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Perfection in char p

k perfect field of char p > 0. {perfect ring over k}
forget
→ {rings over k}

has a left adjoint:

The perfection of a k-algebra R

Rperf ∶= colim(R
φ
→ R

φ
→ R

φ
→ ..), where φ ∶ x→ xp.
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Perfect algebraic Geometry

Observations (to be generalized later):

Rperf is a R-algebra via first term of colim, or by adjointness.

Rperf is independent of k.

R → Rperf is the universal map from R to a perfect k-algebra.

Zariski closed=Strongly Zariski closed: R1 ↠ R a surjective map

with perfect R1, then R → Rperf is surjective.

perfect rings are reduced. Frobenius is zero on higher πi, i > 0.
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Reconstruction via derived de Rham cohomology

dR−/k = left Kan extension of de Rham complex Ω∗

−/k on polynomial

k-algebras.

φ on R ; φk-semilinear endomorphism φR ∶ dRR/k → dRR/k.

The perfection of dRR/k

dRR/k,perf ∶= colim(dRR/k
φR→ dRR/k

φR→ dRR/k
φR→ ..).

The projection dRR/k → R gives dRR/k,perf ≅ Rperf : we reduce to the

case R is a polynomial algebra, then d(xp) = pxp−1dx = 0, so colimits of

Ωi
R/k (i > 0) under φR is zero.
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Reconstruction via derived prismatic cohomology

(A, I) = (W (k), p) the perfect prism corresponding to k. R a A/I = k

algebra. ∆R/A ∈D(A), with R →∆R/A. I = (p), φ(p) ⊆ (p), φ still acts

on ∆R/A.

Proposition
The map R →∆R/A gives ∆R/A,perf ≅ Rperf .

WLOG R is a polynomial algebra. By Hodge-Tate comparison

grHTi (∆R/A) = Ωi
R/k, only need to check grHTi (φ) = 0, i > 0,

grHT0 (φ) = φR, i > 0. WLOG R = k[x]. By crystalline comparison,

reduce to de Rham cohomology of A1
W over W , where mod p

Hodge-Tate filtraion = canonical filtration.
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Main players

S p-complete ring, X = Spf(S).

Choose a perfect prism (A, I), with A/I → S.

; ∆X/A ∈D(A), ∆X/A,perf ∶= (colimφ∆X/A)∧ ∈D(p,I)−comp(A).

The (derived) “perfectoidization” of S

Sperfd ∶= ∆X/A,perf ⊗LA A/I ∈Dp−comp(S).

Why the name? Is Sperfd (derived) perfectoid / independent of (A, I) /

the classical perfection in char p case? Is Sperfd universal ?
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Why is Sperfd nice?

HT comparison + goodness of LX/(A/I) + derived Nakayama ;

control ∆X/A hence Sperfd, get descent and base change.

Study general S via reduction to nice A/I → S. For nice S (e.g

quasiregular semi-perfectoids, in particular perfectoids), show

Sperfd is the classical universal perfectoid over S.

Universality of Sperfd comes from derived “functorial”

universality of ∆X/A, at least if ∆X/A ⊗LA A/I is discrete.

∆X/A has a derived δ-ring (even “derived prism”) structure (we need

simplicial tools to see this). Therefore ∆X/A,perf is a derived perfect

δ-ring, and Sperfd ∶= ∆X/A,perf ⊗LA A/I is “derived perfectoid”.
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3 levels of universality in category theory

For X ∈ C, weakly initial < “functorial” initial < initial (uniqueness).

“Functorial”: for any Y ∈ C, There is a map X → Y , functorial on Y .

Initial object × something can be ’functorial’ initial.

By design, cohomology of a site RΓ(−,O) = R lim(∗) e.g ∆X/A,

has good “functorial” universality (provided it’s discrete and in

the site). But the true universality i.e uniqueness is subtle: the

conjecture in [BS] Lemma 7.7 seems open in general.

But via computations on simple examples and descent, still get

universality of S → Sperfd in good cases, and prove things needed

for comparison theorems.
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Applications

Why is perfectoidization powerful? Many applications related to

descent:

Zariski closed=Strongly Zariski closed: If S is semiperfectoid, then

S → Sperfd is surjective and universal among S → perfds .

∆X/A,perf ≅ RΓ((X/A)perf
∆ ,O∆), and arc descent for S → Sperfd

(next time).

The étale comparison RΓet(Xη,Z/pn) ≅ (∆X/A[1/d]/pn)φ=1 for

perfect prisms, can be proved via descent to the perfectoidization

(next time).

Now we do some recollections.
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Prismatic cohomology

Conceptual leap: we don’t need a Frobenius on R, only Frobenius on

the test objects.

S p-complete ring, X = Spf(S). Choose a perfect prism (A, I), with

A/I → S.

