
Ramanujan J (2012) 27:305–328
DOI 10.1007/s11139-011-9361-7

A new class of identities involving Cauchy numbers,
harmonic numbers and zeta values

Bernard Candelpergher · Marc-Antoine Coppo

Received: 26 October 2010 / Accepted: 1 December 2011 / Published online: 1 March 2012
© Springer Science+Business Media, LLC 2012

Abstract Improving an old idea of Hermite, we associate to each natural number k

a modified zeta function of order k. The evaluation of the values of these functions
Fk at positive integers reveals a wide class of identities linking Cauchy numbers,
harmonic numbers and zeta values.
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1 Introduction

It has been well known since the second half of the nineteenth century that the
Riemann zeta function may be represented by the (normalized) Mellin transform
(cf. [14])

ζ(s) = 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
dt for �(s) > 1,

and from late works of Hermite (cf. [11]) that one also has

ζ(s) − 1

s − 1
= 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t

( ∞∑
n=1

λn

n!
(
1 − e−t

)n

)
dt for �(s) ≥ 1,
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where λ1 = 1
2 and λn+1 = ∫ 1

0 x(1−x) · · · (n−x)dx are the (non-alternating) Cauchy
numbers.1

Improving Hermite’s idea, one may, more generally, consider Mellin transforms
of type

F(s) = 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
f

(
1 − e−t

)
dt with f (z) =

∞∑
n=1

ωn

zn

nk

for suitable sequences (ωn)n≥1 of rational numbers. The simplest interesting case
ωn = 1 corresponds to the Arakawa–Kaneko zeta function and has been studied ex-
tensively in [8]. In this article, we investigate the case ωn = λn

n! , i.e., we study the
function

Fk(s) = 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
fk

(
1 − e−t

)
dt

with fk(z) =
∞∑

n=1

λn

n!
zn

nk
(k = 0,1,2, . . .),

which is a priori defined in the half-plane �(s) ≥ 1 but analytically continues in the
whole complex s-plane (Theorem 7). We call this function Fk the modified zeta func-
tion of order k. An evaluation by two different methods of the values of Fk at positive
integers q leads to a new class of identities linking Cauchy numbers, harmonic num-
bers, and zeta values. In the case k = 0, Hermite’s formula for ζ (cf. [7]) is regained,
i.e.,

F0(q) = ζ(q) − 1

q − 1
=

∞∑
n=1

λn

n!nPq−1
(
H(1)

n ,H (2)
n , . . . ,H

(q−1)
n

)
,

where the polynomials Pm are the modified Bell polynomials defined by the generat-
ing function

exp

( ∞∑
k=1

xk

zk

k

)
=

∞∑
m=0

Pm(x1, . . . , xm)zm,

evaluated at harmonic numbers H
(m)
n = ∑n

j=1
1

jm . In the simplest higher case k = 1,
this extension of Hermite’s formula leads to the following new relation (Theorem 10):

F1(q) =
∞∑

n=1

λn

n!n2
Pq−1

(
Hn,H

(2)
n , . . . ,H

(q−1)
n

)

=
∞∑

n=1

log(n + 1)

nq
+ γ ζ(q) + ζ(q + 1) −

∞∑
n=1

Hn

nq
−

q−1∑
k=1

1

k

∞∑
n=1

1

(n + 1)knq−k
,

1The sequence of numbers λn
n! appeared for the first time in a letter of James Gregory dated back to 1670

(cf. The correspondence of Isaac Newton, vol. 1, p. 46). For this reason, they are sometimes called Gregory
coefficients.
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where Hn = H
(1)
n , and γ = limn→∞(Hn − logn) is the Euler–Mascheroni constant.

For example, for q = 2, since P1(Hn) = Hn and
∑∞

n=1
Hn

n2 = 2ζ(3) (cf. [6, 7]),
then the previous relation may be written

F1(2) =
∞∑

n=1

λnHn

n!n2
=

∞∑
n=1

log(n + 1)

n2
+ γ ζ(2) − ζ(3) − 1,

and this generalizes the known formula

F0(2) =
∞∑

n=1

λnHn

n!n = ζ(2) − 1.

The function Fk also has an interesting interpretation in terms of Ramanujan sum-
mation (cf. [3]) as underscored by Theorem 11. In particular, one shows the identity

Fk(1) =
∞∑

n=1

λn

n!
1

nk+1
=

R∑
n≥1

Pk(Hn,H
(2)
n , . . . ,H

(k)
n )

n
,

where, in the right member,
∑R

n≥1 denotes the sum (in the sense of Ramanujan) of
the divergent series. This raises a kind of reciprocity between Fk(1) and F0(k + 1).

2 Preliminaries

2.1 The non-alternating Cauchy numbers

Definition 1 The non-alternating Cauchy numbers (cf. [7, 12]) are the sequence of
(positive) rational numbers (λn)n≥1 defined by the exponential generating function

z

log(1 − z)
+ 1 =

∑
n≥1

λn

n! z
n. (1)

Dividing by z and setting z = 1 − e−t and t > 0, this relation may be rewritten

1

1 − e−t
− 1

t
=

∞∑
n=1

λn

n!
(
1 − e−t

)n−1
. (2)

From (1), one may easily deduce the following recursive relation:

n∑
j=1

λj

j !(n − j + 1)
− 1

n + 1
= 0 for n ≥ 1.

