$D^b_m(X_0, \overline{\mathbb{Q}}_\ell)$ and Weil II

Zhiyu Zhang

BBDG seminar

April 15th, 2021

Zhiyu Zhang (BBDG seminar)

April 15th, 2021 1 / 30

Zhiyu Zhang (BBDG seminar)

- Set up weight theory, and $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$.
- Recall Weil II, apply it to show $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$ and $Perv_m(X_0, \overline{\mathbb{Q}}_\ell)$ have nice properties.
- Prove the key vanishing of higher Ext^i (yoga of weights).
- State Frobenius "descent": $Perv(X_0) \hookrightarrow Perv(X, Fr_q)$.

- $(-)_0/\mathbb{F}_q \rightsquigarrow (-)/k = \mathbb{F}_q^{alg}.$
- $\Lambda = \overline{\mathbb{Q}}_{\ell} \ (\ell \neq p).$
- a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf = a continuous finite dim $\overline{\mathbb{Q}}_{\ell}$ -rep of π_1 .
- $p_{1/2}$ = selfdual perversity i.e ${}^{p}D_{c}^{\leq 0} = \{K | \dim \operatorname{Supp} \mathcal{H}^{i}(K) \leq -i\}.$

 X_0 scheme of finite type over \mathbb{F}_q , \mathcal{F}_0 a $\overline{\mathbb{Q}}_\ell$ -sheaf on X_0 .

 $\operatorname{Gal}_{\mathbb{F}_q} \cong \widehat{\mathbb{Z}}$ is generated by geometric Frobenius $F = (a \mapsto a^{1/q}).$

Example

On Spec \mathbb{F}_q , a $\overline{\mathbb{Q}}_{\ell}$ -sheaf "=" a vector space V with a linear automorphism F.

Easy way: $x \in X_0(\mathbb{F}_q)$, pullback of \mathcal{F}_0 along x gives a vector space $\mathcal{F}_{\bar{x}}$ with $\operatorname{Gal}_{\mathbb{F}_q}$ -action.

 $Fr_{q,x}^* \coloneqq F \curvearrowright \mathcal{F}_{\bar{x}}.$

What is the Frobenius Fr_q ?

Another way:

k-linear relative Frobenius $Fr_q = Fr_{X/k} : X \to X$, with fixed points

 $X(\mathbb{F}_q)$. $Fr_X = (Fr_k)_X \circ Fr_q$.

Example

 $X_0 = \mathbb{A}^1 = \operatorname{Spec} \mathbb{F}_q[t], \ (Fr_k)_X : a_i t^i \mapsto a_i^q t^i, \ Fr_q : a_i t^i \mapsto a_i t^{iq}.$

Another way:

k-linear relative Frobenius $Fr_q = Fr_{X/k} : X \to X$, with fixed points $X(\mathbb{F}_q)$. $Fr_X = (Fr_k)_X \circ Fr_q$.

Example

$$X_0 = \mathbb{A}^1 = \operatorname{Spec} \mathbb{F}_q[t], \ (Fr_k)_X : a_i t^i \mapsto a_i^q t^i, \ Fr_q : a_i t^i \mapsto a_i t^{iq}.$$

- Absolute Frob doesn't change etale topology, $Fr_X^* \mathcal{F} = \mathcal{F}$.
- \mathcal{F} comes from \mathcal{F}_0 , $(Fr_k)^*_X \mathcal{F} \cong \mathcal{F}$.
- \rightsquigarrow a natural isomorphism $\phi : Fr_q^* \mathcal{F} \cong \mathcal{F}$.
- $\rightsquigarrow Fr_q^* = \phi_x \curvearrowright \mathcal{F}_{\bar{x}}$ for any $x \in X_0(\mathbb{F}_q)$. $Fr_q^* = Fr_{q,x}^*$.

For [BBDG], $w \in \mathbb{Z}$.

• weak q-Weil number of weight $w: a \in \overline{\mathbb{Q}}$ s.t $|\iota(a)| = q^{w/2}$, $\forall \iota : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$. For [BBDG], $w \in \mathbb{Z}$.

