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Short summary (following [1]):

• review the set up with analogues between local and global setting.

• define the derived intersection and the arithmetic intersection paring, and explain why
both are necessary and useful.

• analyze the support of LCM∩KR, state the precise relation between local and global
intersection numbers.

• introduce the idea of p-adic uniformization with some motivating examples.

1 The set up

Let F0 = Q, F be an imaginary quadratic field and fix an embedding Φ : F ↪→ C (denote it
by a 7→ a). Choose a herm space V/F of dimF = n s.t V ⊗Φ C ∼= diag{1n−1,−1} (as usual,
the type at infinity is U(n− 1, 1)), and a herm space V0/F of dimF = 1 which is positively
definite. Define G = U(V ), GQ = GU(V ), ZQ = GU(V0) = ResF/F0(Gm), G̃ = ZQ ×Gm G

Q.
Then we have the RSZ Shimura variety ShG̃ over the reflex field E = F and special

cycles on it (0-dim CM and n-2 dim KR in n-1 dim Sh). To do intersection, we need integral
models.

To simplify the problem, we introduce ∆ as the product of all bad primes (2, p ramified
in F , p s.t V ⊗Q Qp non-split), and the base will be B = Spec OF [ 1

∆
].

And we work with no level structure at good places but arbitrary level structure
at bad places. Fix an OF -lattice Λ in V that is self-dual away from ∆. Choose an open
compact subgroup KG =

∏
vKG,v inside {g ∈ G(Af )|g(Λ⊗ Ẑ) = Λ⊗ Ẑ} s.t KG,v = Stab(Λv)

for v - ∆, and K◦ZQ =
∏

v|F OF,v the maximal compact subgroup in ZQ(Af ). Define KG̃ =
K◦ZQ ×Gm KG.

We will use the notation (−)∆ :=
∏

p|∆(−)p e.g Vp = V ⊗QQp, T (A)p is the p-adic rational
Tate module of A and so on.

The set up:

Z(u)

N γ N

(local)
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Z(ξ, µ)

CMR(g) M

(global)

Definition 1. The moduli problem for M = MKG̃
(G̃) over B associates to each locally

noetherian OE[ 1
∆

]-scheme S the groupoid of tuples (A0, i0, λ0, A, i, λ, η), where

• A0 is an elliptic curve over S, A is a n-dim abelian scheme over S;

• i0 : OF → End(A0) is a OF action on A0, s.t for all a ∈ OF

char (a| Lie A0) = T − a

• i : OF [ 1
∆

]→ End(A)⊗ Z[ 1
∆

] s.t for all a ∈ OF [ 1
∆

]

char (a| Lie A) = (T − a)n−1(T − ā)

• λ0 (w.r.t λ) is a principal polarization (w.r.t a prime-to-∆ principal polarization) on A0

(w.r.t A) such that the induced Rosati involution coincides with the Galois involution
on OF (w.r.t OF [ 1

∆
]);

• η is a KG,∆-orbit of isometries of hermitian modules (as locally constant sheaves on S)
η : HomF (T (A0), T (A))∆

∼= V∆.

The morphism between tuples is defined in a obvious way.

Remark 1. A herm structure on HomF (T (A0), T (A))∆ is implicitly used in the definition.
This is a feature of RSZ shimura variety: we naturally get a hermitian lattice HomOF (A0, A)
(KR lattice) using polarization i.e

〈x, y〉 = λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndOF (A)⊗Q = F

More importantly, this allows us to define KR divisors.

The KR divisor encodes the homomorphism between A0 and A with given size (like the
coefficient of theta series encodes the number of vector with given norm).

The input : ξ ∈ F0,+, µ ∈ V∆/KG,∆.

Definition 2. The KR cycle Z(ξ, µ) is the moduli problem associated to the groupoid of
tuples (A0, i0, λ0, A, i, λ, η, u) with (A0, i0, λ0, A, i, λ, η) ∈M. And u ∈ HomOF (A0, A)⊗Z[ 1

∆
]

such that 〈u, u〉 = ξ and η(u) = µ in the quotient V∆/KG,∆.

The CM cycle is a variant of the “big CM cycle” of Bruinier-Kudla–Yang and Howard.
The ”big“ means it’s attached to a large field extension of F . Roughly it parameterizes
objects with action by a large CM order.