Example 1 The first non-alternating Cauchy numbers are

λ1 = 1

2
, λ2 = 1

6
, λ3 = 1

4
, λ4 = 19

30
, λ5 = 9

4
.
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2.2 The modified Bell polynomials evaluated at harmonic numbers

Definition 2 The modified Bell polynomials (cf. [5, 7, 10]) are the polynomials Pm

defined for all natural numbers m by P0 = 1 and the generating function

exp

(∑
k≥1

xk

zk

k

)
= 1 +

∑
m≥1

Pm(x1, . . . , xm) zm. (3)

The general explicit expression for Pm is

Pm(x1, . . . , xm) =
∑

k1+2k2+3k3+···=m

1

k1!k2!k3! · · ·
(

x1

1

)k1
(

x2

2

)k2
(

x3

3

)k3

· · · .

One may also compute recursively the polynomials Pm by means of the following
relation:

mPm(x1, . . . , xm) =
m∑

k=1

xk Pm−k(x1, . . . , xm−k) (m ≥ 1).

Proposition 1 For all natural numbers m, and each integer n ≥ 1,

∫ +∞

0
e−t

(
1 − e−t

)n−1 tm

m! dt = Pm(Hn, . . . ,H
(m)
n )

n
, (4)

with

H(m)
n =

n∑
j=1

1

jm
and Hn = H(1)

n .

Proof One starts from the classical Euler relation (cf. [14])

B(a, b) =
∫ 1

0
ua−1(1 − u)b−1 du = Γ (a)Γ (b)

Γ (a + b)
,

and substitute u = e−t , a = 1 − z, and b = n + 1; then one obtains

∫ +∞

0
e−t

(
1 − e−t

)n
etz dt = n!

(1 − z)(2 − z) · · · (n + 1 − z)
.

Moreover, one has

n!
(1 − z)(2 − z) · · · (n + 1 − z)

= n!
(n + 1)! ×

n∏
j=0

(
1 − z

j + 1

)−1

= 1

(n + 1)
× exp

(
−

n∑
j=0

log

(
1 − z

j + 1

))
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= 1

(n + 1)
× exp

(
n∑

j=0

∞∑
k=1

zk

k(j + 1)k

)

= 1

(n + 1)
exp

( ∞∑
k=1

H
(k)
n+1

zk

k

)

=
∞∑

m=0

Pm(H
(1)
n+1, . . . ,H

(m)
n+1)

n + 1
zm (by (3)).

Thus (4) results by identification of the term in zm. �

Example 2 For small values of m, one has

P1(Hn) = Hn,P2
(
Hn,H

(2)
n

) = (Hn)
2

2
+ H

(2)
n

2
,

P3
(
Hn,H

(2)
n ,H (3)

n

) = (Hn)
3

6
+ HnH

(2)
n

2
+ H

(3)
n

3
.

2.3 The Laplace–Borel transformation

We consider the vector space E of complex-valued functions f ∈ C 1(]0,+∞[) such
that

for all ε > 0, there exists Cε > 0 such that
∣∣f (t)

∣∣ ≤ Cεe
εt for all t ∈ ]0,+∞[.

In particular, a function f ∈ E satisfies the following two properties:

(a) for all x with �(x) > 0, t �→ e−xtf (t) is integrable on ]0,+∞[,
(b) for all β with 0 < β < 1, t �→ |f (t)| 1

tβ
is integrable on ]0,1[.

We recall now some basic properties (cf. [13]) of the Laplace transformation in
this frame which are appropriate for our purpose.

Definition 3 Let f be a function in E. The Laplace transform L(f ) of f is defined
by

L(f )(x) =
∫ +∞

0
e−xtf (t) dt for �(x) > 0.

Proposition 2 (cf. [13]) Let E = L(E) be the image of E under L. If a is a function
in E , then

(a) a is an analytic function of x in the half-plane �(x) > 0,
(b) a(x) → 0 when �(x) → +∞,
(c) L : E → E is an isomorphism.
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Definition 4 Let a ∈ E . The Borel transform of a is the unique function â ∈ E such
that a = L( â ). One has the two reciprocal formulas

â(t) = 1

2iπ

∫ c+i∞

c−i∞
ezta(z) dz for all c > 0 and t > 0,

and

a(x) =
∫ +∞

0
e−xt â(t) dt for �(x) > 0.

Definition 5 Let f and g be two functions in E. The convolution product f ∗ g of f

and g is the function defined for all t > 0 by

(f ∗ g)(t) =
∫ t

0
f (u)g(t − u)du.

Proposition 3 (cf. [13]) If f ∈ E and g ∈ E, then f ∗ g ∈ E and

L(f ∗ g) = L(f )L(g). (5)

Hence, if a ∈ E and b ∈ E then ab ∈ E since ab = L( â ∗ b̂).

Theorem 1 Let a be a function in E . Then the series

∑
n≥1

λn

n!
∫ +∞

0
e−t

(
1 − e−t

)n−1
â(t) dt

converges and

∞∑
n=1

λn

n!
∫ +∞

0
e−t

(
1 − e−t

)n−1
â(t) dt =

∫ +∞

0

(
1

1 − e−t
− 1

t

)
e−t â(t) dt. (6)

Proof By (2)

∫ +∞

0

(
1

1 − e−t
− 1

t

)
e−t â(t) dt =

∫ +∞

0

∞∑
n=1

λn

n!
(
1 − e−t

)n−1
e−t â(t) dt.