- weak q-Weil number of weight $w: a \in \overline{\mathbb{Q}}$ s.t $|\iota(a)| = q^{w/2}$, $\forall \iota : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}$.
- A $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathcal{F}_0 on X_0 is **punctually pure of weight** w, if for any n and $x \in X_0(\mathbb{F}_{q^n})$, the eigenvalues of $Fr_{q^n}^*$ on $\mathcal{F}_{\bar{x}}$ are all weak q^n -Weil numbers of weight w.

 $\overline{\mathbb{Q}}_{\ell}(n)$ is puncturally pure of weight -2n.

 \mathcal{F}_0 is **mixed**, if \exists a finite filtration on \mathcal{F}_0 with **punctually pure** successive quotients.

 $w(\mathcal{F}_0) \coloneqq$ punctural weights of \mathcal{F}_0 .

By definition, mixedness is stable under extensions, subquotients.

This mixed condition is geometric and motivic.

 \mathcal{F}_0 is **mixed**, if \exists a finite filtration on \mathcal{F}_0 with **punctually pure** successive quotients.

 $w(\mathcal{F}_0) \coloneqq$ punctural weights of \mathcal{F}_0 .

By definition, mixedness is stable under extensions, subquotients.

This mixed condition is geometric and motivic.

We can also require $a \in \overline{\mathbb{Z}}$ i.e a q-Weil number.

[Weil II, Remark 1.2.8] and [KW]: ι -mixedness, uses $\iota : \overline{\mathbb{Q}}_{\ell} \hookrightarrow \mathbb{C}, w \in \mathbb{R}$. [Weil II, Conj 1.2.9]: every $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X_0 is ι -mixed ($w \in \mathbb{R}$). This is known by works of L. Lafforgue, V. Drinfeld. $D_m^b(X_0, \overline{\mathbb{Q}}_\ell) \subseteq D_c^b(X_0, \overline{\mathbb{Q}}_\ell)$ consists of K_0 s.t the cohomology sheaves $\mathcal{H}^i K_0$ are mixed.

By long exact seq for \mathcal{H}^i , D^b_m is stable under extensions.

 $D_m^b(X_0, \overline{\mathbb{Q}}_\ell) \subseteq D_c^b(X_0, \overline{\mathbb{Q}}_\ell)$ consists of K_0 s.t the **cohomology sheaves** $\mathcal{H}^i K_0$ are mixed.

By long exact seq for \mathcal{H}^i , D^b_m is stable under extensions.

|BBDG, 5.1.6-5.1.7| (to be proved later)

- $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$ is stable under \mathbb{D} .
- $D^b_m(X_0, \overline{\mathbb{Q}}_\ell)$ inherits the perverse t-structure.
- Every sub-quotient of a mixed perverse sheaf is mixed.

Lisse \mathcal{F}_0 on smooth X_0 : \mathfrak{SS}

Gluing is non-trivial, we need Weil II (e.g Rj_* for open immersion j).

 K_0 in D_m^b is of weight $\leq w$ if punctural weights of $\mathcal{H}^i K_0$ are $\leq w + i$ for any i.

 K_0 in D_m^b is of weight $\geq w$ if its **Verdier's dual** $\mathbb{D}(K_0)$ of weight $\leq -w$. K_0 is **pure of weight** w if $K_0 \in D_{\leq w}^b \cap D_{\geq w}^b$. By duality, K_0 in D_m^b is of weight $\leq w$ if punctural weights of $\mathcal{H}^i K_0$ are $\leq w + i$ for any i.

 K_0 in D_m^b is of weight $\geq w$ if its **Verdier's dual** $\mathbb{D}(K_0)$ of weight $\leq -w$. K_0 is **pure of weight** w if $K_0 \in D_{\leq w}^b \cap D_{\geq w}^b$. By duality,

[BBDG, 5.1.9]

 $K_0 \in D_m^b$ is in $D_{\leq w}^b$ (resp $D_{\geq w}^b$), iff for any closed point $i: x_0 \hookrightarrow X_0, i^*K_0$ (resp $i^!K_0$) is of weight $\leq w$ (resp $\geq w$).

 $D^b_{\leq w}[1] = D^b_{\leq w+1}$. But $D^b_{\leq w} \cap D^b_{\geq w+1} = 0$ (to be proved later) is non-trivial. We need Weil II.

