Perfectoidization and perfect prismatic complex

 $\Delta_{X/A,\mathrm{perf}}$

Zhiyu Zhang

STAGE seminar

May 14th, 2021

Outline

① What is perfection in char p...?

2 Construction via prismatic cohomology

3 Universal property, applications

Perfection in char p

k perfect field of char p > 0. {perfect ring over k} $\stackrel{forget}{\rightarrow}$ {rings over k} has a left adjoint:

The perfection of a k-algebra R

$$R_{\text{perf}} := \text{colim}(R \xrightarrow{\phi} R \xrightarrow{\phi} R \xrightarrow{\phi} ..), \text{ where } \phi : x \to x^p.$$

Perfect algebraic Geometry

Observations (to be generalized later):

- R_{perf} is a R-algebra via first term of colim, or by adjointness.
- R_{perf} is independent of k.
- $R \to R_{perf}$ is the universal map from R to a perfect k-algebra.
- Zariski closed=Strongly Zariski closed: $R_1 woheadrightarrow R$ a surjective map with perfect R_1 , then $R oup R_{perf}$ is surjective.
- perfect rings are reduced. Frobenius is zero on higher $\pi_i, i > 0$.

Reconstruction via derived de Rham cohomology

 $dR_{-/k} = left$ Kan extension of de Rham complex $\Omega^*_{-/k}$ on polynomial k-algebras.

 ϕ on $R \sim \phi_k$ -semilinear endomorphism $\phi_R : dR_{R/k} \to dR_{R/k}$.

The perfection of $dR_{R/k}$

$$\mathrm{dR}_{R/k,perf} \coloneqq \mathrm{colim}(\mathrm{dR}_{R/k} \overset{\phi_R}{\to} \mathrm{dR}_{R/k} \overset{\phi_R}{\to} \mathrm{dR}_{R/k} \overset{\phi_R}{\to} \ldots).$$

Reconstruction via derived de Rham cohomology

 $dR_{-/k} = left$ Kan extension of de Rham complex $\Omega^*_{-/k}$ on polynomial k-algebras.

 ϕ on $R \sim \phi_k$ -semilinear endomorphism $\phi_R : dR_{R/k} \to dR_{R/k}$.

The perfection of $dR_{R/k}$

$$\mathrm{dR}_{R/k,perf} \coloneqq \mathrm{colim}(\mathrm{dR}_{R/k} \overset{\phi_R}{\to} \mathrm{dR}_{R/k} \overset{\phi_R}{\to} \mathrm{dR}_{R/k} \overset{\phi_R}{\to} \ldots).$$

The projection $dR_{R/k} \to R$ gives $dR_{R/k,perf} \cong R_{perf}$: we reduce to the case R is a polynomial algebra, then $d(x^p) = px^{p-1}dx = 0$, so colimits of $\Omega_{R/k}^i$ (i > 0) under ϕ_R is zero.

Reconstruction via derived prismatic cohomology

(A, I) = (W(k), p) the perfect prism corresponding to k. R a A/I = k algebra. $\Delta_{R/A} \in D(A)$, with $R \to \overline{\Delta}_{R/A}$. I = (p), $\phi(p) \subseteq (p)$, ϕ still acts on $\overline{\Delta}_{R/A}$.

Proposition

The map $R \to \overline{\Delta}_{R/A}$ gives $\overline{\Delta}_{R/A, perf} \cong R_{perf}$.

Reconstruction via derived prismatic cohomology

(A, I) = (W(k), p) the perfect prism corresponding to k. R a A/I = k algebra. $\Delta_{R/A} \in D(A)$, with $R \to \overline{\Delta}_{R/A}$. I = (p), $\phi(p) \subseteq (p)$, ϕ still acts on $\overline{\Delta}_{R/A}$.

Proposition

The map $R \to \overline{\Delta}_{R/A}$ gives $\overline{\Delta}_{R/A, perf} \cong R_{perf}$.

WLOG R is a polynomial algebra. By Hodge-Tate comparison $gr_i^{HT}(\overline{\Delta}_{R/A}) = \Omega_{R/k}^i$, only need to check $gr_i^{HT}(\phi) = 0, i > 0$, $gr_0^{HT}(\phi) = \phi_R, i > 0$. WLOG R = k[x]. By crystalline comparison, reduce to de Rham cohomology of \mathbb{A}_W^1 over W, where mod p Hodge-Tate filtraion = canonical filtration.

