$D_m^b(X_0,\overline{\mathbb{Q}}_\ell)$ and Weil II

Zhiyu Zhang

BBDG seminar

April 15th, 2021

Zhiyu Zhang (BBDG seminar) April 15th, 2021 1/30

Zhiyu Zhang (BBDG seminar) April 15th, 2021 2/30

- Set up weight theory, and $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$.
- Recall Weil II, apply it to show $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$ and $Perv_m(X_0, \overline{\mathbb{Q}}_\ell)$ have nice properties.
- Prove the key vanishing of higher $Extⁱ$ (yoga of weights).
- State Frobenius "descent": $Perv(X_0) \rightarrow Perv(X, Fr_q)$.
- $(-)_0/\mathbb{F}_q \sim (-)/k = \mathbb{F}_q^{alg}.$
- $\Lambda = \overline{\mathbb{Q}}_{\ell} \ (\ell \neq p).$
- a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf = a continuous finite dim $\overline{\mathbb{Q}}_{\ell}$ -rep of π_1 .
- $p_{1/2} =$ selfdual perversity i.e ${}^pD_c^{\leq 0} = \{K | \dim \text{Supp } H^i(K) \leq -i \}.$

 X_0 scheme of finite type over \mathbb{F}_q , \mathcal{F}_0 a $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X_0 .

 $Gal_{\mathbb{F}_q} \cong \widehat{\mathbb{Z}}$ is generated by **geometric Frobenius** $F = (a \mapsto a^{1/q})$.

Example

On Spec \mathbb{F}_q , a $\overline{\mathbb{Q}}_{\ell}$ -sheaf "=" a vector space V with a linear automorphism F.

Easy way: $x \in X_0(\mathbb{F}_q)$, pullback of \mathcal{F}_0 along x gives a vector space $\mathcal{F}_{\bar{x}}$ with $Gal_{\mathbb{F}_q}$ -action.

 $Fr_{q,x}^* \coloneqq F \sim \mathcal{F}_{\bar{x}}.$

What is the Frobenius Fr_q ?

Another way:

k-linear **relative Frobenius** $Fr_q = Fr_{X/k} : X \to X$, with fixed points

 $X(\mathbb{F}_q)$. $Fr_X = (Fr_k)_X \circ Fr_q$.

Example

 $X_0 = \mathbb{A}^1 = \operatorname{Spec} \mathbb{F}_q[t], (Fr_k)_X : a_i t^i \mapsto a_i^q$ ${}_{i}^{q}t^{i}$, $Fr_{q}: a_{i}t^{i} \mapsto a_{i}t^{iq}$. Another way:

k-linear **relative Frobenius** $Fr_q = Fr_{X/k} : X \to X$, with fixed points

 $X(\mathbb{F}_q)$. $Fr_X = (Fr_k)_X \circ Fr_q$.

Example

$$
X_0 = \mathbb{A}^1 = \operatorname{Spec} \mathbb{F}_q[t], (Fr_k)_X : a_i t^i \mapsto a_i^q t^i, Fr_q : a_i t^i \mapsto a_i t^{iq}.
$$

- Absolute Frob doesn't change etale topology, $Fr_X^* \mathcal{F} = \mathcal{F}$.
- $\mathcal F$ comes from $\mathcal F_0$, (Fr_k) ∗ $X^*X \mathcal{F} \cong \mathcal{F}.$
- \rightsquigarrow a natural isomorphism $\phi: Fr_q^*\mathcal{F} \cong \mathcal{F}.$

 $\rightsquigarrow Fr_q^* = \phi_x \rightsquigarrow \mathcal{F}_{\bar{x}}$ for any $x \in X_0(\mathbb{F}_q)$. $Fr_q^* = Fr_{q,x}^*$.

For [BBDG], $w \in \mathbb{Z}$.

weak q-Weil number of weight w: $a \in \overline{Q}$ s.t $|\iota(a)| = q^{w/2}$, $\forall \iota : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}.$

For [BBDG], $w \in \mathbb{Z}$.