In the right member, the order of
∫ +∞

0 and
∑∞

n=1 may be interchanged since

∫ +∞

0

∞∑
n=1

∣∣∣∣λn

n!
(
1 − e−t

)n−1
e−t â(t)

∣∣∣∣dt =
∫ +∞

0

∞∑
n=1

λn

n!
(
1 − e−t

)n−1
e−t

∣∣̂a(t)
∣∣dt

=
∫ +∞

0

(
1

1 − e−t
− 1

t

)
e−t

∣∣̂a(t)
∣∣dt,

and the convergence of this last integral follows from the assumption that a ∈ E . �
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Example 3 Let a(x) = 1
xs with �(s) ≥ 1. Then a ∈ E and â(t) = t s−1

Γ (s)
. Hence

∞∑
n=1

λn

n!
∫ +∞

0
e−t

(
1 − e−t

)n−1 t s−1

Γ (s)
dt = 1

Γ (s)

∫ +∞

0
e−t

(
1

1 − e−t
− 1

t

)
t s−1 dt

=
{

γ if s = 1,

ζ(s) − 1
s−1 if s 
= 1

where γ refers to the Euler constant. In particular, since

∫ +∞

0
e−t

(
1 − e−t

)n−1
dt = 1

n
for each integer n ≥ 1,

then

γ =
∞∑

n=1

λn

n!
1

n
.

3 The operator D

Proposition 4 If a ∈ E , then the integral

∫ +∞

0
e−t

(
1 − e−t

)x−1
â(t) dt

converges for all x with �(x) > 0.

Proof If a ∈ E and �(x) > 0, we may write for t ∈ ]0,+∞[,
∣∣e−t

(
1 − e−t

)x−1
â(t)

∣∣ ≤ e−t e(1−�(x))(− log(1−e−t ))
∣∣̂a(t)

∣∣.
The convergence when t → +∞ results from the inequality

e−t e(1−�(x))(− log(1−e−t ))
∣∣̂a(t)

∣∣ ≤ e−t

1 − e−t

∣∣̂a(t)
∣∣ ≤ 2e−t

∣∣̂a(t)
∣∣ (for t ≥ log 2).

The convergence when t → 0 results from the inequality

e(1−�(x))(− log(1−e−t )) ≤
⎧⎨
⎩

1 if �(x) ≥ 1,

1
(1−e−t )(1−�(x)) if 0 < �(x) < 1

since the function t �→ e−t |̂a(t)| 1
(1−e−t )β

is integrable at 0 for 0 < β < 1 by the defi-

nition of E (note that (1 − e−t )−β ≤ (kt)−1 for small enough t). �
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Definition 6 Let a be a function in E . We call D(a) the function defined for all x

with �(x) > 0 by

D(a)(x) =
∫ +∞

0
e−t

(
1 − e−t

)x−1
â(t) dt. (7)

Remark 1

(a) By Theorem 1, the series
∑

n≥1
λn

n! D(a)(n) converges and its sum is given by
formula (6).

(b) The values of D(a) at positive integers may be computed directly without re-
course to â. The development of (1 − e−t )n by the binomial theorem gives

D(a)(n + 1) =
n∑

k=0

(−1)k
(

n

k

)
a(k + 1) for all integer n ≥ 0. (8)

Definition 7 We call Λ the C1-diffeomorphism of R+ defined by Λ(u) = − log(1 −
e−u). In particular, it is important to note that Λ is involutive:

Λ−1 = Λ.

Theorem 2 Let a be a function in E . Then the function D(a) ∈ E and, moreover,
verifies the relation

D̂(a) = â(Λ), (9)

where â(Λ) denotes â ◦ Λ.

Proof The change of variables t = Λ(u) in (7) gives

D(a)(x) =
∫ +∞

0
e−xuâ

(
Λ(u)

)
du for �(x) > 0.

Thus, D(a) = L(̂a(Λ)). It remains to prove that D(a) ∈ E . One has only to check that
the function â(Λ) is in E. This function being in C 1(]0,+∞[), it suffices to show that
for all ε > 0, the function u �→ e−εu |̂a(− log(1− e−u))| is bounded on ]0,+∞[. This
results from the existence of Cε > 0 such that

∣∣̂a(− log
(
1 − e−u

))∣∣ ≤ Cε

(
1 − e−u

)ε for all u ∈ ]0,+∞[. �

Example 4 Let a(x) = 1
xs with �(s) ≥ 1. Then â(t) = t s−1

Γ (s)
. Thus, by (9),

D

(
1

xs

)
= L

(
Λs−1

Γ (s)

)
, (10)

and if s = m + 1 with m a natural number and n ≥ 1, then by (4),

D

(
1

xm+1

)
(n) = Pm(Hn, . . . ,H

(m)
n )

n
. (11)
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Remark 2 Theorem 2 may be summarized in the following diagram:

E D−−−−→ E⏐⏐�L−1

�⏐⏐L

E
Λ�−−−−→ E

where Λ�( â ) = â(Λ). The algebraic properties of D are summed up in the following
theorem.

Theorem 3 The operator D is an automorphism of E which verifies D = D−1 and
lets the function x �→ 1

x
invariant.

Proof We can write D = LΛ�L−1 and Λ� is an automorphism of E, which verifies
Λ� = (Λ�)−1 since Λ = Λ−1. Furthermore,

D

(
1

x

)
= L(1) = 1

x
. �

4 The harmonic product

Our aim is to define the harmonic product of two functions a and b in E as being the
unique function f of E such that

D(a)(x).D(b)(x) = D(f )(x).

Thus, we have to establish that such a function exists and is unique. In order to do
this, we introduce first a Λ-convolution product of two functions in E.