Main players

S p-complete ring, X = Spf(S).

Choose a perfect prism (A, I), with $A/I \to S$.

$$\rightsquigarrow \Delta_{X/A} \in D(A), \ \Delta_{X/A, perf} := (\operatorname{colim}_{\phi} \Delta_{X/A})^{\land} \in D_{(p, I) - comp}(A).$$

The (derived) "**perfectoidization**" of S

$$S_{\text{perfd}} := \Delta_{X/A, \text{perf}} \otimes_A^L A/I \in D_{p-\text{comp}}(S).$$

Main players

S p-complete ring, X = Spf(S).

Choose a perfect prism (A, I), with $A/I \to S$.

$$\rightsquigarrow \Delta_{X/A} \in D(A), \ \Delta_{X/A, perf} := (\operatorname{colim}_{\phi} \Delta_{X/A})^{\land} \in D_{(p, I) - comp}(A).$$

The (derived) "**perfectoidization**" of S

$$S_{\text{perfd}} := \Delta_{X/A, \text{perf}} \otimes_A^L A/I \in D_{p-\text{comp}}(S).$$

Why the name? Is S_{perfd} (derived) perfectoid / independent of (A, I) / the classical perfection in char p case? Is S_{perfd} universal?

Why is S_{perfd} nice?

- HT comparison + goodness of $L_{X/(A/I)}$ + derived Nakayama \sim control $\Delta_{X/A}$ hence S_{perfd} , get descent and base change.
- Study general S via reduction to nice $A/I \to S$. For nice S (e.g quasiregular semi-perfectoids, in particular perfectoids), show S_{perfd} is the classical universal perfectoid over S.

Why is S_{perfd} nice?

- HT comparison + goodness of $L_{X/(A/I)}$ + derived Nakayama \sim control $\Delta_{X/A}$ hence S_{perfd} , get descent and base change.
- Study general S via reduction to nice $A/I \to S$. For nice S (e.g quasiregular semi-perfectoids, in particular perfectoids), show S_{perfd} is the classical universal perfectoid over S.
- Universality of S_{perfd} comes from **derived "functorial"** universality of $\Delta_{X/A}$, at least if $\Delta_{X/A} \otimes_A^L A/I$ is discrete.

 $\Delta_{X/A}$ has a derived δ -ring (even "derived prism") structure (we need simplicial tools to see this). Therefore $\Delta_{X/A,perf}$ is a derived perfect δ -ring, and $S_{perfd} := \Delta_{X/A,perf} \otimes_A^L A/I$ is "derived perfectoid".

3 levels of universality in category theory

For $X \in \mathcal{C}$, weakly initial < "functorial" initial < initial (uniqueness). "Functorial": for any $Y \in \mathcal{C}$, There is a map $X \to Y$, functorial on Y. Initial object × something can be 'functorial' initial.

• By design, cohomology of a site $R\Gamma(-,\mathcal{O}) = R \lim(*)$ e.g $\Delta_{X/A}$, has good "functorial" universality (provided it's discrete and in the site). But the true universality i.e uniqueness is subtle: the conjecture in [BS] Lemma 7.7 seems open in general.

3 levels of universality in category theory

For $X \in \mathcal{C}$, weakly initial < "functorial" initial < initial (uniqueness). "Functorial": for any $Y \in \mathcal{C}$, There is a map $X \to Y$, functorial on Y. Initial object \times something can be 'functorial' initial.

- By design, cohomology of a site $R\Gamma(-,\mathcal{O}) = R \lim(*)$ e.g $\Delta_{X/A}$, has good "functorial" universality (provided it's discrete and in the site). But the true universality i.e uniqueness is subtle: the conjecture in [BS] Lemma 7.7 seems open in general.
- But via computations on simple examples and descent, still get universality of $S \to S_{perfd}$ in good cases, and prove things needed for comparison theorems.

Applications

Why is perfectoidization powerful? Many applications related to descent:

- Zariski closed=Strongly Zariski closed: If S is semiperfectoid, then $S \to S_{\text{perfd}}$ is surjective and universal among $S \to \text{perfd}$.
- $\Delta_{X/A, \text{perf}} \cong R\Gamma((X/A)_{\Delta}^{\text{perf}}, O_{\Delta})$, and arc descent for $S \to S_{\text{perfd}}$ (next time).
- The étale comparison $R\Gamma_{et}(X_{\eta}, \mathbb{Z}/p^n) \cong (\Delta_{X/A}[1/d]/p^n)^{\phi=1}$ for perfect prisms, can be proved via descent to the perfectoidization (next time).