The input: Let F ′0 be a totally real extension of F0 of degree n, F ′ = F ′0⊗F0F . Consider
a 1-dim F ′/F ′0 herm space W such that ResF ′/FW ∼= V , so F ′1 = U(W ) ↪→ G = U(V ).
We choose g0 ∈ F ′1 such that R = OF [ 1

∆
][g0] is an order in F ′ i.e R ⊗ Q = F ′. Then

charF (g0) ∈ OF [ 1
∆

][T ] is irreducible of deg n. Finally, choose any g ∈ G(F∆) =
∏

v|∆ G(Fv).
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Definition 3. The CM cycle CMR(g) is the moduli problem associated to the groupoid of
tuples (A0, i0, λ0, A, i, λ, η, ϕ) with (A0, i0, λ0, A, i, λ, η) ∈M and ϕ ∈ EndOF (A)⊗Z[ 1

∆
] such

that

• compatiblilty: ϕ∗λ = λ.

• under any η : HomF (T (A0), T (A))∆
∼= V∆ s.t η ∈ η, ϕ transforms to an element

in G(F∆) which is only well-defined up to KG,∆-conjugacy. We require η(ϕ) ∈
KG,∆gKG,∆.

• (key) charF (g0) annihilates the endomorphism ϕ (i.e charF (ϕ) = charF (g0) as the latter
is irreducible).

The last condition roughly says R acts on A by g0 7→ ϕ.
An useful observation (which relates the local and global definition) is that CM cycle is

a union of connected components of the fixed point locus of a Hecke correspondence, i.e we
have the diagram:

CMR(g) M[KGgKG] Hk[KGgKG]

M M×OE [ 1
∆

]M

p

∆

Here the Hecke stack Hk[KGgKG] parameterizes (A1, A2, ϕ) where Ai ∈ M and ϕ : A1 →
A2 is compatible with polarization and lies in KGgKG under transformation by η1 and η2.
The mapM[KGgKG] → F [T ]deg=n sending (A,ϕ) to charF (ϕ) is analogous to Hitchin map in
some sense, and the fiber of char(g0) is precisely CMR(g) (by definition).

Theorem 1. Z(ξ, µ) → M is étale locally a Cartier divisor, it’s flat over B. CMR(g) is
proper over B, CMR(g)|B−Ram(R) is finite étale over B − Ram(R).

Remark 2. KR and CM cycles are not literally closed substack of M in general, but the
forgetful maps are finite and unramified. So étale locally they are disjoint union of closed
immersions, see Stack project Tag 04HJ.

Remark 3. The properness of CM cycles is due to the fact that toric part of a semi-abelian
scheme will have too small dimension to have an action of R. Because of properness, when
considering the intersection of CM and KR cycles we can avoid discussing compactification
of the Shimura variety.

Example 1. When n = 1, roughly M is (moduli of CM elliptic curves by OF ) ×B (moduli
of CM elliptic curves by OF ), CM cycle is disjoint union of copys of M, KR divisor has
empty generic fiber due to Kottwitz condition and is supported in supersingular locus of
special fiber.
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2 Intersection of KR divisors and CM cycles

A computation of expected dimension of CMR(g):

dimHk[KGgKG] + dimM− dim(M×OE [ 1
∆

]M) = n+ n− (2n− 1) = 1

Problem: the CM cycle is not really a 1-cycle and not flat over B in general, it’s ”fat”
at p ramified in R i.e can have very large dimension (which is the difficult part of AFL).

We really want a 1-cycle, then the intersection of CM and KR divisor is expect to be
zero dimensional, and one can count lengths to define the intersection number.

The derived intersection will solve this problem.

Definition 4. For a closed scheme Y ↪→ X, K ′0,Y (X) is the Q-coefficient Grothendieck group
of coherent OX-modules on X with support in Y . Define

FiliK ′0,Y (X) =
⋃

Z↪→Y,codimXZ≥i

Im(K ′0(Z)→ K ′0,Y (X))

and similarly Fili the filtration by dimension.

Remark 4. Why Q coefficient? This is due to the use of Adams operations in the proof of
some theorems about K-groups, and they are not always true over Z. A related analogue is
that formal groups Gm and Ga are isomorphic over Q, but not over Z.