4.1 The Λ-convolution product

Proposition 5 If a and b are in E , then â(Λ) ∗ b̂(Λ) ∈ E.

Proof From the definition of the convolution product, one may write

(̂
a(Λ) ∗ b̂(Λ)

)
(t) =

∫ t

0
â
(
Λ(u)

)
b̂
(
Λ(t − u)

)
du.

Now, for all ε > 0, there exists Cε > 0 and Dε > 0 such that
∣∣̂a(− log

(
1 − e−u

))∣∣ ≤ Cε

(
1 − e−u

)ε and
∣∣̂b(− log

(
1 − e−(t−u)

))∣∣ ≤ Dε

(
1 − e−(t−u)

)ε for all u ∈ ]0,+∞[.
It follows that

∣∣(̂a(Λ) ∗ b̂(Λ)
)
(t)

∣∣ ≤ CεDε

∫ t

0

(
1 − e−u

)ε(1 − e−(t−u)
)ε

du.
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One has also

∫ t

0

(
1 − e−u

)ε(1 − e−(t−u)
)ε

du

= (
1 − e−t

)1+2ε
∫ 1

0
uε(1 − u)ε

1

(1 − (1 − e−t )u)ε+1
du

≤ (
1 − e−t

)1+2ε
∫ 1

0

1

(1 − (1 − e−t )u)ε+1
du

≤ (
1 − e−t

)1+2ε etε − 1

(1 − e−t )ε

≤ (
1 − e−t

)2ε etε − 1

ε
≤ etε

ε
.

Hence, |( â(Λ) ∗ b̂(Λ))(t)| ≤ CεDε
etε

ε
, which proves that this function belongs to E

as required. �

Definition 8 Let a and b be two functions in E . The Λ-convolution product â � b̂ of
â and b̂ is defined by

â � b̂ = Λ�
(
Λ�

(̂
a
) ∗ Λ�

(
b̂
))

,

or equivalently (since Λ� = (Λ�)−1)

(̂
a � b̂

)
(Λ) = â(Λ) ∗ b̂(Λ).

Remark 3 The Λ-convolution product inherits the algebraic properties of the ordi-
nary convolution product, i.e., bilinearity, commutativity, and associativity.

4.2 The harmonic product

Definition 9 Let a and b be two functions in E . The harmonic product a �� b of a

and b is defined by

a �� b = L
(
â � b̂

) ∈ E .

This construction may be summarized in the following diagram:

(a, b) −−−−→ ( â, b̂) −−−−→ ( â(Λ), b̂(Λ))⏐⏐�
⏐⏐�

⏐⏐�
a �� b ←−−−− â � b̂ ←−−−− â(Λ) ∗ b̂(Λ)

Remark 4 The harmonic product inherits the properties of the Λ-convolution prod-
uct: it is bilinear, commutative, and associative.
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Theorem 4 Let a and b be in E . Then,

D(a �� b) = D(a)D(b), (12)

and

D(ab) = D(a) �� D(b). (13)

Proof One knows from Theorem 2 that

D = LΛ�L−1.

Hence

D(a �� b) = LΛ�L−1(a �� b) = LΛ�
(̂
a � b̂

) = L
(
Λ�

(̂
a
) ∗ Λ�

(
b̂
))

,

and it follows from (5) and (9) that

L
(
Λ�

(̂
a
) ∗ Λ�

(
b̂
)) = L

(
Λ�

(̂
a
))

L
(
Λ�

(
b̂
)) = D(a)D(b)

which proves (12). Moreover, (12) enables us to write

D
(
D(a) �� D(b)

) = D2(a)D2(b) = ab
(
since D = D−1),

and so

D(a b) = D2(D(a) �� D(b)
) = D(a) �� D(b)

which proves (13). �

Remark 5 The values of (a �� b)(n) may be computed without recourse to â and b̂.
By elementary transformations, it can be shown that

(a �� b)(n + 1) =
∫ +∞

0

∫ +∞

0

(
e−t−s

)(
e−t + e−s − e−t e−s

)n
â(t )̂b(s) dt ds.

Hence, if the numbers C
k,l
n are defined by

(X + Y − XY)n =
∑

0≤k≤n,
0≤l≤n

Ck,l
n XkY l,

then one has the following explicit formula:

(a �� b)(n + 1) =
∑

0≤k≤n,
0≤l≤n

Ck,l
n a(k + 1)b(l + 1).

For small values of n, this enables one to compute

(a �� b)(1) = a(1)b(1),
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(a �� b)(2) = a(2)b(1) + a(1)b(2) − a(2)b(2),

(a �� b)(3) = a(3)b(1) + a(1)b(3) + 2a(2)b(2) − 2a(3)b(2)

− 2a(2)b(3) + a(3)b(3).

Theorem 5 Let

(
1

x

)��k

= 1

x
��

1

x
�� · · · ��

1

x︸ ︷︷ ︸
k

(k = 1,2,3, . . .),

where 1
x

denotes (improperly) the function x �→ 1
x

. Then, for all natural numbers
m ≥ 0,

(
1

x

)��(m+1)

= D

(
1

xm+1

)
.

In particular, for all integers n ≥ 1,

(
1

x

)��(m+1)

(n) = Pm(Hn, . . . ,H
(m)
n )

n
. (14)

Proof By (13) we have

D

(
1

xm+1

)
= D

(
1

x
· · · 1

x︸ ︷︷ ︸
m+1

)
=

(
D

(
1

x

))��(m+1)

=
(

1

x

)��(m+1)

since D

(
1

x

)
= 1

x
.