Purity=punctual purity for lisse \mathcal{F}_0 on smooth X_0

Assume X_0 is smooth of pure dimension d, so $\omega_{X_0} = \overline{\mathbb{Q}}_{\ell}[2d](d)$. If $\mathcal{H}^i K_0$ are all lisse, then

Proposition

 $\mathcal{H}^{i}(\mathbb{D}K_{0}) = (\mathcal{H}^{-2d-i}K_{0})^{\vee}(d).$

Proof:

Purity=punctual purity for lisse \mathcal{F}_0 on smooth X_0

Assume X_0 is smooth of pure dimension d, so $\omega_{X_0} = \overline{\mathbb{Q}}_{\ell}[2d](d)$. If $\mathcal{H}^i K_0$ are all lisse, then

Proposition

 $\mathcal{H}^{i}(\mathbb{D}K_{0}) = (\mathcal{H}^{-2d-i}K_{0})^{\vee}(d).$

Proof:

 $\mathbb{D}(\mathcal{H}^{i}(K_{0})) = R\underline{Hom}(\mathcal{H}^{i}(K_{0}), \overline{\mathbb{Q}}_{\ell}[2d](d)) = R\underline{Hom}(\mathcal{H}^{i}(K_{0}), \overline{\mathbb{Q}}_{\ell})[2d](d)$ (lisse so higher local Ext sheaves = 0) $= \underline{Hom}(\mathcal{H}^{i}(K_{0}), \overline{\mathbb{Q}}_{\ell})[2d](d) = \mathcal{H}^{i}(K_{0})^{\vee}[2d](d).$ $\sim E_{2}^{pq} = \mathcal{H}^{p}(\mathbb{D}(\mathcal{H}^{-q}K_{0})) \Rightarrow \mathcal{H}^{p+q}(\mathbb{D}K_{0}) \text{ degenerates},$ $\mathcal{H}^{i}(\mathbb{D}K_{0}) = \mathcal{H}^{-2d}\mathbb{D}(\mathcal{H}^{-2d-i}(K_{0})).$

Purity=punctual purity for lisse \mathcal{F}_0 on smooth X_0

Proposition

Assumption as above, K_0 is pure of weight w iff each $\mathcal{H}^i K_0$ is punctually pure of weight w + i.

-(-w-2d-i)-2d=w+i.

In general, \mathbb{Q}_l is puncturally pure but may not be pure. If X_0 is proper, and \mathbb{Q}_l is pure of weight 0, then Frob eigenvalues on $H^i(X)$ has weights exactly *i* by Weil II, which is not true in general.

It can be pure in some singular cases.

[Weil II, 3.3.1, 6.2.3]

If $f: X_0 \to Y_0$ is a (separated) morphism between schemes of finite type over \mathbb{F}_q , then $Rf_!$ sends $D^b_{\leq w}$ to $D^b_{\leq w} \subseteq D^b_m$.

Corollary [Weil II, 6.1] (induction + proper case+ smooth case) Rf_* sends D^b_m to D^b_m .

Example

 $a: X_0 \to \mathbb{F}_q \rightsquigarrow$ Frob eigenvalues on $H^i_c(X, \mathcal{F})$ are q-Weil numbers of weight $\leq w + i$ for any $\mathcal{F}_0 \in D^b_{\leq w}(X_0, \overline{\mathbb{Q}}_\ell)$.

Example

 $X \subseteq \mathbb{P}^{d+1}$ is a smooth geometrically irreducible hypersurface over a finite field \mathbb{F}_q . Then $\#X(\mathbb{F}_{q^n}) - \#\mathbb{P}^d(\mathbb{F}_{q^n}) = O(q^{nd/2})$.

Now it's time for applications to D_m^b .

By definition, f^* preserves $D^b_{\leq w}$, and \otimes sends $D^b_{\leq w} \times D^b_{\leq w'}$ to $D^b_{\leq w+w'}$.

Proposition

 $K_0 \in D_m^b \Leftrightarrow \mathbb{D}(K_0) \in D_m^b.$

Proof: WLOG K_0 is a mixed sheaf. If X_0 is smooth, K_0 is lisse, then $\mathbb{D}K_0 = K_0^{\vee}[2d](d)$ by previous computation.

