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DECOMPOSITIONS OF RATIONAL CONVEX POLYTOPES

Richard P. STANLEY*®
Department of Mathematics, Massachusers Institute of Technology, Cambridge, MA 02139, U.S. A

1. Decompositions

Let @ be a d-dimensional convex polytope {or d-polytope) in R™ whose
vertices have rational coordinates. We call & a rational convex polytope. Let %
denote the boundary of %. If n is a positive integer, define i(®, n) (resp. j(@, n))
to be the number of points a P (resp. a P —dP) such that naeZ™. These
functions have been studied by Ehrhart' [3], Macdonald [8,9], McMullen
[10, 11], and others. Here we will develop some new properties of j(%, n) and
i(%, n). Proofs for the most part will be omitted.

A word on notation: N denotes the non-negative integers, PP the positive
integers, [n] the set {1, 2, ..., n} where neN. Z, @, R have their usual meanings.
If acQ™, then l{a) denotes the least positive integer ¢ for which tacZ™. In
particular, if o €@, then I{a) is the denominator of & when written in lowest
terms.

It will be more convenient to work not with j(%, n) and i(®, n) themselves, but
with the formal power series

J@, =1+ i@ ma

n=1]

J®P A= i P, m)ar.

n=1

Let V= V(®) denote the set of vertices of &, and let w=(a;,...,a) be a
linear ordering of the elements of V. For each non-void face F of @, define
8(F)=6,(F) to be that vertex o of F for which i is minimal. For instance,
3(P)=a,. Now let @ =(F,, F,,...,F;) be a flag of faces of ®, ie., F, is an
i-dimensional face (or i-face) of # and Fyc F,< - - - c F, =@, Call @ a full flag if
8(F;) isnot a vertex of F,_, for 1si=<d. If @ is a full flag, then define A(P) to be
the d-simplex with vertices Fy, 8(F,), 8(F,), . .., 8(FF,).

* Partially supported by NSF Grant MCS 7701947,
! Our only reference to the work of Ehrhart will be [3], which is an exposition of his work over a
period of many vears. Further references may be found in [3).
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Lemma 1.1. The set of simplices A(®), as © ranges over all full flags of P, form
the maximal faces of a triangulation I',, of P.

An elementary Euler characteristic argument, basically that given in {9, Section
1], expresses J(®, 1) and J(®, A) in terms of simpler generating functions, as
follows.

Proposition 1.2. Let @ be an ordering of V(®) with corresponding triangulation
I'=T.,. Let 3" denote the set of those faces ¥ €I" which lie on o%. Then

J@, A= Y (-1 RS, A= Y T, ),

Fel'—aol derl

J@, A=) (~1D)FELFe = Y J(&,A).

Fel Fell—-al

In order to obtain explicit expressions for J(®, A) and J(@, A), it remains to
evaluate J{%, A) when ¥ is a simplex. This is a result of Ehrhart, briefly discussed
in [3,p. 54] (see also [8, Section 1]). Suppose that ¥ is a k-simplex in R™ with
rational vertices By, . . ., B.. Let G=Z™*! be the abelian group generated by the
set

S={B.r:Becf™, recP, and Bire¥}.

Let H be the subgroup of G generated by the k+1 vectors y; = (I(B)8: B
Then H is a subgroup of G of finite index t; in fact, t is equal to the greatest
common divisor of all (k+1)x(k+ 1) minors of the matrix whose rows are the
vectors .. Now define the “half-open” parallelopipeds

Ay ={a;y,+ -+ Gy :0sa, <1},
‘EH:{a1'Y1+ o B Yisr  0<a < 1)

The sets A, NZ™*! and A_H MZ™*! are each a set of coset representatives for H in
G, Let

AyNZ™ T ={(e, r):0=<i<}, AgNZ™ =g, s):0=si<t)

For instance, if we choose (gq, ry) and (£, rp) to be in H, then we have (&g, rg) =0
and (Lo, o) =v1t+ "+ Yeer

Theorem 1.3. With the above notation, we have

-1

JF, A)= (Z )\5) H(1~A“39)",

i=0

JY, N = (Z; J\’-) ﬁ (1 — AMEy1,

i=0
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Moreover, the s;"s are just the numbers } () —r, in some order, so that

J(&, M) = (DI, 1.