Thus, (14) results from (11). �

4.3 The harmonic property

The following theorem explains the main reason why the harmonic product is called
‘harmonic’.

Theorem 6 Let a ∈ E . Then

1

x
�� a = A(x)

x
,

where A denotes the function defined for �(x) > 0 by

A(x) =
∫ +∞

0

e−xt − 1

e−t − 1
e−t â(t) dt.



A new class of identities involving Cauchy numbers 317

In particular, for each integer n ≥ 1,

(
1

x
�� a

)
(n) = A(n)

n
= 1

n

(
n∑

k=1

a(k)

)
. (15)

Proof By the definition of the harmonic product, one has

1

x
�� a = L

(
1 � â

)
.

Now

(
1 � â

)(
Λ(u)

) = (
1 ∗ â(Λ)

)
(u) =

∫ u

0
â
(
Λ(v)

)
dv = −

∫ Λ(u)

+∞
â(t)

e−t

1 − e−t
dt

(by the change of variables t = Λ(v)). Hence,

(
1 � â

)
(u) =

∫ +∞

u

â(t)
e−t

1 − e−t
dt.

Thus, we have

1

x
�� a =

∫ +∞

0
e−xu

(∫ +∞

u

â(t)
e−t

1 − e−t
dt

)
du

=
∫ +∞

0

(∫ t

0
e−xu du

)
â(t)

e−t

1 − e−t
dt

= 1

x

∫ +∞

0

(
1 − e−xt

)̂
a(t)

e−t

1 − e−t
dt

= A(x)

x
.

Furthermore, for each integer n ≥ 1, we have

A(n) =
∫ +∞

0

e−nt − 1

e−t − 1
e−t â(t) dt =

n∑
k=1

a(k).
�

Example 5

1

x
��

1

x
= D

(
1

x2

)
= L(Λ) = H(x)

x
with H(x) = ψ(x + 1) + γ ,

ψ denoting the logarithmic derivative of Γ . In particular, for each integer n ≥ 1,

(
1

x
��

1

x

)
(n) = H(n)

n
= Hn

n
.
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Example 6 For �(s) ≥ 1,

1

x
��

1

xs
= H(s)(x)

x
,

with

H(s)(x) = 1

Γ (s)

∫ +∞

0

1 − e−xt

1 − e−t
e−t t s−1 dt.

For each integer n ≥ 1,

(
1

x
��

1

xs

)
(n) = H(s)(n)

n
= H

(s)
n

n
= 1

n

(
n∑

m=1

1

ms

)
.

From (15), by induction on k, we deduce the following important corollary.

Corollary 1 For each integer k ≥ 2,

((
1

x

)��k

�� a

)
(n) = 1

n

( ∑
n≥n1≥···≥nk≥1

a(nk)

n1 · · ·nk−1

)
. (16)

Example 7 Applying (16) with a(x) = 1
x

(and k = m), we get

(
1

x

)��(m+1)

(n) = 1

n

( ∑
n≥n1≥···≥nm≥1

1

n1 · · ·nm

)
. (17)

Hence, it follows from (14) and (17) that

Pm

(
Hn,H

(2)
n , . . . ,H (m)

n

) =
∑

n≥n1≥···≥nm≥1

1

n1 · · ·nm

, (18)

which is a nice reformulation of Dilcher’s formula (cf. [2, 9]).

5 The modified zeta function Fk

5.1 Integral representation

Definition 10 For all s ∈ C with �(s) ≥ 1 and each natural number k, the modified
zeta function of order k is defined by

Fk(s) = 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
fk

(
1 − e−t

)
dt with fk(z) =

∞∑
n=1

λn

n!
zn

nk
. (19)

Remark 6 By (2) and Example 3, one has F0(s) = ζ(s) − 1
s−1 .
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The fact that Fk may be represented by a Mellin transform enables us to analyti-
cally continue this function outside its half-plane of definition by a standard analytic
method (cf. [14, Sect. 6.7]).

Theorem 7 The function Fk analytically continues in the whole complex plane as an
entire function.

Proof The function z �→ 1
log(1−z)

+ 1
z

being analytic in the disc D(0,1) with a singu-

larity at 1, we deduce from (1) that the radius of convergence of the series
∑∞

n=1
λnzn

n!
is equal to 1. Thus 1 is also the radius of convergence of the series

∑∞
n=1

λnzn

n!nk which
defines an analytic function fk in the disc D(0,1). Hence, the function

gk: t �→ fk

(
1 − e−t

)

is analytic for all t ∈ C such that 1−e−t ∈ D(0,1). Since 1−e0 = 0, it follows that gk

is analytic in a neighbourhood of 0. Since gk(0) = 0, the function t �→ gk(t)
e−t

1−e−t is
itself analytic in a neighbourhood of 0. It follows that its Mellin transform analytically
continues in the complex plane with simple poles at negative integers which are all
cancelled by the poles of Γ . �

Theorem 8 For all s with �(s) > 1 and each integer k ≥ 1,

Fk(s) = ϑ(k)ζ(s) +
k∑

j=1

(−1)jϑ(k − j)Zj (s)

+ (−1)k
1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
T k

(
e−t − 1

t

)
dt (20)

with

ϑ(k) =
∞∑

n=1

λn

n!
1

nk
, (21)

Zj (s) =
∑

n>n1>n2>···>nj >0

1

nsn1n2 · · ·nj

, (22)

Tf (t) =
∫ +∞

t

e−u

1 − e−u
f (u)du. (23)

Proof Formula (20) results from the integral representation (19) and the two follow-
ing lemmas. �

Lemma 1 For all t > 0,

fk

(
1 − e−t

) =
k∑

j=0

(−1)jϑ(k − j)
Λj (t)

j ! + (−1)kT k

(
e−t − 1

t

)
,
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where ϑ is defined by (21) and T is the operator defined by (23).