Example 2. K ′0(Z)
rk∼= Q, K ′0,p(Z)

length∼= Q.

Definition 5. If X is regular, for any two coherent OX modules F∞,F∈, we define

F1 ⊗L
OX
F2 =

∑
i

(−1)i[TorOXi (F1,F2)] ∈ K ′0,Supp(F1)∩Supp(F2)(X)

(by regularness, higher enough terms vanish).

The key point is that the derived intersection has the correct dimension (in the
Grothendieck group):

Theorem 2. Let X be a regular scheme, and consider two closed subschemes Y, Z ↪→ X.
Then we have

Y ∩L Z := OY ⊗L
OX

OZ ∈ FilcodimY+codimZK ′0,Y ∩Z(X)

Proof. See [5] Prop 5.5. The idea is to use Adams operations to separate each graded part.
One can show Fili equals the sum of eigenspaces of ψk with eigenvalue ≥ ki, and ψk preserves
the derived tensor product.

Example 3. Z/pn ⊗Z Z/pn is obviously not zero, but Z/pn ⊗L
Z Z/pn ∈ Fil1+1K0,p(Z) = 0.

Example 4. For two lines in CP1 (they can be identical), the derived intersection number
is always 1. So we can avoid moving lemma and handle things uniformly.
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Upshot: we can endow fixed point locus a derived structure, and get a derived CM cycle

LCMR(g) :=
[
OHk[KGgKG]

⊗L OM
]∣∣∣
CMR(g)

∈ Fil1K
′
0,CMR(g)(M)

.

Definition 6. Z1,c(M) is the group generated by proper (over the base B) 1-cycles on M
(with Q-coefficient) quotient by 1-cycles that are supported on proper (over the base B)
substacks Y of the special fibers and are rationally equivalent to zero on Y .

With Q coefficients, we have a natural map

Fil1K
′
0,CMR(g)(M) −→ Gr1K

′
0,CMR(g)(M)

∼=−→ Ch1,CMR(g)(M) −→ Z1,c(M)

where the middle isomorphism is a variant with supports of the theorem K ′0(X) ⊗ Q ∼=
⊕iCH i(X)⊗Q proved by Grothendieck using Adams operations.

The image of the derived CM cycle is an element in the Z1,c(M), which we still denote
by LCMR(g).

Then we define the intersection pairing. Consider any pure dimensional flat (not neces-
sarily proper) morphism of regular schemesM0 → B0 = SpecOE with smooth generic fiber,

so now the base is B0. The arithmetic Picard group P̂ ic(M0) is defined as isomorphism
classes of hermitian line bundles on X (line bundle L with a hermitian metric on L ⊗Z C).

Fact: P̂ ic(M0) ∼= Ĉh
1
(M0) by L̂ = (L, || − ||) 7→ (div(s),− log ||s||2) where s is any

non-zero rational section of L .

Definition 7. Any element [Z] ∈ Ĉh
1
(M0) is represented by a hermitian line bundle L̂.

For any [C] ∈ Z1,c(M), define ([Z], [C]) as the arithmetic degree of L̂|C . This gives an
arithmetic intersection pairing (Q-coefficient)

(·, ·) : Ĉh
1
(M0)×Z1,c(M0)→ R

Remark 5. Here the arithmetic degree on C is defined as follows. The general case is
combination of two cases: (vertical) C is a projective curve over a closed point SpecFq of

B0. Then d̂egL̂ is the usual degree of line bundle on algebraic curve times logq, which is
well-defined as C is projective. (horizontal) C = SpecOK the integral ring of a number field
K over E, then the arithmetic degree is (choose any nonzero rational section s)

d̂egL̂ := log #L/OKs−
∑

σ:K↪→C

log ||s||σ.

Remark 6. In fact, as we ignore the bad primes (let S be a finite set of places of F0

containing all those bad places), we shall work in reduced arithmetic chow group Ĉh
1

◦(M) :=

Ĉh
1
(M)/Ch1

|S|(M), and RS := R/{log p|Sp 6= ∅}. Similar definition gives

(·, ·) : Ĉh
1

◦(M)×Z1,c(M)→ RS
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Remark 7. we only need the case when the generic fibers do not intersect. Then it’s the
sum of local intersection pairings at each place of E. For a non-archimedean place v, it’s
defined as log qv times the Euler-Poincare characteristic of the derived tensor product on
M⊗OE OE,(v) (so it’s really a computation of the intersection). For an archimedean place,
the local intersection number is the value of the Green’s function at the complex point of
the CM cycle.

