-computably
approzimable (denoted w-c.a.) if it has a computable approximation
{fs : s € N} for which the number of mind-changes is computably
bounded: That is, there are a computable list of computable functions
{fs : s € N} and a computable function ¢: N — N such that [{s :
fs(@) # fsr1(i)}| < (i) for all ¢, and, of course, lim,_,, fs(7) = f(4).
(Cf. limit lemma on page xxi.)

Notice that V is w-c.a. since the number of mind-changes of V(i) is
at most ¢ + 1, as it changes only if a number below ¢ + 1 is enumerated
into 0". Actually, the following lemma shows that V is the fastest w-c.a.
function up to computable speed up.

LemmA VIL10. If f: N — N is increasing and faster than every
partial computable function up to a computable speed up, then it is
faster than every w-c.a. function up to a computable speed up.

$Given a non-decreasing computable function g, use the recursion theorem to
define a computable function s such that V(s(7)) > g(s(i + 1)) for each i.
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PROOF. Let g be w-c.a. as witnessed by the computable function
¢ that bounds the number of mind-changes in the approximation {g; :
s € N}. Define a partial computable function p such that p(i,j) is
the value of g4(i) after j mind changes. That is, p(i,j) is gs(i) for the
least s such that [{t < s : g.(i) # g+1(7)}| = j if such an s exists,
and p(i,j) is undefined otherwise. Notice that since g(i) changes at
most ¢(i) times, ¢(i) < max{p(i,j) : j < c(i)}. Since f is faster than
every partial computable function up to a computable speed up, there
is a computable h such that f(h(i,7)) = p(i,j) for all i, € N.Y The
function h(i) = max{h(i,j) : j < c(i)} is the computable speed up
witnessing that f is faster than g: Using that f is increasing,

F(h(i)) = max{f(h(i,j)) : j < e(i)} = max{p(i, j) : j < (i)} = g(i)-D

EXERCISE VII.11. Given a computable well-ordering o = (4; <,),
we say that f: N — N is a-c.a. if there is a computable approximation
{fs: s € N} of f, and a computable function c: N*> — A that counts the
number of mind changes in f; in the following sense: If f(i) # fs11(4),
then ¢(7, s) >, c(i,s + 1).

(a) Prove that for every computable well-ordering o = (A4; <,,) there
is an a-c.a. function f, that is faster than any other a-c.a. function up
to a computable speed up.

(b) (Hard) Prove that if 8 < «, then f3 is not faster than f, even
after a computable speed up.

VII.2.3. A couple of examples. The facts that the set of true
stages is co-c.e., and that V grows so fast are enough to make V useful.
We give a couple of examples to illustrate its use. In Section 1.1.2, we
built a copy A of the ordering w = (N; <) so that the isomorphism
between A and (N; <) computes 0’. We now produce another such
copy using a different method.

LEMMA VIL.12. There is a computable w-presentation A of the or-
dering (N; <) such that any embedding from A to (N; <) computes (V.

PRrROOF. The idea is to define A = (A;<4) together with a com-
putable sequence ag <4 a1 <4 as <4 --- such that there are at least
V(i) elements <4-below a;yq for every i. This way, if g: A — N is
an embedding from A to (N;<), we would have that the function
i — g(a;+1) majorizes V and hence computes 0. Recall that the set
{Gi,ty :ie N, t < V(i)} is c.e. We build A by first laying down ele-
ments ag <4 a3 <4 as <4 --- (say, using the even integers: a, = 2n),

We are using a computable bijection between N and N2,
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and then adding elements b;; <a-in-between a; and a;;, for each 7,¢
with ¢ < V(7). More formally, if f is a computable one-to-one enumer-
ation of {(i,t) : t < V(i),7 € N}, name the odd number 2n + 1 with the
label b;; if f(n) = (i,t) and then define

aj<aby < j<i and bjy<ab,; < j<iv(j=inrs<t).

We then get that there are V(i) elements <4-between a; and a;,1 as
needed. O

The following lemma answers the question of how difficult is it
to find a basis on a vector space. A jump is sufficient, as we can
computably enumerate a maximal linearly independent set using the
linear dependence relation, which we know is r.i.c.e. The lemma below
shows it is necessary.

LEMMA VIIL.13. There is a computable copy of the infinite dimen-
sional Q-vector space Q* where every basis computes (V.

We will actually show that every infinite linearly independent set
in this w-presentation computes 0. Let Q* denote the standard w-
presentation of the infinite dimensional Q-vector space, which has a
computable basis {e; : i € N}.

PROOF. The idea is to define a copy A of Q® by taking the quotient
of Q% over a computable subspace U with infinite co-dimension. The
equivalence relation generated by a computable subspace U — namely
u ~v <= wu—v e U — is computable, and hence we have a
computable congruence w-presentation A of Q¥/U =~ Q*, where the
projection map from Q® to A is also computable (see Lemma 1.11).

Define U so that, for every s; and s, which are not true stages,
es, and ey, are linearly dependent in Q®/U. To get this, all we need
to do is add to U a vector of the form ae;, — es, for some a € Q
as soon as we realize s; and sy are not true. Before showing how
to define U in a computable way, let us see why having such a U is
enough. Suppose I © A is an infinite linearly independent set in A;
we need to show I =7 /. Since the projection map is computable,
by choosing pre-images we can get an infinite set J < Q% which is
not just linearly independent, but also linearly independent modulo U.
The subspace generated by e, €1, ...., éy(n)—1 has dimension n + 1 when
projected to A, because, except for ey (o), €v(1), ---s €v(n—1), all the other
vectors are mutually linearly dependent. Therefore, if we take n + 2
vectors g, ..., U1 from J, they cannot all belong to the subspace of
Q* generated by eg, e1, ...., ey(n)—1. Recall that in Q*, every vector is
given as a linear combination of the bases of e;’s. One of the vectors
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v; must then use some e; for t > V(n) — 1 in its representation. Let
g(n) be the largest t such that e; appears in the representation of one
of the vectors v; for « < n + 1. The function g majorizes V, and hence
we can use g to compute 0" as in Lemma VII.4.

We now have to show how to build U effectively. At each stage s,
we define a finite subset U, < Q* and at the end, define U = | J .y Us.
Consider the finite sets

Vs = {Z&f% 1 Diy @i € Ly |pi| < 5,0 < q; < s},
1<S i
whose union is Q. To make sure U is computable, we will ensure
that U n V, = Us n V; for every s. Therefore, after each stage s,
we must ensure that no element of V, ~\ U ever enters U. To get U
to be a subspace, we will ensure that each U, is closed under linear
combinations within V (i.e., Us n Vs = (Us) n V).

Suppose that, at stage s, we discover that s; and s, are not true
stages and we have not made ey, and e;, dependent in A yet. (Recall
that the set of non-true stages is c.e.) We then want to add a vector of
the form ae;, — e, to U so that we make e,, and e, dependent in A4
without changing U within Vj: All we have to do is search for such an
a € Q such that when we add aes, — e5, to U, we keep all the vectors
in Vi N U, outside U. That is, we need to make sure that no vector in
Vs~ U belongs to the subspace generated by U U {aes, — e, }. Once we
find such an a, we can verify this computably, and thus we just need
to know that one such a exists. Using basic linear algebra, if ag # a;,
and e;, and ey, are independent over U, then the intersection of the
spaces generated by Us U {apes, — es,} and by Us U {ajes, — e, } is the
subspace generated by U,.! Since V; is finite, there can be at most
finitely many a’s which generate elements in Vs \ U,. In other words,
for all but finitely many a’s, the space generated by Us U {aes, — es,}
adds no new vectors to V; that were not in the subspace generated by
U, already. Now that we know such a exist, all we have to do is look
for one. When we find it, we add aes, — €5, to Usy1. At stage s we
might discover that various pairs s; and sy are not true, so we do this
for each such pair. Finally, to get Ugy1 N Vi1 = (Usy1) N Vi, once we
have added all these vectors, we close Us,; under linear combinations

ISuppose v in in the intersection of the spaces generated by U U {ages, — €s,}
and U U {a1e5, — es,}. Thus v = ug + Ag(ages, — es,) = u1 + A(ar1es, — es,)
for some wg,u; € (Us) and Mg, A\; € Q. We then get that ug — u; = (Aag —
Aoao) - es, + (A1 — Ag) - es,. Since ey, and ey, are independent over Uy, we get that
Atay — Agag = 0 = A1 — Ag, from which we deduce that A\g = Ay = 0 and that
v =1ug = u € (Us).
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that are in V,,q, that is, we add to U,,; all vectors in V,,; which are
linear combination of U, and these new vectors.

Notice that U has infinite co-dimension as whenever ty,...,t; are
true stages, e, ..., e;, are linearly independent modulo U, as only vec-
tors in the subspace generated by the remaining basis vectors are ever
added to U. ]

HisTORICAL REMARK VII.14. Metakides and Nerode [MN79] prove
a similar result, and Friedman, Simpson, and Smith [FSS83] prove this
same result for reverse mathematics purposes.

VII.3. Approximating the settling-time function

Every true stage can figure out all the previous true stages in a
uniformly computable way. More precisely: Suppose ¢ = V(i) is the
ith true stage. Using the fact that 0} [ ¢ = 0’ | 4, we have that, for
Jj < i, V(j) is the least s > V(j — 1) such that 0, I j = 0} I j. If ¢
is not a true stage, we can still apply the same procedure and get the
stages that ¢ believes should be true.

DEerFINITION VII.15. Given j < t, we define the jth apparent true
stage at t, denoted V4(j), as the least s < ¢ such that s > V,(j — 1) and
0, It 7 =0, 1 j. Again, to match with V, we are using V;(—1) = —1 in
the definition of V;(0).

This definition only makes sense if s < ¢, so once we reach a j with
Vi(j7) = t, we cannot define any more apparent true stages, and we let
V; be the string defined up to that point. Thus, V, is a finite increasing
string whose last element is always ¢.

From the paragraph preceding the definition, we get that if ¢ is the
1th true stage, then V, = V I 7. Furthermore, for every s > t, since
0, Me=0,11i=0" 11, we get that V Il 7 is also correct and equal to
V Il . On the other hand, if ¢ is not a true stage, since t is the last
entry of V,, we have that V, &€ V. For the same reason, if s > t is a
true stage, then V; ¢ V;. In short, for t € N,

tis a true stage < V,cV < Vs>t (V, V).

By essentially the same argument, we get the following property:

(&) For every r < s < t,if V., € V,, then V, C V.
The reason is that if V. € V;, then no number below |V,| is enumerated
into 0" between the stages r and ¢t. That would then also be true
between the stages r and s, and hence V, € V.

The following two lemmas are intended to give us a feeling for how
the sequence {V; : s € N} behaves. Let T be the image of the function
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s — V;. To gain some intuition, we recommend the reader see how the
sequence {V; : s € N} moves around 7 in Figure VII.1 below.

s =<1,2,3,5,6) 0 =<1,7,8,9,10) -V =(1,7,8,9,11)
9 = <17 77 87 9>

8 — <177a 8>

Vo =0

FiGURE VII.1. Example where 3 is enumerated into 0/
at stage 5, 1 at stage 7 and 4 at stage 11.

EXERCISE VII.16. Draw a tree like the one in Figure VII.1 in the

following situation: 4 is enumerated at stage 5, 3 at 7, 5 at 9, and 0 at
11.

LEMMA VIL.17. The set T = {V, : s € N} € NN is a computable
tree whose only path is V.

PROOF. T is computable because given o € N<N we can calculate
Vi, where t is the last entry of o, and then check if o = V.

To show that 7T is a tree, we need to show that it is closed downward.
To do this, all we have to observe is that if V(i) = ¢, then V; Il i = V.
This is because 0 I ¢ = 0; [ ¢, and hence the computations of V; |} i
and V; | ¢ are the same.

About the paths of T, clearly V is one of them. We claim that if
Vs ¢ V, the set of extensions of V in 7T is finite, and hence there is no
path extending V;: Let ¢t > s be a true stage. Then V,; & V,. By (&),
forall u > t, Vs £ V,,. L]

The Kleene-Brower ordering, <gxp, on N<N is defined as follows:
o <kp T if either 0 2 7 or 0 and 7 are incomparable and, for the least
i with o(i) # 7(1), we have o(i) < 7(i).

LEMMA VIIL.18. The Kleene-Brower ordering, <kpg, on T produces
a computable ordering of order type w + w* on which every descending
sequence computes (.

PrOOF. To prove that (7;<ygp) =~ w + w*, we prove that if s is
a true stage, then there are only finitely many strings in 7 that are
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>ip Vi; and if s is not a true stage, then there are only finitely many
strings in 7 that are <xp Vi. For the former claim, if s is a true stage,
then for every t > s, we have V, 2 V,, and hence V, <gp V. For the
latter claim, if s is not a true stage and ¢ > s is a true stage, then there
is a least ¢ such that V(i) # V;(¢). The reason for this difference must
be that i ¢ 0/, while i € 0}, and hence V,(i) > s > V(). Since t is true,
we have that, for every u > t, V, 2 V,, and hence V, |l © = V; |l 7 and
Vu(l) = Vt(l) > Vs(l) Thus, Vi 2kB Vs.

Every descending sequence must be a subsequence of {V; : t is a
true stage}, and hence computes 0’ by Corollary VIL.5. O

EXERCISE VII.19. Show that (7; <xp) has a computable ascending
sequence.

EXERCISE VII.20. (Hard) Use a priority argument to show that
there is an w-presentation of w+w* which has no computable ascending
sequence and no computable descending sequence.

REMARK VII.21. Hirschfeldt and Shore [HS07, Theorem 2.11] showed
that every computable w-presentation of w + w* must have either an
ascending sequence or a descending sequence that is low.

EXERCISE VII.22. (Hard) A small modification of the proof of The-
orem V.26 can produce another interesting spectrum. Let us view a
set I' € 2<N as an operator by letting I'* = {|7| : 7 € X, 7 e I'}. Given
a finite set F' < N, let

Ip={V9i:ieF}u{re2¥:7¢ V}L
Notice that I'Y, = F. Consider the family of sets:
F={Tr®{n}: F <N finite & F # WY }.

Prove that
DgSp(Gr) = {X € 2V : X not AJ}.

(The first one to construct a structure with this spectrum was Kalimullin
[Kal08]. The construction above is due to Montalbén [ACK™, Theo-
rem 2|.) Hint in footnote:**

**For the construction, use as an oracle a set U with no A9 computable subsets,
and when there is a threat T'Vs = WY+ add to I the extensions of V with a certain
length in U.
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VII.4. A construction of linear orderings

In this section, we prove a well-known result that is best proved
using the method of true stages we just developed. Given linear or-
derings A and B, we let A - B be the ordering on A x B given by
<a0, b0> <AB <a1, b1> if either bo <B bl, or bo = b1 and ap <4 Q1. No-
tice that the coordinates are compared from right to left, and not as
in the lexicographic ordering — it is the tradition. Then, for instance
A+ A=A-2 and Z - A is the linear ordering obtained by replacing
each element in A with a copy of Z.

THEOREM VIL.23 (Fellner [Fel76]). Let L be a linear ordering.
Then Z - L has a computable copy if and only if L has a 0”-computable

copy.

The left-to-right direction is the easy one. On a computable copy
of Z - L, the equivalence relation ~, given by a ~ b if and only if they
are finitely apart, is 0” computable, and hence we can make the copy
of Z - L into a 0”-computable congruence w-presentation of L.

The proof of the other direction is divided into a few steps which
we prove in separate lemmas. The first lemma is a general one that
will be useful in other settings too. It gives a way of approximating
0’-computable structures in a way that correct approximations to the
structure happen at the same stages where we have correct approxima-
tions to V.

LEMMA VII1.24. Let B be a 0'-computable w-presentation of a struc-
ture in a relational vocabulary 7. There is a computable sequence of
finite 1) -structures {Bs : s € N} such that

(Vs<t) Vo<V, = B, isa substructure of By,

and

B= U{BS : s a true stage}.

Moreover, if ¢ is a V-formula true of B, we can make the By’s satisfy
@ too.

PROOF. Let A; be the 7;-substructure of B with domain {0, ...,t —
1}. The sequence {A; : t € N} is 0’ computable. Let ® be a computable
function such that ®V(¢) is an index for the finite structure A;. If at
a stage s we believe V; is an initial segment of V., we also believe
that ®V* outputs the indices of the first few structures in the sequence
{A; : t € N}. For each s, let t; be the largest ¢ so that, for every

i <t, ®V*(i) converges and outputs an index for a finite structure A;
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satisfying ¢ and so that
Ayc A c--c A,

Let B, = A,.. We then have that if V, < V,, ®%(i) = ®¥ (i) for all
1 < tg, and hence B; < B,. If V, € V| then A, is actually one of the
A;’s, and hence By < B. ]

LEMMA VIL.25. If a linear ordering L has a 0'-computable copy,
then the adjacency linear ordering (Z x L; <gzxr,Adj) has a computable

copy.

PROOF. Let {L, : s € N} be a sequence of finite linear orderings
approximating £ as in Lemma VII.24 — notice that being a linear
ordering can be described by a V-sentence.

At each stage s, we build a finite linear ordering A, = ({0, ...., ks}; <a,
,Adj,) and an onto, order-preserving map gs: As — L, such that
gs(a) = gs(b) if and only if there is a finite sequence of Adj,-adjacent
elements in between a and b in A;. The binary relations Adj, satisfy
that if A = Adj,(a,b), then there is no element in between a and
b in A, but there could be elements a,b € A, without elements in
between for which Adj, does not hold. Thus, A, is partitioned into
adjacency chains, where an adjacency chain is a maximal string of ele-
ments ag <4, -+ <a, ax with Adj,(a;, a;41) for all i < k. The condition
on g above implies that for each ¢ € £, g;'(¢) is an adjacency chain.

4(]/\ 4(]/\ 4(]/S 1(1/H 4(1’]H 4(1’],

. oag .a1 .a 0&0 o U5 o(lg oCL2 °

{ Ny N/

F1GURE VII.2. The top row are the points in A, ordered
by <4, from left to right. The bottom row are the points
in £, ordered by <, from left to right.

At each stage s, we need to satisfy the following two properties:

(1) If t < s, then A, © Ay (as structures, i.e., preserving < and
Ad)).
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(2) If V, c V,, then g, € g,, and for every £ € L;, 1+ g, ({) +1 <
g:1(0)."

Let us first note that these conditions are enough to build the de-
sired structure A. Condition (1) allows us to define a computable ad-
jacency linear ordering A = [ J, A;. Condition (2) allows us to define
an onto, order-preserving map g = U{gs : s is a true stage}: A — L.
Furthermore, for every ¢ € £, g~'(¢) must be infinite in both directions
and satisfy that any two elements in it are linked by a finite sequence
of adjacencies. Therefore, g~1(¢) is isomorphic to Z, and we get that
A is isomorphic to Z - L.

Last, we need to show that, at each stage s + 1, we can define A,
and gs,1 so that they satisfy (1) and (2). Let ¢ < s be the largest such
that V; € V1. Thus, we know that £; < L., 1, and we need to define
A1 extending A, and g, extending g;. The rest of the proof is just
a brute-force combinatorial argument proving that such an A,,; and
gs+1 exist. We recommend the reader to try to prove it and to draw
pictures like Figures VII.2 and VII.3 before reading it.

First, define zszrl by adding a new element at the end of each
adjacency chain in Ay, and by attaching each new adjacency chain to
one that existed in A;. (To attach two adjacency chains, we add a
new element in between the chains and make it satisfy Adj,,; with the

ends of the two chains.) Thus, we end up with /LH having the same
adjacency chains as A;, though these chains are longer in ./Z5+1. Extend
gi: Ay — Ly t0 Gsy1: ﬁsﬂ — L, so that, for each ¢ € L;, g;jl(@ is an
adjacency chain in ﬁsﬂ. We have now fixed the mess done at stage s.

A < - < A, gAS“gAS‘H
- |

gt gS—i—}/’/ gs+1"

-
‘Ct - £s+1

Ficure VII.3. The diagram above commutes.

Second, define Ay, 2 gsﬂ by adding a new element a, in between
chains for each new ¢ € L1\ L;. Of course, if {y < ¢ < {1 with £y, {; €
Ly, then the a, must be in between the chains corresponding to g~*(¢y)
and g~%(¢1). Finally, extend §,,1: ﬁsﬂ — L; t0 gs41: A1 — Ly by
mapping each a, to £. (]

fThat is, g; *(¢) < g7 (¢), and there is an element in g;*(¢) that is less than
all the elements in g; ' (¢) and another one that is greater.
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LEMMA VIL.26. If (Z - L;<,Adj) has a 0" computable copy, then
Z - L has a computable copy.

