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Goal

Define the Galois category of a scheme X (via stratified
shape theory).
Gal(X) can recover the étale homotopy type of X.
(Riemann existence theorem) The analytic and algebraic
version can be compared.
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Galois 1-category of a scheme

X a coherent i.e qcqs scheme  Gal(X):
Object x: geometric points x→ X.
Morphism x→ y: étale specialization y  x i.e a lift of y to
the strict localization X(x) = Spec(Osh

X,x0
)→ X.

XZar is a poset: x0 ≤ y0 if and only if x0 ∈ {y0}.
 a functor Gal(X)→ XZar : x 7→ x0, fiber BGκ(x0) over x0.
Gal(X) globalizes absolute Galois groups of points of X.
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Profinite topology on Gal(X)

Gal(X) has a topology, like the profinite topology on Gκ(x0).
Idea: use finite level points u→ X.
An open basis of Gal(X): y  x lying over a given specialization
v  u.
Can be precise using pyknotic/condensed math.
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Reconstruction

Theorem
Topological categorry Gal(X) can recover the étale homopotopy
type of X (up to protruncation), hence πet∗ (X, x).

Idea: Stratified profinite shape can recover the profinite shape by
inverting all morphisms.
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∞-topos theory

∞-category: ...
Topos: the category of sheaves on a site.
∞-topos: an ∞-category X satisfying ∞-Giraud’s axiom.
Geometric morphism: a pair of adjoints (f ∗, f∗) : X → Y s.t f ∗ is
exact.
S: the ∞-category of spaces (animas).
Top∞: the ∞-category of ∞-topos.
the ∞-category Pt(X) := Fun∗(S, Xet) of points of X: geometric
morphisms S→ X.
For us, let Xet be the ∞-topos of étale sheaves valued in S on the
1-site Xet of étale X-schemes. Xet is 1-localic.
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π-finite spaces Sπ

In ∞-topos theory, the category of finite sets is replaced by the
∞-category of π-finite spaces Sπ.
A lisse object F ∈ X= a locally constant sheaf of π-finite spaces
that can be trivialized on a finite cover Y → X.
X lisse ⊆ X: full subcategory of lisse objects, which is a bounded
∞-pretopos.
Constructible = lisse over a stratification of X.
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Shape theory

Given an ∞-topos X ∈ Top∞, Lurie constructed a
pro-∞-groupoid Π∞(X) ∈ Pro(S) called the shape of X.
If X is from a nice topological space, Π∞(X) is the
∞-fundamental groupoid of X.
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∞-Stone duality and profinite shapes

Stone duality: profinite sets = totally disconnected compact
Hausdorff topological spaces.
∞-Stone duality: S∧π := Pro(Sπ)→ Top∞ is fully faithful, with a
left adjoint Π̂∞ : Top∞ → Pro(Sπ) (profinite shape).
Essential images are called Stone ∞-topoi.

Construction of Π̂∞: a "profinite" completion.
For a π-finite space X, X ' Π̂∞(X) e.g RP∞ ' B(Z/2).
By design, any quasi-equivalence X → Y is a shape-equivalence.
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Étale homotopy type of a scheme

X is a locally noetherian scheme.
Artin–Mazur defined the étale homotopy type of X ∈ Pro(h1S).
Friedlander refined it to étale topological type of X ∈ Pro(S).
Π̂et
∞ (X):=the profinite étale topological type.

(Hoyois) Π̂et
∞ (X) ' Π̂∞ (Xet).

Π̂et
∞(Spec(k)) = BGk.

Π̂et
∞(CP1) = (S2)∧π .
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Monodromy

Bounded coherent ∞-topoi can be classified via ∞-pretopoi.
[SAG, Theorem E.2.3.2] For any ∞-topos X,
Sheff(X lisse) ∈ TopStone

∞ (effective epimorphism topology) is called
Stone reflection of X, Sheff(X lisse)↔ Π̂∞(X).
∞-Stone duality  Fun

(
Π̂∞(X),Sπ

)
' X lisse.

In particular for qcqs noetherian scheme X,

Fun
(

Π̂et
∞(X),Sπ

)
' X lisse

et .

Next step: define a stratified version of Π̂∞ (Xet).
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π-finite stratified spaces Strπ

P a finite poset.
A P -stratified space X= an ∞-category X with a conservative
functor X → P .
Hochster duality: profinite posets = spectral topological spaces.
 S-stratified spaces for any spectral topological space S.
Strπ= the ∞-category of π-finite stratified spaces.
S-stratified ∞-topos = an ∞-topos X equipped with a geometric
morphism X → Sh(S) to the ∞-topos of sheaves of spaces on S.
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∞-Hochster duality

Theorem
Pro(Strπ)S ↪→ StrTop∞,S extending

[Π→ P ] 7→ [Fun(Π,S)→ Fun(P,S)]

is fully faithful, with a left adjoint
Π̂S

(∞,1) : StrTop∞,S → Pro(Strπ)S (profinite S-stratified shape).

Essential images are called spectral ∞-topoi.
Similar to Stone reflection, there is a spectralification functor

StrTop∞,S → StrTopspec
∞,S

Π̂S
(∞,1)

' Pro(Strπ)S, X 7→ Sheff(XS-cons).
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Exodromy

For any S-stratified ∞-topos X, adjunction gives a natural
equivalence:

Exodromy

Fun
(

Π̂S
(∞,1)(X),Sπ

)
' XS−cons.