The prismatic site of X over A/I
(X/A)∆ is the opposite of the category of prisms (B,J) with a map

(A, I)→ (B,J) and a map Sp(B/J)→X over Sp(A/I).

O∆ ∶ (B,J)↦ B. O∆ ∶ (B,J)↦ B/J = B/IB.

; ∆X/A = RΓ((X/A)∆,O∆) ∈D(A), with a natural map S →∆X/A.
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The Hodge-Tate filtration

Proposition
∆X/A ∶= ∆X/A ⊗LA A/I admits a natural increasing N-indexed filtration,

with i-th graded piece given by the derived p-completion of

∧iLS/(A/I){−i}[−i].

Idea: Universal property of the de Rham complex ; the comparison

map from de Rham to Hodge-Tate cohomology.
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Reminder of Hodge-Tate in char p

k perfect field char p > 0. X over k smooth, relative Frobenius

F ∶X →X(p). Two filtration on de Rham complex Ω∗

X/k:

Hodge filtration=stupid filtration ; Hodge spectral sequence

Epq1 =Hq(X,Ωp
X/k

).

Conjugate filtraion=canonical filtration ; Hodge-Tate spectral

sequence Epq2 =Hp(X,Hq(Ω∗

X/k)).

Hodge-Tate filtration is a generalization of conjugate filtration, via

Cartier isomorphism.
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Perfection in mixed characteristic

∆X/A,perf ∶= (colimφ∆X/A)∧ ∈D(p,I)−comp(A).

The (derived) “perfectoidization” of S

Sperfd ∶= ∆X/A,perf ⊗LA A/I ∈Dp−comp(S) a commutative algebra object.

The universal classical perfectoid of S
Sperfd′ ∶= the universal classical perfectoid over S (if it exists), i.e

Sperfd′ is perfectoid, and for any S → R with R perfectoid, there is a

unique map Sperfd′ → R extending it.
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Independence of base

Proposition
Let (A, I)→ (B,J) be a map of perfect prisms, and let S be a

p-complete B/J-algebra. Then the natural map gives an isomorphism

∆S/A ≅ ∆S/B. In particular, ∆S/A,perf ≅ ∆S/B,perf , Sperfd is independent

of (A, I).

Proof.
Use HT comparison, we’re reduced to show L∧

(B/J)/(A/I) = 0, which

follows from that A/I and B/J are both perfectoid.
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Base change

The formation of ∆X/A commutes with base change in the sense that

for any map of bounded prisms (A, I)→ (B,J), ∆XB/B = B ⊗LA ∆X/A.

We can check directly that S → Sperfd′ also commutes with base change

of the perfect prism.
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Sperfd = S = Sperfd′ for perfectoid S

So if S perfectoid, (S/A)∆ has an object (Ainf(S),KerθS), hence a

map ∆S/A → Ainf(S), it’s an isomorphism: apply derived Nakayama

and HT , done by L∧S/(A/I) = 0. We see Sperfd = S, in particular discrete.

Note (Ainf(S),KerθS) is also the initial object in (S/A)∆:

Proposition
Let (A, I) be a perfect prism corresponding to a perfectoid ring

R = A/I. Then for any prism (B,J), any map A/I → B/J of

commutative rings lifts uniquely to a map (A, I)→ (B,J) of prisms.

Proof: use the relation between deformation theory and cotangent

complex, we’re done by L∧A/Zp
= 0.

Zhiyu Zhang (STAGE seminar) May 14th, 2021 17 / 32



The case S is semiperfectoid

Proposition
If S is semiperfectoid i.e there is a surjection R → S with R perfectoid,

then Sperfd′ exists.

Proof.
We can cut out the perfect prism for Sperfd′ inside the perfect prism

(Ainf(R), d) for R (we know Rperfd′ = R = Rperfd), using the kernel of

Ainf(R)→ S. We need to do transfinite induction, to make it both

d-torsion free and derived complete.
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Derived “functorial” universality of ∆X/A

Proposition
Assume ∆X/A is concentrated in degree zero. Then the pair

(∆X/A, I∆X/A) gives a prism over (A, I), with a map R →∆X/A. For

any prism (B,J) over (A, I) equipped with a map R → B/J , there is a

map (∆X/A, I∆X/A)→ (B,J), functorial on (B,J).

Proof.
∆X/A = RΓ((X/A)∆,O∆) = R lim(B,J)(B,J). Use Cech-Alexander

complexes, and the canonical simplicial resolution of X, we see the

existence of a derived δ-structure i.e a section of W2(−)→ (−) on

∆X/A. ∆X/A is discrete by assumption, so (∆X/A, I∆X/A) gives a

prism over (A, I). The universality is clear by definition of RΓ.
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Discreteness of perfection when S is semiperfectoid

For any X, ∆X/A,perf always lies in D≥0 i.e H i(∆X/A,perf) = 0, i < 0,

because Frobenius is zero on higher homotopy groups πi, i > 0.

