Galois category and Riemann existence theorem

Zhiyu Zhang

Exodromy seminar

April 6th, 2021

- Define the Galois category of a scheme X (via stratified shape theory).
- Gal(X) can recover the étale homotopy type of X.
- (Riemann existence theorem) The analytic and algebraic version can be compared.

X a coherent i.e qcqs scheme \rightsquigarrow Gal(X):

- Object x: geometric points $x \to X$.
- Morphism $x \to y$: étale specialization $y \rightsquigarrow x$ i.e a lift of y to the strict localization $X_{(x)} = \operatorname{Spec}(O_{X,x_0}^{sh}) \to X$.

X a coherent i.e qcqs scheme \rightsquigarrow Gal(X):

- Object x: geometric points $x \to X$.
- Morphism $x \to y$: étale specialization $y \rightsquigarrow x$ i.e a lift of y to the strict localization $X_{(x)} = \operatorname{Spec}(O_{X,x_0}^{sh}) \to X$.

 X^{Zar} is a poset: $x_0 \leq y_0$ if and only if $x_0 \in \overline{\{y_0\}}$. \rightsquigarrow a functor $\operatorname{Gal}(X) \to X^{Zar} : x \mapsto x_0$, fiber $BG_{\kappa(x_0)}$ over x_0 . $\operatorname{Gal}(X)$ globalizes absolute Galois groups of points of X. $\operatorname{Gal}(X)$ has a topology, like the profinite topology on $G_{\kappa(x_0)}$. Idea: use finite level points $u \to X$. An open basis of $\operatorname{Gal}(X)$: $y \rightsquigarrow x$ lying over a given specialization $v \rightsquigarrow u$.

Can be precise using pyknotic/condensed math.

Theorem

Topological categorry $\operatorname{Gal}(X)$ can recover the étale homopotopy type of X (up to protruncation), hence $\pi^{et}_*(X, x)$.

Idea: Stratified profinite shape can recover the profinite shape by inverting all morphisms.

 ∞ -category: ...

Topos: the category of sheaves on a site.

 ∞ -topos: an ∞ -category X satisfying ∞ -Giraud's axiom.

Geometric morphism: a pair of adjoints $(f^*, f_*) : X \to Y$ s.t f^* is exact.

S: the ∞ -category of spaces (animas).

 \mathbf{Top}_{∞} : the ∞ -category of ∞ -topos.

the ∞ -category $Pt(X) := Fun^*(\mathbf{S}, X_{et})$ of points of X: geometric morphisms $\mathbf{S} \to X$.

For us, let X_{et} be the ∞ -topos of étale sheaves valued in **S** on the 1-site X^{et} of étale X-schemes. X_{et} is 1-localic.

- In ∞ -topos theory, the category of finite sets is replaced by the ∞ -category of π -finite spaces \mathbf{S}_{π} .
- A lisse object $F \in X =$ a locally constant sheaf of π -finite spaces that can be trivialized on a finite cover $Y \to X$.
- $X^{\text{lisse}} \subseteq X$: full subcategory of lisse objects, which is a bounded ∞ -pretopos.

Constructible = lisse over a stratification of X.

Given an ∞ -topos $X \in \mathbf{Top}_{\infty}$, Lurie constructed a pro- ∞ -groupoid $\Pi_{\infty}(X) \in \operatorname{Pro}(\mathbf{S})$ called the shape of X. If X is from a nice topological space, $\Pi_{\infty}(X)$ is the ∞ -fundamental groupoid of X. Stone duality: profinite sets = totally disconnected compact Hausdorff topological spaces. ∞ -Stone duality: $\mathbf{S}_{\pi}^{\wedge} := \operatorname{Pro}(\mathbf{S}_{\pi}) \to \mathbf{Top}_{\infty}$ is fully faithful, with a left adjoint $\widehat{\Pi}_{\infty} : \mathbf{Top}_{\infty} \to \operatorname{Pro}(\mathbf{S}_{\pi})$ (profinite shape).

Essential images are called Stone ∞ -topoi.

Stone duality: profinite sets = totally disconnected compact Hausdorff topological spaces.

 ∞ -Stone duality: $\mathbf{S}_{\pi}^{\wedge} := \operatorname{Pro}(\mathbf{S}_{\pi}) \to \operatorname{Top}_{\infty}$ is fully faithful, with a left adjoint $\widehat{\Pi}_{\infty} : \operatorname{Top}_{\infty} \to \operatorname{Pro}(\mathbf{S}_{\pi})$ (profinite shape). Essential images are called Stone ∞ -topoi. Construction of $\widehat{\Pi}_{\infty}$: a "profinite" completion. For a π -finite space $X, X \simeq \widehat{\Pi}_{\infty}(X)$ e.g $\mathbb{RP}^{\infty} \simeq B(\mathbb{Z}/2)$. By design, any quasi-equivalence $X \to Y$ is a shape-equivalence. X is a locally noetherian scheme.

