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1 Motivation

Consider a tulple of reductive groups over a number field F0

H1 ↪→ G←↩ H2

and choose a good test function f =
∏

v fv ∈ C∞c (G(A)). Main part of RTF is an equality

”Spectral Side” = ”Geometric Side”∑
π irr cusp auto rep of G

(...) =
∑

γ∈H1(F0)\G(F0)/H2(F0)

V olγ

∫
(H1×H2)γ(A)\H1×H2(A)

fdh1dh2

Idea: For any matrix A = (aij)n×n,
∑
λi =

∑
aii.

Variants: twist by a character η, action of H on a good G-variety X (e.g a symmetric
space), (semi-)linearization...
Warning: There are big convergence issues. This is why we like regular semisimple orbits
(as the orbit is closed, the restriction of f is still compactly supported, and the volume factor
is easy to compute).
Slogan. Comparison of RTFs is a very useful tool (JL, base change, GGP...).
How ?

• Match (regular semisimple) orbits (study the orbit space)

• Match orbit integrals (existence of transfer)

• Fundamental lemma

• Choose good test functions to separate terms (density, base change, multiplicity)

When ?
Why do we expect such comparison on the geometric side? One importance case is the
twist case: the action of H on X and H ′ on X ′ over F0 are different, but become the
same after base change to large field. And we get untwist/matching after taking quotient by
showing the twist does not change the orbits.
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2 Jacquet-Rallis case

Twist of conjugation action of GLn−1 on GLn and on

[
GLn−1 ∗
∗ 0

]
.

In the Jacquet-Rallis setting, let F/F0 be separable quadratic extension of p-adic fields
or number fields.

So we have

• GLn side: H ′ = GLn−1 acts on

Sn = {γ ∈ ResF/F0GLn|γ̄γ = 1}

and on

Sn−1 × V ′n−1 ↪→ ResF/F0

[
GLn−1 ∗
∗ 0

]
by conjugation.

• Un side: H = U(V ) acts on

G = U(V #) = {g ∈ ResF/F0GLn|tḡJg = J}

and on

U(V )× V ↪→ ResF/F0

[
GLn−1 ∗
∗ 0

]
by conjugation.

Theorem 1. There is a natural (not just as sets!) bijection of regular semisimple orbits∐
V

[U(V #)(F0)]rs ∼= [Sn(F0)]rs (1)

and ∐
V

[(U(V )× V )(F0)]rs ∼= [(Sn−1 × V ′n−1)(F0)]rs (2)

where V runs over Hermn−1, the set of isomorphism classes of n − 1 dimensional non-
degenerate F/F0 Hermitian spaces.

Before giving a proof, let’s make some observations. If F = F0 × F0 is split, then the
action at both sides becomes the standard conjugation action of GLn−1. The theorem is
obvious (even without rs assumption) in this case.

Remark 1. One will see later the rs assumption is neccesary in the proof for general case.
In fact, the comparison fails for all orbits in general. Over R, one can easily see this by
connectedness. The whole orbit space (non-Hausdorff in general) essentially looks like this
(picture of a sphere with ”a fat circle” in the middle, remove the ”fat circle” we get the
regular semisimple orbits; we split the sphere in the middle to obtain matching on both
sides. )
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In general, as F ⊗F0 F
∼= F × F , after a base change from F0 to F we arrive at the split

case. And the embeddings e.g Sn(F0) ↪→ GLn(F ) can be thought as embeddings of F0-points
to F -points (up to an automorphism).

Use the standard pairing on F n−1 given by (x, y) =
∑

i xiȳi we get the trivial Hermitian

space V0 and V #
0 . Compare U(V #

0 ) = {tḡg = 1} with Sn = {γ̄γ = 1} (more precisely,
compare the actions), we see

Proposition 1. The action of H ′ on Sn and H = U(V0) on G = U(V #
0 ) is F/F0-twist of

each other, the twist is given by the transpose anti-involution on GLn/F . Similar result
holds for the variant version.

Then let’s recall the notation of regular semisimpleness. Let a reductive group H act
on a smooth affine variety X over F0, we say x ∈ X(F0) is regular semisimple if Hx is
Zariski closed and Hx is trivial. This condition satisfies faithful flat descent, so we expect
it’s representable.
Fact: There exists an open subscheme Xrs of X parametrizing rs points. In practice (which
is true in our case), Xrs is non-empty, affine and dense.

Example 1. Gm acts on A1.