PROOF. Let B be the (0/-computable copy of (Z - £;<,Adj). Let
{B; : s € N} be a sequence of finite structures approximating B as in
Lemma VII.24. We assume each B, satisfies the V-sentence saying that
they are linear orderings and that if By = Adj(a, b), there is no element
between a and b. However, as for the structures A, in the previous
lemma, there will be elements a and b not satisfying Adj(a, b) in By and
without anything in B, between them.

At each stage s, we build a finite linear ordering

Ag = ({0, e ko}; <y, Adjy)

and an order-preserving, one-to-one map hg: B, — A,. Again, as
with the structures A, from the previous lemma, Adj, satisfies Va, b <
ko(Adj,(a,b) A a <4, b — Pc(a <a, ¢ <4, b)), and hence A, is par-
titioned into adjacency chains. We do not require hg to be onto, not
even in the limit. Instead, all we require is that every adjacency chain
in A, has an element in the image of hy. Also, we require that two ele-
ments of By are in the same adjacency chain if and only if their images
are. Thus, hg induces a bijection between the adjacency chains in B;
and the adjacency chains in A,. Notice that we do not require hy to
preserve Adj, but only to preserve the property of being in the same
adjacency chain.
At each stage s, we need to satisfy the following two properties:
(1) If t < s, then ({0, ...,k }; <a,) € ({0, ..., ks}; <a,).
(2) If V, € Vi, then A; < A, preserving order and adjacency, and
h; < hs.

Condition (1) allows us to define a computable linear ordering

A= (N> <A) = U({Ov R ks}; <As)'

Notice that we lost the adjacency relation, which may not be com-
putable. Condition (2) allows us to define an embedding h = [ J{h; :
s a true stage}: B — A, which preserves ordering and adjacency chains.
The embedding h produces a bijection between the adjacency chains
in B and those in A, and an embedding of each adjacency chain in B
to the corresponding one in A. Since the adjacency chains in B are
isomorphic to Z, the ones in A must also be isomorphic to Z, and we
get that A and B are isomorphic.

Last, we need to show that, at each stage s+ 1, we can define A,
and hg,q so they satisfy (1) and (2). Let ¢ < s be the largest such
that V; © V,11. We need to define (A 1; <s41) extending (Ay; <) and
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Adj,., and hs;, extending Adj, and h;. The rest of the proof is just
a brute-force combinatorial argument proving that such Ay, Adj,, 4,
and hgs,q exist. Again, we recommend the reader to try to prove and
to draw pictures before reading it.

Ignoring Adj,, define A\&js 41 on Ay so that it is compatible with
Adj, and so that every element belongs to an adjacency chain that
existed in A;. We can do this because, since V, € V;, (which follows
from V, € V,,; and (&)), Adj, is preserved in A,, and hence if two
elements satisfy Adj, in A;, they is still nothing in between them in Aj.
Extend (Ay: <,) to (As11: <s41) by adding one new element a, for each
¢ € By 1~ By so that we can extend h;: By — A; to hyyq: Bsy1 — Agqq
(recall that By < Bs.1). Also, if two adjacency chains in B; have
collapsed to one in B,,i, we need to collapse the respective chains
in A,.1: Thus, if two consecutive elements ¢y, ¢; € Bs,1 belong to
adjacency chains that were part of separate chains in B;, but are part
of a single chain in B, ;, we add a new element ay, ¢, to A1 in between
the adjacency chains corresponding to hy(¢y) and hy(¢;) so that we can
attach those chains. Define Adj,,; on A,y so that hyy; produces a
bijection between the adjacency chains in B, 1 and those in As;. []

Finally, the right-to-left direction of Theorem VII.23 follows from
first applying Lemma VII.25 relativized to 0/, and then Lemma VII.26.

EXERCISE VIL.27. (Downey [DK92]) Prove that £ has a 0’ com-
putable copy if and only if (Q + 2 + Q) - £ has a computable copy.



CHAPTER VIII

Computable categoricity

Computably categorical structures are the ones for which all com-
putable w-presentations have the same computational properties. This
is a desirable property on a structure, of course, but the structures
which have it are rather few. The notion was originally introduced by
Mal’cev [Mal62] in 1962 for groups, and has been intensively studied
over the past few decades.

A second objective of this chapter is to get the reader acquainted
with finite-injury priority constructions.

VIII.1. The basics

Most of the properties one considers in computable structure the-
ory are invariant under computable isomorphisms, though not neces-
sarily under all isomorphisms: Two computable w-presentations may
be isomorphic and still have different computational properties. For in-
stance, there are computable w-presentations of the countable, infinite-
dimensional Q-vector space Q® where all the finite-dimensional sub-
spaces are computable, and there are computable w-presentations of
Q% where no non-trivial finite-dimensional subspace is computable (see

[DHK*07)).

DEFINITION VIIL.1. A computable structure A is computably cat-
egorical if there is a computable isomorphism between any two com-
putable copies of A.

The following somewhat trivial lemma shows how computably cat-
egorical structures are exactly the ones that avoid the behavior of the
example above, that is, the ones where all computable copies have the
same computable relations.

LEMMA VIIL.2. Let A be a computable structure. The following are
equivalent:

(1) A is computably categorical.
(2) For every computable R < A™ and every computable copy B of
A, there is a computable R® = B™ such that (B, R®) =~ (A, R).

123
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Proor. To show that (1) implies (2), consider a computable iso-
morphism g: B — A, and define R® = g~(R). For the other direction,
consider a computable copy B of A; we need to build a computable iso-
morphism between them. Of course, we are assuming A is infinite, and
hence we may assume its domain is N. Let

R={n,n+1):neN}c N? = A2

Since R is computable, there is a computable R® such that (A, R) =~
(B, RP). Once we know what element of B corresponds to 0 € A under
this isomorphism, we can use R® to computably find the element of
B that corresponds to 1 € A, and then the one that corresponds to
2 € A, etc. Continuing this process, we get the desired computable
isomorphism between A and B. ]

Now that we are convinced that computable categoricity is a desir-
able property, the next question that is “what makes a structure com-
putable categorical?” This question is currently being investigated, and
there has been a lot of work characterizing the computably categorical
structures within certain classes of structures. See Table 1.

Such clean characterizations as in Table 1 are not always possible.
Downey, Kach, Lempp, Lewis-Pye, Montalbén, and Turetsky [DKL™]
showed that there is no structural characterization of the notion of
computable categoricity. They did this by showing that the index set
of the computably categorical structures® is IT}-complete (defined in
[MonP2]). There are, however, structural characterizations of vari-
ations of the notion of computable categoricity. For instance, we al-
ready proved in Section I11.4 that the uniformly computably categorical
structures coincide with the effectively 3-atomic ones. This chapter is
dedicated to the non-uniform notions which are, arguably, more natu-
ral. In particular, it is dedicated to the notion of relative computable
categoricity and its connections to plain computable categoricity.

VIII.2. Relative computable categoricity

In this section, we give a purely structural characterization of the
computational notion of relative computable categoricity.

DEFINITION VIIL3 ([AKMS89, Section 4][Chi90, Definition V.9)).
Given X e 2V an X-computable structure A is X-computably cat-
egorical if there is an X-computable isomorphism between any two
X-computable copies of A. A computable structure A is relatively
computably categorical if it is X-computably categorical for all X e 2V,

*The index set of a class of structures is the set of indices for computable
functions that are the diagrams of w-presentations of structures in the class.
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Class

Condition for computable cate-
goricity

Reference

Linear order-

Finitely many pairs of adjacent

Dzgoev and Gon-

ings elements charov [GD&0],
Remmel [Rem81a]

Boolean alge- | Finitely many atoms Goncharov

bras [Gon75b], La
Roche [LRT78|

Q-vector Finite dimension

spaces

Algebraically | Finite transcendence degree | Ershov [Ers77|

closed fields over prime subfield

Ordered Finite rank Goncharov,

abelian Lempp, and

groups Solomon [GLS03|

Trees of finite | Finite type Lempp, McCoy,

height R.  Miller, and

Solomon [LMMS05]

Torsion- Finite rank Nurtazin [Nur74]
free  abelian

groups

Abelian Either (i) (Z(p™))* @ G for ¢ € | Goncharov [Gon80],
p-groups N U {o} and G finite, or (ii) | Smith [Smi81]

(Z(p™))" @ (Zy:)* ® G where G
is finite, and n,k e N

TABLE 1. The middle column describes a necessary and
sufficient condition condition for a structure within the
given class to be computably categorical. For the def-
initions of the relevant terms and the proofs, we refer
the reader to the references given in the third column.
Each case requires a different priority argument to show
that structures that do not satisfy the condition are not
computably categorical.

Equivalently, A is relatively computably categorical if, for every
copy B (computable or not) of A, there is an isomorphism between B
and A that is computable in D(B).

THEOREM VIIL.4 (Ash, Knight, Manasse, Slaman [AKMS89, The-
orem 4]; Chisholm [Chi90, Theorem V.10]). Let A be a computable
structure. The following are equivalent:
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(1) A is relatively computably categorical.
(2) (A, a) is uniformly computably categorical for some a € A<N.
(3) (A, a) is effectively I-atomic for some a € A=N.

PROOF. The equivalence between (2) and (3) was proved in Theo-
rem II1.18. To see that (2) implies (1), just notice that for any copy B
of A, one can non-uniformly pick the corresponding tuple @® so that
(B,a®) =~ (A,a), and then use part (2) of Theorem III.18 to get a
D(B)-computable isomorphism between them.

The interesting direction is the implication from (1) to (3), which
shares some ideas with the proof of Theorem III.18 — we recommend
the reader studies it first. Assume A is relatively computably cat-
egorical. Out of this computational assumption we need to build a
syntactical object, namely a c.e. Scott family of 3-definitions for the
automorphism orbits of the tuples in A<N, over some parameters.

Let g: N — A be an enumeration of A that is 2-generic relative
to the presentation of A as in Definition V.21. Let B be the generic
presentation obtained as the pull-back of A through ¢ (as in Definition
IV.15). Since A is relatively computably categorical, and B =~ A, there
is a computable operator I' such that T'°® is an isomorphism from B
to A.

The first step is to get a tuple p S g which forces that T'?®) is an
isomorphism as follows:

CramM VIII.4.1. There is a tuple p < g such that any tuple § 2 p
can be extended to an enumeration § with pull-back B = §71(A) so
that T”®) is an isomorphism from B to A.

Let us leave the proof of the claim for later, and start by proving
the theorem from it.

Given tuples ¢ = {qo,q1,...»0 € ASN and n = {(ng,...,ng) € NN,
we use ¢ | 7 to denote {(Gng, ..., qn,» € A Since g and I'P®) are
isomorphisms from B to A, for every 7 e N<N,

(Agln) = (Bn) = (ATP® |n)

Recall that if § < g, then D 4(q) < D(B) (Observation 1.15). Therefore,
if we have § < g so that ['PA@ | i converges (i.e., if ['PA@ (n;)| for all
i < (), then T'PA@ | i is automorphic to g | 7 as in the diagram below.

Here comes the key observation: the value of I'P4@ | 7 depends
only on D4(g) € 2=V, and it determines the automorphism orbit of
g | n. Thus, informally: for a = ¢ | n, the existential formula that
says that a is part of a tuple ¢ with this particular diagram defines the
automorphism orbit of a. Let us explain this in more detail. The key
observation above can be formally stated as follows:

e
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@ |
_
3
=

CrAIM VIIL.4.2. If ¢, § 2 p and ['P4@ | 77|, then
Da(q) = Da(@) = (A, q I n) = (A, [ n).

To see this, from the previous claim we get an enumeration § > ¢
such that if B = 7 '(A), then I'P®) is an isomorphism. Then, using the
observation from the diagram above and that ['P4@ |} = ['Pa@ |
we get that

(A,qln) = (B,n) = (A, TPA@ 1) = (A, TP4@ ) = (B,n) = (4, dn),

as needed for the claim.

Fix a tuple a; let us find a 3-definition for the orbit of @ under
automorphisms of A that fix p. Computably, search for a tuple q; €
A=<N and a tuple 7z € N<N such that

Ga 2P, Galhg=pa and D[PAE) ) q,|
We will eventually find such tuples because one can always take q; to

be a long enough initial segment of g and take ng so that g [ ng = pa.
We claim that, for any tuple b,
(A, pa) = (A,pb) < 37 (§2P ~ §17ia=pb A Da(q) = Da(q))-
For the right-to-left direction, consider such a tuple ¢, and observe
that pa and pb are automorphic by Claim VII1.4.2. For the left-to-
right direction, let ¢ be the tuple that corresponds to g through the
automorphism mapping pa to pb.

We can rewrite the right-hand side as an existential formula about
A with parameters p:

va(p, ) = 3y (Y20 A §lia=pr A D(G) = Dalda)),
where z and ¢ are replacing b and ¢, and where “D(y) = o” is shorthand
for ©2' (), as defined in I.10. The formula ¢ defines the orbit of @ under
automorphisms that fix p. The set {©g : @ € A<V} is thus the desired
c.e. Scott family of 3-formulas over p.

We still have to prove Claim VIII.4.1, that there is a p that forces
I'P®) to be an isomorphism from B to A.

Proor or CrAiM VIII.4.1. This is a standard forcing proof as
we will see in [MonP2|. For this particular forcing application, the
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techniques we have developed so far in Chapter IV are enough, as we
did in Theorem V.20.

Recall that g is a 2-generic enumeration of A, and B = g7 *(A). Let
us start by forcing I'P(®) to behave correctly wherever it converges. For
this, consider the set of strings which force it not to:

Qi={ge A :In < g (PP2@ 1 n| & D4(TP2D )% Da(@ ! n))}.

(Recall that A* is the set of tuples of different elements from A.) The
set (1 is r.i. computable in A (using that D(A) is computable), and
hence decided by some initial segment of the enumeration ¢.' No initial
segment of ¢ is in Q; because I'PA®) is an isomorphism, so there must
be an initial segment p; € A* of g such that no extension of p; is in
Q1. This means that whenever ¢ € A* extends py, if TPA®)(n)|, then
DA(TPA® [ n) = Da(q | m).

Second, we force that T'P®) is total: For this, consider the set of
strings which force I'?®) to be undefined at some n € N:

Q:={ge A :IneNVre A" (f 2 q - IP40(n)1)}.

The set Qs is 5 in A, and hence r.i.c.e. in (A, KA) and decided by
an initial segment of g.* We cannot have an initial segment of g in Q,
because we would have that T'P®)(n)1 for some n. So, for some initial
segment p of g, we have that, for every ¢ € A* extending p and every
n, there is a 7 € A* extending ¢ for which I'PA7) (n)|. We may assume
D =2D1-

We claim that p is as wanted in Claim VIII.4.1. Since p forces out of
@2, for any ¢ 2 p, we can build a sequence § € 7 S 7, S T3S --- € A*
so that T'PA0)(n)| for each n. If we also make sure that n is in the
range of 7,, we get an onto enumeration § = |J, oy 7n: N — A, which

satisfies that TP®) is total, where B = §~!(A). Since p forces out of
Q1 (meaning that no extension of p is in @), @) o ghA—- A
must preserve diagrams and hence be an isomorphism. It follows that
2B B — A must be an isomorphism too. o

O

EXERCISE VIIL5. (Hard) (Originated after conversations between
Harrison-Trainor, Hirschfeldt, Kalimullin, Melnikov, Montalban, and

fNotice that TP4@ } n is a tuple in NV and we need to use D(A) to
figure out D4(I'P4@ } n) e 2<N in this particular presentation of A. When
we wrote D4(T'PA@ } n) # D4(q | n), it was a shorthand for —¢> (7 | n) for
o = D4(I'PA@ } p), where @2 is as in Observation 1.10.

"To see that Qo is X§, observe that {(g,n) : Vi € A* (F o2q— FDA(F)(n)T)} is
co-r.i.cee. in A and hence II{-definable.
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Solomon.) The proof above uses the fact that .4 has a computable
w-presentation. We can still have relatively computably categorical
structures that do not have computable w-presentations: between any
two copies B and C of A there is an isomorphism computable from
D(B)@® D(C).

(a) Prove that Theorem VIII.4 is still true when A does not have
computable copies. (In this case, the Scott family will have extra for-
mulas that are not satisfied by any tuple in the structure.) Hint in
footnote.?

(b) Show that in this setting, if the 3-type of the parameters is c.e.
in an oracle X, then A has a II3 Scott sentence.

(c) Show that A has enumeration degree given by the 3-type of the
parameters.

VIIIL.3. Categoricity on a cone

Recall that by the Turing cone above X, we mean the set {Y €
2N Y >4 X}. Sometimes, we will just call it a cone. A set R < 2N
is said to be degree invariant if, for every X,Y € 2V, if X € R and
Y =7 X, then Y € R too. Martin showed that every degree-invariant
set of reals either contains a cone or is disjoint from a cone — if one
assumes enough determinacy, whatever that means. This prompts us
to view degree-invariant sets that contain cones as large, and the ones
disjoint from cones as small. It is not hard to show that countable
intersections of large sets are still large, and countable unions of small
sets are still small.

THEOREM VIIL6 (Martin [Mar68]). If R < 2" is Borel and degree-
invariant, it either contains a cone or is disjoint from a cone.

We sketch this proof for the readers familiar with infinite games.
The theorem is not relevant for the rest of the text, other than as a
motivation for Definition VIII.7. The reader not familiar with deter-
minacy may freely skip it.

Proor. Consider a game where player I and player II alternatively
play binary bits xo, o, 1, Y1, -... € {0, 1} for infinitely many steps.
Playerl‘xo T P A=A
PlayerH‘ Yo Y1 e oo o gedN

Let player I win the game if the sequence T @ y belongs to R, and let
player 1T win if it does not. By Borel determinacy (Martin [Mar75])
one of the two players must have a winning strategy s: 2<N — 2.

¥You need to consider a generic presentation of A i A.
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We claim that if player I has a winning strategy, the cone above s is
included in R; while if player II has a winning strategy, the cone above
s is disjoint from R. Suppose s is a winning strategy for player I, and
let y be any real in the cone above s; we want to show that y € R.
Assume player II plays 7, and let T be the response to y by a player
I following the strategy s. Since s is a winning strategy, we have that
T@®yeRand r <y s@y. Since y =7 s, we get that §y =p x@y. Since
R is degree invariant, this implies that y € R, as needed. The proof of
the case where II has a winning strategy is completely parallel. ]

If instead of assuming R is Borel, we have that it is analytic, the
theorem is still true, but does not follow from ZFC. It follows from the
existence of sharps, which a weak large-cardinal hypothesis (Harrington
[Har78]). If we do not want to impose any complexity assumption on
R, we would need omit the axiom of choice and assume the full axiom
of determinacy.

Suppose now we have a property of reals that is invariant under
Turing equivalence. For instance, consider the set of X e 2N such
that a given structure A is X-computably categorical. By Martin’s
theorem, this set must be either large or small — assuming analytic
determinacy. In other words, either, relative to almost all oracles A
is computably categorical; or, relative to almost all oracles A is not
computably categorical.

DEFINITION VIIL.7. A structure A is computably categorical on a

cone if there is a Y € 2V such that A is X-computably categorical for
all X =7 Y.

In Section VIII.5, we will construct a computable categorical struc-
ture which is not relatively so. That structure is far from being natural,
and it was purposely build diagonalizing against lists of computable
functions. However, if A is a natural structure, a proof that it has a
property like categoricity, or a proof that it does not have it, would typ-
ically relativize. Thus, for natural A, the three notions of computable
categoricity — plain, relative, and on a cone — should coincide. If we
want to understand how computable categoricity works on “natural”
structures, our best bet is to look at it on a cone. The reason is that
on-a-cone properties avoid counterexamples one can build by diagonal-
izing against all computable functions. This is because one would have
to diagonalize against all X-computable functions for almost all X, and
there are continuum many of those. This is why it is often the case
that on-a-cone properties have cleaner structural characterizations, as
is the case for computable categoricity:
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THEOREM VIIL.8. Let A be a countable structure. The following
are equivalent:

(1) A is computably categorical on a cone.
(2) A is 3-atomic over a finite set of parameters.
(3) A has an X3* Scott sentence.

PrROOF. The equivalence between the top two statements follows
from the relativized version of Theorem VIII.4: Notice that A is com-
putably categorical on a cone if and only if it is “relatively computably
categorical” relative to some oracle X. The equivalence between the
bottom two statements was proved in Lemma II1.35. ]

VIII.4. When relative and plain computable categoricity
coincide

We saw in Table 1 that computable categoricity can be completely
understood within certain classes of structures, despite being IT}-complete
in the general case. Something that is special about the classes from
Table 1 is that, for them, plain and relative computable categoricity co-
incide. As we argued above, for “natural” structures within any class,
the two notions should also coincide. Goncharov proved that, under
certain effectiveness conditions, computably categoricity is indeed well-
behaved. His result is based on a theorem by Nurtazin that deals with
yet another variation of the notion of computable categoricity.

