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1 Explicit Local Class Field Theory

The 1965 paper "formal complex multiplication in local fields" by Lubin and Tate constructs explicit
local class field theory using formal modules. Let K be a local field, O be its integer ring, π be an
uniformizer, k = O/π be its residue field with q elements, and Fπ = {f ∈ O[[X]]|f = Xq modπ, f =
πX +O(2)}.

Lemma 1.1. For f, g ∈ Fπ, a1, . . . , an ∈ O, there exists an unique F ∈ O[[X1, . . . , Xn]] s.t f ◦F =
F ◦ g, F (X) =

∑n
i=1 aiXi +O(2).

Proof. Construct Ff step by step like the proof of Hensel lemma.

Corollary 1.2. For f ∈ Fπ, there exists an unique formal O module Ff over O s.t f = [π] ∈
End(Ff ). Moreover, any two f1, f2 ∈ Fπ give isomorphic formal O modules.

Let A = (mKalg , Ff ) be mKalg with the O module structure given by Ff , Kn = K(A[πn]) and
K∞ be the p-adic completion of K(A[π∞]). By looking at newton polygon, we see [π] : A → A is
surjective.

Proposition 1.3. A[πn] ∼= π−nO/O; Kn/K is totally ramified; Gal(Kn/K) ∼= (O/πn)× and π ∈
Norm(Kn).

Proof. WLOG f(X) = Xq + πX, elements in A[πn] are the same as roots of f (n) hence #A[π] ≤ q,
but A[π] is an O/π module so A[π] ∼= π−1O/O. Consider the exact sequence

0→ A[π]→ A[πn+1]
π→ A[πn]→ 0

we see A[πn] ∼= π−nO/O for any n. Moreover, the Galois action on A is compatible with the O mod-
ule structure so there is an injection Gal(Kn/K) ↪→ AutO(A[πn]) ∼= (O/πn)×. But f (n)/f (n−1) =
(f (n−1))q−1+π is Eisenstein hence irreducible we see #Gal(Kn/K) ≥ #(O/πn)× so above injection
must be an isomorphism, hence Kn/K is totally ramified. Note the constant term of f (n)/f (n−1) is
π so π ∈ Norm(Kn).

As π ∈ Norm(Kn), composing with the maximal unramified extension, this gives an explicit con-
struction of the maximal abelian extension of K. A key observation is that [π] : A→ A is surjective,
which may motivate the definition of p-divisible groups.
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From a modern point of view, choose zn ∈ mKalg inductively such that zn is a generator of A[πn]
and [π](zn+1) = zn, from above we know Kn = K(zn) and OKn = O[zn]. As f = Xq modπ ⇒
zqn+1 = zn modπ, we see the Frobeniu on OK∞/p is surjective so K∞ is perfectoid.

2 Lazard Ring

We see that formal group law is a useful tool, then a naive question is to describe all formal group
laws over a ring. If we only concern about 1-dimensional commutative ones, this is solved by Lazard
in "Sur les groupes de Lie formels à un paramètre" (1955).

Lazard’s key lemma is to consider truncated formal group laws:

Lemma 2.1. Let n ∈ Z>0. Let F be a truncated at the order n formal group law over R that can
be extended to a truncated at the order n + 1 formal group law. Then the set of such extensions G
to a truncated at the order n + 1 formal group law is is a principal homogeneous space under R via
∀a ∈ R,∀G, a.G := G+ aCn(X,Y ). Where

Cn(X,Y ) =

{
(X + Y )n −Xn − Y n if n is not a power of a prime,
(X+Y )n−Xn−Y n

p if n = pa, p prime.
(1)

Proof. Fix an extension G, consider G+ Γ as another potential candicate, only need to solve

Γ(X,Y ) + Γ(X + Y,Z) = Γ(Y, Z) + Γ(X,Y + Z)

where Γ(X,Y ) =
∑

i+j=n,i,j>0 aijX
iY j , this is a not hard linear algebra problem.

Example 2.1. For instance, write a formal group law as X + Y + aX2 + bXY + aY 2 +O(3) then
from the associativity condition we see a = 0.

To move further, we recall some general facts. An elementary and useful lemma is:

Lemma 2.2. For f ∈ R[[X]], there exists g ∈ R[[X]] s.t fg = 1 iff f(0) ∈ R×; Assume f(0) = 0,
there exists g ∈ R[[X]] s.t f ◦ g = id iff f ′(0) ∈ R×.

Definition 2.1. w(F ) := {F-invariant differentials}, it’s a free R−module of rank 1 generated by
wF = 1

∂XF (0,T )dT .

Corollary 2.3. Given f : F1 → F2, then f∗wF = f ′(0)wG. And f is an isomorphism iff f ′(0) ∈ R×

Proof. By above lemma and uniqueness of invariant differentials after normalization.

Definition 2.2. If R is a Q-algebra, define logF =
∫ T
0 wF , it gives an isomorphism F ∼= Ga (it’s a

homomorphism because of invariance and an isomorphism by considering tangent map).