Example 2. Interesting example: SO(2)(R) acts on R2 by rotation, geometry is different
over R and C.

Then one may imagine Xrs/H (which exists as a scheme) parametrizing regular semisim-
ple orbits. But it’s a general phenomenon that (X/H)(F0) 6= X(F0)/H(F0) for non-
algebraically closed field F0, and one has to consider H-torsors. By definition,

(X/H)(F0) =
∐

α∈H1(F0,H)

Xα(F0)/Hα(F0)

where Tα is the H-torsor corresponding to α, Hα = Aut(Tα), Xα = (X × Tα)/H.

Proposition 2. H1(F0, GLn−1) = 1, and H1(F0, U(V0)) is in bijection with isomorphism
classes of n− 1-dimensional F/F0-hermitian spaces.

Proof. The first one is Hilbert Satz 90, the second proof is similar to how one identifies GLn
torsors with rank n vector bundles.

Return to the theorem, one gets that LHS of (1) is (U(V #
0 )rs//U(V0))(F0), and RHS is

((Sn)rs//GLn−1)(F0). To finish the proof, we use the following proposition which says the
twist is trivial on the quotient:

Proposition 3. x→ tx is identity on (GLn)rs//GLn−1. Therefore,

U(V #
0 )rs//U(V0) ∼= (Sn)rs//GLn−1.

Proof. For our purpose, we only need to look at field-valued points. This reduces to checking
that for any regular semisimple matrix g ∈ GLn(E) (E can be any field), g is GLn−1(E)
conjugate to tg, which will be done in next section.

The proof of (2) in the theorem is similar.
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3 Concrete matching of elements

The above conceptual explanation indicates that to prove mathching of orbits, it’s useful to
consider the embedding

U(V )(F0)× V (F0) ↪→
[
GLn−1 ∗
∗ 0

]
(F )←↩ Sn−1(F0)× V ′n−1(F0)

. Note the stabilizer of a regular semisimple element is trivial hence two regular semisimple
elements are H(F ) = GLn−1(F )-conjugated iff they are H(F0)-conjugated. So we have
embedded LHS and RHS of (1) and (2) into a common large orbit space, and only need to
do matching there.

Definition 1. (g, u) and (γ, u1, u2) is matched iff they are conjugated by GLn−1(F ) in
Mn×n(F ).

The geometry of GLn−1 action on GLn is summarized as the following theorem (the
variant version is similar).

Theorem 2. Let E be any field, g =

[
A u
v d

]
∈ GLn(E). Then

1. g is regular semisimple iff e, ge, . . . , gn−1e form a basis of En and e∗, e∗g, . . . , e∗gn−1

form a basis of (En)∗

iff u,Au, . . . , An−2u form a basis of En−1 and v, vA, . . . , vAn−2 form a basis of (En−1)∗

iff det((vAi+ju)0≤i,j≤n−2) 6= 0 (so regular semisimple elements form an non-empty affine
open subset).

2. For regular semisimple g, define inv(g) as the data det(λI + A) ∈ E[λ], vAiu (i =
0, . . . , n− 2) and d. Then for regular semisimple g1, g2, g1 ∼ g2 iff inv(g1) = inv(g2).

Proof. We give a sketch. If n = 2, the action is[
t−1 0
0 1

] [
A u
v d

] [
t 0
0 1

]
=

[
A a−1u
av d

]
Let ” t→ 0 or∞ ”, we see the orbit is closed iff uv 6= 0 or u = v = 0 (if uv = t 6= 0 then the
orbit is defined by {uv = t} hence is closed), regular semisimple iff uv 6= 0, so the theorem
is true.

The proof for general case is similar. (1.) is easy except the first equivalence: for one side
e.g if e, ge, . . . , gn−1e does not form a basis of En, then g has a proper invariant subspace, so

g look like

[
∗ ∗
0 ∗

]
under another basis, then choose scalar matrix t as above and let t→∞,

the limit point is fixed by all t 6= 0, so the orbit is not closed or the stabilizer is not trivial.
For another side, if hg = gh for h ∈ GLn−1(E), as he = e we know hgie = gie, but gie form
a basis, so h = id hence the stablizer of h is trivial. For the closedness, one need to use limit
argument to classify all closed orbits.