Artin-Mazur defined the étale homotopy type of $X \in \operatorname{Pro}(h_1 \mathbf{S})$. Friedlander refined it to étale topological type of $X \in \operatorname{Pro}(\mathbf{S})$. $\widehat{\Pi}^{\text{et}}_{\infty}(X)$:=the profinite étale topological type. (Hoyois) $\widehat{\Pi}^{\text{et}}_{\infty}(X) \simeq \widehat{\Pi}_{\infty}(X_{\text{et}})$.

•
$$\widehat{\Pi}^{\text{et}}_{\infty}(\operatorname{Spec}(k)) = BG_k.$$

•
$$\widehat{\Pi}^{\mathrm{et}}_{\infty}(\mathbb{CP}^1) = (S^2)^{\wedge}_{\pi}.$$

Bounded coherent ∞ -topoi can be classified via ∞ -pretopoi. [SAG, Theorem E.2.3.2] For any ∞ -topos X, $\operatorname{Sh}_{\operatorname{eff}}(X^{\operatorname{lisse}}) \in \operatorname{Top}_{\infty}^{\operatorname{Stone}}$ (effective epimorphism topology) is called Stone reflection of X, $\operatorname{Sh}_{\operatorname{eff}}(X^{\operatorname{lisse}}) \leftrightarrow \widehat{\Pi}_{\infty}(X)$. ∞ -Stone duality \rightsquigarrow Fun $(\widehat{\Pi}_{\infty}(X), \mathbf{S}_{\pi}) \simeq X^{\operatorname{lisse}}$. In particular for qcqs noetherian scheme X,

Fun
$$\left(\widehat{\Pi}^{\text{et}}_{\infty}(X), \mathbf{S}_{\pi}\right) \simeq X_{et}^{\text{lisse}}.$$

Next step: define a stratified version of $\widehat{\Pi}_{\infty}(X_{\text{et}})$.

P a finite poset.

A *P*-stratified space X = an ∞ -category *X* with a conservative functor $X \to P$.

Hochster duality: profinite posets = spectral topological spaces. $\rightsquigarrow S$ -stratified spaces for any spectral topological space S. \mathbf{Str}_{π} = the ∞ -category of π -finite stratified spaces. S-stratified ∞ -topos = an ∞ -topos X equipped with a geometric morphism $X \to \operatorname{Sh}(S)$ to the ∞ -topos of sheaves of spaces on S.

Theorem

 $\operatorname{Pro}(\operatorname{\mathbf{Str}}_{\pi})_{S} \hookrightarrow \operatorname{\mathbf{StrTop}}_{\infty,S}$ extending

$$[\Pi \to P] \mapsto [\operatorname{Fun}(\Pi, \mathbf{S}) \to \operatorname{Fun}(P, \mathbf{S})]$$

is fully faithful, with a left adjoint $\widehat{\Pi}^{S}_{(\infty,1)} : \mathbf{StrTop}_{\infty,S} \to \operatorname{Pro}(\mathbf{Str}_{\pi})_{S}$ (profinite S-stratified shape).

Essential images are called spectral ∞ -topoi. Similar to Stone reflection, there is a spectralification functor $\mathbf{StrTop}_{\infty,S} \to \mathbf{StrTop}_{\infty,S}^{\mathrm{spec}} \overset{\widehat{\Pi}_{(\infty,1)}^S}{\simeq} \operatorname{Pro}(\mathbf{Str}_{\pi})_S, X \mapsto \operatorname{Sh}_{\mathrm{eff}}(X^{\mathrm{S-cons}}).$

For any S-stratified ∞ -topos X, adjunction gives a natural equivalence:

Exodromy

Fun
$$\left(\widehat{\Pi}^{S}_{(\infty,1)}(X), \mathbf{S}_{\pi}\right) \simeq X^{S-\text{cons}}.$$

The ∞ -category of representations of $\widehat{\Pi}^{S}_{(\infty,1)}(X)$ valued in π -finite spaces = S-constructible sheaves on X.