Fxample 1.4, Let & have vertices (0, 0), (1,3, (1,3). Then G=7°, v,=(0,0, 1),
v.=(2,1,2), v:=1(2,3,2), t=4, (€0, 10)=(0,0,0), (£,,r))=(1,1,1), (&3, 12)=
(2,2,2), (€5, 1)=1(3,3,3), (Lo, 80)=4,4,5), ({1, 80=(1,1,2), (& 52)=(2,2,3),
({2, 8)=(3,3,4), HEEND=(1+A+A*+A)/(1-(1-A1%%, J(&F, A)=(A>+r1%+
AY+ AT (-0 - A%

Remark. Following Ehrhart [3, p. 47], we say that the rational convex d-polytope
% in R™ is rericular if the lattice Z™ N A of integer points of the affine space A
spanned by @ has rank d, i.e,, Z"N A =7 This is equivalent to the statement
that Z™ N A # @ (see [3, Proposition 25]). If ¥ is reticular, then let ¢: A—R? be
an affine transformation which is a bijection between A NZ™ and Z¢. (Such a ¢
clearly exists.) The image &(P) of @ is a d-polytope in RY and hence has a
positive Euclidean volume (%), called the relative volume of . It is easy to see
that (%) depends only on &, not on ¢. If d = m, then (%) is just the volume of
. As an example, let @ be the line segement connecting (0, 0) to (1, 1). Define
¢la, a}=a. Then H(@P)=[0, 1], so ¢(#)=1. Now let ¥ be a k-simplex as in
Theorem 1.3, and assume that & is reticular. It is then easily seen that the integer
t =[G :H] appearing in Theorem 1.3 is given by

1= kU (B)(B1) - -+ UBIWY ().
It then follows from Proposition 1.2 that the Laurent expansion of J(%, A) about
A =1 begins
J@, ) =dWp@)(Q—-A) 4+ -0 (1)
It is also easy to give a direct proof of (1).
Combining Proposition 1.2 and Theorem 1.3, we obtain an explicit expression

for J(, ) and J(@, A), showing that they are rational functions of A with
denominator

1 (1-xey,
BeVI(H)

a result due originally to Ehrhart {3, p. 53]. An immediate corollary of Proposi-
tion 1.2 and Theorem 1.3 is the following “reciprocity theorem”, due essentially
to Ehrhart [3, p. 30] and Macdonald [9, Theorem 4.6] (see also [14]).

Theorem 1.5. As rational functions we have

J@, )= (=D, 1),

Because of Theorem 1.5, we will now confine our attention to J(®, A). While
we now have an explicit expression for this generating function, we would like a
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more informative expression. Toward this end, suppose that the maximal faces of
the triangulation I, of % can be ordered G, G,, . . ., G, so that for each 2<{=3y,
the set G,N(G,UG,U - UG._,) is a union of facets (=(d —1)-faces) of G,
Then (G, G,, ..., G,} is called a shelling of I',, and T, is called sheilable.

Theorem 1.6. Let w be an ordering of V(P), and suppose that I, has a shelling
(G‘l: GZs R Gs)' Then '

= l‘—l. a
J@, =7 ( A’u*qu) IT (1-rte)1, 2
i=1 =0 k=0
where Bio, By, - - -, B are the vertices of G,, where
t—1 d
J(G, A)= (2 M.) [T (1 ateo)y
=0 k=0}

(as in Theorem 1.3), and where g is the sum of certain of the numbers 1(8,), 0=
k =d. The precise definition of q; is not important here, but we note that
Gio ™ Z I(B)
BeV(F)

where F is the unique minimal face of G, whose interior is disjoint from G, N
(GLUGLU - - - UG,_y). In particular, q;4=0.

In order for Theorem 1.6 to be of any value, we must show that the
triangulation I',, of % is shellable. It is easy to see that the triangulation I',, has the
following alternative description. Let o = (e, ..., o, ). Pull the vertices of & (as
defined in [6, p. 80] or (12, pp. 116-117]) in the order ay,..., a,. This yields a
triangulation A of ¢%. Then the maximal faces of I, are those of the form
{o;} U F, where F is a maximal face of A not containing «,. In particular, I, = A.

