A "10-line" proof of the Weil conjecture

Zhiyu Zhang

STAGE seminar

November 16th, 2020

2 Rapoport-Zink weight spectral sequence

3 The end of the proof

Motivation

A basic question in number theory is, if we have a number of polynomials $f_i \in \mathbb{Z}[x_1, \ldots, x_n]$, how to find or just count solutions of $\{f_i(x) = 0\}$ over rings like \mathbb{Z} or \mathbb{Q} ?

One may try mod $p (\mathbb{Z} \to \mathbb{Z}/p)$ or *p*-adic method $(\mathbb{Q} \to \mathbb{Q}_p)$. It's interesting to count solutions over finite fields beyond $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, and the answer will have some beautiful and uniform patterns, revealing the topology of the space. Let's look at some examples:

Motivation

A basic question in number theory is, if we have a number of polynomials $f_i \in \mathbb{Z}[x_1, \ldots, x_n]$, how to find or just count solutions of $\{f_i(x) = 0\}$ over rings like \mathbb{Z} or \mathbb{Q} ?

One may try mod $p (\mathbb{Z} \to \mathbb{Z}/p)$ or *p*-adic method $(\mathbb{Q} \to \mathbb{Q}_p)$. It's interesting to count solutions over finite fields beyond $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, and the answer will have some beautiful and uniform patterns, revealing the topology of the space. Let's look at some examples:

$$\#\mathbb{P}^{n}(\mathbb{F}_{q^{m}}) = 1 + q^{m} + q^{2m} + \ldots + q^{mn}$$
$$\#GL_{n}(\mathbb{F}_{q^{m}}) = (q^{mn} - 1)(q^{mn} - q)...(q^{mn} - q^{m(n-1)})$$
$$\#E(\mathbb{F}_{q^{m}}) = 1 + q^{m} - \alpha^{m} - \beta^{m} \ (E \text{ elliptic curve}, \ \alpha\beta = q, |\alpha| = |\beta| = q^{1/2})$$
$$\#\{A \in M_{n}(\mathbb{F}_{q^{m}}) | A^{n} = 0\} = q^{m(n^{2} - n)}$$

Weil also computed the number of \mathbb{F}_{q^m} -points for Fermat hypersurfaces using Jacobi sums, which is also of the form $\sum a_i^m - b_j^m$ for some specific algebraic integers a_i, b_j . This motivates the Weil conjecture:

Weil conjecture

Let X_0 be a *n*-dimensional smooth projective variety over a finite field $k = \mathbb{F}_q$. Then there exists algebraic integers $\alpha_{i,j} \in \overline{\mathbb{Z}}, (0 \le i \le 2n, 0 \le j \le h^i - 1)$ such that

- (Trace formula) $\#X_0(\mathbb{F}_{q^m}) = \sum (-1)^i \alpha_{ij}^m$, for all m.
- 2 (Poincare duality) For fixed i, $\{q^{2n}/\alpha_{i,j}\}$ is the same as $\{\alpha_{2n-i,j}\}$ as multisets.
- $(\text{Purity}) \ \forall \tau : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \ |\tau(\alpha_{ij})| = q^{\frac{i}{2}}.$

Weil conjecture

Let X_0 be a *n*-dimensional smooth projective variety over a finite field $k = \mathbb{F}_q$. Then there exists algebraic integers $\alpha_{i,j} \in \overline{\mathbb{Z}}, (0 \le i \le 2n, 0 \le j \le h^i - 1)$ such that

- (Trace formula) $\#X_0(\mathbb{F}_{q^m}) = \sum (-1)^i \alpha_{ij}^m$, for all m.
- 2 (Poincare duality) For fixed i, $\{q^{2n}/\alpha_{i,j}\}$ is the same as $\{\alpha_{2n-i,j}\}$ as multisets.

$$(\text{Purity}) \ \forall \tau : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \ |\tau(\alpha_{ij})| = q^{\frac{i}{2}}.$$