- weak q-Weil number of weight w: $a \in \overline{Q}$ s.t $|\iota(a)| = q^{w/2}$, $\forall \iota : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}.$
- A $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathcal{F}_0 on X_0 is **punctually pure of weight** w, if for any n and $x \in X_0(\mathbb{F}_{q^n})$, the eigenvalues of $Fr_{q^n}^*$ on $\mathcal{F}_{\bar{x}}$ are all weak q^n -Weil numbers of weight w.

 $\overline{\mathbb{Q}}_{\ell}(n)$ is puncturally pure of weight $-2n$.

 \mathcal{F}_0 is mixed, if ∃ a finite filtration on \mathcal{F}_0 with punctually pure successive quotients.

 $w(\mathcal{F}_0)$:= punctural weights of \mathcal{F}_0 .

By definition, mixedness is stable under extensions, subquotients.

This mixed condition is geometric and motivic.

 \mathcal{F}_0 is mixed, if ∃ a finite filtration on \mathcal{F}_0 with punctually pure successive quotients.

 $w(\mathcal{F}_0)$:= punctural weights of \mathcal{F}_0 .

By definition, mixedness is stable under extensions, subquotients.

This mixed condition is geometric and motivic.

We can also require $a \in \mathbb{Z}$ i.e a q-Weil number.

[Weil II, Remark 1.2.8] and [KW]: *ι*-mixedness, uses $\iota : \overline{\mathbb{Q}}_{\ell} \to \mathbb{C}$, $w \in \mathbb{R}$. [Weil II, Conj 1.2.9]: every $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X_0 is ι -mixed $(w \in \mathbb{R})$. This is known by works of L. Lafforgue, V. Drinfeld.

 $D_m^b(X_0, \overline{\mathbb{Q}}_\ell) \subseteq D_c^b(X_0, \overline{\mathbb{Q}}_\ell)$ consists of K_0 s.t the **cohomology sheaves** $\mathcal{H}^i K_0$ are mixed.

By long exact seq for \mathcal{H}^i , D_m^b is stable under extensions.

 $D_m^b(X_0, \overline{\mathbb{Q}}_\ell) \subseteq D_c^b(X_0, \overline{\mathbb{Q}}_\ell)$ consists of K_0 s.t the **cohomology sheaves** $\mathcal{H}^i K_0$ are mixed.

By long exact seq for \mathcal{H}^i , D_m^b is stable under extensions.

$[BBDG, 5.1.6-5.1.7]$ (to be proved later)

- $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$ is stable under \mathbb{D} .
- $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$ inherits the perverse t-structure.
- Every sub-quotient of a mixed perverse sheaf is mixed.

Lisse \mathcal{F}_0 on smooth X_0 : $\odot \odot$

Gluing is non-trivial, we need Weil II (e.g Rj_* for open immersion j).

 K_0 in D_m^b is of weight $\leq w$ if punctural weights of $\mathcal{H}^i K_0$ are $\leq w + i$ for any i .

 K_0 in D_m^b is of weight $\geq w$ if its **Verdier's dual** $\mathbb{D}(K_0)$ of weight $\leq -w$. K_0 is **pure of weight** w if $K_0 \in D_{\leq w}^b \cap D_{\geq w}^b$. By duality,

 K_0 in D_m^b is of weight $\leq w$ if punctural weights of $\mathcal{H}^i K_0$ are $\leq w + i$ for any i .

 K_0 in D_m^b is of weight $\geq w$ if its **Verdier's dual** $\mathbb{D}(K_0)$ of weight $\leq -w$. K_0 is **pure of weight** w if $K_0 \in D_{\leq w}^b \cap D_{\geq w}^b$. By duality,

[BBDG,5.1.9]

 $K_0 \in D_m^b$ is in $D_{\leq w}^b$ (resp $D_{\geq w}^b$), iff for any closed point $i : x_0 \to X_0$, $i^* K_0$ (resp $i^! K_0$) is of weight $\leq w$ (resp $\geq w$).