Using f1] and the above description of I',, it is easy to deduce the following
result.

Theorem 1.7. If w is an ordering of V(P), then I, is shellable. Hence J{, \) can
always be written in the form (2).

2. Consequences

We now use the results of Section 1 to examine the generating function J(%, A)
in more detail. To save space we will not state our results in the fullest possible
generality.

Theorem 2.1. Suppose every vertex of P has integer coordinates. Then

WP, A)

J(@, 1\) :m,

(3)
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where W(P, A) is a polynomial of degree at most d with non-negative integer
coefficients.

Proof. Each {(8,)=1 in {2}, from which the proof follows.

Theorem 2.1 implies that (%P, n} is a polynomial in n of degree d, as was shown
by Ehrhart [3, p. 50] (repeated in [8]) and McMullen [10, 11]. What these persons
had not shown was that the coefficients of W(%, A) are non-negative. This fact
was first established in [16, Proposition 4.5] by algebraic techniques (Cohen—
Macaulay rings), but now we have a more geometric proof. We remark that it
follows from (1) that the leading coefficient of (P, n) is Y(P). For further
ramifications of this fact, see [3, 8, 14, pp. 209-211].

It is natural to ask whether the polynomial W(2, A) has a more combinatorial
interpretation than afforded by (2). In certain cases we can indeed say more.

Definition 2.2. Let % be a d-polytope in R™ with integer vertices, and let @ be an
ordering of V(%P). We say that w is compressed if the foliowing property holds: If &
is any face {equivalently, any maximal face) of the triangulation I, then the
relative volume (¥} of & is equal to 1/{dimF}. We say that & itself is
compressed if every ordering w is compressed.

Theorem 2.3. Let P be a d-polytope in R™ with Integer vertices. Let w be an
ordering of VI(P), and let =8, be defined as in Section 1. Suppose that for any
rational point a in the relative interior of some face F of @, if ¢ is the unique positive
number {(necessarily rational) such that {(a — c¢8{F)}/(1~¢c) lies on dF, then l(a)ce
Z. Then @ is compressed.

Example 2.4. {a) Suppose that one of the vertices of P is the origin O, and that
the matrix whose rows are the vertices of ® is totally unimodular. Let w=
(e, ..., ,) be any ordering of V(%) for which o, =0. Then w is compressed.
(The proof is omitted.) However, other orderings « need not be compressed. For
instance, if

V(@)={(0,0,0),(0,0,1),(0,2,0%(1,0,0), (0, 1, 1), {1, 1, 0), (1, 1, 1)},

then any ordering « with o, = (0, 1, 0} is not compressed.

{b) Let {2, be the convex polytope of all n X n doubly stochastic matrices. Then
£, is compressed. For let M be a rational matrix in £2,. Then 1(M)M is a sum of
permutation matrices. Let k be the greatest integer for which [(M)M — k8(F) has
non-negative entries. Then {M)c=kelZ.

(¢) Let & be the 3-simplex with vertices (0,0, 1), (1, 1,0}, (1,0, 1), (0,1, 1).
Then no ordering w is compressed.

Corollary 2.5. Let @ be as in Definition 2.2, and let » be a compressed ordering of
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V(). Let f. be the number of i-faces of I',,. Then
. & . n-1
HP, n) = i;{)f,.( ; ) (4)

It follows that if W(P,AY=ho+h A+ - +hA? {as defined in (3)), then
(ho, by, ..., hy) is the h-vector of T, as defined in [15, p. 136].

Note that it follows from the definition of I, that the numbers f; in the above
corollary depend only on « and the lattice L(%) of faces of & (even if @ is not
compressed). Hence, if o is compressed we can compute {%P, n) from » and L{P)
alone. In particular, if # is compressed then L(%®)} determines i(%P, n).

Corollary 2.6. Preserve the notation of Corollary 2.5. Let (G4, G,,...,G;) be a
shelling of I,. Then h, is equal to the number of integers je&[r] for which
G]- n(G]_U s lJ Gjl) is a union Of i facets Of Gj.