Proposition 2.4. If p = 0 in R, then there exists an unique maximal h ∈ Z>0 such that [p] factors
through X 7→ Xph, or [p] = 0. The maximal h is called the height of F .

Proof. [p]′(0) = 0 by definition, note [p]′(T )∂XF (0, [p](T ))dT = [p]∗w = [p]′(0)w = 0 and ∂XF (0, T )
is invertible by lemma 2.2 so [p]′ = 0.
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The functor sending a ring to the set of formal group laws over it is represented by L = Z[aij ]/I
where I is generated by axioms of formal group laws. If we put X,Y both by −1 and aij by degree
i+ j − 1, then Funiv =

∑
i,j aijX

iY j preserves the degree so L = ⊕Lk is a graded ring.

Applying lemma 2.1 on L, there exists t1 ∈ L such that Funiv = X + Y + t1C2(X,Y ) + o(2) so
deg(t1) = 1. Applying above lemma on L/t1 and lifting, there exists t2 ∈ L such that Funiv =
X + Y + t2C3(X,Y ) + o(3) mod t1. Comparing degree, we can assume deg(t2) = 2. Keep doing,
we find tk ∈ L with deg(tk) = k and

Funiv = X + Y + tkCk+1(X + Y ) + o(k + 2) mod t1, . . . , tk−1 (2)

In other words, A truncated at the order n+ 1 formal group law over R corresponds to a morphism
⊕0≤k≤n−1Lk → R so we get the primitive part of Lk for any k is a free abelian groups of rank 1 by
lemma 2.1.

Theorem 2.5. (Lazard) The natural construction above gives an isomorphism of graded rings

φ : Z[tk]k≥1 ∼= L (here deg tk = k)

Therefore, any truncated FGL can be lifted.

Proof. φ preserves the degree. Note the k−th primitive part of L is generated by {aij}i+j=k+1 hence
generated by tk by (2), so φ is surjective on every primitive part hence surjective by induction. To
prove φ is injective we can tensor Q, and LQ ∼= Q[bk]k≥1 by logarithm. We know φQ : Q[tk]k≥1 →
Q[bk]k≥1 is surjective, and the dimension of each graded part is the same on each side, so the
surjectivity forces injectivity.

So there are plenty of formal group laws, the remaining problem is classifying them up to isomor-
phism. Assume p = 0 in R in the rest of this section. We have the key lemma about the behavior
of [p]F when deforming F .

Lemma 2.6. G1 = G2 + aCpi(X,Y ) mod deg(pi + 1), then [p]G1 = [p]G2 − aT p
i
mod deg(pi + 1)

Proof. Consider [n] and do induction. For instance, if F is a formal group law such that F (X,Y ) =
X + Y +

∑
i+j=m,i,j>0 aijX

iY j + o(m + 1), we can assume [n]X = anX + bnX
m + o(m + 1) by

induction, and then finds the relation an+1 = an + 1, bn+1 = bn +
∑
aijn

i.

Corollary 2.7. (infinite height = additive) [p] = 0⇔ G ∼= Ga.

Proof. Suppose G = X + Y + o(n), write G = X + Y + aCn(X,Y ) + o(n+ 1), a ∈ R. If n is not a
power of p then consider h(T ) = T − aTn and replace G by hGh−1, or n is a power of p then a = 0
by above lemma.

To study the finite height case, we assume R is a field and consider normalized formal group law
(i.e [p] = T p

h). If R is separably closed then Artin-Schreier equations are always solvable and one
could prove any formal group law with finite height is isomorphic a normalized one. Using lemma
2.6 again, one proves normalized formal group laws are isomorphic iff their height agree.
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Example 2.2. f(T ) =
∑

k≥0
T pkh

pk
∈ Q[[T ]], F (X,Y ) = f (−1)(f(X) + f(Y )) ∈ Z(p)[[X,Y ]] then

F mod p is a formal group law of height h over Fp.
Another example is L→ Fp with ti 7→ 0 if i 6= ph − 1 and tph−1 7→ 1. To see why they have height
h, one could use the argument in lemma 2.6.

Example 2.3. We can also consider Lubin-Tate OL module Ff over OL with f(X) = Xph + pX
and modulo p to get a FGL H of height h, where L is the unramified extension of Qp of degree h.
Therefore, OL ⊆ End(H), and note Frobenius Φ(X) = Xp lies in End(H) such that Φh = p, one
can show OL[Φ] = Endk(H).

So we get

Theorem 2.8. The isomorphism classes of one dimensional formal group laws over a separably
closed field of char = p > 0 are in bijection with Z>0 ∪ {∞}, the bijection being given by the height.

Remark 2.9. Another proof is to use Diedonne theory to classify crystals of rank 1 and height h.
Besides, End(Gh) = OD where D is a division algebra over Qp with invariant 1/n and OD is its
maximal order.