Return to the coherent scheme $X, S := X^{Zar}, \rightsquigarrow$ stratified ∞ -topos $X^{et} \to X^{Zar}$. It's a spectral ∞ -topos. Profinite stratified étale homotopy type $\widehat{\Pi}_{(\infty,1)}^{et}(X) := \widehat{\Pi}_{(\infty,1)}^{X^{Zar}}(X_{et}).$

Theorem

$$\operatorname{Gal}(X) \simeq \widehat{\Pi}_{(\infty,1)}^{X^{\operatorname{Zar}}}(X_{\operatorname{et}}).$$

Corollary

Fun $(\operatorname{Gal}(X), \mathbf{S}_{\pi}) \simeq X_{\operatorname{\acute{e}t}}^{\operatorname{cons}}$.

Idea: A constructible sheaf \mathcal{F} is lisse iff all specializations of \mathcal{F} are isomorphisms.

Homotopy theorem

For any spectral S-stratified ∞ -topos X, The profinite classifying space of $\widehat{\Pi}^{S}_{(\infty,1)}(X)$ is precisely $\widehat{\Pi}_{\infty}(X)$.

In particular, there is an equivalence $\theta_X : \widehat{\Pi}^{\text{\'et}}_{\infty}(X) \to \varepsilon(\text{Gal}(X))$. This finishes reconstruction theorem, let's see some examples.

An example

We use the language of spatial décollages.

 $X = \mathbb{A}^{1}_{\mathbb{C}}, P = [0 \to \infty, 1 \to \infty], \text{ a stratification } X \to P \text{ given by}$ $X(0) = Z_{0} = \{0\}, X(1) = Z_{1} = \{1\}, X(\infty) = U = \mathbb{A}^{1}_{\mathbb{C}} - \{0, 1\}.$ $\operatorname{Gal}^{P}(X) \to P.$

•
$$\operatorname{Gal}^{P}(X)(0) = \widehat{\Pi}_{\infty}(X(0)) = B\{*\}.$$

 $\operatorname{Gal}^{P}(X)(1) = \widehat{\Pi}_{\infty}(X(1)) = B\{*\}.$

• $\operatorname{Gal}^{P}(X)(\infty) = \widehat{\Pi}_{\infty}(X(\infty)) = BF(x_{0}, x_{1})$ the classifying groupoid for profinite completion of the free group of two variables.

•
$$\operatorname{Gal}^{P}(X)(0 \to \infty) = \widehat{\Pi}_{\infty}(X_{(x_0)} \setminus \{x_0\}) = B\widehat{\mathbb{Z}}.$$

• $\operatorname{Gal}^{P}(X)(0) \leftarrow \operatorname{Gal}^{P}(X)(0 \to \infty) \to \operatorname{Gal}^{P}(X)(\infty).$

Let (A, K, k) be a DVR, S = SpecA, s = Speck, $\eta = \text{Spec}K$. S_{et} is a naturally [1]-stratified spectral ∞ -topos, with closed stratum s_{et} and open stratum η_{et} . $s_{et} \times s_{et} S_{et} = S_{et}^h$. $s_{et} \times s_{et} \eta_{et} = \eta_{et}^h$.

Example

$$\widehat{\Pi}_{\infty}^{\text{ét}}(\eta) \simeq \mathrm{BG}_{K}, \widehat{\Pi}_{\infty}^{\text{ét}}(\eta^{\mathrm{h}}) \simeq \mathrm{BD}_{A},$$
$$\widehat{\Pi}_{\infty}^{\text{ét}}(\eta^{\mathrm{sh}}) \simeq \mathrm{BI}_{A}, \widehat{\Pi}_{\infty}^{\text{ét}}(S^{\mathrm{h}}) \simeq \mathrm{BG}_{k}.$$

 $BG_k \leftarrow BD_A \rightarrow BG_K.$

Let K be a number field, and write O_K be the ring of integers of K.

 $Gal(O_K)$ has objects (up to iso) the prime ideals of O_K .

The profinite stratified etale shape of $\operatorname{Spec}O_K$ is stratified by the various closed strata, each of which is an embedded profinite "circle" $BG_{k(\mathbf{p})} \cong \widehat{\mathbb{Z}}$ i.e a knot.

Enveloping each knot is a tubular neighborhood, given by $Gal(SpecO_{\mathbf{p}}^{sh})$. And the deleted tubular neighborhood is given by $BG_{K_{\mathbf{p}}}$.

X a finite type \mathbb{C} -scheme.

 X^{an} = complex points of X with analytic topology. SGA4 \rightsquigarrow a geometric morphism of 1-localic ∞ -topoi

$$\varepsilon_{X,*}: X_{\mathrm{an}} \to X_{\mathrm{et}}$$

s.t for any $f: X \to Y$, we have $f_*^{et} \varepsilon_{X,*} \simeq \varepsilon_{Y,*} f_*^{an}$.