Corollary 2.6 provides a kind of combinatorial interpretation to the coefficients
of W{(%, A} when % possesses a compressed ordering w, since by Theorem 1.6 the
triangulation I', is always shellable.

Corollary 2.7. If % is compressed and o is an ordering of V(%P), then the f-vector
(for 15 - - -» fa) of I, (with f; as in Corollary 2.5) depends only on P, not on w.

Proof. Immediate from {4}, since (%P, n) has a unique representation in the form

(4).

Corollary 2.7 is a purely combinatorial statement (i.e., involving only the
structure of the lattice of faces) about . Thus for instance from Example 2.4(b}
we get restrictions on the facial structure of the polytopes {2,. These polytopes
have been studied by various authors (see, e.g., [S] and the references given
there), and it may be interesting to see how Corollary 2.7 ties in with previously
known resuits,

Remark. Triangulations " of rational polytopes & whose simplices have small
volume have been considered elsewhere, such as [4] and [7]. (In the latter
reference, see especially Theorem 12* on p. 95 and Chapter IIL. It would be
interesting to interpret the theory developed in [7] in a purely combinatorial
manner.) These writers, however, do not consider the restriction that the vertices
of I" must coincide with the vertices of . Such restrictions have apparently been
considered in some unpublished work of Lovasz, but this work is not available to
this author.

Let us now brefly consider polytopes ® whose vertices don't necessarily have
integer coordinates, but only rational coordinates. Let M be the least common
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multiple of the numbers l{a), a € V(P). Let { = e*™ ™. It follows from Proposition
1.2 and Theorem 1.3 (or from the stronger Theovems 1.6 and 1.7) that there are
polynomials Py, Py, ..., Py, such that

M -1
{@. n)= ) P(n).

k=1

Define
v(®)= max (1+degB),
1=1=M -1
where we set deg 0 =—1. The number y(%} measures how close i{%, n) is to being
a polynomial. We have v(@)=0 if and only if i(®, n) is a polynomial. (The
number y(%} is called by Ehrhart [3, p. 12] the grade of i(%, n).) The next result
establishes a conjecture of Ehrhart [3, p. 53].

Theorem 2.8. [f every j-face of P is reticular, then v(P)=|.

Sketch of proof. Fix j. If & is a rational convex polytope such that every j-face of
% ts reticular, then define n{&R) to be the number of j-faces of R which have no
integer vertices. The proof is by induction on n(%). First suppose n(®) =0, i.e.,
every j-face has an integer vertex. Choose an ordering @ of V{%) such that all the
integer vertices come first. It follows easily from Theorem 1.5 that y(Py<|.

Now let n(%®}>0 be arbitrary, and assume the theorem for all %2 with
n(R}<n{P). Let F be a j-face of ¥ with no integer vertex. Let § be an integer
poini on the affine span A of F but not on F. (Such a point exists since
Z"MNA=7ZLet Z be the convex hull of ¥ and 8. Every j-face of & is etther a
j-face of @ or has B as a vertex. Moreover, F itsclf is a proper subset of a j-face of
Z. Hence n(&)<n(%). By the induction hypothesis, y(Z)=|.

Now Z has an obvious cellular decomposition whose maximal cells consist of %
together with the convex hull of 8 with each facet of @ “‘visible” from B.
Denoting these maximal cells different from @ by Z,,. .., %, it is easily seen as
above that n(G)<n(®) for any face G of any ¥, (including G =%,). Now an
Euler characteristic argument (as in Proposition 1.2} expresses J(%, A) as a linear
combination of J(#, A) and the J(G, A)’s where G is a face of some Z%,. Since
v(&)=j and each y(G)=<j, there follows v(P)=j, as was 1o be proved.

Remark. Theorem 2.8 does not determine v(%), in the sense that @ may have a
j-face which is not reticular, yet y{®}=j. For instance, let ® be the convex
3-polytope in R® with vertices (0, 0,0), (1,0,0}, (0,1,0), (1,1,0), and (£, 0,3).

Thus ¥ has a O-face (vertex) which is not reticular, yet {(®, n)= (n;?y) 50
¥{@) =0.

Remark, Using Theorem 2.8, one can give non-algebraic proofs of some further
results in [16], viz., Theorems 3.3 and 5.5.