The ∞-category of representations of Π̂S
(∞,1)(X) valued in π-finite

spaces = S-constructible sheaves on X.
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Gal(X)

Return to the coherent scheme X, S := XZar,  stratified
∞-topos Xet → XZar. It’s a spectral ∞-topos.
Profinite stratified étale homotopy type Π̂et

(∞,1)(X) := Π̂XZar

(∞,1) (Xet).

Theorem
Gal(X) ' Π̂XZar

(∞,1) (Xet) .

Corollary
Fun (Gal(X),Sπ) ' Xcons

ét .
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Reconstruction

Idea: A constructible sheaf F is lisse iff all specializations of F
are isomorphisms.

Homotopy theorem
For any spectral S-stratified ∞-topos X, The profinite classifying
space of Π̂S

(∞,1)(X) is precisely Π̂∞(X).

In paritcular, there is an equivalence θX : Π̂ét
∞ (X)→ ε(Gal(X)).

This finishes reconstruction theorem, let’s see some examples.
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An example

We use the language of spatial décollages.
X = A1

C, P = [0→∞, 1→∞], a stratification X → P given by
X(0) = Z0 = {0}, X(1) = Z1 = {1}, X(∞) = U = A1

C − {0, 1}.
GalP (X)→ P .

GalP (X)(0) = Π̂∞(X(0)) = B{∗}.
GalP (X)(1) = Π̂∞(X(1)) = B{∗}.
GalP (X)(∞) = Π̂∞(X(∞)) = B ̂F (x0, x1) the classifying
groupoid for profinite completion of the free group of two
variables.
GalP (X)(0→∞) = Π̂∞(X(x0)\{x0}) = BẐ.
GalP (X)(0)← GalP (X)(0→∞)→ GalP (X)(∞).
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Another example

Let (A,K, k) be a DVR, S = SpecA, s = Speck, η = SpecK.
Set is a naturally [1]-stratified spectral ∞-topos, with closed
stratum set and open stratum ηet.
set
←−×SetSet = Shet. set

←−×Setηet = ηhet.

Example

Π̂ét
∞ (η) ' BGK , Π̂

ét
∞
(
ηh
)
' BDA,

Π̂ét
∞
(
ηsh
)
' BIA, Π̂

ét
∞
(
Sh
)
' BGk.

BGk ← BDA → BGK .
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Yet another example

Let K be a number field, and write OK be the ring of integers of
K.
Gal(OK) has objects (up to iso) the prime ideals of OK .
The profinite stratified etale shape of SpecOK is stratified by the
various closed strata, each of which is an embedded profinite
"circle" BGk(p)

∼= Ẑ i.e a knot.
Enveloping each knot is a tubular neighborhood, given by
Gal(SpecOsh

p ). And the deleted tubular neighborhood is given by
BGKp .
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Riemann existence theorem

X a finite type C-scheme.
Xan= complex points of X with analytic topology.
SGA4  a geometric morphism of 1-localic ∞-topoi

εX,∗ : Xan → Xet

s.t for any f : X → Y , we have f et∗ εX,∗ ' εY,∗f
an
∗ .
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Riemann existence theorem

Riemann Existence Theorem
εX,∗ restricts to an equivalence X lisse

ét ' X lisse
an between

∞-categories of lisse sheaves.

Equivalently, it induces an equivalence of profinite spaces

(Xan)∧π = Π̂∞ (Xan) ' Π̂∞ (Xet) .
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Stratified version

Note εX,∗ : Xan → Xet is over S = XZar i.e S-stratified, the
pullback functor εX,∗ restricts to a morphism of ∞-pretopoi:

εX,∗ : XS−cons
et → XS−cons

an .

(X/S)an := Sheff

(
XS−cons

an

)
, (X/S)et := Sheff

(
XS−cons

et

)
.

 εX,∗ : (X/S)an → (X/S)et.

Proposition 12.6.4 in [Exo]
The pullback functor εX,∗ restricts to an equivalence on
constructible sheaves.
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Proof by reduction

Idea: reduce to lisse version by gluing. Do induction for
dimension of X. If dim= 0, then constructible=lisse, done.
Write XZar as limits of S = ZZar ∪ {∞}.

(Z/ZZar)an
i∗
↪→ (X/S)an

j∗←↩ (U/∞)an.

Zet
i∗
↪→ (X/S)et

j∗←↩ (U/∞)et.

An ∞-topos X can be recovered from a closed subtopos Z, its
open complement U , and the gluing information in the deleted
tubular neighborhood W of Z in U . W = Z

←−×XU (oriented fiber
product).

ε is natural, i.e fan∗ εX,∗F ' εY,∗f et∗ F holds for any constructible
sheaf F ∈ Xet.
 the gluing data are also matched, we’re done.
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Van Kampen Theorem

If X = Z ∪φ U is a bounded coherent constructible [1]-stratified
∞-topos. Then the pushout of the morphisms
Π̂∞(Z

←−×XU)→ Π̂∞(Z), Π̂∞(Z
←−×XU)→ Π̂∞(U) is exactly

Π̂∞(X).
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Stratified Riemann Existence

 The natural morphism ε : Galan(X)→ Gal(X) is an
equivalence.
Galan(X) is related to the exit path category of Xan in topology.
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An anabelian application

Let k be a finitely generated field of characteristic 0.
Then a normal k-variety X can be reconstructed from the
stratified homotopy type of (X ⊗k k̄)an with its action of Gk.
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Thank you!
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