Remark 2.10. There are lots of things about formal group laws in Hazewinkel’s book, for example
theorem (1.6.7) in the book shows every one dimensional formal group law over a reduced ring is
commutative.

3 Lubin-Tate spaces

Reference: Fargues’s course note.

From above, one knows how to classify formal group laws on any fields (at least for algebraically
closed fields). A natural question is how to classify them over a general ring such as a DVR. One
could fix the mod p part and consider the deformation problem. This motivates the notion of Lubin-
Tate space which is introduced in the paper "Formal moduli for one-parameter formal Lie groups"
(1966) by Lubin and Tate.

Let k be an algebraically closed field of char p > 0, F0 be a FGL over k with height h <∞.

Definition 3.1. Let C be the category of Artin local W (k)-algebras (A,m) with residue field k,
morphisms being local ring morphisms inducing the identity on k.

1. A formal group law G over A is called a deformation of F0 if G = F0 modm

2. Two deformations G1, G2 are isomorphic if there is an isomorphism f : G1 → G2 such that
f = Idmodm .

Let M0 be the associated functor of isomorphism classes of deformations of G0 on C.

Remark 3.1. M0 is essentially the same as the ususal functor M0 : C → Sets that associates
A ∈ C to the set of isomorphic classes of (G, ρ) where G is a FGL over A and ρ : G⊗AA/mA

∼= F0.
Here C is the category of complete Noetherian local W (k)-algebras (A,m) with residue field k.
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To attack such deformation problem, one can formulate the problem in a general setting. Let
F : C −→ Sets be a covariant functor such that F (k) is a point. We can define it’s tangent space
TF (k) := F (k[x]/(x2)). In order for F to be prorepresentable i.e by a complete noetherian local
W (k)-algebra with residue field k, one important neccesary condition is the Mayer-Vietoris property
i.e F preserves push-outs. A key observation is

Lemma 3.2. Let A ∈ C with with maximal ideal m and let I be an ideal of A s.t. m.I = 0. Then

A×A/I A ∼= A×k (k ⊕ I)

(a1, a2) 7→ (a1, ā1 ⊕ (a1 − a2))

So if F satisfies Mayer-Vietoris propety then F (A)→ F (A/I) is a F (k ⊕ I)-torsor.

Proof. The isomorphism can be checked directly. Note F (k ⊕ I) is a k-vector space and the action
on F (A) follows from the isomorphism F (A)× F (k ⊕ I) ∼= F (A)×F (A/I) F (A).

Therefore we can glue everything from the bottom, and plus formal smoothness we get

Theorem 3.3. Let k be a perfect field Suppose F satisfies the Mayer-Vietoris property, is for-
mally smooth and F (k) is a point, and dimkTF (k) = n < ∞. Then F is prorepresentable by
W (k)[[T1, . . . , Tn]].

Proof. Choose a basis of TF (k), it gives an element in F (k[T1, . . . , Tn]/(T 2
i )) ∼=

∏n
i=1 TF (k) (by MV

property), which can be lifted to an element in F (W (k)[[Ti]]) by formal smoothness i.e a morphism

f : G = Spf(W (k)[[T1, ..., Tn]]→ F

Note f is an isomorphism on tangent space, hence on any F (k ⊕M) ∼= TF (k) ⊗k M where M is
a finite dimensional k linear space. With notations in previous lemma and formal smoothness of F
and G, we find if f is an isomophism on A/I then it’s also an isomorphism on A. As any object in C
can be filtered into such situation (as they are all artin local rings), we know f is a isomorphism.

Remark 3.4. Above lemma is a special case of Schlessinger’s deformation criterion (all 4 condi-
tions).

From Lazard’s result, we know M0 is formally smooth, and the MV property clearly holds. So we
only need to compute the tangent space of M0. Consider a formal group laws F ′ over k[ε]/ε2 which
is a deformation of F0, and write F ′(X,Y ) = F0(X,Y )+εφ(X,Y )h(F0(X,Y )) where ωF0 = h(T )dT
is the normalized generator of invariant differentials of F0. Unraveling the definition, we get

Lemma 3.5. The tangent space of M0 is identified with the middle cohomology of the complex

Tk[[T ]]
∂0→ XY k[[X,Y ]]S2 ∂1→ k[[X,Y, Z]]

where
∂0φ(T ) = φ(X +F0 Y )− φ(X)− φ(Y )

∂1ψ(X,Y ) = ψ(Y, Z)− ψ(X +F0 Y,Z) + ψ(X,Y +F0 Z)− ψ(X,Y ).

Remark 3.6. In the paper of Gross-Hopkins, this is called the symmetric cohomology.
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To do computation, we specify our F0 as L → Fp with tj 7→ 0 if j 6= pn − 1 and tpn−1 7→ 1, the
same in example 2.2. For any 1 ≤ i ≤ n− 1,Let ψi be the cocycle corresponding to the deformation
L→ Fp with tj 7→ 0 if j < pi − 1, tpi−1 7→ ε, tj → 0 if pi − 1 < j < pn − 1, tpn−1 → 1 and tj → 0 if
j > pn − 1.