A naive idea: $X_0(\mathbb{F}_{q^m})$ is the fixed point set of Frobenius map Fr_q^m on $X(\bar{k})$. If we have a cohomology theory for $X_{\bar{k}}$ that looks like singular cohomology for good topological spaces (locally contractible), then Lefschetz trace formula and Poincare duality will give the first and second parts. For any prime number $\ell \neq p$, Grothendieck developed a new topology i.e étale topology (so any variety is "locally contractible" (not really..) by some vanishing theorems of Galois cohomology), and the ℓ -adic étale cohomology theory $H^*(X_{\bar{k}}, \mathbb{Q}_{\ell})$. Analogous to the Riemannian zeta function, one can formulate the zeta function of X_0 (or any piece " $H^i(X)$ "):

$$\zeta(X,s) = \exp\left(\sum_{m=1}^{\infty} \frac{\#X(\mathbb{F}_{q^m})}{m} q^{-ms}\right)$$

It's a rational function by Lefschetz trace formula. The purity is equivalent to some sort of Riemannian hypothesis. Now the real question is: How to show the purity of the Frobenius action on $H^*(X)$, if you can't compute the action on the cohomology explicitly? Analogous to the Riemannian zeta function, one can formulate the zeta function of X_0 (or any piece " $H^i(X)$ "):

$$\zeta(X,s) = \exp\left(\sum_{m=1}^{\infty} \frac{\#X(\mathbb{F}_{q^m})}{m} q^{-ms}\right)$$

It's a rational function by Lefschetz trace formula. The purity is equivalent to some sort of Riemannian hypothesis. Now the real question is:

How to show the purity of the Frobenius action on $H^*(X)$, if you can't compute the action on the cohomology explicitly?

Weil proved it for curve C using Hodge index theorem on the surface $C \times C$ $(\#X_0(\mathbb{F}_{q^m})$ is exactly the intersection number of the graph of $Frob_q^m$ with the diagonal inside $X \times X$).

For higher dimension X, the Hodge index type results are unknown and is one of the standard conjectures. Grothendieck has a proof of purity in general using his standard conjectures.

CORRESPONDENCE

March 31, 1964 JEAN-PIERRE SERRE

Dear Grothendieck,

I have constructed J.-P. Serre : Grothendieck had hoped to prove the Weil conjectures by showing that every variety is birationally a quotient of a product of curves.

In the present letter, I construct a counterexample in dimension 2. There are certainly simpler ones! an example of a surface whose function field is not contained in that of a product of two curves (nor, of course, of a product of n curves, since the case of n can be trivially reduced to that of 2).

I start with an abelian variety with origin 0 and an irreducible subvariety S of A of dimension 2, passing through 0, non-singular at this point and having the following bizarre property:

(*) If C and C' are two irreducible curves passing through 0 contained in S, then the sum C + C' (given by the composition law on A) is not contained in S.

CORRESPONDENCE

March 31, 1964 JEAN-PIERRE SERRE

Dear Grothendieck,

I have constructed J.-P. Serre : Grothendieck had hoped to prove the Weil conjectures by showing that every variety is birationally a quotient of a product of curves.

In the present letter, I construct a counterexample in dimension 2. There are certainly simpler ones! an example of a surface whose function field is not contained in that of a product of two curves (nor, of course, of a product of n curves, since the case of n can be trivially reduced to that of 2).

I start with an abelian variety with origin 0 and an irreducible subvariety S of A of dimension 2, passing through 0, non-singular at this point and having the following bizarre property:

(*) If C and C' are two irreducible curves passing through 0 contained in S, then the sum C + C' (given by the composition law on A) is not contained in S.

naive approach (**Today**): every variety is indeed birational to a hypersurface in projective space. But this hypersurface can be highly singular.

Another

Deligne's approach and Rankin method

Later, Degline proves the purity by developing many new tools: a general theory of weights, use of L-functions and Rankin–Selberg method to bound the weights.. The Lefschetz pencil is a geometric tool for induction, and its vanishing cycles are computed in SGA7. The machinery in Weil *II* is heavy but very powerful.