 $D_{\leq w}^b[1] = D_{\leq w+1}^b$. But $D_{\leq w}^b \cap D_{\geq w+1}^b = 0$ (to be proved later) is non-trivial. We need Weil II.

Purity=punctual purity for lisse \mathcal{F}_0 on smooth X_0

Assume X_0 is smooth of pure dimension d, so $\omega_{X_0} = \overline{\mathbb{Q}}_{\ell}[2d](d)$. If $\mathcal{H}^i K_0$ are all lisse, then

Proposition

 $\mathcal{H}^i(\mathbb{D}K_0) = (\mathcal{H}^{-2d-i}K_0)$ $\vee(d).$

Proof:

Purity=punctual purity for lisse \mathcal{F}_0 on smooth X_0

Assume X_0 is smooth of pure dimension d, so $\omega_{X_0} = \overline{\mathbb{Q}}_{\ell}[2d](d)$. If $\mathcal{H}^i K_0$ are all lisse, then

Proposition

 $\mathcal{H}^i(\mathbb{D}K_0) = (\mathcal{H}^{-2d-i}K_0)$ $\vee(d).$

Proof:

 $\mathbb{D}(\mathcal{H}^{i}(K_{0})) = R\underline{Hom}(\mathcal{H}^{i}(K_{0}), \overline{\mathbb{Q}}_{\ell}[2d](d)) = R\underline{Hom}(\mathcal{H}^{i}(K_{0}), \overline{\mathbb{Q}}_{\ell})[2d](d)$ (lisse so higher local Ext sheaves $= 0$) = $\underline{Hom}(\mathcal{H}^i(K_0), \overline{\mathbb{Q}}_\ell)[2d](d) = \mathcal{H}^i(K_0)$ $\vee [2d](d).$ $\sim E_2^{pq}$ $2^{pq} = \mathcal{H}^p(\mathbb{D}(\mathcal{H}^{-q}K_0)) \Rightarrow \mathcal{H}^{p+q}(\mathbb{D}K_0)$ degenerates, $\mathcal{H}^i(\mathbb{D}K_0) = \mathcal{H}^{-2d} \mathbb{D}(\mathcal{H}^{-2d-i}(K_0)).$

Purity=punctual purity for lisse \mathcal{F}_0 on smooth X_0

Proposition

Assumption as above, K_0 is pure of weight w iff each $\mathcal{H}^i K_0$ is punctually pure of weight $w + i$.

$$
-(-w - 2d - i) - 2d = w + i.
$$

In general, \mathbb{Q}_l is puncturally pure but may not be pure . If X_0 is proper, and \mathbb{Q}_l is pure of weight 0, then Frob eigenvalues on $H^i(X)$ has weights exactly *i* by Weil II, which is not true in general.

It can be pure in some singular cases.

[Weil II, 3.3.1, 6.2.3]

If $f: X_0 \to Y_0$ is a (separated) morphism between schemes of finite type over \mathbb{F}_q , then $Rf_!$ sends $D_{\leq w}^b$ to $D_{\leq w}^b \subseteq D_m^b$.

Corollary [Weil II, 6.1] (induction $+$ proper case $+$ smooth case) Rf_* sends D_m^b to D_m^b .

Example

 $a: X_0 \to \mathbb{F}_q$ \sim Frob eigenvalues on $H_c^i(X, \mathcal{F})$ are q-Weil numbers of weight $\leq w + i$ for any $\mathcal{F}_0 \in D^b_{\leq w}(X_0, \overline{\mathbb{Q}}_\ell)$.

Example

 $X \subseteq \mathbb{P}^{d+1}$ is a smooth geometrically irreducible hypersurface over a finite field \mathbb{F}_q . Then $\#X(\mathbb{F}_{q^n}) - \# \mathbb{P}^d(\mathbb{F}_{q^n}) = O(q^{nd/2})$.

Now it's time for applications to D_m^b .

Application A: stabilities of D_m^b

By definition, f^* preserves $D_{\leq w}^b$, and \otimes sends $D_{\leq w}^b \times D_{\leq w'}^b$ to $D_{\leq w+w'}^b$.