If S is semiperfectoid, then Ω1
S/(A/I) = 0. By HT comparison, this

implies LX/A[−1],∆X/A,perf ∈D≤0. So ∆X/A,perf is discrete. By

previous proposition, it’s a classical perfect δ-ring and d-torsion free.

Hence Sperfd is discrete and perfectoid. By equivalence of perfectoid

rings and perfect prisms, we see

Proposition
If S is semiperfectoid, then S → Sperfd satisfies “functorial” universality

among S → perfds, in particular there is a section Sperfd → Sperfd′ to the

map Sperfd′ → Sperfd.
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Andre’s Flatness lemma

Proposition
Let R be a perfectoid ring. For any set {fs ∈ R}s∈I of elements of R,

there exists a p-completely faithfully flat map R → R∞ of perfectoid

rings such that each fs admits a compatible system of p-power roots in

R∞. In other words, the map # ∶ R♭ → R is surjective locally for the

p-completely flat topology.
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Andre’s Flatness lemma

WLOG #I = 1. Let S be the p-adic completion of R[x1/p∞]/(x − f), so

R → S is p-completely faithfully flat. We reduce the problem to S, but

S is not perfectoid in general. We only know S is semiperfectoid.

Let (A, I) be the perfect prism corresponding to R. We shall show that

Sperfd solves the problem. We know discreteness and perfectoidness,

and only need to check Sperfd is p-completely faithfully flat over R.
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Andre’s Flatness lemma

It suffices to show A→∆S/A,perf is (p, I)-completely faithfully flat,

which is implied by that A→∆S/A is (p, I)-completely faithfully flat.

So we only need to check ∆S/A is p-completely faithfully flat over R.

Use HT filtration, we see it’s faithful as the zero graded piece gr0 = R.

We only need to check LS/R[−1] (noting ∧iLS/R[−i] = ∧i(LS/R[−1])) is

p-complete flat over R.
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Andre’s Flatness lemma

Consider R → R[x1/p∞] = R′↠ S. L∧R′/R = 0 by perfectoidness. We only

need to show ∧iLS/R′[−i] is p-completely faithfully flat over R. But S

is the quotient of R′ by non-zero divisor x − f , so LS/R′[−1] is simply

isomorphic to S, hence p-completely flat over R. We’re done.
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Zariski closed=Strongly Zariski closed

Proposition
Let R be a perfectoid ring, and let S = R/J be a p-complete quotient

(so S is semiperfectoid). Then there is a universal map S → S′ with S′

being a perfectoid ring. Moreover, this map is surjective.

We just need to check S → Sperfd is surjective.
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Zariski closed=Strongly Zariski closed

Assume first that the kernel J ⊆ R of R → S is the p-completion of an

ideal generated by a set {xi} of elements that lie in the image of the

map # ∶ R♭ → R.

In this case, if J∞ denotes the p-completion of the ideal generated by

x1/pn#
, then check directly that the R/J∞ is perfectoid, and

S ≅ R/J → R/J∞ is the universal map from S to a perfectoid ring.
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Zariski closed=Strongly Zariski closed

This proves the assertion in this case. In general, as the surjectivity of

a map of p-complete R-modules can be detected after p-completely

faithfully flat base change (and Sperfd commutes with base change), we

reduce to previous case by Andre’s flatness lemma.
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Completely flatness

A complex M of A-modules is I-completely flat if for any I-torsion

A-module N , the derived tensor product M ⊗L AN is concentrated in

degree 0. This implies in particular that M ⊗LA A/I is concentrated in

degree 0, and is a flat A/I-module.

Proposition
Let (A, I) be a bounded prism. For any (p, I)-completely flat

A-complex M ∈D(A). Then M is discrete and classically

(p, I)-complete.
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True universality of S → Sperfd

In fact, one can deduce the following thing from section 7 − 8 of [BS]

Proposition
Consider any p-complete ring S over a perfectoid ring A/I where (A, I)

is a perfect prism.

If Sperfd′ exists, then Sperfd is discrete and agrees with Sperfd′

If Sperfd is discrete, then Sperfd′ exists and agrees with Sperfd.
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True universality of S → Sperfd

The uniqueness part in the universality can be also deduced from the

compatiblity between (−)perfd and derived tensor product − ⊗L −:

assume Sperfd is discrete and R is a perfectoid ring. Let

f1, f2 ∶ Sperfd → R be two maps over S, then they induce a map

(f1, f2) ∶ Sperfd ⊗LS Sperfd → R, which factors through

(Sperfd ⊗LS Sperfd)perfd = Sperfd.
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Thank you!
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