Later, Degline proves the purity by developing many new tools: a general theory of weights, use of L-functions and Rankin–Selberg method to bound the weights.. The Lefschetz pencil is a geometric tool for induction, and its vanishing cycles are computed in SGA7. The machinery in Weil *II* is heavy but very powerful.

Informally, Rankin method is the idea that you can bound the coefficient of a modular form more efficiently if you know the symmetric square L function is again automorphic (and analytic on $\Re s > 1$). Such ideas have many applications to the Ramanujan conjecture. Also, one powerful application of Weil II is the Ramanujan conjecture for $\Delta(z) = q \prod_{n>0} (1-q^n)^{24}$. Laumon, Brylinski and Katz simplify the proof of Deligne by using ℓ -adic Fourier transform on affine line and Plancherel identity.

Today, we will give a simple proof of the Weil conjecture (but not Weil *II*), based on works of Katz, Scholl, Deligne... No Lefschetz pencil, no Fourier transform is used, but we still need L-functions and Rakin method. The "10-line" proof of Weil conjecture is as follows:

- Using things like $|\sum_{n=1}^{p} \chi(n) e^{\frac{2\pi i n}{p}}| = p^{1/2}$, we can prove purity for a specific smooth hypersurface with given degree d and dimension n.
- For any local system \mathcal{F} on U_0 , Rankin method implies the persistence of purity in a smooth proper family.
- By deformation, we get purity for all smooth hypersurfaces.

The "10-line" proof of Weil conjecture is as follows:

- Using things like $|\sum_{n=1}^{p} \chi(n) e^{\frac{2\pi i n}{p}}| = p^{1/2}$, we can prove purity for a specific smooth hypersurface with given degree d and dimension n.
- For any local system \mathcal{F} on U_0 , Rankin method implies the persistence of purity in a smooth proper family.
- By deformation, we get purity for all smooth hypersurfaces.
- Any variety is birational to a hypersurface X_s , deform X_s into smooth hypersurfaces, get a family over a smooth curve with one singular fiber.
- By alteration, we can assume the family is of strictly semi-stable situation.
- (Weight-monodromy) monodromy filtration for $H^*(X_{\bar{\eta}})$ has pure pieces.
- (Today) Weight spectral sequence relates these pieces with cohomology of (intersections of irreducible components of) $X_{\bar{s}}$, we're done by induction.

Vanishing cycles and nearby cycles

Let R be a complete DVR with finite residue field k, and $X \to R$ proper with $i: X_s \hookrightarrow X, j: X_\eta \hookrightarrow X$. If X/R is smooth, then by smooth and proper base change, $H^i(X_{\bar{s}}) \cong H^i(X_{\bar{\eta}})$ as Galois representation, in particular **the inertia** group acts trivially.

In general, how do you relate the cohomology of the special fiber and generic fiber?

The idea is to think $X \to R$ as a degeneration from X_{η} to X_s . We need to work with geometric fibers so will do a base change to R^{ur} . Consider $H_*(X_{\bar{\eta}}) \to H_*(X_{\bar{R}}) \cong H_*(X_{\bar{s}})$ (proper base change), by dual we get the **specialization map** $H^i(X_{\bar{s}}) \to H^i(X_{\bar{\eta}})$.

Vanishing cycles and nearby cycles

Let R be a complete DVR with finite residue field k, and $X \to R$ proper with $i: X_s \hookrightarrow X, j: X_\eta \hookrightarrow X$. If X/R is smooth, then by smooth and proper base change, $H^i(X_{\bar{s}}) \cong H^i(X_{\bar{\eta}})$ as Galois representation, in particular **the inertia** group acts trivially.

In general, how do you relate the cohomology of the special fiber and generic fiber?

The idea is to think $X \to R$ as a degeneration from X_{η} to X_s . We need to work with geometric fibers so will do a base change to R^{ur} . Consider $H_*(X_{\bar{\eta}}) \to H_*(X_{\bar{R}}) \cong H_*(X_{\bar{s}})$ (proper base change), by dual we get the **specialization map** $H^i(X_{\bar{s}}) \to H^i(X_{\bar{\eta}})$.