DEerFINITION VIIL.9. Given an w-presentation A of a 7-structure,
we define ED(A) € 2N, the elementary diagram of A, the same way we
defined its atomic diagram in 1.2, but now considering all elementary
first-order formulas instead of just the atomic ones.¥ For i € N,

1 if A g fe, g je N
0 otherwise,

ED(A) (i) = {

where {¢; : i € N} is an effective listing of the elementary first-order
T-formulas.
An w-presentation A is said to be decidable if ED(.A) is computable.

The notion of decidable structure is quite important in computable
structure theory. If one were interested in studying theorems from
model theory from a computational perspective, dealing with decidable
structures may be more appropriate than with computable ones. The
notions of computable categoricity and effective 3-atomicity translate
as follows:

IThe elementary formulas are the finitary first-order formulas.



132 VIII. COMPUTABLE CATEGORICITY

DEFINITION VIII.10. A is computably categorical for decidable copies
if there is a computable isomorphism between any two decidable copies
of A. Ais effectively atomic if it has a c.e. Scott family of elementary
first-order formulas (see Definition I11.2).

Atomic structures are quite important in model theory, as 3-atomic
structure are relevant in computable structure theory. Exactly as in
Theorem II1.22, a structure is atomic if and only if every elementary
type realized in the structure is supported by an elementary formula,
and its Scott family consists of these supporting formulas. (In the
case of full types, supported types are called principal types, and the
supporting formulas are called generating formulas.)

THEOREM VIIL11 (Nurtazin [Nur74]). Let A be a decidable struc-
ture. The following are equivalent:

(1) A is computably categorical for decidable copies.
(2) A is effectively atomic over a finite set of parameters.

Let us highlight that, while in Theorem VIII.4 we could build a
non-computable (generic) copy of A to apply relatively computable
categoricity, we now need to build a decidable copy of A to apply the
assumptions. Thus, generics will not be useful here, and the proof will
have to be quite different.

PROOF. An easy back-and-forth argument shows that effective atom-
icity implies computable categoricity for decidable copies as in Theorem
II1.18.

The other implication, from (1) to (2), requires a finite-injury pri-
ority construction. The reader not familiar with priority construction
should read Section VII.1 first. This is a long and elaborated proof, so
brace for it.

The idea is to build a decidable copy B of A so that we can deduce
that either there are no computable isomorphisms between B and A,
or there is a c.e. Scott family for A. Thus, either part (1) fails or part
(2) holds. There are two sets of requirements. First, for each e, we
have:

Requirement R.: Either ®. is not an isomorphism
from B to A, or A has a c.e. Scott family over param-
eters.

If all these requirements are satisfied, then either one of them succeeds
in building a Scott family and we get that A is effectively atomic over
parameters, or all of them succeed in making sure no ®, is an isomor-
phism, and hence showing that A is not computably categorical for
decidable copies.
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As usual, we will build B by building a one-to-one enumeration
g: N — A and defining B as the pull-back g7'(A). The other set of
requirements will guarantee that g is onto.

Requirement P.: The eth element of the w-presentation
A is in the range of g.

The requirements are listed in order of priority as usual: Fy, Ry, Py, R1, .....
We need to ensure that B is decidable despite g not being com-
putable. To be able to speak in precise terms, we need to define the
elementary diagram of finite tuples the same way we did for atomic
diagrams in Definition 1.9. Given a tuple a = {ay, ..., a;y € A<N, we de-
fine the elementary diagram of a in A, denoted ED4(a), as the string
in 2% such that, for i < |al, |

1 ifA):QOEI[IEj'—)CZj,j<S],
0 otherwise.

ED(a)(i) = {

As in Observation 1.15, we have that if g is an enumeration of A, then

ED(g"(A)) = | J EDa(g I k).
keN

At each stage s of the construction, we will build an injective finite
tuple g, € A<N. The g¢,’s will not form a nested sequence, so we will
not be able to define g as their union. But the sequence will have a
pointwise limit, and we will be able to define g(i) = lim, g4(7). We still
need B to be decidable, though. So even if the g,’s are not nested, we
require that the strings ED4(gs) € 2=Y are nested; that is, for all s < t,
ED4(gs) € ED4(g:). We will then have that

ED(B) = | ) EDa(g.) € 2"
seN
is computable.

Informally, the idea for satisfying R, is as follows. R, will try
to define gy so that, for some tuple n € N<N &, | i converges and
disagrees with gs; | n on some elementary formula. This way, if R,
manages to preserve this tuple g so that it ends up being an initial
segment of g, since g will be an isomorphism from B to A, &, will
not. To do this, for every tuple b € A<N, once we see ®., | 7| = b for
some 7 and s, we enlist b as a possible candidate for diagonalization.
From that point on, we will be looking for another tuple ¢ disagreeing

/We are choosing to make ED4(a) have length |a|, but we could have chosen
many other finite bounds for it. What matters is that it is a finite string, that
it only involves formulas that use the first |a| variables, and that all formulas are
eventually taken into account as |a| goes to infinity.
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with b on some elementary formula, so we can try to define g | 7 = ¢
while preserving ED4(gs). If we find it, R, will require attention, and if
attention is given to it at some stage ¢, it will define g, so that g, [n = ¢
and then try to preserve this initial segment of g. If we do not find
such a disagreeing tuple ¢, the reason is that whatever commitment we
made at stage s about 7 — namely that we must preserve ED 4(gs)
— had to imply all other formulas about b, and hence be a principal
formula for the type of b. If this happens for all tuples b, we can build
a Scott family for A. To make sure this works, we will be monitoring
that everything we commit to regarding b later on — namely that we
must preserve ED 4(g;) for some new g, — is implied by the potentially
principal formula. If it is, then we are not really committing anything
new; if it is not, we have found an opportunity to diagonalize.

What makes this more difficult is that R, must respect the work
done by weaker priority requirements. The same way R, would like to
preserve the initial segment of ¢ it defined, higher-priority requirements
will like to preserve their initial segments. At the beginning of stage
s+ 1, we will define p.[s] € gs to be the initial segment of g, that
has been defined by higher-priority requirements R; for ¢ < e and P;
for i < e. R. must preserve p.[s]; that is, it is only allowed to define
gs+1 extending p.[s]. R. must also preserve ED(gs); that is, it is only
allowed to define gs,1 satisfying ED(gs11) 2 ED(gs).

The construction: At any given stage, the first few requirements
will be active and the rest inactive. At each stage, the highest-priority
inactive requirement will be initialized and become active. During
the construction, requirements may be canceled, making them inactive
again. At each stage, each active P, requirement will have an output
string p, € A=Y, and each active R. requirement an output string 7.
These strings will be nested, py < 7o € p1 € 7 S ---, and g, will
be the union of the output strings of the active requirements at stage
s. These are not fixed strings, and the value of p. or 7. may change
throughout the stages. We write p.[s] or 7.[s] if we want to highlight
that we are referring to their values at stage s. We will show they will
eventually reach a limit and stop changing.

Requirement P, only acts the first time it is active after being
initialized. If it is ever canceled, it will act again once it gets initialized
again. When it acts at stage s + 1, its action consists of defining
gs+1 = gs_e (where e refers to the eth element of the w-presentation
A). Well, that is if e is not in the range of g, already, in which case we
just define g,.1 = g;. Once P, acts, stage s + 1 is over, and we move
on directly to the next stage, s + 2. We define the output of P, to be
De = gs+1, and this will stay this way unless P, is later canceled. Since
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P, will only act at a stage when no other requirement acts, we will
have that 7._1, the output of R._1, is included in g,. Thus, P, indeed
respects higher-priority requirements.

Requirement R, works as follows. At each stage that is active,
R, may go through four phases:

o waiting,

e internal calculations,

e requiring attention, or

e acting.

We need to describe what R, does in each of these phases. We leave
the internal calculations phase for last.

Recall that p. is the initial segment of g; given by the output of
the requirement of immediately higher priority, namely P.. Once R,
has been activated, it will stay in the waiting phase until we reach a
stage s at which @, | |p.| converges. At stages where @, | |p.| does
not converge, R, does not do anything, and we move on to consider
the next active requirement. During these waiting stages, and until the
requirement acts (if ever), its output is 7. = p.. When we reach a stage
s where @, ¢ | |p.| converges, we let

a= (I)e,s f ‘pe|

and move to the next phases of internal calculations to decide if we
require attention.

For a tuple p < g, of elements and a tuple i € N< of numbers
between |p| and |gs| — 1, we let ¢ 4, (P, ) be the elementary formula
describing the commitments we have made about n relative to p in

ED(gs):
Vng(p,%) = W 2pAyln =7 A ED(y) =0), where o = EDy(gs) € 2N, **

Notice that A |= 15 4. (P, g5 | 7) with witness y = g,.

R, requires attention if it finds an opportunity to diagonalize,
that is, if it finds a tuple 1 € N<N of numbers greater than |p.|, a tuple
¢e AN, and an elementary formula ¢ such that:

(1) ®., | n converges,
(2) the tuples p.~¢ and a~®. s | n disagree on ¢, and
(3) A tag, (Pe, ©).

** “ED(y) = o” is shorthand for what one would expect: (/\i:g(i):1 o (g)) A

(/\i:a(i):() —p; (@)) .
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After R, requires attention, it may be allowed to act. Let ¢ be the
witness to A |= 5 4. (e, €). That is,

Gq2pe A Gln=¢ A ED4q) = EDy(gs).

The action of R, is to define g,,1 = ¢ and re-define 7., the outcome
of R., to be q too. If R, is never canceled again, and g ends up being
an isomorphism from B to A extending 7., R, would have succeeded in
diagonalizing against ®., ensuring that &, is not an isomorphism from
B to A. This is because, if ., was an isomorphism, the automorphism
P, o g~! should map p.~¢ to a~P.4 | i, contradicting the fact that
they disagree on ¢. After this action, we cancel all the weaker-priority
requirements making them inactive and finish stage s + 1. R, will not
act again, and 7, will not change anymore, unless R, is later canceled
and re-initialized, in which case it will start all over again.

The initial calculations of R, are as follows. While R, waits for
a chance to require attention, it enumerates a set S of formulas hoping
it ends up being a Scott family for A over p.. Every time ®, 5 converges
on some new tuple n of numbers between |p.| and |gs],

e define ¢;(Z) to be the formula v, 4, (Pe, T), and

e enumerate p; into S.
By doing this, R, is betting ¢ (%) generates the type of b = g | within
A over p.. To secure its bet, R, will verify at each later stage u that

A VE(a(Z) = Vag, (De, T)).
It does this as follows: at each stage u + 1 where a weaker-priority

requirement R; of P; for ¢ > e requires attention and wants to extend
g. to some tuple h, we first check that

(2) A = VE(pn(T) = thp i (Pe, T))-

If it does, we let the weaker-priority requirement do its thing and define
Gus1 = h. If it does not, R, does not allow the weaker-priority require-
ment to act, because, instead, R. is in a position to require atten-
tion itself: We know there is a tuple ¢; satisfying ¢z (¢1) A ¥ 1 (Pe, €1),
namely h | 7,7 and we know there is another tuple & that satisfies
©r(C2) A =y 1 (Pe, C2) because the implication (2) does not hold. Let ¢
be whichever of these two tuples disagrees with @, [ 7 on ¥ 7 (Pe, T).
Since, at the previous stage w, we verified that A = VZ(pa(Z) —
V9. (Pe, T)), we have that A = ¢ 4. (Pe, €). Re has now found the wit-
nesses n, ¢, and ¢ = @Dﬁﬁ(ﬁe, T) necessary to require attention at stage
u+ 1.

""We know h | 7 satisfies 5 because ED(gs) € ED(g,) < ED(h).
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Verifications: After a requirement is initialized, it will act at most
once before it is re-initialized again, if ever. One can then prove, by
induction on the list of requirements, that each requirement will even-
tually stop being canceled and will then eventually stop acting, and
hence the next requirement will stop being canceled and then eventu-
ally stop acting, and so on. Since the outputs of the requirements only
change when they act, we get that each p. and 7, reaches a limit, and
that g is the union of all these limits. Since each requirement P, is
eventually given the chance to act without being canceled again, we
get that g is onto. Notice that ¢ is one-to-one because each g is.

Let us now verify that each R, is satisfied. Let s, be the last stage
in which P, acted, so that R, is never canceled after s.. Suppose @, is
a computable isomorphism from B to A. It must then be the case that
R. never requires attention after s., as otherwise, R, would have acted
and diagonalized against ®., as we argued before. We claim that this
implies that R, is successful in making S a Scott family. For each tuple
be A<N disjoint from p,, there will be some @ such that ¢ | 7 = b, and
there will be a first stage s; > s. at which &, [ n|. At that stage, we
enumerate ¢ (Z) (= Vng,, (Pe, ) into S. We need to show that ¢7 is

indeed a generating formula for the elementary type of b over p,. First,
notice that even if g, | 7 # b, we still have that A |= ¢n(b), because,
for every t > s, since ED(g;) 2 ED(gs), we have that A = ps(g: | 72)
as witnessed by § = ¢; | |gs|. Since R, never requires attention again,
at every later stage u > s, we have that

A ): V.T<90ﬁ(f) - wﬁ,gu (ﬁeva_;»'

Every elementary formula 6(p,,Z) that is true of b in A will eventu-
ally be part of ED4(g,) for large enough w. Thus, 6 is implied by
V.9, (Pe, T), and hence implied by @5 (Z). O

If we want to go back to the notion of computable categoricity
(for computable copies), we can modify the proof above so long as we
assume the two-quantifier theory of A is computable.

DEeFINITION VIIL.12. A V3-formula is one of the form
VaoVay.. Vo, Iyodyr... Jyk ¥(Z, 7, 2)

where v is finitary and quantifier-free. An w-presentation A is V3-
decidable if we can effectively decide all V3-formulas about the tuples
of A, i.e., if there exists a computable function that, given an index for
a V3-formula o(z) and a tuple @ € A=Y, returns 1 or 0 depending on

whether A = ¢(a).
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THEOREM VIIL.13 (Goncharov [Gon75al). If A is Y3-decidable,
then A is computably categorical if and only if it is effectively 3-atomic
over a finite set of parameters.

SKETCH OF THE PROOF. The proof is very similar to the proof
above, but it requires being extra careful with the complexity of cer-
tain formulas at various steps of the construction. For this proof,
we only need to preserve our usual atomic diagrams D(gs) instead
of the elementary diagrams ED(gs). This will get us a computable
w-presentation B. The formulas 15 4, are now defined using D(gs) in-
stead of ED(gs). Notice that 15, is now an 3-formula. When R,
is deciding if it requires attention, it now wants the tuples p.~¢ and
a~®. ;[ n to disagree on some V3-formula, as that is what we can check
computably. The key point where we used the decidability of A was
during the initial-calculations phase to check whether

A= VE(on(Z) = np(P, 7))
This formula is now V3, which we can decide by the assumption on
A. However, we need to check a bit more. Let 47 (fe,Z) be the

conjunction of all the V-formulas with indices less than |g;| that are
true of gs(n) over p.. We also check that

as this also gives us an opportunity to diagonalize. When we are veri-
fying that R, works, we only need to show that (; supports the V-type

of g | n over p,. All these formulas are implied by @/)Z,gu (Pe, T) for large
enough wu, so the proof is the same. O

Kudinov [Kud96b] showed this result is sharp by building a V-
decidable computably categorical structure that is not effectively 3-
atomic. It is still true that V-decidable computably categorical struc-

tures are effectively X§-atomic, as proved by Downey, Kach, Lempp,
and Turetksy [DKLT13, Theorem 1.13].

VIII.5. When relative and plain computable categoricity
diverge
This section is dedicated to proving the following theorem.

THEOREM VIIL.14 (Goncharov [Gon77, Theorem 4]). There is a
structure which is computably categorical, but not relatively so.

This is an important theorem, and its proof illustrates a couple
of techniques that are useful throughout the field. One is the use of
families of sets to build structures with particular properties — a very
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common technique in the Russian school. The other one is the use of
a finite-injury priority argument that is a bit more elaborate than the
two we have seen so far.

To prove Theorem VIII.14, we will build a c.e. family of sets F <
P(N), and then take the graph

Gr = |_| Gx,

XeF

where Gy is the flower graph that consists of loops of size n + 3, one
for each n € X, all with a common node. This is almost the same as
the graph G¥ we considered in Observation V.25 and Lemma VI.11,
with the difference that, in G}, each X € F is associated to exactly one
flower graph Gy instead of infinitely many as in G¥. Let us see how
the relevant properties about structures translate to families.

DEFINITION VIII.15. A computable Friedberg enumeration of a fam-
ily F is a c.e. set W whose columns exactly are the sets in F without
repetition, i.e., not only F = {Wl1: i e N}, but also Wl % Wil for
all 7 # 7.

Recall from Definition V.24 that a computable enumeration for a
family F is a c.e. set W with F = {Wl1 : i € N}, allowing for repeating
columns. In a Friedberg enumeration, every set in J corresponds to
exactly one column. In Observation V.25, we showed that F has a
computable enumeration if and only if G¥ has a computable copy. As
in Observation V.25, one can easily produce a computable Friedberg
enumeration of F out of a computable w-presentation of G, and vice
versa.

DEFINITION VIIL.16. A family F < P(N) is discrete if there is a
family S of finite sets such that, for each A € F, there is an F € S with
F < A, and for each F' € S, there is a unique A € F with FF < A. We
call such a set S a separating family for F. We say that F is effectively
discrete if F has a c.e. separating family.

LEMMA VIIL.17. Let F < P(N) be a family with a c.e. enumeration.
Then G% is effectively 3-atomic if and only if F is effectively discrete.

PROOF. Suppose F has a separating set S. We need to find 3-
formulas defining each node of G%. Notice that each center of a flower
graphs Gy is alone in its own automorphism orbit because each Gx
appears only once in G%. Also notice that if we have an 3-formula
defining the center of Gx, we can find 3-definitions for all the nodes
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in Gy.H Thus, we will concentrate on enumerating 3-definitions for
the centers of the flower graphs. For each X € F, there is a finite set
A € S such that X is the only set in F that contains A. Let px(x)
be the formula that says that x is part of a loop of size n + 3 for each
n € A. The center of Gx would be the only element of G5 satisfying
that formula. Notice that if S is c.e., this produces a c.e. Scott family.

Suppose now that G is F-atomic. For each X, let px be the 3-
formula in the Scott family satisfied by the center of Gx. Let Ax
be a finite subset of X such that the center of a flower graph G, also
satisfies px. Such an Ax must exist because if an 3-formula is true of a
relational structure, it is also true of a finite substructure (Observation
[.8). We claim that {Ax : X € F} is a separating family for F. We
already argued that such an Ay exists for each X. If Ax <€ Y for
Y e F, then, since 3-formulas are preserved under embeddings and
Ga, embeds into Gy, we would have that ¢x holds of the center of
Gy too. Since @x defines the orbit of the center of Gx, we must have
X =Y.

Notice that if we have a c.e. enumeration of F, for each column
X of the enumeration, we can effectively find ¢x within the given c.e.
Scott family, and we then effectively find some Ay. O]

Recall that a structure is relatively computably categorical if and
only if it is effectively 3-atomic over some parameters. So, we need to
add the parameters to the previous lemma. We only need one direction.

CoRrROLLARY VIIL.18. Let F < P(N) be a discrete family of com-
putable sets with a c.e. enumeration. Then if G% is effectively 3-atomic
over parameters, F is effectively discrete.

PROOF. Let p be the parameters over which Gk is effectively 3-
atomic. We can assume the elements of p are the centers of flowers,
as from each p € G we can effectively find the center of the flower it
belongs to and, vice-versa, we can effectively find p from the center of
its flower. Since all flowers are completely independent, if we remove
the flowers that contain p from G, we get a bouquet graph Q}E that is
effectively 3-atomic over no parameters. By the previous lemma, the
corresponding family Fis effectively discrete, and has a c.e. separating
family S. So, for each F € S is included in a unique X € F , but it
might also be included in some Y € F ~ F. Since F was discrete to
begin with with, there is an extension of F' which is still included in X,
but not included in any of the finitely many sets in Y € F F. We can

H#We need to say that the node belongs to a loop of a certain size and that the
loop also contains the center of Gx.
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find such extension as we can find X using the c.e. enumeration of F
%nd then find the extension using that the sets Y are computable. Let
S consist of the set of all the extensions of all the F’s in 5. Also using
that F is discrete, there is a finite set of finite sets Sy, such each F' € Sy
is included in a unique set in F and that set is one of the finitely many
ones in F ~ F. We then get that Su Sp is a c.e. separating family for
F. ]

DEFINITION VIIL.19. A computable equivalence between two com-
putable enumerations V' and W of a family F is a computable per-
mutation f of N such that VI = W] for every n. When such a
computable equivalence exists, we say that V and W are computably
equivalent.