By definition, f^* preserves $D^b_{\leq w}$, and \otimes sends $D^b_{\leq w} \times D^b_{\leq w'}$ to $D^b_{\leq w+w'}$.

Proposition

 $K_0 \in D_m^b \Leftrightarrow \mathbb{D}(K_0) \in D_m^b.$

Proof: WLOG K_0 is a mixed sheaf. If X_0 is smooth, K_0 is lisse, then $\mathbb{D}K_0 = K_0^{\vee}[2d](d)$ by previous computation.

In general, use Noetherian induction. Choose smooth dense open

 $j: U_0 \hookrightarrow X_0$ s.t j^*K_0 is lisse.

Exact triangle $j_! j^* K_0 \to K_0 \to i_* i^* K_0$.

$$\rightsquigarrow i_* \mathbb{D}(i^* K_0) \rightarrow \mathbb{D}(K_0) \rightarrow j_* \mathbb{D}(j^* K_0).$$

We're done by induction and Weil II for Rj_* .

By duality and Weil II, we get

By duality and Weil II, we get

[BBDG, 5.1.14]

- \mathbb{D} exchanges $D^b_{\leq w}$ and $D^b_{\geq -w}$.
- $f_!, f^*$ sends $D^b_{\leq w}$ to $D^b_{\leq w}$.
- $f^!, f_*$ sends $D^b_{\geq w}$ to $D^b_{\geq w}$.

•
$$\otimes$$
 sends $D^b_{\leq w} \times D^b_{\leq w'}$ to $D^b_{\leq w+w'}$.

• <u>*R*Hom</u> sends $D^b_{\leq w} \times D^b_{\geq w'}$ to $D^b_{\geq -w+w'}$.

 $R\underline{\operatorname{Hom}}(A, \mathbb{D}(B)) = R\underline{\operatorname{Hom}}(A, R\underline{\operatorname{Hom}}(B, \omega_{X_0})) = R\underline{\operatorname{Hom}}(A \otimes B, \omega_{X_0}) = \mathbb{D}(A \otimes B).$

Therefore, the full subcategory $D_m^b(X_0, \overline{\mathbb{Q}}_\ell)$ of $D_c^b(X_0, \overline{\mathbb{Q}}_\ell)$ is stable by all usual operations e.g $Rf_*, Rf_!, f^*, Rf^!, \otimes, R\underline{\mathrm{Hom}}, \mathbb{D}$.

[BBDG, 5.1.7. (i)]

- D_m^b is stable under ${}^p\tau_{\leq i}$ and ${}^p\tau_{\geq i}$.
- D_m^b is stable under $\tau_{\leq i}$ and $\tau_{\geq i}$ by definition.

 ${}^{p}\tau_{\leq 0}(-)$ is constructed by $j_{*}, j^{*}, i_{*}, i^{*}$ plus truncations and taking cones. More precisely, $F_{1} \rightarrow F \rightarrow R j_{*}{}^{p}\tau_{\geq 1} j^{*}F$, ${}^{p}\tau_{\leq 0}(F) \rightarrow F_{1} \rightarrow R i_{*}{}^{p}\tau_{\geq 1} i^{*}F_{1}$. So ${}^{p}\tau_{\leq i}, {}^{p}\tau_{\geq i}$ send D_{m}^{b} to D_{m}^{b} , we're done. $\sim D_{m}^{b}$ is stable under ${}^{p}H^{*}$. $\sim D_{m}^{b}$ is stable under ${}^{p}j_{*}, {}^{p}j_{!}, {}^{p}j^{*}$.

Application C: vanishing of higher Ext^i

 $K_0, L_0 \in D^b_m(X_0, \overline{\mathbb{Q}}_\ell).$

[BBDG, 5.1.15]

- If $K_0 \in D^b_{\leq w}, L_0 \in D^b_{\geq w}$, then $\operatorname{Hom}^i(K, L)^F = 0$, for i > 0.
- If $K_0 \in D^b_{\leq w}, L_0 \in D^b_{>w}$, then $\operatorname{Hom}^i(K_0, L_0) = 0$, for i > 0.