The proof of (2.) is easy: if inv(g1) = inv(g2), define h ∈ GLn−1 by sending Ai1u1 to
Ai2u2 (i = 0, . . . , n− 2. As they are both basis of En−1, this is well-defined, use the equality
of invariants to show hg1h

−1(gi1e) = g2(g
i
2e) hence hg1h

−1 = g2.
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Corollary 1. For any regular semisimple matrix g ∈ GLn(E), g is GLn−1(E) conjugate to
tg.

Remark 2. This is the analog of the classical result that any n× n matrix is conjugated to

its transpose. Here the result is not true for arbitary matrix: consider

[
1 1
0 1

]
.

Remark 3. One can prove the matching concretely. For example, take γ ∈ Sn(F0)rs,
as γ ∼ tγ, there is a x ∈ GLn−1(F ) s.t xγx−1 = tγ. Applying the conjugation we get
x̄γ̄x̄−1 = tγ̄, use γ̄γ = 1 we get x̄γx̄−1 = tγ hence x̄ = x as Stab(γ) = 1. Similarly, tx = x so
x ∈ Hermn−1. Therefore,

tγ̄xγx−1 = tγ̄tγ = 1

so γ ∈ U(x⊕ 1)rs.

In conclusion, we get the matching of regular semisimple orbits, and it’s time to discuss
the matching of orbit integral.

4 Smooth transfer

Recall

Theorem 3. we have the following classification of n-dimensional non-degenerate F/F0-
Hermitian spaces over local and global fields:

• (Split case) only the trivial one, U(〈, 〉) = GLn;

• (C/R) any V is isomorphic to Vp,q defined by diag1p,−1q where p, q are two natural
number with p+q = n. Vp,q are not isomorphic to each other, but U(p, q) := U(Vp,q) ∼=
U(q, p).

• (p-adic field) det : Hermn
∼= F×0 /NF

× ∼= Z/2 = {0, 1}. For n odd, U(V0) ∼= U(V1) are
quasi-split. For n even, U(V0) 6∼= U(V1) and only U(V0) is quasi-split.

• (totally real field) certain local-global principle holds.

For the proof in the p-adic case, one firstly checks n = 1 and n = 2, and use that any V
with dimension ≥ 3 has isotropic vectors to do induction.

Now we define orbit integrals as in the Jacquet-Rallis setting. Let F/F0 be a quadratic
extension of p-adic fields and η be the associated quadratic character of F×0 by local class
field theory.

Definition 2. For f ′ ∈ S(Sn(F0)) i.e a locally constant function with compact support on
Sn(F0), and γ ∈ Sn(F0)rs, we define the orbital integral as

O(γ, f ′, s) :=

∫
H

f ′
(
hγh−1

)
| det(h)|−sη(h)dh
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and define O(γ, f) = w(γ)O(γ, f ′, 0), where the transfer factor w(γ) is certain non-zero
number which we don’t define here.

On the unitary side, for g ∈ U
(
V #
)

(F0)rs and f ∈ S
(
U
(
V #
)

(F0)
)

we define

Orb(g, f) :=

∫
U(V )(F0)

f
(
h−1gh

)
dh

Note the twist by η on the GLn side, and it’s necessary to have the transfer factor ω(γ)
in the definition (to make it only depends on the orbit). And the product of all local transfer
factors is 1, hence it does not effect the global matching.

Definition 3. A function f ′ ∈ S(Sn(F0)) and a pair of functions (f0, f1) ∈ S(U(V #
0 )(F0))×

S(U(V #
1 )(F0)) are transfers of each other if for each i ∈ {0, 1} and each g ∈ U(V #

i )(F0)rs ,
we have

Orb(g, fi) = Orb(γ, f ′)

whenever γ ∈ Sn(F0)rs matches g.

The variant version is defined similarly, so is the Lie-algebra version.

Theorem 4. In the p-adic case, the smooth transfer always exists.

The idea is to firstly reduce to the Lie-algebra version using Cayley map, then because
of the local constancy of orbit integral (which is one feature of p-adic fields), one only
need to prove the existence around every points. Use Harish-Chandra’s semisimple descent
(understanding orbital integrals in terms of slice representations, and induction, one gets
the existence away from the center (the centralizer has small dimension, this reduced to low
rank case.). Finally the compatibility of transfer and Fourier transform solves the remaining
case (use Fourier transform to get from center to regular ones). The n = 1 case is explicit
and important for induction.

The fundamental lemma: in the statement, we need F/F0 be unramified, so there is a
self-dual lattice inside V0 hence U(V0)(F0) has a hyperspecial subgroup.
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