Lemma 3.7. ψi (1 ≤ i ≤ n− 1) form a basis for the tangent space of M0.

Proof. Note ψ = o(k) ⇒ ψ = aCk(X,Y ) + o(k + 1) and ∂T k is known so we could do it step by
step. Details are omitted.

From above computation, we get

Theorem 3.8.
M0
∼= Spf(W (Fp)[[t1, . . . , tn−1]])

In particular, it’s coordinate ring is a regular local ring of dimension n.

Remark 3.9. From the proof, one sees that we can choose the universal deformation FGL F on
R0 = W (k)[[x1, . . . , xh−1]] such that on R0

F (X,Y ) = X + Y + xiCpi(X,Y ) mod (x1, . . . , xi−1,deg >= pi + 1)

and there exists ui ∈ R0[[T ]]× (i = 0, . . . , h) such that

[p](T ) = pu0T + x1u1T
p + . . .+ xh−1uh−1T

ph−1
+ uhT

ph .

Remark 3.10. Another universal formal group law: the logarithm is f(T ) ∈ Q[v1, . . . , vn−1] be the
unique solution of Hazewinkel’s functional equation:

f(X) = X +

n−1∑
i=1

f(viX
pi)

p
+
f(Xpn)

p

All above can be generalized to formal O modules, which is done by Drinfeld.

4 p-divisible groups and Dieudonne modules

In 1967, the fundamental paper “p-divisible groups” by Tate was published , with the motivation to
study elliptic curves or more general abelian varieties. Given an elliptic curve E over an algebraically
closed field k of char p > 0, completion at origin gives a formal group law which is however not
sufficient to recover the information of E, neither does the Tate module. Moregenerally, one could
consider E[p∞] which is a p-divisible group and there is a theorem by Sere-Tate identifying the
deformation of E and E[p∞]. Slogans (assume p is locally (topological) nilpotent on the base):

1. p-divisible groups = inductive system of finite commutative flat p-group schemes s.t [p] is
epimorphism.

2. Formal p-divisible groups = formal lie groups (+ fixed coordinates = formal group laws) .
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3. Etale p-divisible groups (e.g Qp/ Zp)= finite free Zp representations of the fundamental group.

4. Every p-divisble group is the extension of an etale one by a formal one.

5. Cartier duality = exchange of multi and comulti of hopf algebras (duality of F gives V).

6. height(G) = dim(G) + dim(GD)

Dieudonne theory classifies p-divisible groups over a perfect field using semi-linear datas i.e crystal
(for general base there is a theory of displays which couldn’t be presented here at present).

Definition 4.1. Over a char p > 0 perfect field k, an F -crystal is a free module M of finite rank
over the ring W of Witt vectors of k, together with a σ-linear injective endomorphism of M . An
F -isocrystal is defined in the same way, except that M is a module for the quotient field K of W .

Example 4.1. Let G be a p-divisible group over k, D(G) = LieE(G) is a F -crystal.

Theorem 4.1. (Dieudonne) D is a fully faithful functor:

{p-divisible groups over k} → {crystals over k}

{p-divisible groups over k up to isogeny } → {isocrystals over k}

where rankD(G) = height(G), dimG = dimkD(G)/FD(G).

Proof. It’s sufficient to prove the analogs in the finite flat group scheme case, and by local-etale
exact sequence which splits in the perfect field case one only concern about the local-local case. (I
wrote a proof in some old notes in Chinese so it’s omitted in this note).

Remark 4.2. Note the category of finite flat group schemes over a field is an abelian category, by
Mitchell’s embedding theorem it’s a full subcategory of a module category. So Dieudonne theory is
more or less possible.

Now the classifiction reduces to a semi-linear algebra problem which is done by Dieudonné (1955)
and Manin (1963).

Theorem 4.3. (Dieudonne-Manin classification)
Assume k is algebraically closed. The category of F -isocrystals over k is abelian and semisimple.
The simple F-isocrystals are the modules E d

h
where d and h are coprime integers with h > 0. E d

h

has a basis over K of the form v, Fv, F 2v, . . . , F h−1v for some element v, and F hv = pdv. The
rational number d

h is called the slope of the F -isocrystal.
Over a general perfect field k, an F-isocrystal can still be written as a direct sum of subcrystals that
are isoclinic, where an F -crystal is called isoclinic if over the algebraic closure of k it is a sum of
F -isocrystals of the same slope.

Proposition 4.4. The functor G→ D(G)Q induces an equivalence between p-divisible groups over k
up to isogeny and isocrystals whose slope lie bewteen 0 and 1. G is etale iff the isocrystal is isoclinic
with slope 0, G is formal p-divisible iff the isocrystal doesn’t have zero slope.

Proof. height(G) ≥ dim(G). If G is etale, LieG = 0.
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An important tool to study isocrystals is the newton polygon (there is an analog with vector bundle
on algebraic curves and Harder-Narasimhan filtration).