340 R.P. Stanley

3. Examples

For what classes of polytopes ® can i(®, n) or J(%, A) be explictily computed?
This interesting question has not been systematically investigated. Here we give
two examples to show that further work may be worthwhile. We know of several
other classes besides the two below, but for brevity's sake they will not be
discussed.

Example 3.1. Let v,,...,v,€Z™ Let
P=P(y,,....v)={ayy,+ - Fay: 0<qg=1}

Thus by definition % is a vector sum of line segments and therefore a zonotope.
Using the techniques of [13, Section 5], it can be shown that

(P, ny=Y f(X)n™, (5)

where X ranges over all linearly independent subsets of {y,, ..., v} and where
f(X) denotes the greatest common divisor of all minors of size |X]| of the matrix
whose rows are the elements of X. For instance, if the matrix whose rows are
Yis - - -2 Y, 18 totally unimodular {every minor equals 0 or +1), then the coefficient
“of nf in (%, n} is equal to the number of i-element linearly independent subsets
of {yi,.... %} In other words, these coefficients are the “independent set
numbers” of the geometry or matroid (in the sense of [2] or [17]) determined by
Yis - - -5 Y- An especially interesting case occurs when ® is the convex hull of all
m! vectors (by, ..., b..) whose entries are the distinct integers 1,2, ..., m in some
order. (Although ® is not of the form {a,y,+ ‘- - +av:0<q =<1}, there is an
integral nnimodular affine transformation which transforms % into such a poly-
tope.) # is known as a permutohedron, and it can be deduced from (5) that

m—1
P, n)= ) gn'

i=0
where g is the number of forests on m vertices with i edges. In particular,
gm_1=m™ "2, 30 the relative volume of @ is m™ 2. On the other hand, Zaslavsky
has shown (private communication) that i(%, 1) is equal to the number of distinct
ordered score vectors (sy, Sy, ..., 5,,) of an m-vertex tournament, i.c., if T is a
tournament on the vertex set {v,, ..., v}, then s is the outdegree of v, Hence
the number of ordered score vectors of length m is equal to the number of forests
on m vertices. More generally, it can be shown that if G is any (undirected)
graph, then the number of distinct outdegree sequences of orientations of G is
equal to the number of spanning forests of G. It would be interesting to prove this
result by finding a simple one-to-one correspondence. (We can give a messy,
inductive one-to-one correspondence.)
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Example 3.2. Let @, be the convex d-polytope in R of all points (x;, ..., x4)

satisfying
x; =0, l=i=sd,
=1, 1=sissd-1.

The following facts can be proved. The generating functions J(®,, &) (denoted
J4(A) for short} are determined by

Jo(A)Y=T1/(1-A), JiA=1/(1-A =A%,
i) =1(2-A—Jy(A)), d=2.
‘We have the explicit formulas
(1-A-@)¢? " +(-1+A+ )"
(1-A-@)p?+(-1+A+)p™" ’

(A=A=A2— @) 1+ (~=1+ A+ A2+ p)Pp?!
(A=A—N2—P)dl +{(—1+ A+ A2+ d)o?

Joa(A) =

sz—1()t):

where

¢=32-A24A(A-2)),  $=12-A-A(A2-4P).

Moreover, the coefficient of A' in W(P,, A) is equal to the number of permuta-
tions (by, b, ..., by) of [d] satisfying:

(i) if d =2e, then i and i+ 1 must precede i +e for 1<<i=e— 1, while e must
precede 2e;

(ii) if d =2e+1, then { and i+ 1 must precede i+e+1 for 1<sis<e;

(iif) the number of integers i €{d — 1] for which b, >b,,, is equal to ;.

From this one can show that the relative volume (in this case, the aciual
volume) i, = ¢(%P,) is given by

- -]
z f,x% =sec x +tan x.
d=0

Note added in proof

{1) An independent proof of Theorem 2.8 appears in P. McMullen, Lattice
invariant valuations on rational polytopes, Arch. Math. (Basel) 31 (1978/79)
509-516.

(2) The one-to-one correspondence asked for at the end of Example 3.1 has
been found by D. Kleitman and K. Winston, Forest and score vectors, to appear.
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