The Galois action on KSp and on CM abelian varieties

Zhiyu Zhang

MIT Juivtop seminar

April 6th, 2021

Outline

 \bullet Study principal polarized abelian varieties (PPAV) A over $\mathbb C$ with CM by the maximal order in $E = \mathbb{Q}[\mu_q]$ $(q = p^n \text{ odd}).$ Why?

- Study principal polarized abelian varieties (PPAV) A over C with CM by the maximal order in $E = \mathbb{Q}[\mu_q]$ $(q = p^n \text{ odd}).$ Why?
- $C_q \cap A \rightsquigarrow$ a map $B(\mathbb{Z}/q) \to \mathcal{A}_g(\mathbb{C})(\to \mathcal{SP}(\mathbb{Z}))$ between groupoids \rightsquigarrow a map $\mathbb{Z}/q[\beta] \rightarrow \text{KSp}_*(\mathbb{Z}; \mathbb{Z}/q)$. Bott element
- $\beta \in \pi_2^s$ ${}_{2}^{s}(\mathrm{B}C_{q};\mathbb{Z}/q)\cong H_{2}(\mathrm{B}C_{q};\mathbb{Z}/q)\hookrightarrow H_{1}(\mathrm{B}C_{q};\mathbb{Z}/q)=\mathbb{Z}/q$. CM classes := image of powers of β , which generate all of $KSp_*(\mathbb{Z};\mathbb{Z}/q).$
- If we understand the action of $\sigma \in Aut(\mathbb{C})$ on these PPAVs \rightarrow on CM classes by Galois equivariance.
- \rightsquigarrow on $\mathrm{KSp}_*(\mathbb{Z}; \mathbb{Z}/q)$ / $\mathrm{KSp}_*(\mathbb{Z}; \mathbb{Z}_p)$.

Although $\operatorname{KSp}_*(\mathbb{Z};\mathbb{Z}/q)$ is small, they may contain interesting torsion information.

It's time to do computation.

 $Aut(\mathbb{C}) \curvearrowright \mathrm{KSp}, Aut(\mathbb{C}) \curvearrowright \mathcal{A}_g(\mathbb{C}).$ $\mathcal{A}_g(\mathbb{C})$ is just a groupoid in sets, not $\mathcal{A}_g^{\text{an}}(\mathbb{C})$. The map $\mathcal{A}_g(\mathbb{C}) \to \mathcal{SP}(\mathbb{Z})$ given by $A \mapsto H_1(A(\mathbb{C}); \mathbb{Z})$ \rightsquigarrow a group homomorphism π^s_4 ${}_{4k-2}^{s}$ (| $\mathcal{A}_g(\mathbb{C})$ |; Z/q) → KSp_{4k-2}(Z; Z/q) which is equivariant for the action of $Aut(\mathbb{C})$. For $g = \varphi(q) = p^{n-1}(p-1)$, it's surjective.

- Let E be a CM field of degree $2q$.
- If A is a PPAV of dim g over $\mathbb C$ with CM by O_E , then LieA is an $E \otimes \mathbb{R}$ module.
- \rightsquigarrow an R-linear isomorphism $\Phi: E \otimes \mathbb{R} \cong \mathbb{C}^g$.
- A CM type of $E=$ an isomorphism $\Phi: E \otimes \mathbb{R} \cong \mathbb{C}^g$
- = a subset $\Phi \subseteq \text{Hom}(E, \mathbb{C})$ such that $\text{Hom}(E, \mathbb{C}) = \Phi \coprod c(\Phi)$.

Fix a CM type $\Phi : E \otimes \mathbb{R} \cong \mathbb{C}^g$.

- $\mathfrak{a} \mapsto \mathbb{C}^g/\mathfrak{a}$ induces a bijection: $\pi_0(\text{Pic}(O_E))$ " ≅ "{PPAV /C with CM by O_E of type Φ }/ ~.
- They are all defined over H, the Hilbert class field of $E \rightarrow$ the Galois action factors through $Gal(H/\mathbb{Q})$.
- There exists an ideal \mathfrak{a}_{σ} , such that $\sigma(\mathbb{C}^g/\mathfrak{a}) \cong \mathbb{C}^g/(\mathfrak{a} \otimes \mathfrak{a}_{\sigma})$ for all a.
- A precise formula for a_{σ} under Artin isomorphism: $\pi_0\left(\mathrm{Pic}(\mathcal{O}_E)\right) \stackrel{\mathrm{Art}}{\longrightarrow} \mathrm{Gal}(H/E).$

Fix a CM type $\Phi : E \otimes \mathbb{R} \cong \mathbb{C}^g$.

- $\mathfrak{a} \mapsto \mathbb{C}^g/\mathfrak{a}$ induces a bijection: $\pi_0(\text{Pic}(O_E))$ " ≅ "{PPAV /C with CM by O_E of type Φ }/ ~.
- They are all defined over H, the Hilbert class field of $E \rightarrow$ the Galois action factors through $Gal(H/\mathbb{Q})$.
- There exists an ideal \mathfrak{a}_{σ} , such that $\sigma(\mathbb{C}^g/\mathfrak{a}) \cong \mathbb{C}^g/(\mathfrak{a} \otimes \mathfrak{a}_{\sigma})$ for all a.
- A precise formula for a_{σ} under Artin isomorphism: $\pi_0\left(\mathrm{Pic}(\mathcal{O}_E)\right) \stackrel{\mathrm{Art}}{\longrightarrow} \mathrm{Gal}(H/E).$

Here we omit polarizations for PPAV.