 $K_0, L_0 \in D^b_m(X_0, \overline{\mathbb{Q}}_\ell).$

[BBDG, 5.1.15]

- If $K_0 \in D^b_{\leq w}, L_0 \in D^b_{\geq w}$, then $\operatorname{Hom}^i(K, L)^F = 0$, for i > 0.
- If $K_0 \in D^b_{\leq w}, L_0 \in D^b_{>w}$, then $\operatorname{Hom}^i(K_0, L_0) = 0$, for i > 0.

Crucial for semi-simpleness and decomposition theorem in [BBDG]. Lack of weight theory \rightsquigarrow decomposition theorem fails for coefficients like \mathbb{F}_{ℓ} .

Proof: $a: X_0 \to \operatorname{Spec} \mathbb{F}_q$, apply Weil II to $M_0 \coloneqq Ra_*R\underline{\operatorname{Hom}}(K_0, L_0) \in D^b_c(\operatorname{Spec} \mathbb{F}_q).$

Application D: $D^b_{\leq w} \cap D^b_{\geq w+1} = 0$

$id_K \in \operatorname{Hom}(K, K)^F = \operatorname{Hom}^1(K, K[-1])^F = 0.$

$M_0 \in D^b_c(\operatorname{Spec} \mathbb{F}_q)$

 $M_0 \in D_c^b(\operatorname{Spec} \mathbb{F}_q, \overline{\mathbb{Q}}_\ell), M \coloneqq i^* M_0 \in D_c^b(\overline{\mathbb{Q}}_\ell) \text{ with geom Frob action}$ $F: M \to M.$

Global section / fixed points $R\Gamma : D_c^b(\operatorname{Spec} \mathbb{F}_q, \overline{\mathbb{Q}}_\ell) \to D_c^b(\overline{\mathbb{Q}}_\ell).$

$[BBDG, \overline{5.1.2}]$

Short exact sequence $0 \to (H^{n-1}M)_F \to H^n R \Gamma M_0 \to (H^n M)^F \to 0.$

 $E_2^{pq} = H^p(\operatorname{Spec} \mathbb{F}_q, \mathcal{H}^q M_0) = H^p(\operatorname{Gal}_{\mathbb{F}_q}, H^q M) \Rightarrow H^{p+q} R \Gamma M_0.$

$M_0 \in D^b_c(\operatorname{Spec} \mathbb{F}_q)$

 $M_0 \in D_c^b(\operatorname{Spec} \mathbb{F}_q, \overline{\mathbb{Q}}_\ell), M \coloneqq i^* M_0 \in D_c^b(\overline{\mathbb{Q}}_\ell) \text{ with geom Frob action}$ $F: M \to M.$

Global section / fixed points $R\Gamma : D_c^b(\operatorname{Spec} \mathbb{F}_q, \overline{\mathbb{Q}}_\ell) \to D_c^b(\overline{\mathbb{Q}}_\ell).$

[BBDG, 5.1.2]

Short exact sequence $0 \to (H^{n-1}M)_F \to H^n R \Gamma M_0 \to (H^n M)^F \to 0.$

$$E_2^{pq} = H^p(\operatorname{Spec} \mathbb{F}_q, \mathcal{H}^q M_0) = H^p(\operatorname{Gal}_{\mathbb{F}_q}, H^q M) \Rightarrow H^{p+q} R \Gamma M_0.$$

$$\operatorname{Gal}_{\mathbb{F}_q} \cong \widehat{\mathbb{Z}}, \text{ generated by the geometric Frobenius } F.$$

$$H^p(\operatorname{Gal}_{\mathbb{F}_q}, -) = \begin{cases} (-)^F, p = 0 \\ (-)_F, p = 1 \\ 0, else \end{cases}$$

$M_0 \coloneqq Ra_*R\underline{\operatorname{Hom}}(K_0, L_0) \in D_c^b(\operatorname{Spec} \mathbb{F}_q)$

$$a: X_0 \to \operatorname{Spec} \mathbb{F}_q. \ M_0 = Ra_* R \operatorname{\underline{Hom}}(K_0, L_0), \ M = i^* M_0.$$

Proposition

 $M = R \operatorname{Hom}(K, L)$ (smooth base change).