LEMMA VIIL.20. Gk is computably categorical if and only if F has
only one Friedberg enumeration up to computable equivalence.

PROOF. We already know that computable w-presentations of G
are in correspondence with c.e. Friedberg enumerations of F. It is not
hard to see that computable isomorphisms between w-presentations of
GL are then in correspondence with computable equivalences between
c.e. Friedberg enumerations of F. ]

Theorem VIII.14 now follows from the following lemma which con-
tains the bulk of the proof.

LeEmMA VIIL.21 (Badaev [Bad77]). There is a family F < P(N)
that is not effectively discrete and has only one computable Friedberg
enumeration up to computable equivalence.

PROOF. Let
E =1{0,2,4,6,8,...} and FEj=1{0,2,4,...,2k} {2k + 1}.

For each n € N, the family F will contain one set of the form E® {n},
and at most one set of the form Ej @ {n}. There will be no other sets
in F. We will build a computable Friedberg enumeration U of F.
To make sure F is not effectively discrete, we have the following
requirements:
Positive Requirement P.: TV, is not a separating
family for F.
To make sure F has a unique Friedberg enumeration, we have the
following requirements:
Negative Requirement N,: If W, is an Friedberg

enumeration of F, then W, is computably equivalent
to U.
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The requirements are listed in decreasing order of priority as usual:
No, Po, N1, Py, .... All the sets E@{n}, for n € N, are enumerated into U
from the beginning, say on the even columns of U. The sets Ex®{n} will
be enumerated later on by the positive requirements P,. Each P. will
act at most once, enumerating at most one such set. At each stage, each
negative requirement N; will impose a restraint on the P, requirements
of weaker priority by not allowing them to enumerate any set of the
form E,@®{n} with n < M; ; < k, where M; 4 is a number defined by N;
at stage s of the construction. Each stage s of the construction starts
with all the requirements N;, for ¢ < s, independently doing their own
calculations and defining M; ;. Then, all the requirements P, for e < s
will independently do their thing as we describe below.

What makes these requirements “positive” and “negative,” is that
P, enumerates elements into U, while N, prevents elements from being
enumerated.

The requirement P, works as follows. Let {C. : e € N} be a
computable partition of N; for instance, let C, = {(e,m) : m € N}.
The set C, is reserved for requirement P,. Suppose P. has not been
declared done yet. If we see a finite subset G with "G'e W, such that,
for some n € C, and some k € N, we have

e G<{0,2,....,2k} ® {n}, and
o for each i <e, either M; s <nork < M,,,

then we add Ej @ {n} to F (i.e., we enumerate it as a column in U),
getting G € E @ {n} and G < Ej ® {n} which are both in F. We
declare P, done, and we re-initialize all lower-priority N; requirements.
Recall that M;, will be defined by N; below. All we need to know
for now about the sequence M, is that it is non-decreasing in s, and
therefore that it converges to a limit — either to a number or to oo.
If W, were indeed a separating family for F'; then for every n, since
E ® {n} € F, W, would contain some set of the form G = F & {n}
with F' < {0,2,...,2k} for some k. Consider some n € C, which is
above lim, M; ; for all the ¢ < e for which the limit is finite. The
corresponding k would eventually be below all the M; , for all the 7 < e
for which the limit is infinite. P, would then be allowed to act and
enumerate Ej @ {n} into F. This contradicts that W, is a separating
family because G would be included in both E'® {n} and E, ® {n} —
P, succeeds.

The requirement N, works as follows. It will be initialized at
stage s + 1 = e and then will be re-initialized every time a higher-
priority P; requirement acts. Since each P; acts at most once in the
whole construction, there will be a point after which N, will never be
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re-initialized again. Every time N, is initialized, it starts building a
computable matching g. between the columns of W, and those of U by
finite approximations gep S ge1 S Ge2 S *++ — G, With g, € NN,
If it turns out that W, is a Friedberg enumeration of F and that N,
is never re-initialized again, we have to make sure g. is a computable
equivalence between W, and U. The rough idea is as follows: At each
stage s, we will look at the columns of W, s and U[s], and hope there
is an obvious way to match them. Whenever we see a set of the form
E, ®{n} in both W, ; and in U[s], we can safely match these columns
through g¢.s. The problem arises when we need to match columns of
the form {0,2,...,2m} @ {n}: These apparently matching columns may
later grow in different ways and become Ej @ {n} for some k > m in
W, and become E @ {n} in U. To deal with this, N, will impose a
restraint not allowing sets of the form Ey @ {n} for any k > m to be
enumerated into U by lower-priority requirements.

Let us start by defining an enumeration {V, s : s € N} of F that
is tidier than W,. We do this by delaying the enumeration of certain
elements, but in a way that if W, is actually an enumeration of F, then
all elements of W, eventually enter some V, ,, so that W, = .y Ve.s-
We want V, ; to satisfy the following properties for every s € N:

L ‘/e,s - We,s-

e Every non-empty column of V., is of the form F @ {n} for
some F' and n.

e For every n, there are at most two such columns, one included
in E@®{n}, and if there is a second one, it must be of the form

o If V. contains a column of the form Ej @ {n}, then so does
Uls].

We can easily get such an enumeration {V,; : s € N} by slowing down
the enumeration of W, s and enumerating the elements of a column of
W, s into V. s only once the properties above are satisfied.

Let M. s be the largest m such that, for every n < m, there is
a column in V, ¢ containing {0,2,4,...,2m} ® {n}. (See Figure VIII.1
below.) Notice that M, s is non-decreasing with s, and that if W, is
indeed an enumeration of F, then M,  converges to co. N, imposes
the following restraint on the lower-priority requirements:

No set of the form Ej @ {n} with n < M, < k can
be enumerated into F at stage s.

At each stage s, we define a finite partial map g, s matching columns
in V. s with columns in U[s]. We let g () = j if and only if VM and
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FIGURE VIIIL.1. These are the columns of V. . In this
example, the restrain forbids us to enumerate a column
of the form Ej @ {2} for k > M., at stage s. That is,
we cannot cross the horizontal M, s-line. So, for instance,
the column that currently looks like E@{2} is not allowed
to become of the form Ej @ {2}. The column E; @ {0}
crossing the line in the picture was enumerated before
the current stage.

Ull[s] are of the forms A @ {n} and B @ {n} for the same n and one
the following holds:

(1) A and B are equal and of the form Ej for some k.

(2) n < M.s, A< E, B = E, and there are no columns in U]s]
of the form Ej @ {n} with A < Ej (and hence none in V4
either).

We claim that, unless [V, is re-initialized, ge s S ge 541 for all s: If ge s
matches two columns of the form Ejy @ {n}, those columns will still be
matched in ge s+1. Suppose now g. s matches two columns of the form
A@{n} and B®{n} with A, B < E. We then must have that n < M.,
which implies that {0, ...,2M, s} < A, and there is no column in Uls]
of the form Ey @ {n} with A € Ej. Suppose, toward a contradiction,
ges+1 does not match those two columns. There could be only two
possible reasons: (1) that the column in V, 4. that contains A is not
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a subset of E anymore, and (2) that there is a column in Ul[s + 1] of
the form Ejy @ {n} with A € E}. Since columns of this form can only
enter V, after entering U, in either case we have a new column in Uy
of the form Ejy @ {n} with A < Ej. Because of the restraint imposed
by N., only columns of the form Ej @ {n} with £ < M., are allowed
to be enumerated into V. ;. But then we could not have A < Ej, as
A>2H{0,...,2M, s} € E). This proves our claim, and we get that, if N,
is never re-initialized again, g. = |J, ge,s is a computable equivalence

between W, and U. H

Notice that the family F is discrete, even if it is not effectively
discrete. We thus get that GF is 3-atomic and hence computably cat-
egorical on a cone. After Goncharov’s result, there have been vari-
ous other constructions of computably categorical structures which are
not relatively so. For instance, Khoussainov, Semukhin, and Stephan
[KSSO07] built one without using a priority argument using effective
randomness instead. Their structure is not 3-atomic over any finite
set of parameters, so it is not computably categorical on a cone. An-
other example is due to Khoussainov and Shore [KS98, Theorem 4.2].
They built a computably categorical structure A such that, for each
element a € A, the structure (A, a) is not computably categorical. The
Khoussainov—Shore structure is not relatively computably categorical,
as otherwise, it would remain relatively computably categorical if one
added parameters.

EXERCISE VIIIL.22. Let G} be a bouquet graph as in Section VIIL.5.
Show that if the degree spectrum of Q}T has measure 1, then g}: has a
0”-computable copy. Hint in footnote.!

"Use Sacks’s theorem that the measure of every non-trivial cone is 0.






CHAPTER IX
The jump of a structure

In Definition I1.30, we defined Kleene’s complete r.i.c.e. relation KA
on a structure A by putting together all ¥{-definable relations:

KA = (G0, : A @) (D)} € N x A,

where gof;(f) is the ith X$ 7-formula with j free variables. We then
used this construction to define the jump of a relation @ < N x A<N to
be the relation Q' = K(AQ) (Definition 11.34), and proved that this is
an actual jump, that is, that Q <,r @’ for all Q € N x A<N (Corollary
[1.37). In this chapter, we consider this same construction, but view it
as an operation that maps structures to structures.

DEFINITION IX.1. Given a 7-structure A, we define its jump to be
the new structure obtained by adding the complete r.i.c.e. relation to
it. That is, we let

A = (A KA.

Thus, A" has the same domain as A, but a larger vocabulary. It is a
7'-structure, where 7' consists of 7 together with infinitely many new
symbols naming the relations K;; = {be A7 : A |= @f}(b)}

Notice that this definition is independent of the presentation of A.
The isomorphism type of A" depends only on the isomorphism type of
A. We should mention that the isomorphism type of A’ also depends
— in an totally unessential way — on the Godel numbering of the ¥
7-formulas, the same way the Turing jump of a set depends on the
Godel numbering of the partial computable functions. Also notice that
the extended vocabulary 7’ is still a computable relational vocabulary.

HisTORICAL REMARK IX.2. The jump of structures has been intro-
duced on various independent occasions over the last few years. Other def-
initions can be found in [Mor04, Bal06, Sos07, SS09, Puz09, Mon09,
Stu09]. The history of the different definitions is explained in more detail
in [Monl12]. The definition we give here comes from [Mon12, Definition
5.1].

147
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REMARK IX.3. Let us remark that the jump preserves effective bi-
interpretability. That is, if A and B are effectively bi-interpretable,
then so are A" and B’. The interpretation maps are the same. All
one has to observe is that the relation KA° within the copy AP of A
interpreted in B is r.i.c.e. in B and therefore r.i. computable in 5.

I1X.1. The jump-inversion theorems

Friedberg’s jump-inversion theorem (Theorem IV.6) says that every
Turing degree above (' is the jump of some degree. There are a couple
of different ways in which one could generalize Friedberg theorem to the
jump of structures. We call them the first and second jump-inversion
theorems.

IX.1.1. The first jump-inversion theorem. This theorem is a
generalization of the Friedberg jump-inversion theorem to the semi-
lattice of structures ordered by effective interpretability.

THEOREM IX.4 (Soskova, Stukachev). For every structure A which
computably codes 0V, there is a structure C whose jump is effectively bi-
interpretable with A.

Proor. We proved in Theorem VI.27 that every structure is ef-
fectively bi-interpretable with a graph. Therefore, we may assume A
is a graph (A; E') with domain A and edge relation E. The key idea
behind this proof is the following: If we are given a linear ordering
isomorphic to either w or w*, deciding which one is the case is a AY-
complete question. We will thus define C by removing the edge relation
E and instead attaching to each pair of elements of A one of these two
linear orderings, depending on whether there is an edge between the
two elements or not.

We define C as (C; A, R), where A is a unary relation and R a 4-
ary relation. The domain C' of C consists of the disjoint union of the
domain A of A and another set B, and we use the unary relation A to
identify the elements of A. We define the 4-ary relation

RcAxAxBxDB

so that: If we let B,y = {ce B : R(a,b,c,c)}, and R, = {{c,dy e B*:
R(a,b,c,d)}, then (Byp; Rap) is a linear ordering isomorphic to either
w or w*, and it is isomorphic to w if and only if {(a,b) € E. We also
assume the sets B, for a,b e A partition B.
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C can be easily effectively interpreted in A as follows. Let B =
N x A? and let C = A U B. Then define R as follows:

R = {{a,b,{n,a,b),{m,a,b)y e A x B*: for{a,bye E & n <m}
u{la,b,{n,a,by,{m,a,b)y e A>xB*: for {a,by e A>’\E & n =m}.

To show that this is actually an effective interpretation of C’, and not
just of C, we need to show that K¢ (viewed as a relation in N x A<N) is
r.i. computable in A. To see this, fix an w-presentation of A. The con-
struction above then gives us an w-presentation of C. Use Friedberg’s
jump-inversion theorem to get an oracle X € 2% such that X’ =7 D(A)
(using that A computably codes 0'). We will now construct a second

copy, C, of C that is computable in X. For each {(a,b) € A%, X’ knows
whether or not {a,b) € F, and hence computably in X, we can uni-

formly build a linear ordering B, such that

B~ (N;<) ifda,bye E,
TNy =) if la,by ¢ E.

To do this, if f(a,b,s) is an X-computable function such that
e limyy f(a,b,s) =1if (a,by € E and
e lim,y f(a,b,s) =0if {a,by ¢ F,

then we can define ga,b = (N;<z ,) by

s<g,r = (s<ur & flabr)=1)v(r<ys & fla,bs)=0).

In other words, for each s € N we have that, if f(a,b,s) = 1, s is
>gayb—above all r <y s, and, if f(a,b,s) =0, s is <gawb—below all r <y s.
We let the reader verify this ordering is as needed. We then define C
by putting together A and disjoint copies of all the ga,b for {a,b)y € A?
and defining fx’(a, byn,m) < n <g,, M- An important point is that
D(A) can compute an isomorphism between C and C. This is because
X' can compute isomorphisms between ga,b and B, for all (a,b) € A%
Since D(CN) <r X, we have that K¢ is computable in X’, and hence
in D(A). Going through the isomorphism between C and C, we get
that KC is also computable in D(A). Since this worked for every w-
presentation of A, we have that K¢ is r.i. computable in .A. This proves
that we have an effective interpretation of C’ in A.

The effective interpretation of A within C’ is more direct. The

domain of the interpretation is, of course, A itself, as identified by
the relation A within C. Notice that F is now r.i. AJ in C. This is
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because, to decide if {a, by € A%, we need to decide whether B, ;, ~ w or
Bap = w*. For this, we need to decide whether there exists an element
in B, without predecessors, or one without successors — both are 3§
questions.

The last step is to check that these two effective interpretations
form an effective bi-interpretation; i.e., that the composition of the
isomorphisms are r.i. computable in the respective structures. First,
notice that the interpretation of A inside C inside A is the identity, and
hence obviously r.i. computable in A. Second, for the interpretation
of C inside A inside C, the A-part stays the same. The copies of B,
are not the same, but since they are isomorphic to either w or w*, the
isomorphism between them can be computed within a jump of C. []

HisTORICAL REMARK IX.5. For the case of Muchnik equivalence, this
theorem was proved independently on two occasions. One is due to Gon-
charov, Harizanov, Knight, McCoy, R. Miller, and Solomon by essentially
the same proof we gave above [GHK™'05, Lemma 5.5 for o = 2], although
they were not considering jumps of structures — their objective was to prove
various result like Theorem IX.8 below and their transfinite versions. The
other is due to Alexandra Soskova [Sos07, SS09]. Her construction is quite
different and uses Marker extensions. Stukachev [Stul0, Stu] proved that
Soskova’s constructions actually gives effective interpretations instead of just
Muchnik reductions.

IX.1.2. An application of the first jump-inversion theorem.

DEFINITION IX.6. A computable structure A is A-categorical if
there is a 0’-computable isomorphism between it and any computable
copy. It is relatively AY-categorical if every copy B is isomorphic to A
via a D(B)’-computable isomorphism.

Notice that being A-categorical is not the same as being 0’-computably
categorical (i.e., computably categorical relative to 0’). The latter
means that every 0’-computable copy B is 0’-computably isomorphic
to A, while the former only considers computable copies B.

EXERCISE IX.7. Show that (w; <) is relatively AY-categorical.

THEOREM IX.8 (Goncharov, Harizanov, Knight, McCoy, R. Miller,
and Solomon [GHK™05)). There is a structure that is AS-categorical
but not relatively so.

PROOF. Relativizing Theorem VIII.14 to (', let A be a 0'-computable
structure that is 0’-computably categorical, but not 0’-relatively com-
putably categorical. Let C be the structure built from A in the proof
of the first jump-inversion theorem. From the proof of the theorem we
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get that if A has an X’-computable w-presentation for some X e 2N,
then C has an X-computable presentation that is X’-computably iso-
morphic to C. Thus, we may assume that C is computable and A is
obtained from the effective bi-interpretation with C’. We claim that C
is AS-categorical but not relatively so.

To prove that C is AY-categorical, let C be a computable copy of C.
Then C' is associated via the effectlvely bi-interpretation with a copy
A of A. Notice the w- presentation A is computable in (/. Since A is
0’-computably categorical, 0’ can compute an isomorphism between A
and A. Using the effective bi-interpretations, 0’ can then compute an
isomorphism from C to C.

Let us now prove that C is not relatively AY-categorical. Since
A is not 0/-relatively computably categorical, there is a copy A of A
computable in some oracle Y >4 0’ that is not Y-computably iso-
morphic to A. Let C be the copy of C associated via the effectively
bi-interpretation with A. Use the Friedberg’s jump-inversion theorem
to get X e 2<N with X "= Y. The oracle X might not compute the
w-presentation C but as in the proof of the theorem, it computes a
copy C of C that is X' -computably isomorphic to C. We claim that
there is no X’-computable isomorphism between C and C. That would
prove that C is not relatively AY-categorical. As for the claim, if there
was an X'-computable isomorphism between C and C. , there would be
one between C and CA, and using the effective bi-interpretations, we

would get an X’-computable isomorphism between A and ﬁ, which we
assumed does not exist. ]

One can of course iterate this proof and produce, for each n € N, a
computable structure that is A%-categorical but not relatively so.

IX.1.3. The second jump-inversion theorem. This jump-inversion
theorem is not a generalization of the usual jump-inversion theorem to
a more general class of degrees, but a generalization in the sense that,
given X € 2N it yields Y € 2 with Y’ =7 X and some extra properties.

THEOREM IX.9 (Soskov). If X € 2% computes a copy of B', then
there is a Y € 2V satisfying Y' =p X that computes a copy C of B.

PRrROOF. By Lemma IV.14, there is a 1-generic enumeration g of B
computable in KP, and hence in X. Let C = ¢ *(B) and Z = D(C).
Since K¢ = g1(K?), we have that

K¢ <7 KB <r X.
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Since C is 1-generic,
K® =7 D(C) = Z',
as proved in Lemma IV.23. Thus, Z' <1 X. By the relativized Fried-

berg’s theorem, there is a Y € 2 such that Y >7 Z and Y’ = X.
This Y computes C, a copy of B. ]

For future reference, let us remark that X can compute the isomor-
phism g between C and B.

As a corollary, we get that the degree spectrum of the jump of a
structure is what it should be: the set of jumps of the degrees in the
spectrum of the original structure.

COROLLARY IX.10. For every structure B,
DgSp(B) ={X e 2Y: X =r Y’ for some Y € DgSp(B)}.

PROOF. For the right-to-left inclusion, it is clear that if X > Y’
for some Y € DgSp(B), then X computes a copy of B’. For the left-to-
right inclusion, if X computes a copy of ', then by the theorem, there
is a Y € DgSp(B) such that X >r Y. O

HisTORICAL REMARK IX.11. Theorem IX.9 was first introduced by
Soskov at a talk at the LC’02 in Munster; a full proof then appeared in
[SS09]. It was also independently proved in [Mon09].