Now we do some recollections.

Prismatic cohomology

Conceptual leap: we don't need a Frobenius on R, only Frobenius on the test objects.

S p-complete ring, $X = \mathrm{Spf}(S)$. Choose a perfect prism (A, I), with $A/I \to S$.

The prismatic site of X over A/I

 $(X/A)_{\Delta}$ is the opposite of the category of prisms (B,J) with a map $(A,I) \to (B,J)$ and a map $\operatorname{Sp}(B/J) \to X$ over $\operatorname{Sp}(A/I)$.

$$\mathcal{O}_{\Delta}:(B,J)\mapsto B.\ \overline{\mathcal{O}_{\Delta}}:(B,J)\mapsto B/J=B/IB.$$

$$\sim \Delta_{X/A} = R\Gamma((X/A)_{\Delta}, \mathcal{O}_{\Delta}) \in D(A)$$
, with a natural map $S \to \overline{\Delta}_{X/A}$.

The Hodge-Tate filtration

Proposition

 $\overline{\Delta}_{X/A} := \Delta_{X/A} \otimes_A^L A/I$ admits a natural increasing N-indexed filtration, with *i*-th graded piece given by the derived *p*-completion of $\wedge^i L_{S/(A/I)} \{-i\}[-i]$.

Idea: Universal property of the de Rham complex \sim the comparison map from de Rham to Hodge-Tate cohomology.

Reminder of Hodge-Tate in char p

k perfect field char p > 0. X over k smooth, relative Frobenius $F: X \to X^{(p)}$. Two filtration on de Rham complex $\Omega_{X/k}^*$:

- Hodge filtration=stupid filtration \sim Hodge spectral sequence $E_1^{pq} = H^q(X, \Omega_{X/k}^p)$.
- Conjugate filtraion=canonical filtration \sim Hodge-Tate spectral sequence $E_2^{pq} = H^p(X, H^q(\Omega_{X/k}^*))$.

Hodge-Tate filtration is a generalization of conjugate filtration, via Cartier isomorphism.

Perfection in mixed characteristic

$$\Delta_{X/A, \text{perf}} := (\text{colim}_{\phi} \Delta_{X/A})^{\wedge} \in D_{(p, I) - comp}(A).$$

The (derived) "**perfectoidization**" of S

 $S_{\text{perfd}} := \Delta_{X/A, \text{perf}} \otimes_A^L A/I \in D_{p-\text{comp}}(S)$ a commutative algebra object.

The universal classical perfectoid of S

 $S_{\text{perfd}'} := \text{the universal classical perfectoid over } S \text{ (if it exists)}, i.e.$

 $S_{\text{perfd}'}$ is perfectoid, and for any $S \to R$ with R perfectoid, there is a

unique map $S_{perfd'} \to R$ extending it.

Independence of base

Proposition

Let $(A, I) \to (B, J)$ be a map of perfect prisms, and let S be a p-complete B/J-algebra. Then the natural map gives an isomorphism $\Delta_{S/A} \cong \Delta_{S/B}$. In particular, $\Delta_{S/A, perf} \cong \Delta_{S/B, perf}$, S_{perfd} is independent of (A, I).

Proof.

Use HT comparison, we're reduced to show $L^{\wedge}_{(B/J)/(A/I)} = 0$, which follows from that A/I and B/J are both perfectoid.

Base change

The formation of $\Delta_{X/A}$ commutes with base change in the sense that for any map of bounded prisms $(A, I) \to (B, J)$, $\Delta_{X_B/B} = B \otimes_A^L \Delta_{X/A}$. We can check directly that $S \to S_{\text{perfd}'}$ also commutes with base change of the perfect prism.

$S_{\text{perfd}} = S = S_{\text{perfd'}}$ for perfectoid S'

So if S perfectoid, $(S/A)_{\Delta}$ has an object $(A_{inf}(S), \text{Ker}\theta_S)$, hence a map $\Delta_{S/A} \to A_{inf}(S)$, it's an isomorphism: apply derived Nakayama and HT, done by $L_{S/(A/I)}^{\wedge} = 0$. We see $S_{perfd} = S$, in particular discrete. Note $(A_{inf}(S), \text{Ker}\theta_S)$ is also the initial object in $(S/A)_{\Delta}$:

Proposition

Let (A, I) be a perfect prism corresponding to a perfectoid ring R = A/I. Then for any prism (B, J), any map $A/I \to B/J$ of commutative rings lifts uniquely to a map $(A, I) \to (B, J)$ of prisms.