It's not an isomophism in general, because in such degeneration progress, some cycles will "shrink" into low dimension cycles hence vanish in the homology, they're called "vanishing cycles" $R\Phi\Lambda \in D(X_{\bar{s}})$. What will remain is called "nearby cycles" $R\Psi\Lambda := \bar{i}^*R\bar{j}_*\Lambda \in D(X_{\bar{s}})$ (definition). By design,

Proposition

 $H^{i}(X_{\bar{\eta}}, \Lambda) \cong H^{i}(X_{\bar{s}}, R\Psi\Lambda)$, and there is a long exact sequence

$$\dots \to H^{i-1}(X_{\bar{s}}, R\Phi\Lambda) \to H^i(X_{\bar{s}}, \Lambda) \to H^i(X_{\bar{s}}, R\Psi\Lambda) \to H^i(X_{\bar{s}}, R\Phi\Lambda) \to \dots$$

A picture

Zhiyu Zhang (STAGE seminar)

Weight spectral sequence

If one can construct a resolution or just a filtration of the nearby cycle in the derived category, then we may relate $R\Psi\Lambda$ with several $i_*\Lambda$ where $i: Z \hookrightarrow X_s$ is a closed immersion, hence relate the cohomology of the special fiber and generic fiber.

Let X be a strictly semi-stable scheme over R, and assume X is projective of relative dimension n. Here "strictly semi-stable" means that X is Zariski locally étale over Spec $R[t_1, \ldots, t_n]/(t_1..t_k - \pi)$.

Then $X_k = \bigcup_{i=1}^m X_i$, the irreducible components X_i are smooth and projective. We take the disjoint union $X^{(p)} := \coprod_{I \subseteq \{1, m\}, |I| = p+1} X_I$, where $X_I = \bigcap_{i \in I} X_i$ is smooth projective of dimension n - p.

Weight spectral sequence

If one can construct a resolution or just a filtration of the nearby cycle in the derived category, then we may relate $R\Psi\Lambda$ with several $i_*\Lambda$ where $i: Z \hookrightarrow X_s$ is a closed immersion, hence relate the cohomology of the special fiber and generic fiber.

Let X be a strictly semi-stable scheme over R, and assume X is projective of relative dimension n. Here "strictly semi-stable" means that X is Zariski locally étale over Spec $R[t_1, \ldots, t_n]/(t_1 \ldots t_k - \pi)$.

Then $X_k = \bigcup_{i=1}^m X_i$, the irreducible components X_i are smooth and projective. We take the disjoint union $X^{(p)} := \coprod_{I \subseteq \{1,,m\}, |I|=p+1} X_I$, where $X_I = \bigcap_{i \in I} X_i$ is smooth projective of dimension n - p.

Theorem (Rapoport–Zink, Saito)

For coefficient $\Lambda = \mathbb{Z}/\ell^n, \mathbb{Z}_\ell, \mathbb{Q}_\ell$, we have the weight spectral sequence: $E_1^{p,q} = \bigoplus_{i \ge 0, i \ge -p} H^{q-2i}(X_{\bar{k}}^{(p+2i)}, \Lambda)(-i) \Rightarrow H^{p+q}(X_{\bar{K}}, \Lambda)$

- The inertia group acts on E_1 by $E_1^{p,q} \to E_1^{p+2,q-2}(1)$, and agrees with the action on $H^{p+q}(X_{\bar{K}}, \Lambda)$ after taking graded pieces.
- The differential $d_1^{pq}: E_1^{p,q} \to E_1^{p+1,q}$ are just alternating sums of push-forwards and pull-backs on cohomology.