Proposition

 $K_0 \in D_m^b \Leftrightarrow \mathbb{D}(K_0) \in D_m^b$.

Proof: WLOG K_0 is a mixed sheaf. If X_0 is smooth, K_0 is lisse, then $\mathbb{D}K_0 = K_0^{\vee}[2d](d)$ by previous computation.

By definition, f^* preserves $D_{\leq w}^b$, and \otimes sends $D_{\leq w}^b \times D_{\leq w'}^b$ to $D_{\leq w+w'}^b$.

Proposition

 $K_0 \in D_m^b \Leftrightarrow \mathbb{D}(K_0) \in D_m^b$.

Proof: WLOG K_0 is a mixed sheaf. If X_0 is smooth, K_0 is lisse, then $\mathbb{D}K_0 = K_0^{\vee}[2d](d)$ by previous computation.

In general, use Noetherian induction. Choose smooth dense open

 $j: U_0 \hookrightarrow X_0$ s.t j^*K_0 is lisse.

Exact triangle $j_!j^*K_0 \to K_0 \to i_*i^*K_0$.

$$
\sim i_* \mathbb{D}(i^*K_0) \to \mathbb{D}(K_0) \to j_* \mathbb{D}(j^*K_0).
$$

We're done by induction and Weil II for Rj_{*} .

By duality and Weil II, we get

By duality and Weil II, we get

[BBDG,5.1.14]

- D exchanges $D_{\leq w}^b$ and $D_{\geq -w}^b$.
- $f_!, f^*$ sends $D_{\leq w}^b$ to $D_{\leq w}^b$.
- $f^!, f_*$ sends $D_{\geq w}^b$ to $D_{\geq w}^b$.
- ⊗ sends $D_{\leq w}^b \times D_{\leq w'}^b$ to $D_{\leq w+w'}^b$.
- $R\underline{\text{Hom}}$ sends $D_{\leq w}^b \times D_{\geq w'}^b$ to $D_{\geq -w+w'}^b$.

 $R\underline{\mathrm{Hom}}(A, \mathbb{D}(B)) = R\underline{\mathrm{Hom}}(A, R\underline{\mathrm{Hom}}(B, \omega_{X_0})) = R\underline{\mathrm{Hom}}(A \otimes B, \omega_{X_0}) =$ $\mathbb{D}(A \otimes B).$

Therefore, the full subcategory $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$ of $D_c^b(X_0, \overline{\mathbb{Q}}_\ell)$ is stable by all usual operations e.g $Rf_*, Rf_!, f^*, Rf^!, \otimes, R\underline{\text{Hom}}, \mathbb{D}.$

[BBDG, 5.1.7. (i)]

- D_m^b is stable under ${}^p\tau_{\leq i}$ and ${}^p\tau_{\geq i}$.
- D_m^b is stable under $\tau_{\leq i}$ and $\tau_{\geq i}$ by definition.

 ${}^{p}\tau_{\leq 0}(-)$ is constructed by j_*, j^*, i_*, i^* plus truncations and taking cones. More precisely, $F_1 \to F \to Rj_*^p \tau_{\geq 1} j^* F$, ${}^p \tau_{\leq 0}(F) \to F_1 \to Ri_*^p \tau_{\geq 1} i^* F_1$. So ${}^p\tau_{\leq i}$, ${}^p\tau_{\geq i}$ send D_m^b to D_m^b , we're done. $\sim D_m^b$ is stable under $^pH^*$. $\sim D_m^b$ is stable under $p_{j*}, p_{j!}, p_{j*}$.

Application C: vanishing of higher $Extⁱ$

$K_0, L_0 \in D_m^b(X_0, \overline{\mathbb{Q}}_\ell).$

[BBDG, 5.1.15]

- If $K_0 \in D^b_{\leq w}, L_0 \in D^b_{\geq w}$, then $\text{Hom}^i(K, L)^F = 0$, for $i > 0$.
- If $K_0 \in D_{\leq w}^b, L_0 \in D_{\geq w}^b$, then $\text{Hom}^i(K_0, L_0) = 0$, for $i > 0$.