Proof Let gk(t) = fk(1 − e−t ). The function gk verifies the recursive relation

g′
k(t) = e−t f ′

k

(
1 − e−t

) = e−t

1 − e−t
fk−1

(
1 − e−t

) = e−t

1 − e−t
gk−1(t).

Thus

gk(t) =
∫ t

0

e−u

1 − e−u
gk−1(u) du = gk(+∞) −

∫ +∞

t

e−u

1 − e−u
gk−1(u) du

with

gk(+∞) = fk(1) = ϑ(k).

Thus, one has

gk(t) = ϑ(k) −
∫ +∞

t

e−u

1 − e−u
gk−1(u) du = ϑ(k) − T (gk−1),

and a repeated iteration k times of this relation gives

gk(t) =
k−1∑
j=0

ϑ(k − j)(−1)j T j (1) + (−1)kT k(g0).

Now, by (2),

g0(t) =
∞∑

n=1

λn(1 − e−t )n

n! = e−t − 1

t
+ 1,

and thus

T k(g0) = T k

(
e−t − 1

t

)
+ T k(1).

Hence

gk(t) =
k−1∑
j=0

ϑ(k − j)(−1)j T j (1) + (−1)kT k(1) + (−1)kT k

(
e−t − 1

t

)
.

Since ϑ(0) = ∑∞
n=1

λn

n! = 1 (by (1) and a Tauberian theorem), one deduces that

gk(t) =
k∑

j=0

ϑ(k − j)(−1)j T j (1) + (−1)kT k

(
e−t − 1

t

)
,

and, now, it remains to prove that

Λj(t)

j ! = T j (1),
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which follows from the recursive relation

Λj(t)

j ! = −
∫ t

+∞
e−u

1 − e−u

Λj−1(u)

(j − 1)! du = T

(
Λj−1

(j − 1)!
)

. �

Lemma 2 Let Zj (s) be defined by (22). Then, for all s ∈ C with �(s) > 1,

Zj (s) = 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t

Λj (t)

j ! dt.

Proof From the recursive relation

∂
Λj (t)

j ! = Λj−1(t)

(j − 1)! ∂Λ(t) = − e−t

1 − e−t

Λj−1(t)

(j − 1)! = −
∑
m>0

e−mt Λ
j−1(t)

(j − 1)! ,

and Λ(t) = ∑
n>0

e−nt

n
, one may check by induction on j that

Λj(t)

j ! =
∑

n1>n2>···>nj >0

e−n1t

n1

1

n2
· · · 1

nj

.

Furthermore, one has

1

Γ (s)

∫ +∞

0
t s−1e−Nt e−t

1 − e−t
dt =

∑
n>N

1

ns

(
for �(s) > 1

)
.

Hence

1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t

Λj (t)

j ! dt =
∑

n>n1>n2>···>nj >0

1

ns

1

n1

1

n2
· · · 1

nj

= Zj (s).

�

5.2 Values of Fk at integers

Theorem 9 For all s in C with �(s) ≥ 1 and each natural number k, then

Fk(s) =
∞∑

n=1

λn

n!nk
D

(
1

xs

)
(n). (24)

In particular, for all natural numbers m,

Fk(m + 1) =
∞∑

n=1

λn

n!
Pm(Hn,H

(2)
n , . . . ,H

(m)
n )

nk+1
. (25)

Proof The change of variables t = Λ(u) in (19) enables to write

Fk(s) = 1

Γ (s)

∫ +∞

0
fk

(
e−u

)(
Λ(u)

)s−1
du.
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Since D( 1
xs ) = L(Λs−1

Γ (s)
), we deduce (24) from this last expression of Fk(s). More-

over, by (11), one also has D( 1
xm+1 )(n) = Pm(Hn,...,H

(m)
n )

n
, which proves (25). �

Corollary 2 Let ϑ(s) be the Dirichlet series defined for �(s) > 0 by

ϑ(s) =
∞∑

n=1

λn

n!
1

ns
.

Then for each natural number k,

ϑ(k + 1) = Fk(1). (26)

Example 8

F0(1) =
∞∑

n=1

λn

n!n = γ = ϑ(1),

F0(2) =
∞∑

n=1

λnHn

n!n = ζ(2) − 1,

F0(3) = 1

2

∞∑
n=1

λnH
2
n

n!n + 1

2

∞∑
n=1

λnH
(2)
n

n!n = ζ(3) − 1

2
,

F1(1) =
∞∑

n=1

λn

n!n2
= ϑ(2),

F1(2) =
∞∑

n=1

λnHn

n!n2
,

F1(3) = 1

2

∞∑
n=1

λnH
2
n

n!n2
+ 1

2

∞∑
n=1

λnH
(2)
n

n!n2
.

5.3 Identities linking Cauchy numbers, harmonic numbers and zeta values

Theorem 10 For all integers q ≥ 2,

F1(q) =
∞∑

n=1

λn

n!n2
Pq−1

(
Hn,H

(2)
n , . . . ,H

(q−1)
n

)

=
∞∑

n=1

log(n + 1)

nq
+ γ ζ(q) + ζ(q + 1) −

∞∑
n=1

Hn

nq
−

q−1∑
k=1

1

k

∞∑
n=1

1

(n + 1)knq−k
.