Riemann Existence Theorem

 $\varepsilon_{X,*}$ restricts to an equivalence $X_{\text{ét}}^{\text{lisse}} \simeq X_{\text{an}}^{\text{lisse}}$ between ∞ -categories of lisse sheaves.

Equivalently, it induces an equivalence of profinite spaces

$$(X^{\mathrm{an}})^{\wedge}_{\pi} = \widehat{\Pi}_{\infty}(X_{\mathrm{an}}) \simeq \widehat{\Pi}_{\infty}(X_{\mathrm{et}}).$$

Note $\varepsilon_{X,*}: X_{\mathrm{an}} \to X_{\mathrm{et}}$ is over $S = X^{Zar}$ i.e S-stratified, the pullback functor $\varepsilon^{X,*}$ restricts to a morphism of ∞ -pretopoi:

$$\varepsilon^{X,*}: X^{S-\text{cons}}_{\text{et}} \to X^{S-\text{cons}}_{\text{an}}.$$

$$(X/S)_{\mathrm{an}} := \mathrm{Sh}_{\mathrm{eff}} \left(X_{\mathrm{an}}^{S-\mathrm{cons}} \right), \ (X/S)_{\mathrm{et}} := \mathrm{Sh}_{\mathrm{eff}} \left(X_{\mathrm{et}}^{S-\mathrm{cons}} \right).$$

$$\rightsquigarrow \varepsilon_{X,*} : (X/S)_{\mathrm{an}} \to (X/S)_{\mathrm{et}}.$$

Proposition 12.6.4 in [Exo]

The pullback functor $\varepsilon^{X,*}$ restricts to an equivalence on constructible sheaves.

Proof by reduction

Idea: reduce to lisse version by gluing. Do induction for dimension of X. If dim= 0, then constructible=lisse, done. Write X^{Zar} as limits of $S = Z^{Zar} \cup \{\infty\}$.

$$(Z/Z^{Zar})_{\mathrm{an}} \stackrel{i_*}{\hookrightarrow} (X/S)_{\mathrm{an}} \stackrel{j_*}{\leftarrow} (U/\infty)_{\mathrm{an}}.$$

$$Z_{\text{et}} \stackrel{i_*}{\hookrightarrow} (X/S)_{\text{et}} \stackrel{j_*}{\longleftrightarrow} (U/\infty)_{\text{et}}.$$

An ∞ -topos X can be recovered from a closed subtopos Z, its open complement U, and the gluing information in the deleted tubular neighborhood W of Z in U. $W = Z \times_X U$ (oriented fiber product).

Proof by reduction

Idea: reduce to lisse version by gluing. Do induction for dimension of X. If dim= 0, then constructible=lisse, done. Write X^{Zar} as limits of $S = Z^{Zar} \cup \{\infty\}$.

$$(Z/Z^{Zar})_{\mathrm{an}} \stackrel{i_*}{\hookrightarrow} (X/S)_{\mathrm{an}} \stackrel{j_*}{\leftarrow} (U/\infty)_{\mathrm{an}}.$$

$$Z_{\text{et}} \stackrel{i_*}{\hookrightarrow} (X/S)_{\text{et}} \stackrel{j_*}{\longleftrightarrow} (U/\infty)_{\text{et}}.$$

An ∞ -topos X can be recovered from a closed subtopos Z, its open complement U, and the gluing information in the deleted tubular neighborhood W of Z in U. $W = Z \times_X U$ (oriented fiber product).

 ϵ is natural, i.e $f_*^{an} \varepsilon^{X,*} F \simeq \varepsilon^{Y,*} f_*^{et} F$ holds for any constructible sheaf $F \in X_{et}$.

 \rightsquigarrow the gluing data are also matched, we're done.

If $X = Z \cup^{\phi} U$ is a bounded coherent constructible [1]-stratified ∞ -topos. Then the pushout of the morphisms $\widehat{\Pi}_{\infty}(Z \times _{X} U) \to \widehat{\Pi}_{\infty}(Z), \widehat{\Pi}_{\infty}(Z \times _{X} U) \to \widehat{\Pi}_{\infty}(U)$ is exactly $\widehat{\Pi}_{\infty}(X)$.

- \rightsquigarrow The natural morphism $\epsilon : \operatorname{Gal}_{an}(X) \to \operatorname{Gal}(X)$ is an equivalence.
- $\operatorname{Gal}_{an}(X)$ is related to the exit path category of X^{an} in topology.

Let k be a finitely generated field of characteristic 0. Then a normal k-variety X can be reconstructed from the stratified homotopy type of $(X \otimes_k \bar{k})^{an}$ with its action of G_k .

Thank you!