In fact, the intersection of KR cycles and CM cycles lies in a very special closed substack
namely the basic locus (it’s supersingular locus in our case).

Fact: supersingular abelian varieties over algebraically closed field k form a single isogeny
class.

Theorem 3. (9.2 in [1]) For the support of the intersection of the special divisor Z(ξ, µ)
and the CM cycle LCMR(g) on M, we have

1. The support does not meet the generic fiber.

2. If v|v0|p in E|F0|Q s.t v0 is split in F , then the support does not meet special fiber
M⊗OE kv.

3. If v|v0|p in E|F0|Q s.t v0 is inert in F , then the support meets special fiberM⊗OE kv
only in the basic locus.

Proof. A k-point (k an algebraically closed field of char=p, p can be ∞) in the intersection
gives

A

A0 A

ϕ

u

(object in CM∩KR)

(Precisely speaking, we only have ϕ ∈ EndOF (A)⊗Z[ 1
∆

], so we shall work in the category of
abelian varieties up to isogeny.) Define a F -linear map φ : An0 → A by φ = (ϕiu)i=0,...,n−1.

We claim it’s an isogeny. As the dimension of An0 and A are the same, if it’s not an
isogeny, the OF -stable kernel must have positive dimension. So there is a non-zero a =
(ai) ∈ HomOF (A0, A

n
0 ) ∼= On

F s.t φ ◦ a = 0. In other words, f =
∑n−1

i=0 aiϕ
i : A → A has a

positive dimension kernel. But as charF (ϕ) is irreducible, F [ϕ] is a field so f is invertible in
F [ϕ] hence an isogeny, we get a contradiction. For general F0, we can use herm structure
on KR lattice to show that ϕiu are linear independent as the action of g0 by ϕ is regular
semi-simple on V .

(Another proof for F0 = Q: Recall that for any abelian variety A′ we have 2 dimA′ ≥
[End0(A′) : Q]red, see [8] Prop 1.3 and 3.1. The image of φ is an abelian subvariety A′ of
A which is ϕ-stable and has positive dimension as 〈u, u〉 > 0. Now F ′ ↪→ End0(A′) we get
2 dimA′ ≥ [F ′ : Q] = 2n, hence dimA′ = dimA, A′ = A, φ is surjective.)

If p = ∞, then any isogeny is separable so it induces a F ⊗ k-isomorphism Lie(A0)n ∼=
LieA), but this contradicts different Kottwitz conditions (n, 0) and (n − 1, 1) on two sides.
If p = v0 is split in F , then OF ⊗ Zp ∼= Zp × Zp (the first projection corresponds to Φ) acts
on corresponding p-divisible groups and gives splitting

An0 [p∞] = X
(1)
0 ×X

(2)
0 , A[p∞] = X(1) ×X(2).
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Kottwitz condition forces dimX
(2)
0 = 0, dimX(2) = 1 (for general F0 the dimension is true

mod n), but the F -linear isogeny φ gives an isogeny between X
(2)
0 and X(2), a contradiction!

Finally, as A0 is a CM elliptic curve with CM by OF , if p = v0 is inert in F then A0 is
supersingular (this is classical Deuring’s criterion, otherwise End0(A) = F but the p-Frob
Fr in it satisfies Norm(Fr) = p, which shows p is split in F , contradiction). A is isogenous
to An0 hence also supersingular.

Remark 8. We only know charF (g0) is irreducible in F [T ], it can be reducible in Fv[T ] for
every finite place v (e.g choose any non-solvable Galois CM extension of F and take the
irreducible polynomial of a generator; Toy model: x4 + 1 ∈ Q[x] is reducible over Qp for all
odd primes p). So we avoid the use of ∆-Tate modules.