Definition 4.2. If λ1, ..., λr are the slopes of D(G) with multiplicity (a1, ..., ar) where λi = di
hi

with
(di, hi) = 1. Then the Newton polygon attached to the data (λi, ai) is the unique convex polygon
whose breakpoints are in Z2 that begins at (0, 0) and whose slopes are the λi each with multiplicity
aihi. Therefore, it ends at (height(G), dim(G)).

Example 4.2. We can use p-divisible groups to distinguish elliptic curves over Falgp . The newton
polygon of the LHS is the supersingular one (E[p] is a non-split extension of αp by αp), the RHS is
the ordinary one (µp∞ ⊕Qp/Zp):

Figure 1: Newton polygon of p-divisible groups from elliptic curves.

In fact, for such an elliptic curve we can assume it’s defined over Fq for some q. Consider the
(geometric) Frobenius action on H1

et(Ē,Ql) with it’s characterestic polynomial P1(t) = 1 − (α +
β)t+ qt2 (α, β are the eigenvalues, they are algebraic integer and αβ = q). In that case, the newton
polygon corresponds to the newton polygon of the poylnomial P1(t) i.e the lower convex polygon on
the coeffecients. Note the elliptic curve is ordinary iff one of α, β is a p-adic unit iff E[p∞](Fp) 6= 0,
so we get above pictures.

Example 4.3. Using the classification one can reprove the classification of one dimensional formal
p-divisible groups over Fp by their height. Let H be a formal p-divisible groups of height h (unique
up to iso), the crystal is of rank n with Frobenius action given by the matrix F (under a special
basis ei): 

0 . . . 0 p
1 0

. . .
...

1 0


Therefore End(H) = End(W (k), F )(D(H)) = OD where D is the unique division algebra over Qp

with invariant 1
n . More concretely,

D = Qpn(u) s.t un = p, ux = xσu for any x ∈ Qpn ;OD = Zpn [u]

where x ∈ Zpn acts on D(H) by x.ei = σi(x)ei and u acts by F .
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5 Serre-Tate theorem, Grothendieck-Messing theory, Canonical lift-
ing

The story of Serre-Tate theorem began in a letter of from Tate to Serre in 1964, while the simplest
proof is given by Drinfeld at 1976 using the rigid lemma. The Grothendieck-Messing theory concerns
about deformation of p-divisible groups as well as the crystalline feature of D = LieE(·). Here are
the main theorems:

Theorem 5.1. Let k be a char p > 0 perfect field. Let H0 be a dimension d and height h p-divisible
group over Spec(k), Let DefH0 be the functor from artinian rings with residue field k to sets that
associates to A the isomorphism classes of couples (H, ρ) where H is a p-divisible group over A and
ρ : H0 → H ⊗A k is an isomorphism. Then DefH0 is pro-representable:

DefH0
∼= Spf W (k)[[T1, ..., Td(h−d)]]

Theorem 5.2. (Serre-Tate)
DefE = DefE[p∞].

Example 5.1. Here is an application to the geometry of modular curves. Let N ≥ 5, so that the
moduli problem Γ1(N) is representable by a scheme Y1(N) which is smooth over Z[1/N ]. Let the
point x ∈ Y1(N)(Fp) (p is prime to N) correspond to the pair (E0/Fp, P0). Then by Serre-Tate, we
know the deformation problem of E[p∞] is representable by ÔY1(N),x, in particular it’s isomorphic
to W (Fp)[[x]] by theorem 5.1.

To prove Serre-Tate theorem, one key tool is Drinfeld’s rigidity lemma of quasi-isogenies:

Lemma 5.3. (Rigidity lemma) Let i : S0 ↪→ S be an immersion defined by a localy nilpotent ideal,
and p is localy nilpotent on S. Let G,H be two p-divisible groups over S and G0, S0 their reduction
to S0. Then the reduction map induces an injection of torsion free Zp-modules (torsion-free as [p]
is epimorphism)

HomS(G,H) ↪→ HomS(G0, H0).

and if moreover S is quasi-compact there exists N ∈ N s.t.

pNHomS0(G0, H0) ⊆ HomS(G,H).

Proof. we can reduce to the case the ideal sheaf I of i has zero square, then regarding p-divisible
groups as fppf sheaves we have

HomS0(G0, H0) = HomS(G, i∗i
∗H).

Note p acts nilpotently on K = Ker(H → i∗i
∗H) ∼= i∗Hom(wH0 , I) and is an epimorphism on G

hence HomS(G,K) = 0. Assume pN = 0 on S then pNK = 0 so Ext1(G,K) is killed by pN . The
results follow from the long exact sequence induced by 0→ K → H → i∗i

∗H → 0.

6 Gross-Hopkins period map

It’s good to study the Lubin-Tate space M0 more explicitly with respect to the action of O×D. In
the 1994 paper "Equivariant vector bundles on the Lubin-Tate moduli space", Hopkins and Gross
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construct a O×D equivariant period map from the generic fiber of M0 to a projective space (more
precisely the Severi-Brauer variety of D) and show it’s surjective.