 $R\Gamma M_0 = R \operatorname{Hom}(K_0, L_0) \ (R\Gamma Ra_* = R\Gamma_{X_0}).$

$M_0 \coloneqq Ra_*R\underline{\operatorname{Hom}}(K_0, L_0) \in D_c^b(\operatorname{Spec} \mathbb{F}_q)$

$$a: X_0 \to \operatorname{Spec} \mathbb{F}_q. \ M_0 = Ra_* R \underline{\operatorname{Hom}}(K_0, L_0), \ M = i^* M_0.$$

Proposition

 $M = R \operatorname{Hom}(K, L) \text{ (smooth base change)}.$ $R \Gamma M_0 = R \operatorname{Hom}(K_0, L_0) (R \Gamma Ra_* = R \Gamma_{X_0}).$

From above,

$$0 \to (\operatorname{Hom}^{i-1}(K,L))_F \to \operatorname{Hom}^i(K_0,L_0) \to \operatorname{Hom}^i(K,L)^F \to 0.$$

- $K_0 \in D^b_{\leq w}, L_0 \in D^b_{\geq w} \rightsquigarrow M_0 \in D^b_{\geq 0} \rightsquigarrow w(\operatorname{Hom}^i(K, L)) \geq i,$ $\operatorname{Hom}^i(K, L)^F = 0, \text{ for } i > 0.$
- If $K_0 \in D^b_{\leq w}, L_0 \in D^b_{>w}$, then $M_0 \in D^b_{>0}$. Hom^{*i*} $(K_0, L_0) = 0$, for i > 0.

Application C is proved.

Zhiyu Zhang (BBDG seminar)

Application E: $\operatorname{Perv}_m(X_0)$ is stable under subquotient

$\operatorname{Perv}_m(X_0) = \operatorname{Perv}(X_0) \cap D_m^b.$

[BBDG, 5.1.7. (ii)]

 $A_0 \subseteq B_0 \in \operatorname{Perv}(X_0), B_0 \in \operatorname{Perv}_m(X_0) \Rightarrow A_0, B_0/A_0 \in \operatorname{Perv}_m(X_0).$

Proof: If A_0 , B_0 are concentrated in one degree, this is obvious.

Application E: $\operatorname{Perv}_m(X_0)$ is stable under subquotient

$\operatorname{Perv}_m(X_0) = \operatorname{Perv}(X_0) \cap D_m^b.$

[BBDG, 5.1.7. (ii)]

 $A_0 \subseteq B_0 \in \operatorname{Perv}(X_0), B_0 \in \operatorname{Perv}_m(X_0) \Rightarrow A_0, B_0/A_0 \in \operatorname{Perv}_m(X_0).$

Proof: If A_0 , B_0 are concentrated in one degree, this is obvious. In general, choose smooth dense open $j: U_0 \hookrightarrow X_0$ s.t $j^*A_0 \hookrightarrow j^*B_0$ are lisse (up to shift). Then $j^*A_0 = {}^pj^*A_0$ is mixed and perverse. $\sim {}^pj_!j^*A_0, {}^pj_*j^*(B_0/A_0) \in \operatorname{Perv}_m(X_0).$

Application E: $\operatorname{Perv}_m(X_0)$ is stable under subquotient

$\operatorname{Perv}_m(X_0) = \operatorname{Perv}(X_0) \cap D_m^b.$

[BBDG, 5.1.7. (ii)]

 $A_0 \subseteq B_0 \in \operatorname{Perv}(X_0), B_0 \in \operatorname{Perv}_m(X_0) \Rightarrow A_0, B_0/A_0 \in \operatorname{Perv}_m(X_0).$