Application C: vanishing of higher $Extⁱ$

$K_0, L_0 \in D_m^b(X_0, \overline{\mathbb{Q}}_\ell).$

[BBDG, 5.1.15]

- If $K_0 \in D^b_{\leq w}, L_0 \in D^b_{\geq w}$, then $\text{Hom}^i(K, L)^F = 0$, for $i > 0$.
- If $K_0 \in D_{\leq w}^b, L_0 \in D_{\geq w}^b$, then $\text{Hom}^i(K_0, L_0) = 0$, for $i > 0$.

Crucial for semi-simpleness and decomposition theorem in [BBDG]. Lack of weight theory \sim decomposition theorem fails for coefficients like \mathbb{F}_{ℓ} .

Proof: $a: X_0 \to \text{Spec } \mathbb{F}_q$, apply Weil II to $M_0 \coloneqq Ra_* R\underline{\text{Hom}}(K_0, L_0) \in D^b_c(\text{Spec } \mathbb{F}_q).$

Application D: D_{\leq}^{b} $\leq w$ $\cap D_{>}^{b}$ $\geq w+1$ $= 0$

$id_K \in \text{Hom}(K, K)^F = \text{Hom}^1(K, K[-1])^F = 0.$

$M_0 \in D_c^b(\operatorname{Spec} \mathbb{F}_q)$

 $M_0 \in D_c^b(\text{Spec } \mathbb{F}_q, \overline{\mathbb{Q}}_\ell)$, $M := i^*M_0 \in D_c^b(\overline{\mathbb{Q}}_\ell)$ with geom Frob action $F: M \rightarrow M$.

Global section / fixed points $R\Gamma: D_c^b(\operatorname{Spec} \mathbb{F}_q, \overline{\mathbb{Q}}_\ell) \to D_c^b(\overline{\mathbb{Q}}_\ell)$.

[BBDG, 5.1.2]

Short exact sequence $0 \to (H^{n-1}M)_F \to H^n R\Gamma M_0 \to (H^nM)^F \to 0.$

 E_2^{pq} $H^{\rho q} = H^{\rho}(\text{Spec }\mathbb{F}_q, \mathcal{H}^qM_0) = H^{\rho}(\text{Gal}_{\mathbb{F}_q}, H^qM) \Rightarrow H^{p+q}R\Gamma M_0.$

$M_0 \in D_c^b(\operatorname{Spec} \mathbb{F}_q)$

 $M_0 \in D_c^b(\text{Spec } \mathbb{F}_q, \overline{\mathbb{Q}}_\ell)$, $M := i^*M_0 \in D_c^b(\overline{\mathbb{Q}}_\ell)$ with geom Frob action $F: M \rightarrow M$.

Global section / fixed points $R\Gamma: D_c^b(\operatorname{Spec} \mathbb{F}_q, \overline{\mathbb{Q}}_\ell) \to D_c^b(\overline{\mathbb{Q}}_\ell)$.

[BBDG, 5.1.2]

Short exact sequence $0 \to (H^{n-1}M)_F \to H^n R\Gamma M_0 \to (H^nM)^F \to 0.$

$$
E_2^{pq} = H^p(\text{Spec } \mathbb{F}_q, \mathcal{H}^q M_0) = H^p(\text{Gal}_{\mathbb{F}_q}, H^q M) \Rightarrow H^{p+q} R\Gamma M_0.
$$

Gal $\mathbb{F}_q \cong \widehat{\mathbb{Z}}$, generated by the geometric Frobenius F .

$$
H^p(\text{Gal}_{\mathbb{F}_q}, -) = \begin{cases} (-)^F, p = 0 \\ (-)_F, p = 1 \\ 0, else \end{cases}.
$$

$M_0 \coloneqq Ra_* R\underline{\mathrm{Hom}}(K_0,L_0) \in D^b_c(\operatorname{Spec} \mathbb{F}_q)$

$$
a: X_0 \to \operatorname{Spec} \mathbb{F}_q. M_0 = Ra_* R\underline{Hom}(K_0, L_0), M = i^*M_0.
$$

Proposition

 $M = R$ Hom (K, L) (smooth base change).