3 Local-global intersection numbers

Now we introduce weight version of two cycles. Let Φ = ϕ0 ⊗ ϕ ∈ S((G× V )(A0,f )), here

• ϕ0 = 1K∆
G
⊗ ϕ0,∆ with ϕ0,∆ ∈ S(

∏
v|∆G(Fv), KG,∆).

• ϕ = 1Λ∆ ⊗ ϕ∆ with ϕ∆ ∈ S(V∆)KG,∆ .

.

Definition 8.
Z(ξ, ϕ) :=

∑
µ∈V (F0,∆)

ξ
/KG,∆

ϕ(µ)Z(ξ, µ) (7.2)

here V (F0,∆)ξ = {µ ∈ V (F0,∆)| 〈µ, µ〉 = ξ} and we update Z(ξ, ϕ) to an element in Ĉh
1

◦(M)
using Bruinier’s Green function;

LCMR (ϕ0) =
∑

g∈KG\G(A0,f)/KG

ϕ0(g)LCMR(g)

Int(ξ,Φ) :=
1

[E : F ]τ(ZQ)
(Ẑ(ξ, ϕ), LCMR(ϕ0))

here τ(ZQ) := #ZQ(Q)\ZQ(Af )/K
◦
ZQ is the class number of F ;

Int(τ,Φ) :=
∑

ξ∈F0,ξ≥0

Int(ξ,Φ)qξ

We know for CM and KR cycles, the intersection number Int =
∑

v0 inert Intv0 + Int∞.
For finite places, we have

Theorem 4. (9.4 in [1]) For any v0 not dividing ∆ and inert at F and Φv0 = 1K◦G,v ⊗ 1Λ◦v ,
we have

Intv0(ξ,Φ) = 2 log qv0

∑
(g,u)

Intv0(g, u) ·Orb ((g, u),Φv0)
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where the sum runs over the G′(Q)-orbits (g, u) in the product

G′(g0)(Q)× V ′(F0)ξ

Here

• Intv0(g, u) is the quantity defined in the AFL conjecture (semi-Lie algebra version) for
the unramified quadratic extension Fv0/F0,v0 .

• V ′ is the “nearby” F/F0-hermitian space over F , which is positive definite at all
archimedean places, and isomorphic to V locally at all non-archimedean places except
at v0. (In particular V ′ is non-split at v0.)

• G′ = U(V ′), and G′(g0) is the subvariety of G′ defined by char(g) = char(g0). The
orbital integral is the product of the local orbital integral defined by

Orb((g, u),Φw) :=

∫
U(V )(F0,w)

Φw(h · (g, u))dh

with Haar measures on G(F0,v) such that Vol(KG,v) = 1.

Remark 9. For arichmedean connection, the Green function is replaced by Kudla’s Green
function, and local a rchimedean intersection number is defined to be special value of the
Green function GK(u, h∞) at the fixed point of g on the locally symmetric domain. Using
complex uniformization, the connection between local-global archimedean intersection num-
ber is proved and stated in a simliar way as in the p-adic setting. The difference between the
two Green functions does not matter in the final proof of AFL, as the difference is a nearly
holomorphic modular form.

The key idea for the proof: one only needs to consider the intersection around the basic
locus over an inert prime. To count intersection at each point, one can do it on a small
tubular neighborhood (algebraically, it means the formal completion along the basic locus).
Then one uses p-adic uniformization to relate local and global cycles. The functions used
for weight sums contribute to orbit integrals.

4 p-adic uniformization

Over C, we know smooth projective complex curves are (analytic) quotients of CP1,C,H.
This is called complex uniformization, which is quite useful e.g you can easily understand
the structure of endormophism ring or torsion groups of elliptic curves.

The analog in p-adic world is called p-adic uniformization, which starts with Mumford’s
work, which is motivated by Tate’s work on the uniformization of elliptic curve over p-adic
field with split multiplication reduction Eq(Qalg

p ) ∼= Qalg,×
p /qZE .

It is more powerful as we can not only parametrize the generic fiber, but also parametrize
the integral model and the special fiber (at least for the supersingular locus), and the uni-
formization is often Galois equivariant. For us, it’s a tool to relate local and global intersec-
tion numbers and do computations.