IX.1.4. Application of the the second jump-inversion the-
orem. First, let us note how second jump-inversion theorem can be
applied to structures for which we understand their jump. For in-
stance, we know from Lemma I1.43 and Definition I1.44, that the jump
of a linear ordering £ = (L;<y) is effectively bi-interpretable with
(L; <p,Adj, ). It follows from the second jump-inversion theorem that
if (£, Adj) has a 0’-computable copy, then £ must have a low copy (cf.
Lemma VII.26).

Anther application is the generalization of Theorem I1.16 from r.i.c.e.
relations to r.i. ¥ relations for n € N.

DEFINITION 1X.12. A relation R € N x A<N is relatively intrinsi-
cally X9 if R is c.e. in D(B)' for every copy (B, R®) of (A, R).

THEOREM IX.13 (Ash, Knight, Manasse, Slaman [AKMS89]; Chisholm
[Chi90)). Let A be a structure, and R = Nx AN a relation on it. The
following are equivalent:

(1) R is relatively intrinsically 339.
(2) R is X5 definable in A with parameters.
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PrROOF. The upward direction follows from the observation that a
3¢ relation R € N x A<N is always X9 relative to the diagram of D(A).
We concentrate on the downward direction.

First, we claim that if R is relatively intrinsically 39 in A, it is
ri.c.e. in A’. For this, let B’ be a copy of A’ computable in some
oracle X; We need to show that RB is c.e. in X. This would follow if
we knew that D(B)" <y X, but that might not be the case. Use the
second jump-inversion theorem with X = D(B’) to get an oracle Y with
Y’ =r X and a Y-computable copy C of B. Recall from the remark
after the proof of the theorem that X can compute an isomorphism
between C and B. Since R is relatively intrinsically X9, RC is c.e. in
D(C) =r Y’ =r X. Pushing R® through the isomorphisms, we get
that R® is c.e. in X as needed for our claim that R is r.i.c.e. in A’

Now, by Theorem I1.16, R is X$-definable in A’ with parameters.
It follows that R is ¥$-definable in A with parameters. ]

One can, of course, iterate the proof of this theorem and prove that
r.i. X0 relations are X¢ definable with parameters.

A third application is the generalization of Theorem VIII.4 from
relative computable categoricity to relative AY categoricity for n € N.
We prove the case n = 2 for simplicity. For the definitions of relative
AY categoricity and Scott families see definitions IX.6 and III.2.

THEOREM IX.14 (Ash, Knight, Manasse, Slaman [AKMS89, The-
orem 4]; Chisholm [Chi90, Theorem V.10]). Let A be a computable
structure. The following are equivalent:

(1) A is relatively AY-categorical.
(2) (A,a) has a c.e. Scott family of X formulas using a finite
tuple of parameters.

PROOF. As in the AY case, the implication from (2) to (1) follows
from Observation II1.14, where, given B =~ A, one uses the Scott family
to build a set 145 € AN x B<N with the back-and-forth property. In
this case, one needs D(B)" to enumerate /45 and then compute an
isomorphism between A and B.

The other direction is the interesting one. Assume (1). We claim
that A’ is relatively computably categorical. For this, let B’ be a copy
of A’ computable from an oracle X; We need to show there is an X-
computable isomorphism between them. By the second jump inversion
Theorem I1X.9, there is an oracle Y with Y’ =y X which computes a
copy C of B. Recall from the remark after the proof of the theorem
that X can compute an isomorphism between B and C. Since A is rel-
atively AS-categorical, there is a Y’-computable isomorphism between
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C and A. Composing these isomorphisms, we get an X-computable
isomorphism between B and A, and in particular between B’ and A’
This proves the claim that A’ is relatively computably categorical.
Now, by Theorem VIII.4, A" has a c.e. Scott family of 3-formulas
over a finite tuple of parameters. It follows that A has a c.e. Scott
family of 2§ formula with parameters. ]

IX.2. The jump jumps — or does it?

If we are going to call this operation a jump, we should ask whether
it actually jumps, or whether there is a structure that is equivalent to
its own jump. The answer is not straightforward and depends on the
notion of equivalence we use. For the strongest of the equivalences,
namely effectively bi-interpretability, the jump does jump.

LEMMA IX.15. No structure is Medvedev equivalent to its own jump.
In particular, no structure is effectively bi-interpretable with its own
Jump.

PrOOF. We know from Lemma VI.10 that if A" were Medvedev
reducible to A, we would have 3-T'h(A") <. 3-Th(A). To show that this
is not the case, we claim that 3-Th(A’) can enumerate the enumeration
jump of 3-Th(A). The enumeration jump of a set X is defined to be

J(X)® J(X)°, where J(X)={e:eec0X}

and {©, : e € N} is an effective list of the enumeration operators as in
page xvii. A standard diagonalization argument shows that X cannot
enumerate the set J(X)®.*

Let us now prove the claim that J(3-Th(A))¢ <. 3-Th(A’). For
eeN, ee J(I-Th(A))c if and only if there is no finite set D < N with
("D",e) e ©, and D < 3-Th(A). That is,

ce JAThHA) — Ak N\ - A\

DEN ieD

(D,e)eO,
where ¢7 is the ith existential 7-sentence. The right-hand side is a II§
sentence about A, and hence decided in the quantifier-free theory of

A’. We even get that J(3-Th(A))¢ <,,, F-Th(A). O

For the weaker notion of Muchnik equivalence, the answer gets more
interesting.

*If J(X)¢ were enumeration reducible to X, we would have J(X)¢ = ©X for
some e. We would then have that e € J(X)¢ <= ee OF <« ee J(X).
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THEOREM IX.16 (Puzarenko [Puz11], Montalban [Mon13c|). There
18 a structure that is Muchnik equivalent to its own jump.

The following proof, which was motivated by conversations with
Schweber and Turetsky, is new and different from the original proofs
of Puzarenko [Puzl1]| and Montalban [Mon13c|. The three proofs
build similar looking structures. Puzarenko [Puz11]’s and Montalbén
[Mon13c|’s build an ill-founded w-model A of ZF~ + “V = L” where,
for some o € ONA, (L,)* =~ A. The structure we construct here is
simpler, but only in appearance, as it is bi-interpretable with theirs.
It is how such structures are built that makes the proofs so different.
Montalbdn [Mon13c] uses the existence of 0%, and his proof is a para-
graph long once the definition of 0 is understood. Puzarenko’s proof
[Puz11] does not need assumptions beyond ZFC, but it uses admis-
sibility theory and is much more complicated. The proof we present
here also works within ZFC, but is simpler. It uses a lemma we will
not prove until [MonP2]. This lemma is a special case of results of
Morley [Mor65], Lopez-Escobar [LE66], and Barwise [Bar69] on the
Hanf numbers of infinitary logic. It states that if a II§ sentence has
a model of arbitrary large cardinality, then it has a countable model
with a non-trivial automorphism. The following proof uses ordinals
and transfinite recursion which we will review in depth in [MonP2].

Proor orF THEOREM IX.16. Consider the relational vocabulary
7 = {<} U{R;; : 1,5 € N}, where < is of course binary and R;; is
J +1l-ary. The symbols R; ; will be used to encode Kleene’s predicate K
on the initial segments of the structures: We say that a 7-structure £
is a linear jump hierarchy if (L; <p) is a linear ordering and, for every
i,jeN,be L’, and a € L, with b, <, a for all ¢ < j,

LER;(ba) < Llak e (D),

where 9012]1 is the i-th Xf 7-formula with j free variables, and £ | a is
the restriction of £ to the domain {b € L : b <1, a}. The key property
of a linear jump hierarchy is that, for every a € £, the jump of L | a is
effectively interpretable in £ using a as a parameter:!

KE'® = {¢i,b) e Nx (L } )™ : L |= R, (b, a)}.

The next step in the proof is to prove there is a linear jump hierarchy
L which has an element a such that £ =~ £ | a. This will imply that

"Furthermore, its not hard to show that (£ | a)’ is effectively bi-interpretable
with (£ I} a,a).
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the jump of L is effectively interpretable in £ with parameter a, and
in particular that £’ is Muchnik reducible to L.

It will be enough to show that there is a linear jump hierarchy
L with a non-trivial automorphism. For if there is an automorphism
mapping a to b with a <g, b, then £ a =~ £]b and we can then use L b
instead of £. The lemma we mentioned above, the one we will prove in
[MonP2], states that if a IIS sentence has models of arbitrary large size,
then it has a countable model with a non-trivial automorphism. The
class of linear jump hierarchies can be axiomatized by a II§ sentence. To
see that there are linear jump hierarchies of arbitrary size, let (L;<p)
be any ordinal you want and then define the relations R; ;(--- ,a) by
transfinite recursion on a € L. O

Even more surprising than the theorem itself is the complexity nec-
essary to prove it. We show below that a construction of a structure
that is Muchnik equivalent to its own jump must use an uncountable
object. To show this we prove that Theorem IX.16 is not provable
in second-order arithmetic. It is known that second-order arithmetic
proves exactly the same IT} sentences as ZFC without the power set
axiom (see [MS12] for a proof). Thus, Theorem IX.16 would also not
be provable in ZFC without using the power set axiom.

Let us quickly describe what second-order arithmetic is. It has two
sorts of elements, the first-order sort for numbers and the second-order
sort for sets of numbers. Lower case letters are used for number vari-
ables and upper case roman letters for second-order variables. The
vocabulary is {0,1,<, +, x,€}. The axioms are those of Peano arith-
metic plus comprehension for all formulas. That is, for each formula
() of second-order arithmetic with one free number variable z, plus
maybe other free variables that we view as parameters, we have the
axiom

CA(p)= 33X Vn (ne X < p(n)).

The axiom of induction is stated as a single axiom:
IND = VX ((0e X A¥n(ne X >n+1eX))—Vn(neX)).

THEOREM IX.17 (Montalban [Mon13c|). Second-order arithmetic
cannot prove that there exists a structure A which is Muchnik equivalent
to 1ts own jump.

Proor. We show, within second-order arithmetic, that using such
a structure A we can build a model of second-order arithmetic. This
would prove the consistency of second-order arithmetic, which, by
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Godel’s incompleteness theorem, cannot be proved within second-order
arithmetic.

The model we build is an w-model, that is, a model where the first-
order part is the standard (N; 0,1, <, +, x). We define the second-order
part of our model to be

M={XcN: Xisric.e. in A}.

Let us remark that, by Corollary 11.23, every X € M is of the form
OPA® for some c.e. operator O, and tuple p € A<N. Thus, we can
use the pair (e, py € N x A<N to name this element X of M. We need
to prove that (N, M) satisfies the axioms of second-order arithmetic.
Since the first-order part of the model is standard, we immediately
get that the axioms of Peano arithmetic, including induction, hold in
(N, M). What is left to show is that the comprehension axioms hold
n (N; M). That is, for each formula ¢(x) of second-order arithmetic

with parameters from M, we need to show that the set

C, = fneN: (N; M) | p(n)}
is r.i.c.e. in A, where n is the term 1+ 1+ --- 4+ 1 added n times. The

idea is to translate ¢ to the language of A. What we want is, for some
k € N, a computable sequence of X} sentences x,,, for n € N, such that

AEXn = (N; M) = ¢(n).
This would then imply that C, is r.i. computable in A®. We claim
that A is not only Muchnik equivalent to A/, but also to A® for all
k € N. This would imply that the set C, is r.i. computable in A and
hence belongs to M. To prove the claim, let X, be a real that computes
a copy of A. We can recursively build a sequence of reals X; for i < k
such that X! =r X;_; and X; computes a copy of A. To do this, once
we have X;_; computing a copy of A, we know it must also compute a
copy of A’, and we can get X; from the second jump-inversion theorem
(Theorem IX.9). Once we have that X computes a copy of A and

X,gk) =r Xo, we have that Xy computes the kth jump of a copy of A.
This proves the claim.
The last step is to define the sequence of x,,’s from the formula ¢(x).

Fix n € N, and replace the occurrences of z in ¢(z) by n. Replace each

second-order parameter Z € M that shows up in ¢ with Oz PAP2),

where ez and py are such that Z = @3 tpalpz), Replace each second-
order variable X by a name {ex,px) € N x A<N: That is, replace
VX ¥(X) with Vey € N Vpy € AN 4(0774PX)) Do the same for
existential second-order quantification. We are now left with no second-
order variables in our formula. Replace each first-order quantification
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Ve € N ¢(e) with /Y\, .y ¢(m). Replace each first-order quantification
de € N ¢(e) with \X/,,cy ¥(m). We are now left with no variables at
all in our formula. Replace each atomic arithmetic sub-formula, which
by now looks something like n + m < k, with its truth value T or

L. Finally, replace each sub-formula of the form n € QPP by the

equivalent ¥$ formula
\X/ /\ r5(P)

Dcg,N  keD
("D ,n)eO,

(Recall that enumerator operators were defined so that n € @Y <=
3D €m N (('D",nye © A D = Y), and that j ; is the k-th 3-formula
with arity j.) We have eliminated all traces of arithmetic and ended
up with a 7-formula x,, that is equivalent to the original ¢(n). It is not
hard to see that the formula y,, has finite depth in terms of alternations
of quantifiers. This depth k£ depends only on the quantifiers that show
up in ¢ and not on n. ]

Generalizing this to higher orders, Montalban [Mon13c| proved
that the w-jump of any presentation of A computes a countably coded
w-model of higher-order arithmetic, i.e., with a sort for n-th order sets
for each n € N. This implies that at least w many iterations of the
power-set axiom are needed to prove such a structure A exists. Both,
our proof and Puzarenko’s proof, use w¢'¥ iterations of the power-set
axiom. It is still unknown exactly how many iterates of the power-set
axiom are needed to prove Theorem IX.16.



CHAPTER X

Y-small classes

An 3-type p(Z) is said to be sharply realized in a class K of structures
if there exists a tuple a in some structure A € K such that p(z) =
F-tpala).”

As we saw in previous chapters, existential types capture important
computability theoretic information. There are continuum many exis-
tential types realized among all 7-structures. If a class of 7-structures
K is rich enough, there will also be continuum many existential types
sharply realized in K. If, on the contrary, the number of I-types is
less than continuum, then something interesting must be going on.
Descriptive set theoretic facts (which we will see in [MonP2]) imply
that on definable classes of structures, the number of 3-types that are
sharply realized is either countable or continuum, but never in be-
tween.! Classes for which this number is countable have particularly
nice computability theoretic properties.

DEFINITION X.1 ([Mond]). A class K of structures is 3-small if
there are only countably many J-types sharply realized among all the
structures in K.

A simple observation is that ¥-small classes can also be defined as
the ones sharply realizing countably many V-types.*

The first one to analyze >-small classes was, indirectly, Richter with
her analysis of the computable extendability condition (Definition V.2).

OBSERVATION X.2. A class is »-small if and only if there is an
X e 2N relative to which all structures in the class have the computable
embeddability condition.?

*A type p(Z) is realized by a tuple a in a structure A if @ satisfies all its formulas.
Thus, if p(Z) is an 3-type, p(Z) is realized by a if and only if p(z) < I-tpa(a).

'If a class is defined as the set of models of an infinitary sentence, the set of 3-
types sharply realized in it is ¥}, and hence its size is either countable or continuum
by Suslin’s theorem [Sus17].

'This is because tuples with the same 3-type have the same V-type: V-tp4(a) =
{—p: pis an I-formula, p ¢ I-tp4(a)}.

SIf all structures in K have the computable embeddability condition relative
to X, it is X-small because there are only countably many X-computable sets.

159
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If K is a natural example of a »-small class, this oracle X always
turns out to be 0, and all structures in K have the computable embed-
dability condition. Thus, all structures in K would then have all the
properties we proved in Section V.1, for instance that they never have
non-trivial enumeration degree, and that their degree spectra contain
c.e.-minimal pairs. Richter [Ric81] showed that all linear orderings and
all trees viewed as orderings have the computable embeddability con-
dition. We will show that these classes of structures are ¥-small using
a general technique inspired by Richter’s proofs. Our technique will
also show that Boolean algebras, adjacency linear orderings (Knight
[Kni86]), and equivalence structures are also X-small. There are other
techniques used to show classes are Y-small: Trivially, if a class K has
only countably many structures, it is >-small — algebraically closed
fields and vectors spaces over a fixed field are thus Y-small. Differ-
entially closed fields of characteristic 0 are Y-small because they are
w-stable. All the iterates of the jump of Boolean algebras are also -
small (Harris and Montalban [HM12]). Abelian p-groups are another
interesting example (Khisamiev [Khi04]).

ExaMPLE X.3. Here is an example of a class that is not X-small:
torsion free abelian groups. For each set X of prime numbers, consider
the subgroup of (Q; +) with domain

{r/q:reZ, qe N satisfying that all prime factors of ¢ are in X}.

The 3-type of x = 1 contains the formulas (3z) p- z = z if and only if
p € X, where p - z is shorthand for z added to itself p times. Different
sets or prime numbers give rise to different 3-types. Thus, we have
continuum many 3-types among all the torsion-free abelian groups.

X.1. Infinitary II; complete relations

Understanding what the r.i.c.e. relations on a structure look like
often gives us key insights into the structure’s computational proper-
ties. For instance, in the case of linear ordering, we know that Adj @0’
is a r..c.e.-complete relation, a fact that has been extremely helpful
in proving results about linear orderings. We know of other classes of
structures where the r.i.c.e.-complete relations can also be easily under-
stood. But there are also many other classes for which we know of no
such nice r.i.c.e.-complete relation. We want to understand why some
classes have nice r.i.c.e.-complete relations and some do not. For that,

Conversely, if K is Y-small, let X be an oracle that computes all 3-types sharply
realized in K.



X.1. INFINITARY II; COMPLETE RELATIONS 161

we need to find a way to formalize what we mean by ‘nice.” Every struc-
ture A has a r.i.c.e.-complete relation, namely K# (Definition 11.30). In
contrast to Adjc @ 0’, the relation K4 is much harder to visualize. One
problem with Kleene’s relation KA is that it is not necessarily struc-
turally r.i.c.e. complete (Definition 11.41), i.e., it is not always r.i.c.e.-
complete relative to all oracles. We will see below that every structure
A has a structurally r.i.c.e. complete relation, and structurally r.i.c.e.
complete relations tend to provide the structural information we are
looking for. These structurally r.i.c.e. complete relations have a disad-
vantage over relations like Adj or KA: They may be defined by different
Yi* formulas on different structures. If we are working within a class,
we would like to have a structurally r.i.c.e. complete relation that is
defined the same way on all structures in the class. The question now
becomes: On which classes of structures do we have relations that are
uniformly definable and structurally r.i.c.e.-complete? The answer is
— as you might have guessed — Y-small classes.

DEFINITION X.4. A sequence of IIi* formulas {¢;(7;) : i € N} is
13" -complete on a class K of structures if every II}* formula v(Z) is
equivalent to a 3i* formula over 7 U {p;(Z;) : i € N}, that is, there
exists a Xi* formula x (%) over the vocabulary 7/ = 7 U {R; : i € N}
where R;(Z;) is interpreted as ¢;(Z;), such that Vz (x(Z) < ¥(z)) holds
on all structures in K.

If you negate all formulas in a IT}*-complete sequence of formulas,
you get a Li*-complete sequence of formulas. For a structure A € K,
a Yi"-complete sequence of formulas defines a structurally u.r.i.c.e.-
complete relation on A: A relation R is structurally w.r.i.c.e. if it is
ur.i.ce. in (A, X) for some X € 2 — this is equivalent to R being
Yi*-definable without parameters. R is structurally u.r.i.c.e.complete
if also, for every other structurally u.r.i.c.e. relation Q < N x A<N, Q
is u.r.i. computable in (A, R,Y) for some Y € 2% — this is equivalent
to @ being Aj"-definable in (A, R) without parameters. (C.f. Section
[1.2.3, where we introduced the non-uniform versions.)

LEMMA X.5. If K is X-small, the set of formulas of the form /X\ p,
where p is a Y-type sharply realized in K, is a TIi*-complete sequence of
formulas.9

PROOF. Enumerate the V-types sharply realized in K as pg, p1, ...
For every II* formula ¢ (), let

I, = {i e N : all the conjuncts of ¢ are in p;}.

I/X\ p stands for X\ (z)ep X(7)-
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We claim that

i€l
holds on all structures in K. This would show that 1) is equivalent to a
Y3® formula over {/X\ pi : i € N}. As for the proof of the claim: clearly,
if i € Iy, then Y\ p; = . Thus \X/ie[w M\ pi = . Conversely, if v
holds of some tuple @ in some A € K, let p; be the V-type of a in A.
Then all conjuncts in ¢ are part of p;, and hence ¢ € I, and a satisfies

\X/ielw /X\pl ]

COROLLARY X.6. On every structure A, there is a structurally
r.i.c.e.-complete sequence of formulas.