Weight spectral sequence for a semi-stable curve

The induced filtration G_i on $H^{p+q}(X_{\bar{K}}, \Lambda)$ satisfies $NG_i \subseteq G_{i-2}$, so it looks like the monodromy filtration. And it is the weight filtration if we know Weil conjecture (and $\Lambda = \mathbb{Q}_{\ell}$). But firstly, why do we have such spectral sequence? Construction: in any abelian category, we can consider the monodromy filtration of a nilpotent operator on an object, the recipe is the same. So the nearby cycle $R\Psi\Lambda$ itself has a monodromy filtration, which will give the weight-spectral sequence $E_1^{p,q} = H^{p+q}(X_{\bar{k}}, \operatorname{gr}_{-p}^M R\Psi\Lambda) \Rightarrow H^{p+q}(X_{\bar{K}}, \Lambda)$. And $N : \operatorname{gr}_{-p}^M R\Psi\Lambda \to \operatorname{gr}_{-p-2}^M R\Psi\Lambda$ induces the action $N : E_1^{pq} \to E_1^{p+2,q-2}$. We only need to compute $\operatorname{gr}_{-p}^{M} R \Psi \Lambda$, recall the monodromy filtration is the convolution of the kernel filtration $F_i = KerN^i$ and the image filtration $G^j = ImN^j$, and

$$Gr_r^M \cong \bigoplus_{i-j=r} Gr_G^j Gr_i^F.$$

The idea: we have a canonical truncation $F'_i = \tau_{\leq q} R \Psi \Lambda$ by degree. By definition, we just need to compute $i^* R^i j_* \Lambda$, and it turns out that $F'_i = F_i$. It remains to compute the induced image filtration on $R^i \Psi \Lambda$, which is done by understanding the inertial action on $R^i \Psi \Lambda$. The computation is local, and the vanishing cycle will only support on the singular locus.

Curves

If $X \to R$ is just a curve with strictly semi-stable reduction, the local geometry looks like $\mathbb{F}_p[[t]][x,y]/(xy-t) \to \mathbb{F}_p[[t]]$, the special fiber is xy = 0. Then the computation is easy, and essentially a special case of the Picard-Lefschetz formula in SGA7.

Let G be the dual graph of $X_{\bar{s}}$, i.e vertices Σ_0 correspond to the irreducible components of $X_{\bar{s}}$, edges $\Sigma_1 = \Sigma$ correspond to the intersection points of irreducible components of $X_{\bar{s}}$. Then

Picard-Lefschetz formula (in the curve case)

• For any point $x \in \Sigma$, there exists $\delta_x \in H^1(X_{\bar{\eta}})$ well defined up to sign, called the vanishing cycle at x. we have the exact sequence $0 \to H^1(X_{\bar{s}}) \stackrel{\text{sp}}{\to} H^1(X_{\bar{\eta}}) \stackrel{(-,\delta_x)}{\to} \oplus_{x \in \Sigma} \Lambda(-1) \to H^2(X_{\bar{s}}) \to H^2(X_{\bar{\eta}}) \to 0$ Here (a, b) = Tr(ab) with $\text{Tr} : H^2(X_{\bar{\eta}}) \cong \Lambda(-1), (\delta_x, \delta_y) = 0$ if $x \neq y$, $(\delta_x, \delta_x) = 0$.

Curves

If $X \to R$ is just a curve with strictly semi-stable reduction, the local geometry looks like $\mathbb{F}_p[[t]][x,y]/(xy-t) \to \mathbb{F}_p[[t]]$, the special fiber is xy = 0. Then the computation is easy, and essentially a special case of the Picard-Lefschetz formula in SGA7.

Let G be the dual graph of $X_{\bar{s}}$, i.e vertices Σ_0 correspond to the irreducible components of $X_{\bar{s}}$, edges $\Sigma_1 = \Sigma$ correspond to the intersection points of irreducible components of $X_{\bar{s}}$. Then

Picard-Lefschetz formula (in the curve case)

• For any point $x \in \Sigma$, there exists $\delta_x \in H^1(X_{\bar{\eta}})$ well defined up to sign, called the vanishing cycle at x. we have the exact sequence $0 \to H^1(X_{\bar{s}}) \stackrel{\text{sp}}{\to} H^1(X_{\bar{\eta}}) \stackrel{(-,\delta_x)}{\to} \oplus_{x \in \Sigma} \Lambda(-1) \to H^2(X_{\bar{s}}) \to H^2(X_{\bar{\eta}}) \to 0$ Here (a, b) = Tr(ab) with $\text{Tr} : H^2(X_{\bar{\eta}}) \cong \Lambda(-1), (\delta_x, \delta_y) = 0$ if $x \neq y$, $(\delta_x, \delta_x) = 0.$