Let H be a height n one dimensional formal p-divisible group over k = Fp, the associated Lunbin-
Tate space M0

∼= Spf(W (k)[[x1, . . . , xn−1]]), (H, ρ) be the universial deformation where ρ : H ∼=
H mod m = (p, x1, . . . , xn−1). D(H) and M0 are equipped with natural action of Aut(H) ∼= O×D.
Note the action is continuous on M0 :

Lemma 6.1. For any ` ∈ Z>0, there exists an open compact subgroup of O×D acts trivially on
M0 mod p`.

Proof. By Drinfeld rigidity lemma, there exists N ∈ N s.t. for every g ∈ O×D, p
Ng lifts to

End(H modmk) so Id+ pNg ∈ Aut(H modmk).

Let K = W (k)[1/p], Mrig
0 is the generic fiber of M0 as a rigid space over K

Mrig
0 = {(x1, · · · , xn−1) ∈ An|v(xi) > 0, ∀i} =

⋃
a∈Z>0

B(0, p−
1
a ) =

⋃
a∈Z>0

Sp(Aa[
1

p
])

where Aa is the affinoid algebra

Aa = OK < X1, . . . , Xn−1, T1, . . . , Tn−1 > /(Xa
i − pTi)

with Sp(Aa[1/p]) ↪→ Sp(Ab[1/p]) for any a ≤ b is given by Xi → Xi and Ti → Xb−a
i Ti . To

construct the equivariant period map, we need to construct an equivariant vector bundle on Mrig
0 .

Let E(H) be the universal vector extension of H on M0 and consider D(H) = LieE(H) which is
free OM0 of rank n (as Ext1(H,Ga) is free of rank n− 1)and there is a short exact sequence of free
OM0 modules

0→ wHD → LieE(H)→ w∗H → 0

Let Lie(E(H))rig be the O×D-equivariant rigid analytic vector bundle over Mrig
0 .

Theorem 6.2. Lie(E(H))rig is a flat O×D-vector bundle with an equivavariant isomorphism

Lie(E(H))rig ∼= D(H)Q ⊗K OMrig
0

Proof. This follows from Drinfeld rigidity lemma and the crystalline structure of D(H), and every-
thing became isomoprhic after inverting p. More precisely, we pull back H by Sp(Aa) ↪→M0 to get
Ha and an isomorphism

ρa : H×Spec(Fp)
Spec(Fp(T1, . . . , Tn) ∼= Ha mod(p,X1, . . . , Xn−1)

note the ideal (X1, . . . , Xn−1) is nilpotent in Aa/pAa so we can lift the isomorphism to quasi-
isogenies between H ×Spec(F p)

Spec(Aa/p) and Ha ×Spec(Aa) Spec(Aa/p), by the crystalline nature
of D we get an isomorphism

D(H)⊗W (k) Aa[
1

p
] ∼= LieE(Ha)[

1

p
]

It’s compatible with different a and the continuous action of O×D, taking the limit we get

D(H)Q ⊗K OMrig
0

∼= LieE(H)rig

10



Definition 6.1. The equivariant vector bundle D(H)Q ⊗K OMrig
0

∼= LieE(H)rig induced a O×D-

equivariant rigid analytic morphism π̂ : Mrig
0 → P(D(H)), which is called the Gross-Hopkins period

map. It’s etale by Grothendieck-Messing deformation theory.

Furthermore, one can show π̂ is surjective and describe the fibers.

Proposition 6.3. Let x = (H, ρ) ∈ Mrig
0 (Kalg) = M0(OKalg), then the fiber π̂−1(π̂(x)) is in

bijection with GLn(Qp)
1/GLn(Zp), here GLn(Qp)

1/ consists of those matrices whose determinants
are p-adic unit.

Example 6.1. The GL2 case.

The period map is very useful, it can be used to construct rigid etale covering of projective line,
and has some applications in algebraic topology.

7 Lubin-Tate tower, Drinfeld level structure

Summary: Motivation for Drinfeld level structure, representability by complete local rings, regu-
larity (Rn by R1, R1 by Lr), flatness anf finiteness ofMn+1 →Mn, étaleness on the generic fiber,
Galois group Aut(Mn →M0) = GLh(Z/pnZ).

One hopes to define the level structures like the modular curve case. For a FGL F over A ∈ C, the
pn-torsion points F [pn](A) := (mA,+F )[pn]. So by definition F [pn](k) = 0, we can’t expect the level
structure map always be an isomorphism. What if we just require there is a group homomorphism
η : (p−nZ/Z)h → F (A)[pn] ? By definition it’s representable by Bn = R0[[T1]]/[p

n](T1)⊗R0 . . .⊗R0

R0[[Th]]/[pn](Th) which is a complete local ring and finite over R0 (here we use Weierstrass division
theorem). The problem is that Bn is not an integral domain in general so does not have good ring
properties.