 $R\Gamma M_0 = R\text{Hom}(K_0, L_0)$ $(R\Gamma Ra_* = R\Gamma_{X_0}).$

$M_0 \coloneqq Ra_* R\underline{\mathrm{Hom}}(K_0,L_0) \in D^b_c(\operatorname{Spec} \mathbb{F}_q)$

$$
a: X_0 \to \text{Spec } \mathbb{F}_q
$$
. $M_0 = Ra_* R\underline{Hom}(K_0, L_0)$, $M = i^* M_0$.

Proposition

 $M = R$ Hom (K, L) (smooth base change). $R\Gamma M_0 = R\text{Hom}(K_0, L_0)$ $(R\Gamma Ra_* = R\Gamma_{X_0}).$

From above,

$$
0 \to (\text{Hom}^{i-1}(K,L))_F \to \text{Hom}^i(K_0,L_0) \to \text{Hom}^i(K,L)^F \to 0.
$$

- $K_0 \in D_{\leq w}^b, L_0 \in D_{\geq w}^b \sim M_0 \in D_{\geq 0}^b \sim w(\text{Hom}^i(K, L)) \geq i,$ $Homⁱ(K, L)^F = 0$, for $i > 0$.
- If $K_0 \in D_{\leq w}^b, L_0 \in D_{\geq w}^b$, then $M_0 \in D_{>0}^b$. Homⁱ $(K_0, L_0) = 0$, for $i > 0$.

Application C is proved.

Application E: $Perv_m(X_0)$ is stable under subquotient

$$
\mathrm{Perv}_m(X_0) = \mathrm{Perv}(X_0) \cap D_m^b.
$$

[BBDG, 5.1.7. (ii)]

 $A_0 \subseteq B_0 \in \text{Perv}(X_0), B_0 \in \text{Perv}_m(X_0) \Rightarrow A_0, B_0/A_0 \in \text{Perv}_m(X_0).$

Proof: If A_0 , B_0 are concentrated in one degree, this is obvious.

Application E: $Perv_m(X_0)$ is stable under subquotient

$\text{Perv}_m(X_0) = \text{Perv}(X_0) \cap D_m^b.$

[BBDG, 5.1.7. (ii)]

 $A_0 \subseteq B_0 \in \text{Perv}(X_0), B_0 \in \text{Perv}_m(X_0) \Rightarrow A_0, B_0/A_0 \in \text{Perv}_m(X_0).$

Proof: If A_0 , B_0 are concentrated in one degree, this is obvious. In general, choose smooth dense open $j: U_0 \hookrightarrow X_0$ s.t $j^*A_0 \hookrightarrow j^*B_0$ are lisse (up to shift). Then $j^*A_0 = \frac{p_j^*A_0}{q_j}$ is mixed and perverse. \rightsquigarrow ^{*p*}j_!j^{*}A₀,^{*p*}j_{*}j^{*}(B₀/A₀) ∈ Perv_m(X₀).

Application E: $Perv_m(X_0)$ is stable under subquotient

$\text{Perv}_m(X_0) = \text{Perv}(X_0) \cap D_m^b.$

[BBDG, 5.1.7. (ii)]

 $A_0 \subseteq B_0 \in \text{Perv}(X_0), B_0 \in \text{Perv}_m(X_0) \Rightarrow A_0, B_0/A_0 \in \text{Perv}_m(X_0).$

Proof: If A_0 , B_0 are concentrated in one degree, this is obvious. In general, choose smooth dense open $j: U_0 \hookrightarrow X_0$ s.t $j^*A_0 \hookrightarrow j^*B_0$ are lisse (up to shift). Then $j^*A_0 = \frac{p_j^*A_0}{q_j}$ is mixed and perverse. \rightsquigarrow ^{*p*}j_!j^{*}A₀,^{*p*}j_{*}j^{*}(B₀/A₀) ∈ Perv_m(X₀). $\sim I = Im(Pj_!j^*A_0 \rightarrow B_0), J = Ker(B_0 \rightarrow Pj_*j^*(B_0/A_0)) \in Perv_m(X_0).$ $I \subseteq A_0 \subseteq J \subseteq B_0$. $J/I \in \text{Perv}_m(Z_0)$ gives $A/I \in \text{Perv}_m(Z_0)$ by induction. A_0 is extension of A_0/I by I, hence also mixed.