Proof: use the relation between deformation theory and cotangent complex, we're done by $L_{A/\mathbb{Z}_n}^{\wedge} = 0$.

The case S is semiperfectoid

Proposition

If S is semiperfectoid i.e there is a surjection $R \to S$ with R perfectoid, then $S_{\text{perfd}'}$ exists.

Proof.

We can cut out the perfect prism for $S_{\text{perfd}'}$ inside the perfect prism $(A_{inf}(R), d)$ for R (we know $R_{\text{perfd}'} = R = R_{\text{perfd}}$), using the kernel of $A_{inf}(R) \to S$. We need to do transfinite induction, to make it both d-torsion free and derived complete.

Derived "functorial" universality of $\Delta_{X/A}$

Proposition

Assume $\overline{\Delta}_{X/A}$ is concentrated in degree zero. Then the pair $(\Delta_{X/A}, I\Delta_{X/A})$ gives a prism over (A, I), with a map $R \to \overline{\Delta}_{X/A}$. For any prism (B, J) over (A, I) equipped with a map $R \to B/J$, there is a map $(\Delta_{X/A}, I\Delta_{X/A}) \to (B, J)$, functorial on (B, J).

Derived "functorial" universality of $\Delta_{X/A}$

Proposition

Assume $\overline{\Delta}_{X/A}$ is concentrated in degree zero. Then the pair $(\Delta_{X/A}, I\Delta_{X/A})$ gives a prism over (A, I), with a map $R \to \overline{\Delta}_{X/A}$. For any prism (B, J) over (A, I) equipped with a map $R \to B/J$, there is a map $(\Delta_{X/A}, I\Delta_{X/A}) \to (B, J)$, functorial on (B, J).

Proof.

 $\Delta_{X/A} = R\Gamma((X/A)_{\Delta}, \mathcal{O}_{\Delta}) = R \lim_{(B,J)} (B,J)$. Use Cech-Alexander complexes, and the canonical simplicial resolution of X, we see the existence of a derived δ -structure i.e a section of $W_2(-) \to (-)$ on $\Delta_{X/A}$. $\Delta_{X/A}$ is discrete by assumption, so $(\Delta_{X/A}, I\Delta_{X/A})$ gives a prism over (A, I). The universality is clear by definition of $R\Gamma$.

Discreteness of perfection when S is semiperfectoid

For any X, $\Delta_{X/A,perf}$ always lies in $D^{\geq 0}$ i.e $H^i(\Delta_{X/A,perf}) = 0, i < 0$, because Frobenius is zero on higher homotopy groups $\pi_i, i > 0$. If S is semiperfectoid, then $\Omega^1_{S/(A/I)} = 0$. By HT comparison, this implies $L_{X/A}[-1], \Delta_{X/A,perf} \in D^{\leq 0}$. So $\Delta_{X/A,perf}$ is discrete. By previous proposition, it's a classical perfect δ -ring and d-torsion free. Hence S_{perfd} is discrete and perfectoid. By equivalence of perfectoid rings and perfect prisms, we see

Proposition

If S is semiperfectoid, then $S \to S_{\text{perfd}}$ satisfies "functorial" universality among $S \to \text{perfds}$, in particular there is a section $S_{\text{perfd}} \to S_{\text{perfd'}}$ to the map $S_{\text{perfd'}} \to S_{\text{perfd}}$.

Proposition

Let R be a perfectoid ring. For any set $\{f_s \in R\}_{s \in I}$ of elements of R, there exists a p-completely faithfully flat map $R \to R_{\infty}$ of perfectoid rings such that each f_s admits a compatible system of p-power roots in R_{∞} . In other words, the map $\#: R^{\flat} \to R$ is surjective locally for the p-completely flat topology.

WLOG #I = 1. Let S be the p-adic completion of $R[x^{1/p^{\infty}}]/(x-f)$, so $R \to S$ is p-completely faithfully flat. We reduce the problem to S, but S is not perfectoid in general. We only know S is semiperfectoid. Let (A, I) be the perfect prism corresponding to R. We shall show that S_{perfd} solves the problem. We know discreteness and perfectoidness, and only need to check S_{perfd} is p-completely faithfully flat over R.