PROOF. Just take the class K = {A}. O

In all natural examples of Y-small classes, not only are all 3-types
computable, they are uniformly computable. In that case, the struc-
turally r.i.c.e.-complete sequence of formulas also defines a r.i.c.e.-complete
relation.

COROLLARY X.7. Let K be a X-small class for which there is a
computable listing {p; : i € N} of all the V-types sharply realized in K.
Then, for every A € K, the relation

(Gay: A - Mn@) o
is u.r.i.c.e. complete in A.

PROOF. The relation {(i,a) : A = — M\ pi(a)} is uric.e. be-
cause the formulas — /X\ p;(Z) are uniformly X§. To see they are
u.r.i.c.e. complete once we add 0', we refer to the proof of Lemma X.5
above. There, it is shown that if ¢ is a II{ formula, it is equivalent to
Wier, M\ pi(Z). Notice that this formula is S5 over { A\ p; : i € N},

as I is I1Y, and hence computable in (/. ]

Let us now prove the reversal: If a IIi*-complete sequence of for-
mulas exists, then the class is X-small.

DEFINITION X.8. Given a formula ¢(Z), the V-type generated by 1)
over K is the set of all V-formulas ¢(Z) that are implied by ¢ (Z) on all
structures in K.

IA computable listing of V-types is coded by a computable set C = N? such
that (i,j) € C if and only if the jth V-formula belongs to p;.
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LEMMA X.9. Let {¢;(Z;) : i € N} be a IIi*-complete sequence of
formulas over a class K. Then every V-type sharply realized in K is
generated by a 3-formula over T U {p;(Z;) : i € N}.

PROOF. Let p be a V-type sharply realized in K. By the complete-
ness of {p;(%;) : i € N}, X\ p must be equivalent to a ¥ formula y
over 7 U {©;(Z;) : i € N}. We claim that p is generated by one of the
disjuncts of x. Consider a tuple a with V-type p in some structure
A € K. Then one of the disjuncts of xy must be true of a — call it ¥.
On the one hand, ¢ implies x, and y implies /X\ p. On the other hand,
1 cannot imply any other V-formula, as a satisfies ¢ and no V-formula
outside of p. Thus v generates p. ]

COROLLARY X.10. A class K of structures is ¥-small if and only
if there exists a sequence of TIT™ formulas that is TI1*-complete on K.

Proor. If K is ¥-small, we showed that the formulas formed as the
conjunctions of the V-types form a IT}*-complete sequence of formulas
in Lemma X.5. The other direction follows from the previous lemma,
as there are only countably many finitary 3-formulas over a countable
vocabulary. ]

This corollary answers our original question about which classes of
structures have nice r.i.c.e.-complete relations — somewhat. It def-
initely proves that if a class is not ¥-small, it does not have a nice
r.i.c.e.-complete relation. However, in the case when the class is Y-
small and we do have a II}*-complete sequence of formulas, it might
still be a bit of a stretch to say that the formulas we get from Lemma
X.5 are nice. In practice, they usually are. Let us look at linear order-
ings. A V-type p(Z) is determined by a permutation of |Z| that describes
the order among the variables, and a tuple of numbers saying, for each
pair of variables z;, x;, that there are no more than so many elements
in between them, to their left, and to their right. These are nice enough
relations. As we know, the co-adjacency relation alone is already struc-
turally r.i.c.e. complete. This is because all these relations defined from
V-types are r.i. computable from Adj.

EXERCISE X.11. Consider the II§-definable relation

(.o A= M\ pi@),
as in Corollary X.7, for the class of linear orderings. Prove that it is
r.i. computably equivalent to the adjacency relation.

EXERCISE X.12. Consider the II§-definable relation {(i,a) : A =
- M\ pi(a)}, as in Corollary X.7, for the class of Boolean algebras.
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Prove that it is r.i. computably equivalent to the atom relation. (An
element in a Boolean algebra is an atom if it is non-zero and has no
elements below it other than zero. Recall that in Exercise 11.46 we
showed that the atom-relation is structurally complete.)

In these two examples, we have r.i.c.e. complete relations of arity
two and one, respectively. This is quite nice, but not very common.
We do not know much about which structures have structurally r.i.c.e.
complete relations of bounded arity. We know this is the case for adja-
cency linear orders [Mon12, Lemma 7.1], Boolean algebras and their
jumps [HM12], and equivalence structures [Mon12, Section 7.4]. On
the other hand, it follows from Exercise 11.47 that the infinite dimen-
sion Q-vector space does not have a r.i.c.e. complete relation of bounded
arity (i.e., a subset of N x ASF for k e N).

X.2. A sufficient condition

In this section, we give a sufficient condition for a class of structures
to be X-small. This condition has a stronger consequence than just -
smallness: It implies that every infinitary II; formula is equivalent to
a finitary V-formula. This implies that there are countably many V-
types, as the conjunction of all the formulas in a V-type would then be
equivalent to a single V-formula, and there are only countably many
V-formulas. Despite not being necessary, this is still quite a useful
condition, as it holds in many of the examples of ¥-small classes we
know.

Throughout this section, let 7 be a finite vocabulary and let K be
a uniformly locally finite** class of 7-structures. Let K/™ be the set of
all finite substructures of structures in K. Given a set A, define 74 by
augmenting the vocabulary 7 with new constant symbols, one for each
element of A. A 74-structure is thus determined by a 7-structure B
and amap f: A — B describing the assignments of the new constants.
Given a finite structure A € K/, let K4 be the set of 74-structures
that consists of a 7-structure B in K together with a 7-embedding from
A to B. Let Kﬁ" be the set of finite 74-substructures of structures in

** A is locally finite if every finitely generated substructure of a structure in A
is finite. K is uniformly locally finite if, for every n € N, there exists an m € N
such that every substructure of a structure in K generated by n elements has size
at most m. For a finite vocabulary, this implies that the number of quantifier-free
types on a fixed tuple of variables is finite.

MK/ was defined in II1.25 to be the set of diagrams of the finite 7). -
substructures of the structures in K. That is still the formal definition, but in
this section, it is easier to visualize K" as a set of structures. Also, since we
assume 7 is finite, 71.|-structures are just 7-structures.
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K4. Kﬁ” is essentially a set of pairs {f, B), where B € K/™ and f is a
T-embedding from A into B.
Before stating our theorem, we need one more definition.

DEFINITION X.13. A partial ordering is well-quasi-ordered if it has
no infinite descending sequences and no infinite anti-chains.

It is not hard to show that a partial ordering is well-quasi-ordered
if and only if every subset X has a finite subset F' < X such that
Ve e X Jy e F (y < x). Such an F can be chosen to be an anti-
chain—the anti-chain of the minimal elements of X. It is also not
hard to show that the product of well-quasi-orderings is a well-quasi-
ordering. Then, for instance, we get Dickson’s lemma, which says
that N* is well-quasi-ordered, with the ordering where a tuple is be-
low another if each coordinate of the first tuple is below the corre-
sponding one of the second. Here are two well-known results about
well-quasi-orderings we will use: One is Higman’s lemma [Hig52],
which says that N<N is well-quasi-ordered under the embeddability par-
tial ordering: {(xq,...,xxy < {Yo,...,yey if there is an increasing map
f:40,....k} — {0,...., £} such that, for all i < k, x; < yy;). The other
is Kurskal’s theorem [Kru60], which says that the set of finite trees is
well-quasi-ordered by embeddability even if we require the embeddings
to preserve meets (i.e., greatest lower bounds). Here, by embeddability,
we mean as partial orderings, that is, a tree is below another if there
is a one-to-one, order-preserving map which preserves meets.

THEOREM X.14. Let K be a uniformly locally finite class of struc-
tures over a finite vocabulary. Suppose that, for every finite substruc-
ture A € K™, KJZ" 18 well-quasi-ordered under the embeddability re-
lation. Then, in K, every X1 formula is equivalent to a finitary 3-
formula.

Recall that this implies that K is ¥-small.

PRrROOF. Consider a Xi* formula ¢(Z). Since K is a uniformly lo-
cally finite class over a finite vocabulary, there are only finitely many
quantifier-free types on the variables z: Call them ¢o(Z), ..., qx(Z). Since
Y = V,o,(¥ A A @), it is enough to show that each of the formulas
(Z) A N\ qi(T) for i < k is equivalent to a finitary 3-formula. Fix
i < k and let A € K™ be the finite substructure generated by a tuple
a that satisfies the type ¢;(Z). Let S < Kﬁn be the set of 74-structures
B that satisfy ¢(a). S is closed upwards under inclusion. Since KZ"
is a well-quasi-ordering, there is a finite subset S of minimal elements
Fo, ..., Fr. Thus, for a structure B € Kﬁ", we have that B € S if and
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only if there is a 74-embedding from one of the F;’s into B. Now, for
a structure C € K, a tuple ¢ € Ol satisfies 1)(7) A A ¢;(Z) if and only
if there is an embedding of A into C mapping a to ¢ so that one of
the F;’s T4-embeds into C4, where C4 is, of course, the 74-structure
corresponding to C and the embedding from A to C. This is equivalent
to saying that there exists a tuple §j € C=N that, together with &, has
the atomic diagram of F;. Since K is uniformly locally finite and the
vocabulary is finite, this can be expressed by a finitary 3-formula:

\/ 37 D(z,9) = D(Fy).

i<k
This 3-formula is equivalent to ¥(Z) A /\ ¢:(T). O

Let us remark that Kﬁ" is always well-founded: These structures are
finite, so we could never have an infinite descending sequence. Thus,
stating that Kﬁ" is well-quasi-ordered is equivalent to saying that it
contains no anti-chains.

EXERCISE X.15. Let K be a uniformly locally finite class of struc-
tures over a finite vocabulary. Suppose that K is the class of models of
a TI}* sentence. Prove that the theorem above reverses. That is, that
if every ITi* formula is equivalent to a finitary V-formula, then Kﬁ” is
is well-quasi-ordered for every finite substructure A € K/ Hint in
footnote.*

LEMMA X.16. Let LO be the class of all linear orderings. Then,
for every finite linear ordering L, L@ﬁ” 1s well-quasi-ordered by embed-
dability.

This gives a new angle on the proof that LO is X-small.

Proor. This is essentially what was happening in Claim 11.43.2.

Fix a finite linear ordering £. Note that each structure in L@JZ” can
be described by a tuple in NII*! saying how many elements there are
between each pair of consecutive elements of £, how many there are to
the left of the first element of £, and how many there are to the right
of the last. It is not hard to see that a structure from ]L@’Z" embeds
in another if and only if the tuple corresponding to the first struc-
ture is below the tuple for the latter. When we say ‘below,” we mean
coordinate-wise; That is, for each i < |L£|, the i-th entry of the first
tuple is less than or equal to the i-th element of the second. Dickson’s

HUse that K < K and that finitary 3-formulas can be expressed in terms of
embedding structures from K",
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lemma, which follows from the closure of well-quasi-orders under prod-
ucts, states that N¥+1 is well-quasi-ordered under this coordinate-wise
ordering. ]

Let AILO be the class of adjacency liner orderings, which consists of
linear orderings together with a relation Adj for adjacency. (Recall that
Adj consists not only of the usual binary adjacency relation Adj, but

also includes the relations for first and last elements — see Definition
11.44.)

LEMMA X.17. For every finite £ € ALO™, AIL@E” 15 well-quasi-
ordered by embeddability.

This shows that ALQO is ¥-small [Kni86]. Recall that ALO &
is effectively bi-interpretable with the jump of LO. Notice that the
finite structures £ € ALO™ need not be adjacency linear orderings
themselves: There might be consecutive elements a <, b € L for which

AdjL does not hold because L is a subset of a larger linear ordering
where a and b are not adjacent. The structures in ALO™ satisfy that

if Adjﬁ(a, b), then a and b are consecutive, but not vice versa.

PROOF. For this proof, we need to use Higman’s theorem that N<N
is well-quasi-ordered under the following partial ordering:

<$0, BES) xk> < <y07 ) Z/(Z>
—  3f:{0,...k} = {0, ..., ¢} increasing, Vi < k (z; < yy())-

We will show that the well-quasi-orderness of AL@Z" can be reduced
to the well-quasi-orderness of a product of orderings of the form N and
N=N. Recall that well-quasi-orderness is preserved under products.

A set of elements of a finite adjacency linear ordering is said to
be an adjacency chain if it is a maximal sequence of Adj-adjacent el-
ements. Every A € ALO™ can be partitioned into adjacency chains.
Let {a,a4,74) € N x NN x N be the tuple of sizes of the adjacency
chains in A, ordered from left to right, where [ 4 is the size of the adja-
cency chain of —oo, 1 4 is the size of the adjacency chain of +c0, and a4
is the tuple of non-zero sizes of the adjacency chains in between. That
is, 4 is the size of the adjacency chain containing the element f satis-
fying Adj(—oo, f) if there is any, and 4 = 0 if there is no such element.
Same with r4 and 4o0. It is not hard to see that if we have 4 < Iz,
ry < rg, and a4 < ag (the latter as in the Higman’s ordering), then
A embeds into B preserving Adj. This is not an if-and-only-if equiv-
alence. But this implication is enough to conclude that ALO™ is a
well-quasi-ordering: Because if {4, : i € N} were an anti-chain of finite
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adjacency linear orderings, then {{l4,,a4;,74,) : © € N} would be an
anti-chain in the well-quasi-ordering N x N<N x N (where N x N<N x N
is ordered by the product ordering, using Higman’s ordering on N<N).
We already know that ALOQ/™ has no infinite descending sequences, as
its structures are all finite.

Now, fix a finite linear ordering £ = {¢; <, -+ <, {x}. A structure
in A]L@’Z" is determined by the intervals between consecutive elements
of £, by the interval to the left of /1, and by the interval to the right
of ¢;. Thus, AL@Q” is, in a sense, isomorphic to the k + 1-cartesian
power of ALQ". Assign to each A € A]L(O)’Z" a tuple

— — — <N k+1
<l07a07r07 l17a17r17"'7lk7ak7rk>e (NXN XN) )

where {l;, a;, ;) is the tuple of sizes of adjacency chains corresponding
to the interval in A between ¢; and /¢;,; as in the first part of the
proof. Of course, {ly, ag, o) corresponds to the interval to the left of
¢y and (lg, ay, i) corresponds to the interval to the right of ¢;. Now,
given A, B € A]L(D)’Z", if the tuple corresponding to A is below that of
B in the product ordering, where the N<’s are ordered according to
Higman’s ordering, then A embeds into B. As in the argument for
ALQ'™, we can then deduce that AL@@" is well-quasi-ordered using
that well-quasi-orderness is preserved by products. ]

EXERCISE X.18. Let BA be the class of Boolean algebras. Prove
that for every finite Boolean algebra B, BA’;” is well-quasi-ordered by
embeddability.

Harris and Montalban [HM12] proved that all the finite jumps
BA™ of the class of Boolean algebras are also Y-small.

DEeFINITION X.19. Let T be the class trees viewed as partial order-
ings. That is, T is the class of partial orderings (T’; <,r) which have
a least element denoted r and satisfy that the set of predecessors of
every t € T, namely {s € t : s < t}, is finite and linearly ordered.

LEMMA X.20. For every finite tree T, T?—" 1s well-quasi-ordered by
embeddability.

It follows that T is ¥-small [Ric81].

PROOF. Kruskal’s lemma [Kru60] states that T/ is well-quasi-
ordered by embeddability even if we require the embeddings to preserve
meets (i.e., greatest lower bounds). We now need to prove that TS
is well-quasi-ordered by embeddability for any given finite tree 7. We
prove this by induction on the size of 7. In the case when 7T contains
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just one element, namely the root, ']I'ﬁr" is exactly the same as T/
Suppose that now 7 contains more than just the root. If 7 has subtrees
T1, ..., T} coming out of the root, then Tﬁr" is isomorphic to T/ x ’JI‘]%L X

- X T%L : To see this, notice that every tree A in Tﬁrn can be split
into k£ + 1 trees Ay, ...., A; as follows. Let Ay consist of all the nodes
in A whose only predecessor in 7 is the root, and let A; be the set
of nodes in A which have a predecessor in 7; other than the root. It
is not hard to see that for A, B € T/, A < B if and only if A; < B;j
for each 7 < k. Since well-quasi-orderness is preserved by products,
and we are assuming by the induction hypothesis that each ij? is well-

quasi-ordered, we get that TJ;” is well-quasi-ordered too. O

EXERCISE X.21. Prove that Lemma X.20 also holds for trees as
graphs of finite height. Hint in footnote.'

EXERCISE X.22. Prove that the class of all trees viewed as graphs
is not Y-small. Hint in footnote.*

X.3. The canonical structural jump

As we argued in Section X.1, a class of structures has a nice r.i.c.e.-
complete relation if and only if it is ¥-small. What we actually proved
is that a class has a IIi*-complete sequence of formulas if and only if
it is 3-small, and that these formulas are given by the conjunctions of
the V-types sharply realized in the class. That these formulas are nice
is arguable. Nice or not, what we do get is a canonical way to define a
structural jump. Structurally r.i.c.e. complete relations are unique up
to structurally r.i. computability, but not up to plain r.i. computabil-
ity. So, in principle, it is unclear what the canonical structural jump
of a structure should be. For instance, we want the structural jump
of a linear ordering to be the linear ordering together with the adja-
cency relation, and the structural jump of a Boolean algebra to be the
Boolean algebra together with the atom relation, without having to
add a relation for 0’ or anything else.

DerFINITION X.23. Let K be a X-small class of 7-structures and
{p; : i € N} a computable listing of the V-types sharply realized in K.
We define the canonical structural jump of a structure A € K by adding
to A the relations {a € A<N: N\ p;(a)} for i € N. We denote this new
structure Ay, and we use K(;) to denote { Ay : A € K}. We use 7(1) to
denote the new vocabulary, defined by adding to 7 relations symbols

"Prove it for trees of height bounded by a fixed k.
¥Think of Y-shaped finite trees.
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/X\pi(-) for i € N. The finite approximations to 7y are defined by
Ty, =7 U {M\pi() 1 < s}

If we add 0" as a relation to A, we get a structure effectively bi-
interpretable with A’. It follows from Exercise X.11 that, for a linear
ordering £, the class LO(y is effectively bi-interpretable with ALQ,
the class of adjacency linear orderings. One can also show that, for
Boolean algebras, the class BA(y) is effectively bi-interpretable with
ABA, the class of Boolean algebras with an added relation that distin-
guishes atoms. We think of the canonical structural jump as a structure
up to effective bi-interpretability. Thus, we think of adjacency linear
orderings as the canonical structural jumps of linear orderings, and
atom Boolean algebras as the canonical structural jumps of Boolean
algebras.

Notice that the definition of A(;) depends on the enumeration of
the V-types sharply realized in K. In most natural >-small classes,
there is a natural such enumeration that is unique up to a computable
re-ordering, so this is not usually an issue. For such natural classes,

another effectiveness property we always get is that K’g; is computable.

Recall that K’(?) is the set of diagrams of the finite 7(;).-substructures of
the structures in K, and recall that a 7(;).|-structure is a 7(;),-structure
where s is the size of the structure.

DEFINITION X.24. A Y-small class K is effectively 3i-small if there

is a computable listing of the V-types sharply realized in K, and Ku)
is computable.

Of course, all the natural ¥-small classes we know are effectively
Y-small. Proving that this is so sometimes takes a bit of work, as
it requires understanding the space of V-types and the compatibilities
between the different types. For instance, the class of differentially
closed fields of characteristic zero, denoted DCIFy, is Y-small just be-
cause there are countably many first-order types. Understanding the
structure of the V-types requires some model theory, as, for instance, it
requires proving that DCIF, has quantifier elimination. It can then be
shown that the II§-relations R, (%, y1, ...., Ym), which say that z is not
a root of any differential polynomial of degree n over Q{y, ..., Y, for
m € N and n € Nu {w}, are enough to define the canonical structural
jump of DCIF,.

Let us observe that if K is effectively ¥-small and II3, then Ky is
also II5. This is because the definitions of the new symbols in 7(;) are
I15.
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X.4. The low property

Downey and Jockusch [DJ94] proved that Boolean algebras have
the low property, that is, that every low Boolean algebra has a com-
putable copy (Theorem X.44). Jockusch and Soare [JS91] showed this
is not the case for linear orderings. This property interests computabil-
ity theorists for two reasons. On the one hand, understanding when
structures have computable copies is a general theme of computable
structure theory, and these results give us useful information about it.
On the other hand, as we will see below in Lemma X.26, the low prop-
erty implies that the degree spectrum of the structure is determined
by the degree spectrum of its jump. Thus, in a sense, in terms of the
information encoded in the isomorphism type of a structure, the low
property says that no information is lost when taking a jump.