The five-term exact sequence is from the (coarser) spectral sequence $E_2^{pq} = H^p(X_{\bar{s}}, R^q \Psi \Lambda) \Rightarrow H^{p+q}(X_{\bar{\eta}})$. And $H^1(X_{\bar{s}}) = H^1(G, \Lambda)$ (cohomology of a graph), $H^0(X_{\bar{s}}, R^1 \Psi \Lambda) = \bigoplus_{x \in \Sigma_1} \Lambda(-1), H^2(X_{\bar{s}}) = \bigoplus_{x \in \Sigma_0} \Lambda(-1)$ (top degree etale cohomology counts the number of irreducible components).

General results

Let $Y = X_{\bar{s}}, a_i : Y^{(i)} \to Y$ the union of closed immersions $Y_I \to Y$.

Prop 1.3 in Saito's paper

Corollary 1.1.3 1. Let $\delta : \Lambda_Y \to a_{0*}\Lambda$ be the canonical map. Then, we have an isomorphism

of exact sequences.

2. For $p \ge 0$, we have an exact sequence

$$0 \longrightarrow R^{p}\psi\Lambda \xrightarrow{\bar{\theta}} i^{*}R^{p+1}j_{*}\Lambda(1) \xrightarrow{\theta\cup} \dots \xrightarrow{\theta\cup} i^{*}R^{n+1}j_{*}\Lambda(n+1-p) \longrightarrow 0$$

Part 1: Here θ' are all isomorphisms, $R^p\Psi\Lambda = \operatorname{Ker}(a_{p*}\Lambda(-p) \to a_{p+1*}\Lambda(-p))$, $(R^1\Psi\Lambda) = CoKer(\Lambda_Y \to \bigoplus_{i=1}^m \Lambda_{Y_i}) \otimes \Lambda(-1)$, $R^q\Psi\Lambda = \wedge^q R^1\Psi\Lambda$. Part 2: $R\Gamma(I_\ell, R\Psi\Lambda) = i^*Rj_*\Lambda$, I_ℓ is cyclic, and I_ℓ acts trivially on $R^q\Psi\Lambda$ (by computation, which is **a feature for the semi-stable reduction**), so we have a short exact sequence $0 \to R^n\Psi\Lambda \to i^*R^nj_*\Lambda \to R^{n+1}\Psi\Lambda \to 0$, the second arrow is the $\bar{\theta}$.

Zhiyu Zhang (STAGE seminar)

The computation will use the absolute purity conjecture (proved by Gabber and Fujiwara), but I think it can be avoid in equal characteristic. By an easy combinatoric exercise, $\Lambda_Y \to a_{0*}\Lambda \to a_{1*}\Lambda \to ... \to a_{n*}\Lambda$ is exact (here we take alternating sums of i_*), the non-trivial thing is to show $i^*R^pj_*\Lambda = a_{p*}\Lambda(-p)$. Curve case: $\mathbb{F}_p[[t]][x,y]/(xy-t) \to \mathbb{F}_p[[t]]$ globalizes to $\mathbb{F}_p[t][x,y]/(xy-t) \to \mathbb{F}_p[t]$, so the total space is \mathbb{A}^2 , the complement of the special fiber is $j^2 : \mathbb{A}^2 - \{xy = 0\} = (\mathbb{A}^1 - 0)^2 \hookrightarrow \mathbb{A}^2$. (we ignore the base!)