To be precise, we need to consider an ideal a with a skew-Hermitian form $(x, y) \mapsto \text{Tr}_E(xu\bar{y})$ on a, where u is a purely imaginary element in E.

This can be explained using some groupoids.

Ring O with an involution $x \to \bar{x}$.

 ω any rank 1 projective O-module, with an O-linear involution $\iota:\omega\to\bar{\omega}.$

The groupoid $\mathcal{P}(O, \omega, \iota)$:

- Objects: pairs (L, b) where L is a rank 1 projective O-module and an isomorphism $b: L \otimes_{\mathcal{O}} \overline{L} \to \omega$ s.t $b(x \otimes y) = \iota(b(y \otimes x)).$
- Morphisms: O-linear isomorphisms preserving Hermitian forms.

 \mathcal{P}^+_{E} $E_E^+=\mathcal{P}(O_E,\omega=O_E,c)$ is the groupoid of Hermitian forms on O_{E} .

 \mathcal{P}^+_E $\gamma_E^- = \mathcal{P}(O_E,\omega=\delta_E^{-1})$ $(E^{-1}, -c)$ is the groupoid of skew-Hermitian forms on \mathcal{O}_E valued in the inverse different.

 $\mathcal{P}^+_{E_0}$ $E_{\otimes \mathbb{R}}$ is the groupoid of skew-Hermitian forms on $E \otimes \mathbb{R}$. Objects of $\mathcal{P}_{E_0}^ \overline{E}_{\otimes \mathbb{R}}$ are classified by CM types $\Phi : E \otimes \mathbb{R} \cong \mathbb{C}^g$. There is a map $\pi_0(\mathcal{P}_E^-)$ $\left(\frac{-}{E}\right)$ −⊗R $\stackrel{-\otimes\mathbb{R}}{\rightarrow}\pi_0(\mathcal{P}^-_{E_0})$ $(E_{\mathbb{R}})$, sending (L, b) to its CM type $\Phi_{(L,b)}$.

 $\mathfrak{a} \mapsto \Phi(O_E \otimes \mathbb{R})/\mathfrak{a}$ updates to

$$
ST: \mathcal{P}_E^- \to \mathcal{A}_g(\mathbb{C}), (L, b) \mapsto L_{\mathbb{R}}/L_{\mathbb{Z}}
$$

with the **perfect** symplectic pairing $L_{\mathbb{Z}} \times L_{\mathbb{Z}} \mapsto \mathbb{Z}, (x, y) \mapsto -\text{Tr}_{E/\mathbb{Q}}b(x, y).$ $\Phi_{(L,b)}$ is the unique CM type Φ such that the Hermitian form $\langle x, y \rangle := -2\sqrt{-1} \sum_{j \in \Phi} j(b(x, y))$ is positive definite. Perfectness by design: δ_E^{-1} $E^{-1} := \{ a \in E | \text{Tr}_{E/\mathbb{Q}}(ax) \in \mathbb{Z}, \forall x \in O_E \}.$ We can twist PPAV with CM by O_E by any ideal a_1 in O_E , $\mathbb{C}^g/\mathfrak{a} \to \mathbb{C}^g/(\mathfrak{a}_1 \otimes \mathfrak{a}).$ To be precise, such twisting is given by a tensoring bifunctor \mathcal{P}^+_{E} $v_{E}^{-} \times \mathcal{P}_{E}^{+} \rightarrow \mathcal{P}_{E}^{-}$

$$
(L',b'):=(L,b)\otimes(X,q)=(L\otimes_{O_E}X,b\otimes q).
$$

 ${\mathcal P}_E^{\rm +pos. def.}$ $E^{+pos. def.}_{E} \subset \mathcal{P}_{E}^{+}$ = the full subgroupoid on the positive definite (X, q) i.e i.e $q(x, x) > 0, \forall x \neq 0 \in X$.

The action by positive definite (X, q) will not change CM types, and can be described via Serre's tensor construction:

$$
ST(L',b') \cong X \otimes_{\mathcal{O}} ST(L,b).
$$

Recall for any projective O-module X, and AV A with O-action, $X \otimes_{\mathcal{O}} A$ is the functor $R \mapsto X \otimes_{\mathcal{O}} A(R)$.

Tensoring with $(X, q) = (O_E, -1)$, where -1 is the form $x \otimes y \mapsto -x\overline{y}$? It sends $A = ST(L, b)$ to its complex conjugate variety \overline{A} , changing the CM type Φ_A to its complement $c(\Phi_A)$. $A \cong A$ as AVs, not as PPAVs with O_E -action. Explanation: $\mathcal{A}_g(\mathbb{C}) \simeq \mathbb{H}_g/\mathrm{Sp}_{2g}(\mathbb{Z})$, but complex conjugation c doesn't preserve \mathbb{H}_q . How about general $\sigma \in Aut(\mathbb{C})$?