8



First of all, let us recall that the definition of a Shimura variety, is actually an archimedean
uniformization of the complex algebraic variety

ShG(C) =
∐
i

Γi\X

In p-adic world we expect

Shss,∧G =
∐
i

Γi\N

where J is a natural inner form of G that acts on RZ spacesN and Γi are discrete subgroups
of J .

Example 5. The complex fiber of modular curve has a uniformization by the upper half-
plane. Similarly, the formal completion of the integral model of a Shimura curve over Z̆p
along the special fiber has an uniformization by the Drinfeld upper half-plane Ω2 (the generic
fiber over Cp is P1

Cp −P1(Qp)) if p is ramified in the quaterion algebra, or Lubin-Tate spaces
(if p is split). See Cerednik-Drinfeld’s work for more details.

Example 6. Fix a supersingular elliptic curve E0 over k = Fp. Then R := End(C) which is
a maximal order in the quaternion algebra D = Dp,∞. All supersingular elliptic curves are
isogenous, and there is a bijection between supersingular elliptic curves over k and rank one
projective right R modules (both up to isomorphism) given by C 7→ Hom(C,C0). So we see
the supersingular locus is related to class number of R = OD.

This example explains the appearance of the twist G′ = U(V ′) of G = U(V ): only the
unitary group of the non-split V ′p can act on the Rapoport-Zink space.

For computation purpose, we need a precise adelic form (as the class number has an
adelic expression).

Example 7. (Precise) p prime, N ≥ 5, (N, p) = 1. For the modular curve X0(N) over Zp,
the uniformization for the integral model along supersingular locus is

X0(N)ss,∧
Z̆p

= D×\(GL2(Ap
f )/K0(N))×RZE0[p∞]

here K0(N) is the Γ0(N)-congruence subgroup of GL2(Ap
f )
∼= D×(Ap

f ), and the Rapoport-
Zink space RZE0[p∞] is isomorphic to countably many disjoint union of Lubin-Tate spaces

M1
∼= Spf Z̆p[[t]]. Taking points on each side, we recover the previous example

X0(N)ss(Fp) = D×\(D ⊗ Af )
×/K0(N)O×D,p

(RZE0[p∞](Fp) ∼= Z ∼= (D ⊗Qp)
×/O×D,p)

Idea: We have a map from (the deform space of quasi-isogeny to E0) to X0(N)ssFp

(quasi-isogeny E → E0) 7→ E

this is the uniformization map. We can understand the deform space piece by piece: {quasi-

isogenies of Abelian varieties A→ B } = {Ẑp-lattices Λ in prime-to-p rational Tate module
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+ a quasi-isogeny A[p∞] → B[p∞] }. And one knows the fiber of uniformization map is
essentially End0(E0) ∼= D×.

The general idea are similar. The important thing is to define the uniformization map
from the defromation space, and then prove it’s bijective on points using e.g variants of
Dieudonne-Cartier theory and Honda-Tate theorem, and use theorems of p-divisible groups
e.g Serre-Tate and Grothendieck-Messing to prove it’s étale, then conclude it’s an isomor-
phism.

This partly explains the following theorem:

Theorem 5. LetM =MKG̃
(G̃) be the RSZ Shimura variety over OEv (E is the reflex field,

v is good inert place of E, v|v0|p in E|F0|Q), then the completion of M along the basic
locus in the supersingular locus over OĔv

has a p-adic uniformization

Mss,∧
OĔv

= G̃′(Q)\[NOĔv × G̃(Av0
f )/Kv0

G̃
]

here the group G̃′ is defined similarly as G̃ with V replaced by the “nearby” hermitian space
V ′, so G̃(Av0

f ) ∼= G̃′(Av0
f ).

By the almost product structure of G̃, there is a projecton to a finite set (finiteness of
class number)

Mss,∧
OĔv
→ ZQ(Q)\ZQ(Af )/K

◦
ZQ

with each fiber isomorphic to

Mss,∧
OĔv ,0

= G′(Q)\[NOĔv ×G(Av0
f )/Kv0

G̃
].

Return to the relation of local-global intersection numbers, we can compute the inter-
section number at each fiber. And at each fiber, we also have uniformization results for KR
cycles and CM cycles which relates between local and global cycles (the local KR divisor
is defined similarly, the local CM cycle is the derived fixed locus LN γ). This explains the
strategy of the proof.
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