Example 7.1. If h = 1, then R0 = W (k) and one can take Gm as the universal deformation on R0,
then Bn = W (k)[T ]/(T + 1)p

n − 1. So we hope to get something like adding p-power roots of unity.
B1 = W (k)[T ]/(T + 1)p− 1 is not the correct choice, but we want R1 = W (k)[ζp] = W (k)[ζp− 1] =

W (k)[T ]/ (T+1)p−1
T = B1/

(T+1)p−1
T which is indeed a DVR hence a regular local ring. Similiarly,

Rn+1=W (k)[ζpn ] or more inductively Rn+1 = Rn[T ]/([p](T )− (ζpn−1 − 1)) for n ≥ 1.

The example suggests we shall use some conditions to cut out Bk and get the correct Rk. By
definition, we have [pn](η(x)) = 0 for any x by definition, so (T −η(x))|[pn](T ) in A[[T ]]. A Drinfeld
level structure just requires η is surjective even when counting multiplicity, namely we require∏
x∈(p−nZ/Z)h(T − η(x))|[pn](T ) in A[[T ]].

Definition 7.1. Mn is the functor from C to Sets:

A ∈ C 7→ {(F, ρ, η)|(F, ρ) ∈M0(A), η : (p−nZ/Z)h → F (A)[pn] a Drinfeld level n structure }

Proposition 7.1. Mn is prorepresentatble by a complete local ring Rn finite over R0 with residue
field k.
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Proof. By above discussion, we know Mn = Spf Rn where Rn = Bn/ ∼ where ∼ means the ideal
generated by all the coefficients of the residue term in applying Weierstrass division to [pn](T ) by∏
x∈(p−nZ/Z)h(T − ηBn(x)) in Bn[[T ]], here ηBn is the universal level structure map on Bn. The

claim on Rn follows from that Bn is a complete local ring finite over R0.

We firstly study R1. For 0 ≤ r ≤ h, consider the functor Φr which associates to each A ∈ C the set
of homomorphisms η : (p−nZ/Z)r → F (A)[pn] such that

∏
x∈(p−1Z/Z)r(T − η(x))|[p](T ).

Proposition 7.2. Φr is represented by a complete local ring Lr with residue field k such that

1. Lr is regular with dimLr = h, and the image of (p−1ei)(1 ≤ i ≤ r) under the universal η over
Lr along with xj ∈ R0 (r ≤ j ≤ h− 1) form a system of local parameters for Lr.

2. The natural forgetful map gives a finite flat (hence injective) morphism Lr → Lr+1.

3. The universal level map φr : (p−nZ/Z)r → F (Lr−1)[p
n] on Lr is injective.

Proof. Proof by induction on r, r = 0 is already known. Assume it’s true for r − 1, we set
θi = φr−1(p

−1ei) and

gr−1(T ) =
[p](T )∏

x∈(p−1Z/Z)r−1(T − φr−1(x))
,

here we use the notation (p−1Z/Z)0 = 0 so g0(T ) = [p](T )
T , and note that gr−1(T ) lies in Lr−1[[T ]]

because the induction case r − 1 (We use the fact that regular local ring is a domain, and φr−1 is
injective).
Now we set Lr := Lr−1[[θr]]/(gr−1(θr)), so Lr−1 ↪→ Lr is finite flat by Weierstrass division the-
orem hence dimLr = dimLr−1 = h. Recall the universal deformation group law on R0 =
W (k)[[x1, . . . , xh−1]] satisfies

[p](T ) = pu0T + x1u1T
p + . . .+ xh−1uh−1T

ph−1
+ uhT

ph , ui ∈ R0[[T ]]×.

Besides, on the ring Lr−1

[p](T ) =
∏

x∈(p−1Z/Z)r−1

(T − φr−1(x))gr−1(T )

Combining these two formulas on the ring Lr := Lr/(θ1, . . . , θr, xr, . . . xh−1) (note all φr−1(x) and
one root θr of gr−1 is zero on Lr so T p

r−1+1|[p](T ) on Lr), we find p, x1, . . . , xr−1 also become zero
in Lr. Hence θ1, . . . , θr, xr, . . . xh−1 generate the maximal ideal of Lr so Lr is a complete regular
local ring of dimension h, in particular an integral domain and θr 6= 0 in Lr (Note we don’t know
whether θr is nonzero on Lr in previous construction).
Now we define φr : (p−nZ/Z)r → F (Lr)[p

n] by φr(p−1ei) := φr−1(p
−1ei) = θi for 1 ≤ i ≤ r− 1 and

φr(p
−1er) = θr. If φr(

∑h
i=1 aip

−1ei) =
∑r

i=1[ai]θi = 0 on Lr for some ai ∈ Z, we get
∑r−1

i=1 [ai]θi = 0
on Lr−1 = Lr/θr. As φr−1 is injective by induction, this implies p|ai for i less than r. So [ar]θr = 0,
but we already know [p]θr = 0 and θr 6= 0 on Lr therefore p|ar. In conclusion, φr is injective.
Finally, we prove Lr represents Φi and the universal map is just φr. Note [p](φr(x)) = 0 for every
x and φr is injective, so φr(x) are different roots of [p](T ) ∈ Lr[[T ]] for different x. Moreover, Lr is
a domain so ∏

x∈(p−1Z/Z)r
(T − φr(x))|[p](T ) in Lr[[T ]]

therefore Φk is representable by Lr.
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In particular R1 = Lh is a regular local ring. Then everything becomes easy, as one characterize
Drinfeld level n structure only using the p-torsion part:

Lemma 7.3. For any group homomorphism η : (p−nZ/Z)h → F (A)[pn], η is a a Drinfeld level
structure iff

∏
x∈(p−1Z/Z)h(T − η(x))|[p]A(T ).

Proof. (X −F Y ) = (X − Y )× (unit).

By above lemma, one sees that Rn = R1[[T1, . . . , Th]]/([pk−1]T1−η(p−1e1), . . . , [p
k−1]Th−η(p−1eh)),

where η is the universal Drinfeld level 1 strucutre. So R1 ↪→ Rk is finite and flat so dimRn =
dimR1 = h, and one sees that Rn/(Ti) = R1/(η(p−1ei)) = k, so maximal ideal of Rn can be
generated by dimRn = h elements hence Rn is regular. So we get

Theorem 7.4. 1. Mn = Spf(Rn), where Rn is a regular local ring with dimRn = h and the
image of a basis under the universal level structure map form a system of local parameters.

2. The natural embedding (p−nZ/Z)h ↪→ (p−n−1Z/Z)h gives a finite flat morphismMn+1 →Mn.

Now we pass to the generic fiber i.e to consider Rn[1/p] over K = W (k)[1/p], then

Proposition 7.5. R0[1/p]→ Rn[1/p] is finite etale with Galois group GLh(Z/pnZ).

Proof. The case h = 1 is clear, see [3, Theorem 2.1.2] for a brief discussion.

Intuitively, Drinfeld level structure coincides with the naive level structure (requiring an isomor-
phism with (Z/pnZ)h) on the generic fiber, hence (Mn)η is a Aut((Z/pnZ)h) torsor over M0.

Remark 7.6. The structure of Galois groups motivates what we have done for the integral models:
Note the map GLh(Z/pn+1Z) → GLh(Z/pnZ) is surjective with kernel isomorphic to a Fp-vector
space of dimension ph2, which is a hint that Rn is determined by R1 by just adding "[p]-th roots".
Also GLh(Z/pZ) has order (ph − 1)(ph − p) . . . (ph − ph−1), which is a hint that we could define Lr
and R1 = Lh.

8 Lubin-Tate Tower at infinity level is perfectoid

Scholze-Weinstein give a classification of p-divisible group in terms of linear algebra objects. Using
the embedding into products of universal covers of p-divisible groups, they show that Lubin-Tate
Tower at infinity level is perfectoid in some sense.

9 Canonical and quasi-canonical liftings

The theory of ccanonical and quasi-canonical liftings describe the endormophism ring of reduction
mod pn of quasi-canonical liftings. Therefore, it’s a very useful tool to compute length of deformation
spaces. We mention one application.
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Definition 9.1. Let j = j(τ) be the elliptic modular function on the upper half-plane. For m ≥ 1
let φm ∈ Z[j, j′] be the classical modular polynomials, defined by

φm(j, j′) = φm(j(τ), j′(τ ′)) =
∏

detA=m,A∈SL2(Z)M2(Z)

(j(τ)− j(Aτ ′))

Theorem 9.1. Let S = SpecZ[j, j′] ∼= A2
Z and Tm be the arithmetic divisor defined by φm = 0. Then

the cycles Tm1, Tm2 and Tm3 intersect properly on S if and only if there is no positive definite binary
quadratic form over Z which represents the three integers m1,m2,m3. In this case the intersection
Tm1 ×S Tm2 ×S Tm3 lies over the locus in S corresponding to pairs (E1, E2) of elliptic curves which
are supersingular in some characteristic p with p < 4m1m2m3. The arithmetic intersection number
is equal to

(Tm1 · Tm2 · Tm3) =
∑

p<4m1m2m3

n(p) log p

where

n(p) =
1

2

∑
Q

 ∏
`| 1

2
detQ,` 6=p

β`(Q)

 · αp(Q)

Here the sum is the taken over all positive definite integral ternary quadratic forms Q with diagonal
(m1,m2,m3) which are isotropic over Q` for all ` 6= p. Furthermore β`(Q) is a normalized repre-
sentation density of Q by the Z`-lattice M2(Zl) with its norm form. Finally, αp(Q) is the length
of a certain local deformation space of isogenies of formal groups in characteristic p. The main
ingredient of the proof is the determination of the quantity αp(Q), and has some connection with
Lubin-Tate spaces, see [6] for details.
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