For simplicity, assume E/\mathbb{Q} Galois e.g $E = K_q = \mathbb{Q}[\zeta_p]$. Then H/\mathbb{Q} is also Galois.

Choose for each $\tau \in \text{Hom}(E, \mathbb{C})$ an extension $w_{\tau}: H \to \mathbb{C}$ to a complex embedding of H, such that

$$
w_{\tau c} = w_{c\tau} = c w_{\tau}.
$$

Then for each $\sigma \in \text{Gal}(H/\mathbb{Q})$ and $\tau \in \text{Hom}(E, \mathbb{C})$, $w_{\sigma\tau}^{-1} \sigma w_{\tau} \in \text{Gal}(H/E).$ Note if $\sigma\in \mathbf{Gal}(H/E),$ then $w_{\sigma\tau}=w_\tau$. $(w_{\sigma\tau}^{-1}\sigma w_\tau|_H)$ is just σ under an different embedding.

Main theorem today

$$
\sigma \leadsto F_{\sigma} : \mathcal{P}_E^- \to \mathcal{P}_E^-.
$$

Theorem

- On each fiber of $\pi_0(\mathcal{P}_E^-)$ π_E^-) $\rightarrow \pi_0(\mathcal{P}_E^-)$ $\overline{E}_{\otimes \mathbb{R}}$) (i.e fixing $\Phi = \Phi_{(L,b)}$), $\pi_0(F_\sigma)$ is given by tensoring certain $[(X,q)] \in \pi_0(\mathcal{P}_E^+)$ (E^+) , determined by σ and the CM type Φ .
- $\text{Art}([X]) = \left[\sum_{\tau \in \Phi} w_{\sigma\tau}^{-1} \sigma w_{\tau}\right]$ in $\text{Gal}(H/E)$.
- If $E = K_q$, then $\pi_*(F_\sigma) : \pi_*^s$ $^s_*\left(\left|\mathcal{P}_E^-\right. \right)$ $\frac{1}{E}$ \vert π_*^s $^s_*\left(\left|\mathcal{P}_E^-\right. \right)$ $\frac{-}{E}$ \vert \mathcal{Z}/q is $\mathbb{Z}/q[\beta]$ -linear.

Slogan: Galois action is always given by twisting certain ideals, and they match under Artin isomorphism (up to summation under different embeddings).

Part (1) is a reformulation of the ST formula in [Mil07, Theorem 4.2].

Serre tensor construction commutes with Galois action, so for each positive definite $(X, q) \in \mathcal{P}_E^+$ we have

$$
F_{\sigma}((L,b)\otimes(X,q))\cong F_{\sigma}(L,b)\otimes(X,q),
$$

naturally in (L, b) and (X, q) . So $\pi_*(F_{\sigma})$ is linear over the graded ring π_*^s $\!\!\! \begin{array}{l} \text{\rm s}\! \left(|\mathcal{P}_E^{+\rm pos. def.}| ; \mathbb{Z}/q \right) \text{\rm .} \end{array}$ Serre tensor construction commutes with Galois action, so for each positive definite $(X, q) \in \mathcal{P}_E^+$ we have

$$
F_{\sigma}((L,b)\otimes(X,q))\cong F_{\sigma}(L,b)\otimes(X,q),
$$

naturally in (L, b) and (X, q) .

So $\pi_*(F_{\sigma})$ is linear over the graded ring π_*^s $\!\!\! \begin{array}{l} \text{\rm s}\! \left(|\mathcal{P}_E^{+\rm pos. def.}| ; \mathbb{Z}/q \right) \text{\rm .} \end{array}$ The map $\mathbb{Z}/q[\beta] \to \pi^s_*$ $\mathcal{L}_{\ast}^{s}\left(\left| \mathcal{P}_{E}^{-}\right. \right)$ $\frac{-}{E}$ \vert (\mathbb{Z}/q) factors through $\mathbb{Z}/q[\beta] \to \pi^s_*$ $C_*^s(|BC_q|;\mathbb{Z}/q) \to \pi_*^s$ $\mathcal{E}^s(|\mathcal{P}_E^{\text{+pos.def.}}|;\mathbb{Z}/q) \to \pi^s_*$ $\mathcal{P}^{s}_{\ast}\left(\left| \mathcal{P}_{E}^{-}\right. \right)$ $\frac{1}{E}$ $\frac{1}{2}$ $, \mathbb{Z}/q)$ as $\mathbb{Z}/q = U_1(O_q)$ is the automorphism group of $(X_0, q_0) = (O_q, 1)$. Hence it's also $\mathbb{Z}/q[\beta]$ -linear.

- Section 6 of T. Feng, S. Galatius, A. Venkatesh, The Galois action on symplectic K-theory, arxiv:2007.15078.
- Section 2 of J. Milne, The Fundamental Theorem of Complex Multiplication, http://jmilne.org/math/articles/2007c.pdf, 2007.

Thank you!