It suffices to show $A \to \Delta_{S/A,perf}$ is (p,I)-completely faithfully flat, which is implied by that $A \to \Delta_{S/A}$ is (p,I)-completely faithfully flat. So we only need to check $\overline{\Delta}_{S/A}$ is p-completely faithfully flat over R. Use HT filtration, we see it's faithful as the zero graded piece $gr_0 = R$. We only need to check $L_{S/R}[-1]$ (noting $\wedge^i L_{S/R}[-i] = \wedge^i (L_{S/R}[-1])$) is p-complete flat over R.

Consider $R \to R[x^{1/p^{\infty}}] = R' \to S$. $L_{R'/R}^{\wedge} = 0$ by perfectoidness. We only need to show $\wedge^i L_{S/R'}[-i]$ is p-completely faithfully flat over R. But S is the quotient of R' by non-zero divisor x - f, so $L_{S/R'}[-1]$ is simply isomorphic to S, hence p-completely flat over R. We're done.

Zariski closed=Strongly Zariski closed

Proposition

Let R be a perfectoid ring, and let S = R/J be a p-complete quotient (so S is semiperfectoid). Then there is a universal map $S \to S'$ with S' being a perfectoid ring. Moreover, this map is surjective.

We just need to check $S \to S_{\text{perfd}}$ is surjective.

Zariski closed=Strongly Zariski closed

Assume first that the kernel $J \subseteq R$ of $R \to S$ is the p-completion of an ideal generated by a set $\{x_i\}$ of elements that lie in the image of the map $\#: R^{\flat} \to R$.

In this case, if J_{∞} denotes the p-completion of the ideal generated by $x^{1/p^{n\#}}$, then check directly that the R/J_{∞} is perfectoid, and

 $S \cong R/J \to R/J_{\infty}$ is the universal map from S to a perfectoid ring.

Zariski closed=Strongly Zariski closed

This proves the assertion in this case. In general, as the surjectivity of a map of p-complete R-modules can be detected after p-completely faithfully flat base change (and S_{perfd} commutes with base change), we reduce to previous case by Andre's flatness lemma.

Completely flatness

A complex M of A-modules is I-completely flat if for any I-torsion A-module N, the derived tensor product $M \otimes^L AN$ is concentrated in degree 0. This implies in particular that $M \otimes^L_A A/I$ is concentrated in degree 0, and is a flat A/I-module.

Proposition

Let (A, I) be a bounded prism. For any (p, I)-completely flat A-complex $M \in D(A)$. Then M is discrete and classically (p, I)-complete.

True universality of $S \to S_{\text{perfd}}$

In fact, one can deduce the following thing from section 7 – 8 of [BS]

Proposition

Consider any p-complete ring S over a perfectoid ring A/I where (A, I) is a perfect prism.

- \bullet If $S_{\rm perfd'}$ exists, then $S_{\rm perfd}$ is discrete and agrees with $S_{\rm perfd'}$
- If S_{perfd} is discrete, then $S_{\text{perfd}'}$ exists and agrees with S_{perfd} .

True universality of $S \to S_{\text{perfd}}$

The uniqueness part in the universality can be also deduced from the compatibility between $(-)_{perfd}$ and derived tensor product $-\otimes^L -:$ assume S_{perfd} is discrete and R is a perfectoid ring. Let $f_1, f_2: S_{perfd} \to R$ be two maps over S, then they induce a map $(f_1, f_2): S_{perfd} \otimes_S^L S_{perfd} \to R$, which factors through $(S_{perfd} \otimes_S^L S_{perfd})_{perfd} = S_{perfd}$.

References

- (Main, Lemma 2.34, 3.7 (2), 3.9, 3.13, 4.8, 4.14, 4.17-4.18, Section
 6, 7, 8 of) B. Bhatt, P. Scholze, Prisms and Prismatic Cohomology, arxiv:1905.08229v3 (version 3, April 2021).
- (Main, Lecture VI, VII, VIII, IX of) B. Bhatt, Lectures on Prismatic cohomology, Fall 2018.
- (Section 3 of) B. Bhatt, Cohen-Macaulayness of absolute integral closures, Arxiv:2008.08070v1.
- (Section 2 of) D. Kubrak, A. Prikhodko, p-adic Hodge theory for Artin stacks, Arxiv:2105.05319.

Thank you!