(27)
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Proof By (20) and (25), one may write

Fk(q) =
∞∑

n=1

λn

n!nk+1
Pq−1

(
Hn,H

(2)
n , . . . ,H

(q−1)
n

)

= ϑ(k)ζ(q) +
k∑

j=1

(−1)jϑ(k − j)Zj (q)

+ (−1)k
1

Γ (q)

∫ +∞

0
tq−1 e−t

1 − e−t
T k

(
e−t − 1

t

)
dt. (28)

We apply now (28) with k = 1. This gives

F1(q) = γ ζ(q) −
∑
n≥1

Hn−1

nq
+ 1

Γ (q)

∫ +∞

0
tq−1 e−t

1 − e−t
E1(t) dt,

with E1(t) = −Ei(−t) = ∫ +∞
t

e−u

u
du. Thus

F1(q) = γ ζ(q) −
∑
n≥1

Hn

nq
+ ζ(q + 1) + I (q),

where

I (q) = 1

Γ (q)

∫ +∞

0
tq−1 e−t

1 − e−t
E1(t) dt = 1

Γ (q)

∞∑
n=1

∫ +∞

0
e−nt tq−1E1(t) dt.

Since

E1(t) = −γ − log t +
∞∑

n=1

(−1)n−1

n

tn

n! ,

and −γ − log t = l̂ogx
x

(cf. [13]), then E1 = ̂log(x+1)
x

. Thus

∫ +∞

0
e−nt tq−1E1(t) dt = (−1)q−1

(
log(x + 1)

x

)(q−1)

(n).

Hence, by a calculation of the (q − 1)th derivative, we get

I (q) = (−1)q−1

(q − 1)!
∞∑

n=1

(
log(x + 1)

x

)(q−1)

(n)

=
∞∑

n=1

log(n + 1)

nq
−

q−1∑
k=1

1

k

∞∑
n=1

1

(n + 1)knq−k
.

�
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Remark 7

(1) We recall Euler’s formula (cf. [6])

∞∑
n=1

Hn

nq
=

⎧⎨
⎩

1
2 (q + 2)ζ(q + 1) − 1

2

∑q−2
k=1 ζ(k + 1)ζ(q − k) for q > 2,

2ζ(3) for q = 2.

(2) From
∑∞

n=1
1

(n+1)n
= 1, and the decomposition

1

(n + 1)knq−k
= 1

(n + 1)k−1nq−k
− 1

(n + 1)knq−k−1
(0 < k < q),

the sum of the series
∑∞

n=1
1

(n+1)knq−k may be expressed as a linear combination
of zeta values and integers.

Example 9

∞∑
n=1

log(n + 1)

n2
+ γ ζ(2) − ζ(3) − 1 =

∞∑
n=1

λnHn

n!n2
,

∞∑
n=1

log(n + 1)

n3
+ γ ζ(3) − 1

10
ζ(2)2 − 1

2
ζ(2) = 1

2

∞∑
n=1

λnH
2
n

n!n2
+ 1

2

∞∑
n=1

λnH
(2)
n

n!n2
,

∞∑
n=1

log(n + 1)

n4
+ γ ζ(4) − 2ζ(5) + ζ(2)ζ(3) − 2

3
ζ(3) + 1

3
ζ(2) − 1

2

= 1

6

∞∑
n=1

λnH
3
n

n!n2
+ 1

2

∞∑
n=1

λnHnH
(2)
n

n!n2
+ 1

3

∞∑
n=1

λnH
(3)
n

n!n2
.

5.4 Link with the Ramanujan summation

The function Fk has strong connections with the Ramanujan summation (cf. [3, 4]).
If a ∈ E , then the series

∑
n≥1 a(n) may be written

∑
n≥1

a(n) =
∑
n≥1

∫ +∞

0
e−nt â(t) dt,

and a formal permutation of
∑

n≥1 and
∫ +∞

0 would lead us to write

∑
n≥1

a(n) =
∫ +∞

0

1

1 − e−t
e−t â(t) dt.

However, this last integral may be divergent at 0. Nevertheless we can renormalize
it by removing the singularity at zero. This may be done merely by subtracting the
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polar part 1
t

of 1
1−e−t . From Theorem 1, we know that

∫ +∞

0

(
1

1 − e−t
− 1

t

)
e−t â(t) dt =

∞∑
n=1

λn

n!
∫ +∞

0
e−t

(
1 − e−t

)n−1
â(t) dt

=
∞∑

n=1

λn

n! D(a)(n).

This justifies the following definition.

Definition 11 Let a be a function in E = L(E). The Ramanujan sum of the series∑
n≥1 a(n) is defined by

R∑
n≥1

a(n) =
∫ +∞

0

(
1

1 − e−t
− 1

t

)
e−t â(t) dt =

∞∑
n=1

λn

n! D(a)(n). (29)

Lemma 3 Let a and b in E . Then

R∑
n≥1

(a �� b)(n) =
∞∑

n=1

λn

n! D(a)(n)D(b)(n). (30)

Proof This results directly from (12) and (29). �

Theorem 11 For all s ∈ C with �(s) ≥ 1, one has

F0(s) =
R∑

n≥1

1

ns
and Fk(s) =

R∑
n≥1

((
1

x

)��k

��
1

xs

)
(n) for k ≥ 1. (31)

Proof By (24) and (30), taking into account the invariance of 1
x

by D, one may write

R∑
n≥1

((
1

x

)��k

��
1

xs

)
(n) =

∞∑
n=1

λn

n! D
((

1

x

)��k)
(n)D

(
1

xs

)
(n)

=
∞∑

n=1

λn

n!
(

1

x

)k

(n)D

(
1

xs

)
(n)

=
∞∑

n=1

λn

n!nk
D

(
1

xs

)
(n) = Fk(s).