Proof: If A_0 , B_0 are concentrated in one degree, this is obvious. In general, choose smooth dense open $j: U_0 \hookrightarrow X_0$ s.t $j^*A_0 \hookrightarrow j^*B_0$ are lisse (up to shift). Then $j^*A_0 = {}^pj^*A_0$ is mixed and perverse. $\rightsquigarrow {}^pj_!j^*A_0, {}^pj_*j^*(B_0/A_0) \in \operatorname{Perv}_m(X_0).$ $\rightsquigarrow I = Im({}^pj_!j^*A_0 \to B_0), J = Ker(B_0 \to {}^pj_*j^*(B_0/A_0)) \in \operatorname{Perv}_m(X_0).$ $I \subseteq A_0 \subseteq J \subseteq B_0. \ J/I \in \operatorname{Perv}_m(Z_0)$ gives $A/I \in \operatorname{Perv}_m(Z_0)$ by induction. A_0 is extension of A_0/I by I, hence also mixed. Let $\operatorname{Perv}(X, Fr_q)$ be the category of perverse sheaves \mathcal{F} on X equipped with an isomorphism $\phi: Fr_q^*\mathcal{F} \to \mathcal{F}$. Now Λ is any suitable coefficient. Let $\operatorname{Perv}(X, Fr_q)$ be the category of perverse sheaves \mathcal{F} on X equipped with an isomorphism $\phi: Fr_q^*\mathcal{F} \to \mathcal{F}$. Now Λ is any suitable coefficient.

[BBDG, 5.1.2]

- The functor $\operatorname{Perv}(X_0) \to \operatorname{Perv}(X, Fr_q), \mathcal{F}_0 \mapsto (\mathcal{F}, Fr_q)$ is fully faithful.
- The category of essential images is stable by extensions and by sub-quotients.

As perversity gives a *t*-structure, $\operatorname{Hom}^{-1}(K_0, L_0) = 0$. So $\operatorname{Hom}_{D_c^b(X_0)}(K_0, L_0) = \operatorname{Hom}_{D_c^b(X)}(K, L)^F$, part (1) follows.

Thank you!

 $(*) 0 \rightarrow (\operatorname{Hom}(K, L))_F \rightarrow Ext^1(K_0, L_0) \rightarrow Ext^1(K, L)^F \rightarrow 0$, is exact, where $Ext^1(A, B) = \{0 \rightarrow B \rightarrow C \rightarrow A \rightarrow 0\}/\simeq$. Recall $0 \rightarrow B \rightarrow C_1 \rightarrow A \rightarrow 0 \simeq 0 \rightarrow B \rightarrow C_2 \rightarrow A \rightarrow 0$ iff there is a $f: C_1 \cong C_2$ such that $f|_A = id_A, f|_B = id_B$.

The Frob action F on $Ext^1(K, L)$ is via pullback along Fr_q^* .

 $(*) 0 \rightarrow (\operatorname{Hom}(K, L))_F \rightarrow Ext^1(K_0, L_0) \rightarrow Ext^1(K, L)^F \rightarrow 0$, is exact, where $Ext^1(A, B) = \{0 \rightarrow B \rightarrow C \rightarrow A \rightarrow 0\}/\simeq$. Recall $0 \rightarrow B \rightarrow C_1 \rightarrow A \rightarrow 0 \simeq 0 \rightarrow B \rightarrow C_2 \rightarrow A \rightarrow 0$ iff there is a $f: C_1 \cong C_2$ such that $f|_A = id_A, f|_B = id_B$.

The Frob action F on $Ext^1(K, L)$ is via pullback along Fr_q^* .

[BBDG, 5.1.2]

There is another short exact sequence (**)

$$0 \to (\operatorname{Hom}(K,L))_F \to EXT^1((K,\phi_K),(L,\phi_L)) \xrightarrow{\text{forget}} Ext^1(K,L)^F \to 0,$$

where $EXT^1 = \text{extensions in Perv}(X,Fr_q).$

Proof:

kernel of forget is given by $(L \oplus K, \begin{pmatrix} \phi_L & U\phi \\ 0 & \phi_K \end{pmatrix})$, where the class is determined by U modulo $\phi Fr_q^*(V)\phi^{-1} - V$ for $V: K \to L$. Hence the kernel is the coinvariant.

So $Ext^{1}(K_{0}, L_{0}) \cong EXT^{1}((K, \phi), (L, \phi))$ by (*) and (**).

Do induction as in application E.

A singular example

- Section 5.1 of [BBDG] Beilinson, Bernstein, Deligne, Gabber: Faisceaux pervers (book).
- Notes on a learning Seminar on Deligne's Weil II Theorem, Umich Summer 2016.
- P. Deligne, Weil II.
- V. Drinfeld, On a conjecture of Deligne, Moscow Math. J. 12 (2012), 515-542.