DEFINITION X.25. A class K has the low property if, for every
X € 2N, every structure from K that has a copy that is low over X also
has a copy that is computable in X.

This is an interesting property of the degree spectra of all structures
in K. It implies that the degree spectra of the structures in K are
determined by the spectra of their jumps:

LEMMA X.26. A class K has the low property if and only if, for
every structure A € K,

DgSp(A) = {X e 2V : X" e DgSp(A')}.

PRroOF. For the left-to-right direction, assume that K has the low
property. First, let us observe that the inclusion

DgSp(A) < {X e 2V: X" e DgSp(A')}

always holds, as whenever X computes a copy of A, X’ computes a
copy of A’. For the other inclusion, we need to use the low property.
If X’ computes a copy of A’, by the Second Jump Inversion Theorem
IX.9, A has a copy that is low over X. Then, by the low property, X
computes a copy of A.

For the right-to-left direction, suppose that A has a copy that is low
over X. Then A’ has a copy computable in X', and by our assumption
regarding spectra, X € DgSp(A). Thus X computes a copy of A. []

One of the most interesting examples of a class with the low prop-
erty is differentially closed fields of characteristic zero. This was re-
cently proved by Marker and Miller [MM17]. They also showed that
the jump of DCF is universal for degree spectrum, that is, every de-
gree spectrum of a structure that computably codes 0’ is equal to the
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degree spectrum of the jump of a differentially closed field. This gives
a full description of the degree spectra of differentially closed fields of
characteristic zero: They are the jump inversions of all the possible
degree spectra.

As we mentioned above, the first example of a class with the low
property was the class of Boolean algebras [DJ94]. The following year,
Thurber [Thu95] showed that Boolean algebras have the lows property,
that is, that every low, Boolean algebra has a computable copy. This
is equivalent to stating that BA’ has the low property. A few years
later, Knight and Stob showed that Boolean algebras have the lowy
property, that is, that every low, Boolean algebra has a computable
copy, or, equivalently, that BA"” has the low property. It is not known
if Boolean algebras have the low,, property for all n € N, or even if they
have the lows property. Harris and Montalban [HM] showed that the
lows problem for Boolean algebras is qualitatively more difficult that
the previous ones: While for n = 1,2, 3,4, every low,, Boolean algebra
is 0*2)_-isomorphic to a computable one, they built a lows Boolean
algebra not 0(M-isomorphic to any computable one.

As we will see in [MonP2], the class of ordinals satisfies much
more than the low, property for all n € N: Every arithmetic (even
hyperarithmetic) ordinal has a computable copy. We will see, also in
[MonP2], that the same behavior would occur on counterexamples to
Vaught’s conjecture — if there are any.

A sharper example is the class of linear orderings with finitely many
descending sequences.® Kach and Montalbdn [KM] showed that they
have the low,, property for all n € N, but not much more: They built
a AY intermediate linear ordering with exactly one descending cut and
with no computable copy.

The next theorem shows that classes with the low property are
necessarily Y-small. Not all »-small classes have the low property
though. We will try to characterize the ones that do later. For now,
we need the following technical lemma, whose proof uses the techniques
from Chapter VII.

LEMMA X.27. If A € N is not c.e., there is a G € 2V such that
G =7 A, but A is still not c.e. in G.

PROOF. To get A’ <r G, we will build G € 2Y*N 5o that lim; G (n, t)
A'(n) for all n € N. At each stage s, we define an approximation
G[s] € 28N for some k, € N. The approximations G[s] will be com-
patible throughout the construction: That is, G[s] = G[s + 1] | ks x N

By linear orderings with finitely many descending sequences, we mean linear
orderings with finitely many cuts which are limits from the right.
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for all s € N. This will allow us to define G at the end of the con-
struction as the union of the G[s]’s so that G[s] = G | ks x N. Note
that, even if G[s] is a infinite binary string in 2%*N it can be de-
scribed using only finitely much information, as it must satisfy that
lim; G[s](n,t) = A'(n) for all n < k.
At stage 0, let ko = 0 and G[0] = &. At each stage s + 1 = e, we
define G[s + 1] as to ensure the satisfaction of one more requirement:
Requirement R,: A # W,
Ask if there exists a finite string g € 2<"*<N and an n € N such that 7 is
compatible with G[s], n € W4, but n ¢ A. If there is one, let G[s+1] be
an extension of G[s] compatible with g satisfying lim; G[s + 1](n,t) =
A’(n) for all n < ky,,. This ensures that n € WY\ A, and in particular
that A # WY, If there are no such ¢’s, we define G[s + 1] = G[s] and
we claim that R, is automatically satisfied. This is because the set of
n such that there exists a ¢ compatible with G[s] for which n € W2 is
a c.e. set, and hence it is different from A. If there is no such n outside
A, it means that that set must be properly included in A. It follows
that WY is properly included in A for any extension G of G[s], and in
particular that A # W&, ]

THEOREM X.28. Let K be a II3* class. If K has the low property,
then K us Y-small.

PROOF. Suppose K is not ¥-small. Let Z be such that K" is
Z-computable and the ITi* sentence defining K is I1%?. Since only
countably many sets are c.e. in Z, but uncountably many 3-types are
sharply realized in K, one of those 3-types must be not c.e. in Z — call
it ¢. Let G e 2N, G =7 Z, be such that G’ =1 (¢® Z)' but ¢ is still not
c.e. in G — such a G is given by the previous lemma relativized to Z.
Now, using Corollary I11.30, we get a structure A in K computable in
q¢@® Z and with a tuple having type ¢.9 That structure has no copies
computable in G, as ¢ is c.e.-coded in the structure and ¢ is not c.e. in
G. Since (¢® Z) <r G', A’ has a copy computable form G’. Thus, by
Lemma X.26, we get that K does not have the low property. O

X.5. Listable classes

DEFINITION X.29. A class of infinite structures K is listable if there
is an operator ® such that, for every X e 2V, ®X is a sequence of w-
presentations of structures in K listing all X-computable structures in
the class. Repetitions are allowed.

TCorollary I11.30 uses 3-theories instead of 3-types, so we have to add constants
to the language and turn the type into a theory.
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Again, even if this definition is new as is, it is not a new idea.
Nurtazin [Nur74|, four decades ago, considered a similar notion, but
it allowed the lists to have (Cw)-presentations of finite structures too.
She gave a sufficient condition for a class of structures to be listable
in her sense that includes the classes of linear orderings, Boolean alge-
bras, equivalence structures, Abelian p-groups, and algebraic fields of
characteristic p. Allowing for finite structures makes a huge difference
though. Even if we were to allow finite structures in our definition,
for our purposes we would have to use (Ew)-presentations instead of
(Cw)-presentations, the difference not being minor at all: In the case
of (Ew)-presentations, one is forced to eventually state that there are
no more elements in the domain, while with (Cw)-presentations, one
can always extend the domain later.

Goncharov and Knight [GN02, Section 5] considered a similar idea
as their “third approach” to defining what it means to have a com-
putable characterization for a class. Their notion is not the same as
ours, as they allow their listing of computable structures to be hyper-
arithmetic. An interesting variation we should mention is described in
[MonP2]: A class is hyperarithmetically listable if there is a hyperarith-
metic listing of all its hyperarithmetic structures — we will see that,
on a cone, this is equivalent to being a counterexample to Vaught’s
conjecture.

The objective of the rest of the section is to show that, under some
effectiveness conditions, a Y-small class has the low property if and
only if its jump is listable.

THEOREM X.30. Let K be an effectively ¥-small, 11§ class of infinite
structures. If K has the low property, Ky is listable relative to (/.

PrOOF. Let X € 2N be given. We need to build a list of all (X @&
0')-computable structures in Ky in an (X @ 0’)-computably uniform
way. Let Y be obtained from the Friedberg jump inversion theorem
(Theorem IV.6) so that Y’ =r X @ (. Since K has the low property,
we have that for a structure A € K, A’ has an X-computable copy if
and only if A has a Y computable copy. Thus, what we need is a listing
of all the structures A’ for A € K with a Y-computable copy.

For every Y-computable w-presentation A € K, we can build a Y-
computable approximation A[0] < A[1] < --- of A by finite structures
in K™ in a way that, at each step, we satisfy more and more of the
II§ sentence defining K, as we did in Lemma II1.29. Let us call such
sequences witnessed approximations. Such a procedure is uniform: If
we are given a Y-partial computable function ® that outputs the
diagram of a structure in K, we can uniformly build such a witnessed
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approximation A.[0] € A.[1] < --- to a structure A.. We do it in a
way that if ®) turns out to be either not total or not the diagram of
a structure in K, then there will be a step s in the sequence at which
A.[s] is undefined, while at all the previous stages t, A.[t] is defined
and satisfies () from Lemma I11.29.

For each e, we will build a structure B, € Ky so that if @gf out-
puts the diagram of a structure A, € K, then B, = A.. If the eth
partial computable function with domain Y is either not total or not
the diagram of a structure in K, we allow B, to be any structure in

K(). Fix e — the rest of this construction is uniform in e. At stage s,
n

we define B.[s] to be a finite structure in Kj(ﬁl) which properly extends
B.[s — 1] and is a 7(1),-expansion of A.[s] as follows. We need to add
to A.[s] interpretations for the new symbols of 7(y), that are not in 7.
These new symbols are given by the conjunctions of V-types. Given
such a type p;(Z), deciding if it holds in A, on a tuple @ is clearly II¢
in D(A,) = ®) and hence computable in Y’ =r X @ (/. However, we
need to be a bit careful, as ®! might not be fully defined. Instead,
given such a tuple @ € A.[s]<N, we ask if, for every t > s for which
A.[t] is defined, we have A.[t] = pi(a). This question is still TI? in
Y and gives the correct answer when A.[t] is indeed defined for all ¢.
For the finitely many new relation symbols added to the vocabulary
of B[s], we can then decide their truth values to get B.[s] € K’(?) If
A.[t] is not defined for all ¢, then Y’ will eventually find out. It could
also happen that before Y’ finds this out, the structure we would like
to define as B,[s] is not in K’f{; This could only be because A.[t] was
not defined for all ¢+ and we were getting non-compatible answers to
which of the V-types hold. In this case, or in the case when we find out
that some A.[] is undefined, which Y can detect, we need to build B,
in a different way. All we do is define B, to be any structure in K
extending B[s — 1]. We can do this because Kjgg is computable and

Ky is II§ (Lemma I11.29). [

The following theorem is the key combinatorial core in the proof
that if Ky is listable, K has the low property.

THEOREM X.31. Let K be an effectively ¥-small class of T-structures.
Suppose we have a computable operator Cy that, given an oracle X €
2¥, outputs the diagram of a structure C()f) in Kqy in a way that if
X =r Y, then C()f) ~ C(’i). Then for every X € 2V, CX' has an X-
computable copy.
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A small clarification is in order. The structure C¥' is the T-structure
corresponding to X’. This is not C()f), which would be the canonical

structural jump of CX. C(1) is an operator that builds 7(;)-structures in
K1), while C outputs the 7-restrictions that belong to K.

PROOF. Since C1y: 2% — K3y is a computable operator, we can
assume we have a computable map C): 2<N KJ(ES such that

0 Y E 2<N = C(l) - C&)

and that, on every path Y € 2V it produces a structure C(’i) =, C(Z)rs

in K 1)-

A(S?sume X = . The general case is a straightforward relativiza-
tion. We need to produce a computable copy of CV. Instead of using
0’, we will define an oracle Y € 2% that is Turing equivalent to 0’ and
produce a computable copy of C¥, which by assumption is isomorphic
to C”. We will define Y as the pointwise limit of a computable se-
quence of finite strings {m(cy) : s € N}. To get Y to compute 0/, we will
make sure the 1s in Y are so far apart that the function that lists the
positions of the 1s dominates the settling-time function V for 0’ (see
Definition VII.2).

To simplify the notation, we will work with strings in N<V instead
of 2<N: Given o0 € NSV, let

m(o) = 0701707 W o npolel=D ¢ 9N and 7% (o) = w(o)" 170N € 2V,

Notice that, as k grows to infinity, the finite structures Czrl()a)% form a
nested increasing chain converging to C(Tr;; @),

The core of the proof is the computable construction of {o, € N<N :
s € N}. We will then define Y as the pointwise limit of 7(os) as
s — o0, i.e, Y (i) = limg o4(7) for all ¢ € N. This sequence must satisfy
the following properties:

(S1) For each s and i < |0, 04(i) = V(i) (see Definition VII.15).
(S2) There are infinitely many stages ¢ satisfying that (Vs > t) o5 2
o¢. We call these the true stages of the sequence of oy’s.

(S3) For every s, there is a Tembedding f, . q1: C™7) « C7(os+1)
that keeps C™® fixed, where 6 is the largest common initial

segment of o, and o4y .

The first two conditions make the o,’s behave similarly to the V’s.
If ty <t <ty <--- is the sequence of all the true stages, then o, <
oy, € 0y, < - - is an increasing sequence. The union Z = [ J ;01 € NN
is the pointwise limit of the o,’s, and hence it is AJ. By (S1), Z
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dominates V and hence computes 0'. The sequence Y = 7(Z) € 2V is
then Turing equivalent to (.

(S3) allows us to build a computable copy of C¥: For s < r, we can
define embeddings f; ,: C™(@s) < C™(or) by composing the intermediate
embeddings. Consider the direct limit of this sequence. By Exercise
[.13, the direct limit of a computable sequence of embeddings is com-
putable. Note that these are 7.-embeddings and not 7(y), -embeddings,
and therefore we end up with a computable 7-structure in the limit
whose canonical structural jump might not be computable. If ¢ is a
true stage, then f, ;41 preserves C™@) for all s > t. Taking composi-
tions, we can see that C™() is also preserved by f,, for all 7 > s > ¢.
It follows that, along the true stages, the embeddings fi, ¢, fi ta)--
are the inclusion embeddings. Thus the direct limit coincides with the
limit of the increasing sequence C™“%) < C™(1) < ... namely C*9).
This shows that C¥ has a computable copy.

Before we move on to building the sequence of o,’s, there is an issue
we need to examine. Suppose that after defining oy, ..., o, we find out
that V1 has changed its value at some ¢, and we need o4, to update
the value of o4(7). What we have to do is define 04,1 to be (o, | i)"k
for some large enough k. But we need to do it in a way that C7(s)
embeds into C™(@s+1) fixing C™!) There is no reason why such an
embedding would exist unless we take precautions ahead of time.

We say that v is a good extension of o if v © ¢ and there is an
embedding from C™™ to C™ (@) fixing C™?). We call a string o good
if it is a good extension of o | ¢ for every ¢ < |o|. To resolve the
issue mentioned above, we need to make sure we only work with good
strings. Notice that being good is a X.¢ property, so we can always wait
for verification that a string is good before we use it. The next claim
shows that there are plenty of good strings.

CLAIM X.31.1. For every o € N<N| there is a k, € N such that every
v o o with y(|o|) = k, is a good extension of o.

Consider the V-type of the elements of C™(?) within the structure
C™ (@), That is, let & be the tuple that consists of all the elements of
C™) and let

Po(T) = V-tpor o) (€7).

Recall that the vocabulary of C(Trl()a) is 7(1),, the step-s approximation to
T(1), where s = |C™)|. This finite vocabulary might not have a symbol
for X\ po vet. Let k, be large enough so that the relation symbol for

/X\ p» appears in the vocabulary of CG()UAk”). Since Czrl()gmk”) c Cg;(a),
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we have that
(o ks o
ciy ™ = Y\ pal@):

Let us now show that k, is as wanted. Consider v > o with v(|o|) = k.

CW(W)C_____

(o) - m(07ks) m* (o)
Coy” = Cp) < Coy

Since CETI()W) extends Ca()GAkS), we have that C™™ | A\ p,(b7) too.
In particular, the 3-formula v, - (Z) that says that ¢’ has an extension

that looks like C™), namely
Vor(T) = 35 (D(7,9) = D)),

(where |Z| = |G,|) is obviously true in C*). Hence its negation is not
part of p,(%). The formula v,.(Z) is then true of & in C™ ) too.
This implies that C™™ embeds into C™ (?) preserving &, and finishes
the proof of the claim.

We are now ready to define the sequence of o,’s. Suppose we have
defined oy, ..., 05 already. We want to find appropriate i < |o,| and
k > o04(i) to define 0541 = (05 | i)"k. (We could have i = |o,| and
os+1 = 05" k.) We say that a pair (i, k) is appropriate for o4, if:

(A1) k = V,41(i) and 04(j) = Vsu1(j) for all j <.

(A2) o, | 1"k is good.

(A3) There is an embedding C™(%s) <« C™(@s!17"k) keeping O7(@s1?)

fixed.

(A4) If i < |og|, then either o4(i) < Vi41(7) or 04(i) < kgpie
As soon as we find such 7 and k for which we have verification that they
are appropriate, we go ahead and define o541 = (05 | )"k. For most
of the items above, it is clear what we mean by “having verification.”
The only item we should comment on is 04(i) < kyp;: This means that
the symbol for the V-type of &' in C™ (@) has not yet appeared in
the vocabulary of Cgrl()g ) (recall that o Il'i = o [ i+ 1). A verification
for this would be to find a symbol on 7 for a V-type p true of colt
in C™ () but which is not implied by any of the V-types ¢ which are
true of ¢! and whose relation symbols /X\ ¢ appear in the vocabulary
of Czrl()a ") A verification that a symbol for a V-type does not imply

another would be a finite structure in K]g; which has a tuple satisfying
the former but not the later.
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If we manage to define such a sequence, it clearly satisfies conditions
(S1) and (S3). To see why (S2) holds, first observe that, for fixed i,
0s(1) is non-decreasing in s and grows at most once beyond V(i) or
koyi- It thus eventually stabilizes. Let ¢ be the last stage at which the
value of 04(7) changes. Then |oy| =i+ 1. From then on, oy is an initial
segment of all o4, and hence ¢ is a true stage.

Finally, we need to show that appropriate ¢ and k exist. Once we
know they exist, we know we will find them. Let iq < |0, be the
greatest ¢ such that for all j < 4, 04(j) = Viy1(j). Notice that if
ip < |os|, then o4(ip) < Vii1(ig). Let iy < ig be the greatest i such
that for all j < ¢, there exists no verification that o,(j) < ko, ;. Notice
that if i1 < iy, then such a verification exists for ¢;. Thus 7; satisfies
(A4) one way or the other. Let k > V,,1(i1) be such that there is an
embedding C™(s) < C™(@s117k) keeping C™(@s11): We know such a k
exists because o, is good, and hence it is a good extension of oy | 7.
The pair (i, k) now satisfies (A1), (A3), and (A4). We need to show
that v = o, | 11"k is good. Suppose it is not, and that v is not a good
extension of v | 7 for some j < 75. That means that the V-formula
—1h,1;(Z) saying that ¢’ has no extension that looks like C™) is true
in C™* (1)) and hence belongs to the V-type P13 (Z). Since this formula
is not true in C™, it must be that the relation symbol for M\ Prj

is not in the vocabulary of Czrl()y )

that the symbol for /¥\ p,;; would be in the vocabulary of C(Wl(;’ 17 kna)
Thus, we have found verification that v(j) < k,;;. Recall that we have

chosen iy so that there are no verifications that v(j) < ky;; for j < 4.
It follows that o, | i1k is good, and (A2) holds. 0

yet. Remember we defined £,;; so

COROLLARY X.32. Let K be an effectively ¥-small 11§ class of struc-
tures. If Ky is listable, K has the low property.

PROOF. Let S be the class of structures that consist of infinitely
many disjoint copies of structures in K. That is, the vocabulary of S
consists of the vocabulary of K plus a binary symbol F which defines
an equivalence relation so that, on each equivalence class, we have a
structure from K.

Since K(y is listable, we can build an operator S()f) that outputs
a structure in S(;) that contains copies of all X-computable structures
in Kq), each one repeated infinitely often. (We will see below that
the canonical jumps of structures in S are essentially given by the
canonical jumps of their components in K.) This map is Turing-to-
isomorphism invariant, that is, if X =7 Y, then SX =~ SY, as the lists
of X-computable structures and Y-computable structures in K, are
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the same. We want to apply the previous theorem and get that for
every X, S¥ has an X computable copy. This would imply that K
has the low property as follows: Consider a structure A that has a
presentation that is low over X. Then X’ computes a copy of Ay,
and hence Ay is one of the structures that appears within one of the
equivalence classes in S()f)/ Since SX' has an X-computable copy, so
does A.