Let $Perv(X, Fr_q)$ be the category of perverse sheaves $\mathcal F$ on X equipped with an isomorphism $\phi: Fr_q^* \mathcal{F} \to \mathcal{F}$. Now Λ is any suitable coefficient.

Let $Perv(X, Fr_q)$ be the category of perverse sheaves $\mathcal F$ on X equipped with an isomorphism $\phi: Fr_q^* \mathcal{F} \to \mathcal{F}$. Now Λ is any suitable coefficient.

[BBDG, 5.1.2]

- **1** The functor $\text{Perv}(X_0) \to \text{Perv}(X, Fr_q), \mathcal{F}_0 \mapsto (\mathcal{F}, Fr_q)$ is fully faithful.
- ² The category of essential images is stable by extensions and by sub-quotients.

As perversity gives a *t*-structure, $Hom^{-1}(K_0, L_0) = 0$. So $\text{Hom}_{D_c^b(X_0)}(K_0, L_0) = \text{Hom}_{D_c^b(X)}(K, L)^F$, part (1) follows.

Thank you!

 $(\ast) 0 \to (\text{Hom}(K, L))_F \to \text{Ext}^1(K_0, L_0) \to \text{Ext}^1(K, L)^F \to 0$, is exact, where $Ext^1(A, B) = \{0 \to B \to C \to A \to 0\}/\simeq$. Recall $0 \to B \to C_1 \to A \to 0 \simeq 0 \to B \to C_2 \to A \to 0$ iff there is a $f: C_1 \cong C_2$ such that $f|_A = id_A, f|_B = id_B$.

The Frob action F on $Ext^1(K, L)$ is via pullback along Fr_q^* .

 $(\ast) 0 \to (\text{Hom}(K, L))_F \to \text{Ext}^1(K_0, L_0) \to \text{Ext}^1(K, L)^F \to 0$, is exact, where $Ext^1(A, B) = \{0 \to B \to C \to A \to 0\}/\simeq$. Recall $0 \to B \to C_1 \to A \to 0 \simeq 0 \to B \to C_2 \to A \to 0$ iff there is a $f: C_1 \cong C_2$ such that $f|_A = id_A, f|_B = id_B$.

The Frob action F on $Ext^1(K, L)$ is via pullback along Fr_q^* .

[BBDG, 5.1.2]

There is another short exact sequence (∗∗)

$$
0 \to (\text{Hom}(K, L))_F \to EXT^1((K, \phi_K), (L, \phi_L)) \stackrel{\text{forget}}{\to} Ext^1(K, L)^F \to 0,
$$

where EXT^1 = extensions in $\text{Perv}(X, Fr_q)$.

Proof:

kernel of forget is given by $(L \oplus K,$ $\overline{ \cdot }$ L ⎝ ϕ_L $U\phi$ $0 \quad \phi_K$ \mathbf{I} $\overline{}$ \overline{J}), where the class is determined by U modulo $\phi Fr_q^*(V)\phi^{-1} - V$ for $V: K \to L$. Hence the kernel is the coinvariant.

So $Ext^1(K_0, L_0) \cong EXT^1((K, \phi), (L, \phi))$ by (*) and (**).

Do induction as in application E.

A singular example

- Section 5.1 of [BBDG] Beilinson, Bernstein, Deligne, Gabber: Faisceaux pervers (book).
- Notes on a learning Seminar on Deligne's Weil II Theorem, Umich Summer 2016.
- P. Deligne, Weil II.
- V. Drinfeld, On a conjecture of Deligne, Moscow Math. J. 12 (2012), 515-542.