�

In particular, by (14), one deduces from (31) the following identity.
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Corollary 3 For each natural number k,

Fk(1) = ϑ(k + 1) =
∞∑

n=1

λn

n!
1

nk+1
=

R∑
n≥1

Pk(Hn,H
(2)
n , . . . ,H

(k)
n )

n
. (32)

Example 10

ϑ(1) =
∞∑

n=1

λn

n!n =
R∑

n≥1

1

n
= γ,

ϑ(2) =
∞∑

n=1

λn

n!n2
=

R∑
n≥1

Hn

n
,

ϑ(3) =
∞∑

n=1

λn

n!n3
= 1

2

R∑
n≥1

H 2
n

n
+ 1

2

R∑
n≥1

H
(2)
n

n
.

Remark 8 Comparing (32) with

F0(k + 1) =
∞∑

n=1

λn

n!n Pk

(
Hn,H

(2)
n , . . . ,H (k)

n

)
,

one may observe a kind of reciprocity between Fk(1) and F0(k + 1). This results
from the fact that D = D−1.

Remark 9 In the case q = 1, (27) is meaningless since both the series
∑

n≥1
log(n+1)

n

and
∑

n≥1
Hn

n
diverge. However, since

log(x + 1) − (
ψ(x + 1) + γ

) =
∫ +∞

0

(
e−xu − 1

)( 1

1 − e−u
− 1

u

)
e−u du,

it follows that

(
̂log(x + 1)

x
− ̂ψ(x + 1) + γ

x

)
(t) =

∫ +∞

t

(
1

1 − e−u
− 1

u

)
e−u du,

and then one may easily deduce from (29) the relation

R∑
n≥1

log(n + 1)

n
−

R∑
n≥1

Hn

n
= −γ 2

2
,

which may be rewritten in the following form (cf. Example 10):

R∑
n≥1

log(n + 1)

n
= ϑ(2) − 1

2
ϑ(1)2.



A new class of identities involving Cauchy numbers 327

5.5 Link with the Arakawa–Kaneko zeta function

For �(s) ≥ 1 and k ≥ 1, one can define in an algebraic fashion the function ξk by

ξk(s) =
∞∑

n=1

D

((
1

x

)��k

��
1

xs

)
(n) =

∞∑
n=1

1

nk
D

(
1

xs

)
(n). (33)

In particular, for all natural numbers m, one has (cf. [8, Corollary 1])

ξk(m + 1) =
∞∑

n=1

1

nk
D

(
1

xm+1

)
(n) =

∞∑
n=1

Pm(Hn,H
(2)
n , . . . ,H

(m)
n )

nk+1
.

Since D( 1
xs ) = L(Λs−1

Γ (s)
), one may also rewrite (33) as

ξk(s) = 1

Γ (s)

∫ +∞

0
Lik

(
e−u

)(
Λ(u)

)s−1
du,

and the change of variables t = Λ(u) leads to the integral representation

ξk(s) = 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
Lik

(
1 − e−t

)
dt,

which is the analogue of (19) (with Lik in place of fk) and also the original definition
of the Arakawa–Kaneko zeta function (cf. [1, 8]).

Thus, taking into account the facts that ξk(1) = ζ(k +1) and Li1(1− e−t ) = t , and
following the same process as in the proof of Theorem 8, one obtains the following
analogue of (20):

ξk+1(s) = ζ(k + 1)ζ(s) +
k−1∑
j=1

(−1)j ζ(k + 1 − j)Zj (s)

+ (−1)k
1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
T k(t) dt. (34)

In particular, in the simplest case k = 1, since

T (t) =
∫ +∞

t

e−u

1 − e−u
udu =

∑
m>0

∫ +∞

t

e−muudu =
∑
m>0

e−tm

m
t +

∑
m>0

e−tm

m2
,

(34) again gives the formula

ξ2(s) = ζ(2)ζ(s) − s
∑

n>m>0

1

ns+1

1

m
−

∑
n>m>0

1

ns

1

m2

already obtained by Arakawa and Kaneko (cf. [1, Theorem 6(ii)]).
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6 Conclusion

Most of the general results given for the modified zeta function Fk , especially The-
orems 7, 8, and 9, also apply (with minor adaptations) to a wide class of functions
including the Arakawa–Kaneko zeta function ξk , specifically to the class of functions
represented by normalized Mellin transforms of type

Fk,ω(s) = 1

Γ (s)

∫ +∞

0
t s−1 e−t

1 − e−t
fk,ω

(
1 − e−t

)
dt

with ω = (ωn)n≥1 and fk,ω(z) = ∑∞
n=1

ωn

nk zn. In particular, under the assumption that
|ωn|
nk = O( 1

n
), we have for positive integers m the nice formula

Fk,ω(m + 1) =
∞∑

n=1

ωn

nk
D

(
1

xm+1

)
(n) =

∞∑
n=1

ωn

Pm(Hn,H
(2)
n , . . . ,H

(m)
n )

nk+1
,

which extends (25). However, this formula is more theoretical than practical because
of the fast increase in the size of polynomials Pm: the number of monomials in Pm is
equal to the number p(m) of partitions of m, as shown by the explicit expression of
the mth modified Bell polynomial.
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