To be able to apply the previous theorem we need to verify that
S is effectively X-small. This requires us to modify the definition of S
slightly. For a structure to be in S we impose the additional condition
that for each 3-theory that is sharply realized in K, there are infinitely
many equivalence classes which have that theory. Remember that an
J-theory is an 3-O-type, and since K is effectively »-small, we have a
computable list of all 3-theories. Since Ky is II5 and Kj(qf; computable,
we can use Lemma II1.29 to build a list of computable structures in
K1) with all possible 3-theories. Adding these structures to the ones in
S()l()7 we get an operator that outputs a structure in the new S;;). We
claim that, with this modification, S is effectively ¥-small. The 3-type
of a tuple z is determined by the following information:

e first, a partition of the variables ¥ into F-equivalence classes Z1, Z»,

. Ty, (i.e., the variables within each sub-tuple z; are E-equivalent
to each other and FE-inequivalent to the rest);

e second, the I-type of each tuple Z; within its equivalence class,
which is one of the 3-types of K;

e third, the 3-theory of the rest of the structure, the part that consists
of the equivalence classes that do not intersect z. Since each 3-theory
repeats infinitely often, this 3-theory is independent of the tuple 7,
and is the same as the 3-theory of all the structures in S. It is not
hard to see that this 3-theory is computable.

It is then not hard to analyze these types and show that if K is ef-
fectively X-small, then so is S. Such analysis would also yield that
the canonical structural jump of a structure in S is determined by the
canonical structural jumps of its components. O

EXERCISE X.33. Show that being listable is preserved by effective
bi-interpretability of classes.

X.6. The copy-vs-diagonalize game

The copy-vs-diagonalize game provides a structural way of speak-
ing about the listability property without having to refer to Turing
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operators or lists of X-computable structures. This game is the com-
binatorial core behind any proof that a class is listable or not. It was
introduced in [Mon13b], where different variants of the game were
analyzed. We only introduce the plain version and the co-version. The
latter is the one that provides a notion equivalent to listability.

Fix a class K of infinite structures. Let us define the game G(K).
Two players, C and D, play alternatively. It does not matter who
starts. On the sth move, D plays a finite 7).-structure D[s] € K", and
C plays a finite 7 -structure C[s] € K. Structures must be nested,
ie., D[s] < D[s + 1] and C[s] < C[s + 1]. If a player does not follow
this rule, he or she loses. At the end of stages, we end up with two
structures: C = | J,C[s| and D = | J, D[s].

Player D| D[0] < D[1] < D[2]--- D=,Dls]
Player C|C[0] < C[1] < C[2] ¢ --- C=J,C[s]
The winner of G(K) is decided as follows:

(1) If C ¢ K, then D wins.

(2) If C € K, but D ¢ K, then C wins.
(3) If D,C e K and D =~ C, then C wins.
(4) If D,C e K and D # C, then D wins.

DEFINITION X.34. We say that K is copyable if C has a winning
strategy in the game G(K), and that K is diagonalizable if D has a
winning strautegy.H

Notice from the winning conditions that if neither player builds a
structure in K, then D wins. This seemingly minor point is actually
what creates the tension between the players. It allows D to “pass”
(i.e., play D[s+ 1] = D[s]) and wait for C to make a move she can take
advantage of. On the contrary, C does not have the luxury of “passing,”
as if both C and D pass forever, they will end up with structures outside
K, and D will win. Then, for instance, it would be safe for D to pass
whenever C passes. Thus, we may very well assume C is never allowed
to pass, while D is. This forces C to build ahead of D, making his job
of copying D harder.

As an example, let us show that the class of infinite linear orderings
is diagonalizable. This proof is the combinatorial core of Jockusch and
Soare’s proof that there is a low linear ordering without a computable
copy [JS91]. We will show later that the class of atom Boolean algebras
with infinitely many atoms is effectively copyable and deduce that BA
has the low property [DJ94].

|Assuming enough determinacy, one of the two players must have a winning
strategy. K is effectively copyable if C has a computable winning strategy.
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LEMMA X.35 (Kach-Montalban [Mon13b, Lemma 7.3]). The class
of infinite linear orderings is diagonalizable.

PROOF. The strategy for player D is the following: Before we even
start, we pledge that the structure D will be isomorphic to either w or
m + w* for some m € N. Every time C passes, we, namely player D,
pass too. So we may assume C starts and then never passes. Pick an
element ¢ in C[0], which we fix for the rest of the construction. At each
stage s, let n[s] be the number of predecessors of ¢ in C[s]. Throughout
the construction, we keep track of an auxiliary restraint-function m|s];
we will never add elements to D[s]| below its m[s]’th element. Start
by setting m[s] = 0. Throughout the game, we will make sure that
m[s] < n[s].

Here is what we do at stage s + 1:

(1) If C enumerates an element to the left of ¢, we pass, unless n|s]
becomes greater than |D[s]|. In that case, we take this opportunity to
move one step towards building D = w: For this, we set m[s] = |Ds],
ensuring that every element enumerated in the future is to the right of
all the elements of D[s]. Notice that if this happens infinitely often,
we will end up with D = w, while ¢ will end up having infinitely many
elements to its left in C.

(2) If C enumerates an element to the right of ¢ at stage s + 1, we
define D[s + 1] by adding one more element to the right of the m[s]'th
element of D[s]. That is, we take one step towards enumerating a copy
of m[s] + w*. Note that if this happens from some point on without
ever changing the value of m[s], then ¢ in C will have infinitely many
elements to its right and n[s] many to its left, while no element in
m[s] + w* will have this property.

If C is actually building an infinite linear ordering, then either (2)
will occur infinitely often or (1) will occur from some point on without
m[s] changing. As we already argued, in either case, D % C. ]

EXERCISE X.36. Show that linear orderings with no maximal ele-
ments are copyable.

EXERCISE X.37. Show that the properties of being copyable or
diagonalizable are preserved by effective bi-interpretability of classes.

The notion of listability, which we already know is connected to
the low property, is connected to a modification of this game. Fix a
class of structures K. The new game is called G*(K). Two players,
C and D, play alternatively, and it does not matter who starts. Here
comes the new feature: On the sth move, D plays a finite 7. -structure
D[s] € K™, and C plays s+ 1 many finite 7-structures C/[s — j] € K/"
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for j = 0,...,s. Structures must be nested, i.e., D[s] < D[s + 1], and
CI[s] < Ci[s + 1]. If a player does not follow this rule, he or she loses.
At the end of stages, we end up with structures ¢/ = [ J,C/[s] and

D =J,D[s].
Player D D[0] < D[] < DI2]--- =, D[s]
C’l0] < C1] < (2] < -- =J,C%s]
Player C Cl[0] = Cl1] < =J,C[s]
crlo] < = U CI[S]

The winner of G*(K) is decided as follows:

(1) If for some j, C? ¢ K, then D wins.

(2) If for all j, C? € K, but D ¢ K, then C wins.

(3) If D,C°,CY, ... € K and, for some j, D =~ C?, then C wins.
(4) If D,C°,C, ... e K and, for all j, D % C’, then D wins.

DEFINITION X.38. We say that K is co-copyable if C has a winning
strategy in the game G*(K), and that K is co-diagonalizable if D has
a winning strategy. K is effectively co-copyable if C has a computable
winning strategy in the game G*(K).

If a class is copyable, it is clearly co-copyable. The reverse direction
does not hold. For instance, the class of infinite linear orderings is
oo-copyable (see exercise below), though diagonalizable. However, the
few proofs of co-copyability we know usually proceed by splitting the
class K (maybe with possible added constants) into countably many
copyable classes K,,, n € N, and building C,, by following the strategy
for G(K,,).

EXERCISE X.39. [Mon13b, Lemma 7.2] Show that infinite linear
orderings are oo-copyable by, first adding two constant symbols, a and
b, and then partitioning the class of infinite linear orderings according
to the following properties, and treating each case separately:

no maximal elements

no minimal elements

a is a limit from the right

b is a limit from the left

the interval between a and b looks like w + w*

the whole linear ordering looks like w + Z - Q + w*

The connection with the low property comes from the following
theorem. The connection is actually quite straightforward, and it seems
that one is not adding much by considering co-games instead of just
working with listability. However, the proofs of listability can usually
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be understood as a copy-vs-diagonalize game. We feel that visualizing
these proofs as game proofs helps to see what is really going on.

THEOREM X.40. A class K of infinite structures is listable if and
only if it is effectively co-copyable.

PROOF. Suppose first that K is co-copyable. For each e € N, we
build an infinite sequence of structures {CJ : j € w} in K such that if ®}
is the diagram of a structure in K, then one of the C/’s is isomorphic to
it. To do this, we let D play the diagram of ®} so long at it converges,
and we let D pass while we wait for convergence. Independently of
whether ®Y is total or in K, player C is forced to play a structure in K.
The answer by player C given from the effective strategy gives us the
desired list. Putting together all these lists over all e € N, we get a list
of structures in K that includes all the structures which have diagrams
of the form ®) for some e.

Suppose now that K is listable; we need to define a strategy for C.
Let X be the sequence of indices of the finite structures played by D.
We let C play the X-computable list of all X-computable structures in
K in response. Since D is computable in X, it will be isomorphic to
one of the structures played by C. O

Jockusch and Soare’s proof that linear orderings do not have the
low property is, in essence, a proof that adjacency linear orderings are
oo-diagonalizable. About that proof, let us just say that it requires an
adaptation of the proof of Lemma X.35 to show that adjacency linear
orderings are 0”-diagonalizable [Mon13b, Lemma 7.4], and then uses
0”-separators to split an ordering into infinitely many disjoint intervals.

DEeFINITION X.41. K has the low property on a cone if there is
Y e 2% such that, for every X > Y, if some structure from K has a
copy that is low over X, it also has an X-computable copy.

THEOREM X.42. ([Mon13b]) Let K be a TI3* class of structures.
The following are equivalent:
(1) K has the low property on a cone.
(2) K is ¥-small and K' is listable on a cone.
(3) K is ¥-small and K’ is co-copyable.

X.6.1. Low Boolean algebras. In this section, we prove Downey
and Jockusch’s result that every low Boolean algebra has a computable
copy. The original proof uses interval algebras and is very hands on.
We give a different presentation using the machinery we just devel-
oped. This will allow us to recognize the different parts of the proof
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and isolate its combinatorial core, namely the proof that ABA is ef-
fectively oco-copyable. Recall that ABA is the class of Boolean alge-
bras with an added relation that recognizes atoms, which we call atom
Boolean algebras. From Exercise X.12, we get that BA i) is effectively
bi-interpretable with ABA. By Exercise X.37, we get that it is enough
to show that ABA is effectively co-copyable.

The following technical lemma will be quite useful.

LEMMA X.43 (Remmel [Rem81b]). Suppose A < B are Boolean
algebras with infinitely many atoms satisfying that

o cvery atom of A is a finite sum of atoms of B
e B is generated by A together with the atoms of B that are below
the atoms of A.**

Then A and B are isomorphic.

PROOF. Let I be the set of finite partial embeddings p from a finite
sub-algebra of A to B that satisfy that, for every a € dom(p),

e a and p(a) are finitely apart in B (i.e., a A p(a) is a finite sum
of atoms in B), and

e the number of atoms below a in A is the same as the number
of atoms below p(a) in B (this number could be infinite).

Observe that the trivial partial embedding that maps 04 to O and
14 to 15 belongs to I because of our assumption that both A and B
have infinitely many atoms. We claim that [ has the back-and-forth
property.”" Consider p € I with domain Ay and ¢ € A. We want to
build ¢ € I which extends p and whose domain includes ¢. Let Ap[c] be
the finite sub-Boolean algebra of A generated by Ay and ¢. We want ¢
to have domain Ag[c]. If aq, ..., a; are the minimal non-zero elements
of Ag, then the minimal elements of Ag[c] are a; A ¢, a; A ¢°,...,ax A ¢,
ap A c©. Let us divide the proof into k steps and work first below ay,
then below as, etc. For the first step, let us just assume that c is below
the minimal element a; of Ay. The other steps work the same way. To

**We say that a subset X of a Boolean algebra B generates B if every element
of B can be written as a Boolean combination of elements of X.

"IThis is not exactly the same back-and-forth property from Definition 111.13,
but almost. Of course, one can think of a finite partial embedding p as the pair
of tuples (a,b) € A<N x B<N, where a is the domain of p and b = p(a). That
they satisfy the same atomic formulas follows from p being an embedding. The
versions of the back-and-forth properties we need are as follows: For every p € T
and ¢ € A, there exists a ¢ extending p whose domain includes c¢; and for every
p € I and d € B, there exists a ¢ extending p whose image includes d. That every p
in a back-and-forth set extends to an isomorphism is proved exactly as in Lemma
I11.15.
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define an extension ¢ of p with domain Ag[c], all we need to do is to
find an appropriate element d € B to define d = p(c). Such a d needs
to satisfy that d < p(a;), that ¢ A d is a finite sum of atoms, that the
number of atoms below ¢ and d are the same, and that the number of
atoms below a; A ¢© and p(ai) A d° are also the same.

The first candidate for d is p(a;) A ¢, which is finitely apart from
¢ since a; is finitely apart from p(a;). However, p(a;) A ¢ and ¢ might
have a different number of atoms below. Since a; and p(a;) have the
same number of atoms below, by adding or removing a few atoms to
p(a;) A ¢, we can find a d < p(a;) which has the same number of atoms
below as ¢, and so that the number of atoms below a; A ¢© and p(a;) A d°
are also the same.

The proof of the back condition of the back-and-forth property is
the same. We conclude that I has the back-and-forth property and
that A and B are isomorphic. ]

Before going into the proof that atom Boolean algebras are oo-
copyable, we need to look more closely at how we approximate Boolean
algebras. In Definition 1.6, we defined finite approximations for struc-
tures only for relational vocabularies. We could make the vocabulary of
Boolean algebras relational, for instance by considering only <, but we
would then have to deal with partial Boolean algebras, which causes
unnecessary complications. However, since Boolean algebras are lo-
cally finite,¥ we can assume every step in a finite approximation to
a Boolean algebra is a finite Boolean algebra. That is, B has a com-
putable copy if and only if there is a computable sequence of finite
Boolean algebras By < B; < --- whose union is B. The same is true
for atom Boolean algebras. In the case of atom Boolean algebras, the
finite approximations are not atom Boolean algebras themselves: There
might be minimal elements (i.e., non-zero elements with only zero be-
low them) which are not labeled atoms because they will not remain
minimal in the later steps of the approximation. Even though minimal
elements and atoms are the same thing, when we are working with
ABAf™ we use the word atom to refer to the elements that are labeled
as atoms, and use the word minimal for the ones that are minimal in
the given finite approximation, even if they do not stay minimal later.

A useful way to visualize this dynamic approximation process is
via trees. Suppose we are given a finite approximation By <€ By, < - - -
to a Boolean algebra B. Assume that each B, is generated by B,
and at most one extra element cy,1. We define a finite approximation

HFinitely generated Boolean algebras are finite: n elements generate a Boolean
algebra of size at most 22" .
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To < T} < --- to a binary tree T so that, for every s € N, the leaves
of Ty are in one-to-one correspondence with the minimal elements of
B,. Think of these trees as growing downwards. Let Ty be the tree
that contains just a root node. Suppose we have defined T;. In B, 1,
some of the minimal elements from B, get split in two, and some stay
minimal: That is, if a is a minimal element of By, it splits into a A ¢4 41
and a A ¢, unless one of these is 0, in which case a stays minimal
in Bg,q. For the minimal elements that split in two, we add in T,
two extensions to the corresponding leaf in 7. For the ones that stay
minimal, we leave the corresponding leaf in 7§ a leaf in T,,;. Notice
that the new elements of T 1 always come in pairs as children of some
leaf of T.

When we approximate atom Boolean algebras, we also use an atom
relation symbol on the trees which does not change throughout the
T,’s. Notice that only leaves can be labeled atom. When we have a
leaf with an atom label, that leaf will remain a leaf in all subsequent
trees. If a leaf does not have an atom label, it must eventually split.
By slightly modifying the trees, we may assume that if a leaf of T} is
not labeled atom, it must always split into two leaves in T, ;. We may
thus assume that a leaf of a tree T} is labeled atom if and only it does
not split in Ty, .

THEOREM X.44 (Downey, Jockusch [DJ94]). Atom Boolean alge-
bras are effectively co-copyable.

It follows from Theorem X.40 and Corollary X.32 that Boolean
algebras have the low property.

PrROOF. We need to describe an effective strategy for C in the game
G*(ABA). For each n € N, there is a unique Boolean algebra with
exactly n atoms, denoted by Int(n + 1 + Q),! which can be built
computably uniformly in n. For n > 0, player C builds C,, to be that
algebra. We only need to concentrate on building Cy, trying to copy
D under the assumption that D has infinitely many atoms. Thus it is
enough to show that the class of atom Boolean algebras with infinitely
many atoms is copyable. We describe a strategy for C in that game.

As we mentioned above, we can assume the players play atom finite
trees Te < TE € Ty < -+ and TP < TP < TP < --- as in the
paragraph before the theorem. These trees satisfy that the minimal

"Int(L) denotes the interval Boolean algebra of £ whose elements are the subsets
of £ which are finite unions of left-closed, right-open intervals. An easy back-and-
forth argument shows that the interval algebra of 1 + Q is the unique countable
Boolean algebra without atoms.
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elements of C[s]| are in one-to-one correspondence with the leaves of
T and some of those leaves are labeled atom. If a leaf is not labeled
atom, it must split in 7', ;. The same happens with 7.

We are now ready to define player C’s strategy when responding
to a sequence TP < TP < TP < --- played by D. At each stage s
of the game, C will build a tree TS and an embedding f,: T° — TC.
This is a tree-as-a-graph embedding; that is, the root is mapped to the
root, and the two children of a node t are mapped to the children of
fs(t). Furthermore, we require that if a leaf ¢ in TP is labeled atom,
then all the leaves below f,(¢) are also labeled atoms, and if ¢ is not
labeled atom, then none of the leaves below fs(¢) are labeled atom.
(This way we get that the image of an atom ¢ in D[s] is mapped to
a finite sum of atoms in C[s].) Building such a sequence of trees is
rather straightforward: Whether D passes (i.e., T2, = TP) or not, we,
namely player C, always extend the non-atom leaves of T by adding
two non-atom children. If D does extend his tree, we need to extend
fs to the new domain. If D adds leaves ¢; and ¢, below a leaf ¢ of TSD,
we know f5(t) was not labeled atom, and hence it splits in 7, into
two nodes which are not labeled atom either. If ¢; or /5 are not labeled
atom, we can just map them to children of f,(t) in TS ,. If ¢; is labeled
atom, let f,.1(¢;) be one of those two children, add new leaves in TS

s+1
below all the leaves in TS below f,;1(¢) and label them atoms. Same

for 0.

At the end of the game, we end up with an embedding f = (J, fs
from TP = J, TP to T = | J, T°. This can be viewed as an embedding
between the corresponding Boolean algebras C and D. By construction,
it is easy to see that f maps atoms to finite sums of atoms. To see that
it is almost onto, one needs to prove that every element c of T either
is eventually in the image of f,, or there is a stage where a predecessor
of ¢ is assigned to an atom of TP and all successors of ¢ that are leaves
are labeled atom. We then get that every element in T that is not
in the image of f is a finite sum of atoms that are below the image of
an atom from TP. We thus get that the Boolean algebras f(C) < D
satisfy the hypothesis of Remmel’s Lemma X.43, and thus C and D are
isomorphic. L]

The proofs of the lows, lows, and low, Boolean algebra theorems
by Thurber [Thu95], and Knight and Stob [KSO00] essentially give
an understanding of BA,) for n = 2,3,4 even if the concept was not
defined yet. For instance, for n = 2, Thurber worked with BA with
added relations for atom, atomless (i.e., no atoms below), and infinite
(infinitely many elements below). It turned out that with these three
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extra relations, we get a class that is effectively bi-interpretable with
BA (o) [HM12]. For n = 3, Knight and Stob added relations for atomic
(not atomless elements below), 1-atomic (infinite, but without splitting
into two infinite elements), and atominf (infinitely many atoms below).
It turned out that with these three extra relations, we get a class that
is effectively bi-interpretable with BA ) [HM12]. They then added
five more relations for BA4). The copy-vs-diagonalize game was not
known by then, but Thurber’s and Knight and Stob’s proofs become
clearer when seen in terms of games. Harris and Montalbdn [HM12)]
gave an in-depth analysis of BA,) and ]BA’Z’L‘) for all n € N.
Whether BA ), of BA(,) for n > 5, is co-copyable remains open.
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