The computation will use the absolute purity conjecture (proved by Gabber and Fujiwara), but I think it can be avoid in equal characteristic. By an easy combinatoric exercise, $\Lambda_Y \to a_{0*}\Lambda \to a_{1*}\Lambda \to \dots \to a_{n*}\Lambda$ is exact (here we take alternating sums of i_*), the non-trivial thing is to show $i^* R^p j_* \Lambda = a_{p*} \Lambda(-p).$ Curve case: $\mathbb{F}_p[[t]][x,y]/(xy-t) \to \mathbb{F}_n[[t]]$ globalizes to $\mathbb{F}_{p}[t][x,y]/(xy-t) \to \mathbb{F}_{p}[t]$, so the total space is \mathbb{A}^{2} , the complement of the special fiber is $j^2 : \mathbb{A}^2 - \{xy = 0\} = (\mathbb{A}^1 - 0)^2 \hookrightarrow \mathbb{A}^2$. (we ignore the base!) Let $j: \mathbb{A}^1 - \{0\} \hookrightarrow \mathbb{A}^1, i: \{0\} \hookrightarrow \mathbb{A}^1$, what is $i^* R^k j_* \Lambda$? By definition, it's the stalk of $R^k j_* \Lambda$ at 0, i.e colim_{$U \to A^1$} "open" $H^k(U-0,\Lambda)$, it's $\Lambda(-1)$ if k=1, and A if k = 0, and zero else (image you are computing cohomology of $\mathbb{C} - 0$). To compute the nearby cycle i.e $\bar{i}^*R\bar{j}_*\Lambda$, go up along the Kummer tower (adding $t^{1/n}$), the computation is similar.

Let $j^n : (\mathbb{A}^1 - \{0\})^n \hookrightarrow (\mathbb{A}^1)^n$, n = 2 is the curve case. By Kunneth formula, we computes nearby cycles for all n, hence the proposition.

A picture

(٢, ٢)

So $R^i\psi\Lambda[-i]$ is quasi-isomorphic to $[a_{i*}\Lambda(-i) \to ... \to a_{n*}\Lambda(-i)]$ (the degree is from *i* to *n*). Then by computing the inertia action on $R\psi\Lambda$, one see the decreasing image filtration G^j on $R^i\psi\Lambda[-i] = Gr_i^F R\psi\lambda$ is the same as the truncation by $[a_{i+j*}\Lambda(-i) \to ... \to a_{n*}\Lambda(-i)]$ We finally get $Gr_r^M R\psi\Lambda \cong \bigoplus_{i-j=r} Gr_G^j R^i\psi\Lambda \cong \bigoplus_{i-j=r} a_{(i+j)*}\Lambda(-i)[-(i+j)]$. Now we have the weight spectral sequence, and we return to the proof of Weil conjecture.

- If you have a Galois representation $\operatorname{Gal}_{\mathbb{Q}} \to GL_n(\mathbb{Q}_\ell)$ coming from geometry, it is unramfied almost everywhere. If you know that there exists an integer ksuch that for all but finitely many unramified p, all eigenvalues of $Frob_p$ have absolute value $p^{k/2}$.
- Then by density theorem, you may believe all eigenvalues of $Frob_p$ have absolute value $p^{k/2}$ for all unramified p. Even for ramified p, we can't choose a canonial $Frob_p$, but it's reasonable to believe all eigenvalues of $Frob_p$ on V^{I_p} has weight no bigger than k.
- Plus some linear algebras on tensor product and duality, one may believe the monodromy filtration has pure graded pieces.

- If you have a Galois representation $\operatorname{Gal}_{\mathbb{Q}} \to GL_n(\mathbb{Q}_\ell)$ coming from geometry, it is unramfied almost everywhere. If you know that there exists an integer ksuch that for all but finitely many unramified p, all eigenvalues of $Frob_p$ have absolute value $p^{k/2}$.
- Then by density theorem, you may believe all eigenvalues of $Frob_p$ have absolute value $p^{k/2}$ for all unramified p. Even for ramified p, we can't choose a canonial $Frob_p$, but it's reasonable to believe all eigenvalues of $Frob_p$ on V^{I_p} has weight no bigger than k.
- Plus some linear algebras on tensor product and duality, one may believe the monodromy filtration has pure graded pieces.
- In equal characteristic, one can easily prove this is indeed true using
- L-function and Rankin-method, if we can globalize the DVR to a curve, and we know other fibers have pure cohomology. This is section 1.6-1.8 of Weil II.

- Begin with a smooth projective X_0/\mathbb{F}_q , it's birational to a hypersurface. And we deform it into a generically smooth family, and use alteration to arrive at the following set up:
- T is a smooth affine curve over k, and we have a projective and strictly semi-stable family $f: E \to T$.
- So there is a closed point $t \in |T|$, such that over $U = T \{t\}$ $f : E_U \to U$ is smooth, each fiber over U satisfies the purity assumption (by the proof of Weil conjecture for smooth projective hypersurfaces). Ant $E_t = f^{-1}(t)$ has a generic finite dominant map to our starting X_0 . We only need to show the $H^i(E_{\bar{t}})$ has weights no bigger than i.

The End

Now we apply weight spectral sequence to E_R over $R = O_{T,t}$.

 $E_1^{p,q} = \bigoplus_{i \ge 0, i \ge -p} H^{q-2i}(X_{\bar{k}}^{(p+2i)}, \Lambda)(-i) \Rightarrow H^{p+q}(X_{\bar{K}}, \Lambda).$ By induction of dimension and weak Lefschetz, we see $E_1^{p,q}$ is pure unless

$$p + 2i = 0, q - 2i = n$$
, but $i \ge 0, i \ge -p$ shows $i = 0, p = 0, q = n$. Set

 $V = H^n(X_{\bar{K}}, \mathbb{Q}_{\ell})$, which satisfies the weight-monodromy conjecture. So the graded piece $gr_k^G V$ is pure unless k = 0.

By design, $NG_k \subseteq G_{k-2}$. Now we use lemma 2.6 in Scholl's paper:

The End

Now we apply weight spectral sequence to E_R over $R = O_{T,t}$.

 $E_1^{p,q} = \bigoplus_{i \ge 0, i \ge -p} H^{q-2i}(X_{\bar{k}}^{(p+2i)}, \Lambda)(-i) \Rightarrow H^{p+q}(X_{\bar{K}}, \Lambda).$ By induction of dimension and weak Lefschetz, we see $E_1^{p,q}$ is pure unless p+2i=0, q-2i=n, but $i \ge 0, i \ge -p$ shows i=0, p=0, q=n. Set $V = H^n(X_{\bar{K}}, \mathbb{Q}_\ell)$, which satisfies the weight-monodromy conjecture. So the graded piece $gr_k^G V$ is pure unless k=0. By design, $NG_k \subseteq G_{k-2}$. Now we use lemma 2.6 in Scholl's paper:

Lemma

Let V be monodromy-pure of weight n, and let G_* be a filtration on V by G_K -invariant subspaces such that

• $NG_k \subseteq G_{k-2}$ for all k.

• The graded piece $gr_k^G V$ is pure of weight k + n, for all $k \neq 0$.

Then G_* is the monodromy filtration, hence $gr_0^G V$ is pure of weight n.

We see $H^n(X^{(0)})$ has weight no bigger than n, hence $H^n(X_{\bar{s}})$ has weight no bigger than n by excision, we're done.

References

- Yifeng Liu, Bounding cubic-triple product Selmer groups of elliptic curves, Journal of the European Mathematical Society, 21 (2019) 1411-1508
- Luc Illusie, Glimpses on vanishing cycles, from Riemann to today, avaliable at https://www.imo.universite-paris-saclay.fr/ ~illusie/Illusie-Sanya3.pdf
- Weizhe Zheng, Nearby cycles over general bases, avaliable at https://server.mcm.ac.cn/~zheng/slides/nearby-slides.pdf.
- Tony Scholl, Hypersurfaces and the Weil conjectures, IMRN 2010.
- Luc Illusie, On semistable reduction and the calculation of nearby cycles, preprint, Geometric aspects of Dwork theory. Vol. I, II, Walter de Gruyter, Berlin, 2004, pp. 785–803.
- Takeshi Saito, Weight spectral sequences and independence of ℓ , Journal of the Institute of Mathematics of Jussieu, 2003.
- Grothendieck-Serre correspondence, available at https://webusers. imj-prg.fr/~leila.schneps/grothendieckcircle/Letters/GS.pdf.

Thank you! Questions?