ALGORITHMS FOR

MINIMIZATION
WITHOUT DERIVATIVES

RICHARD P. BRENT
Thomas J. Watson Research Center
Yorktown Heights, New York

Prentice-Hall, Inc.. Englewood Cliffs, Mew Jersey

PRENTICE-HALL
SERIES IN AUTOMATIC COMPUTATION

George Forsythe, editor

AHO AND ULLMaN, Theory of Parsing, Translation, and Compiling, Voline I: Payrsing
ANDREE, Computer Programming: Techniques, Anal vsis, and Mathematics
ANSELONE, Collectively Compact Operator Approximation Theory
and Applications te Integral Equations
ARBIB, Theories of Abstract Automata
BATES AND DOUGLAS, Programming Language/One, 2nd ed,
BLUMENTHAL, Management Information Systems
BOBROW AND SCHWARTZ, Computers and the Policy-Making Conmmunity
BOWLES, editor, Computers in Humanistic Research
BRENT, Algorithms for Minimization without Derivatives
CESCHING AND KUNTZMAN, Numerical Solution of Initial Value Problenis
CRESS, et al,, FORTRAN IV with WATFOR and WATEIV
DANIEL, The Approximate Minimization of Functionals
DESMONDE, A Conversational Graphic Data Processing System
DESMONDE, Compitters and Their Uses, 2nd ed,
DESMONDE, Real-Time Data Processing Systems
DRUMMOND, Evaluation and Measurement Techniques for Digital Computer Systems
EVANS, et al., Sinmiation Using Digifal Computers
FIKE, Computer Evaluation of Mathematical Functions
FIKE, PL{T for Scientific Programimers
FORSYTHE AND MOLER, Compuler Solution of Linear Algebraic Svstems
GAUTHIER AND PONTO, Designing Systems Programs
GEAR, Numerical Initial Value Problems in Ordinary Differential Equations
GOLDEN, FORTRAN IV Programming and Computing
GOLDEN AND LEICHUS, {BM/360 Programming and Computing
GORDON, System Sinmudation
GREENSPAN, Lectures on the Numerical Solution of Linear, Stngular and
Nonlinear Differential Equations

GRUENBERGER, editor, Computers and Communications
GRUENBERGER, editor, Critical Factors in Data Management

- GRUEMBERGER, editor, Expanding Use of Computers in the 70°s
GRUENBERGER, editor, Fourth Generation Computers
HARTMANIS AND STEARNS, dlgebraic Structure Theory of Seqrential Machines
HULL, Introduction 1o Computing
jacosy, et al., lterative Methods for Nonlinear Optimization Problems
JOHNSON, System Structure in Data, Programs, and Computers
KANTER, The Computer and the Executive
KIVIAT, et al., The SIMSCRIPT IT Programuming Language
LORIN, Parallelism in Hardware and Software: Real and Apparent Concurrency
LOUDEN AND LEDIN, Pragramming the 1BM 1130, 2nd ed.

MARTIN, Design of Real-Time Computer Systens
MARTIN, Future Developments in Telecommunications

& MARTIN, Man-Compnter Dialague

MARTIN, Programming Real-Time Computing Systems

MARTIN, Systems Analysis for Data Trausmission

MARTIN, Telecommunications and the Computer

MARTIN, Teleprocessing Network Qrganization

MARTIN AND NORMAN, The Compulerized Society

MATHISON AND WALKER, Compiters and Teleconumunications: Isswes in Public Policy

MCKEEMAN, ¢t al., A Compiler Generator

MEYERS, Time~Shaving Computation in the Social Sciences

MINSKY, Camputation: Fipite and Infinite Machines

MOORE, Interval Analysis

PLANE AND MCMILLAN, Discrete Optimization: Integer Programming and Network Analysis
Jor Management Decisions

PRITSKER AND KIVIAT, Simulation with GASP II: a FORTRAN-Based Simulation Language

PYLYSHYN, editor, Perspectives on the Computer Revolution

RICH, Internal Sorting Methods Hiustrated with PL{I Programs

RUSTIN, editor, Algorithm Specification

RUSTIN, editor, Computer Networks

RUSTIN, editor, Debugging Techniques in Large Systems

RIBTIN, editor, Formal Semantics of Programming Languages

SACKMAN AND CITRENBAUM, editors, On-Line Planning: Towards Creative Problem-Solving

SALTON, editor, The SMART Retrieval System: Experiments in Automatic Docurment
Processing

SAMMET, Programming Languages: History and Fundamentals

SCHULTZ, Digital Processing: A System Orientation

SCHULTZ, Finite Element Analysis

SCHWARZ, et al., Nmmerical Analysis of Symmetric Mairices

SHERMAN, Technigues in Computer Progranuning

SIMON AND SIKLOSSY, editors, Representation and Meaning: Experiments
with Information Processing Sysiems

SYNDER, Chebyshev Methods in Numerical Approximation

STERLING AND POLLACK, futroduction to Statistical Data Processing

STOUTMEYER, PL}1 Programming for Fngineering and Science

STROUD, Approximate Calculation of Multiple Integrals

STROUD AND SECREST, Craussian Quadraiure Formudas

Taviss, editor, The Computer Impact

TRAUB, fterative Methods for the Solufion of Polynomial Equations

UHR, Pattern Recognition, Learning, and Thought

VAN TASSEL, Computer Security Management

VARGA, Matrix Iterative Analysis

VAZSONYL, Problem Solving by Digital Computers with PL{I Programming

WAILTE, Implementing Software for Nomw-Numeric Application

WILKINSON, Rounding Errors in Algebraic Processes

ZIEGLER, Time-Sharing Data Processing Systems

CONTENTS

© 1973 by Prentice-Hatl, Inc., Englewood Cliffs, N.J.

All rights reserved. No part of this book may be reproduced

in any form or by any means without permission in writing
from the publisher.

Xi
ISBN: 0-13-022335-2 PREFACE
Library of Congress Catalog Card Number:; 78-39843 7)
7

Printed in the Unifed States of America INTRODUCTION AND SUMMARY
10 9 8 7 6 543 2 1.7 Introduction 7

1.2 Summary 4

2

SOME USEFUL RESULTS ON TAYLOR SERIES,
DIVIDED DIFFERENCES, AND LAGRANGE

INTERPOLATION 9
2.1 Imtroduction - g
2.2 Notation and definitions 10
2.3 Truncated Taylor series 77
2.4 Lagrange interpolation 72
PRENTICE-HALL INTERNATIONAL, | Lond, 2.5 Divided differences 73
L E-Ha TERN. L, INC., London . i - 15
. Prenmice-HaLL oF AUSTRALIA, PTY. LTn., Sydiey 2.6 Differentiating the error .
. PrenTICE-HALL OF CaNADA, L1D., Torenic B
PrentiCE-HALL OF INDIA PRIVATE LIMITED, New Delhi vi

PrenTICE-HALL OF JaPAN, INC., Tokyo

viii CONTENTS

CONTENTS ix
3 6
THE USE OF SUCCESSIVE INTERPOLATION GLOBAL MINIMIZATION GIVEN AN UPPER
FOR FINDING SIMPLE ZEROS OF A FUNCTION BOUND ON THE SECOND DERIVATIVE 87
AND TS DERIVATIVES 79 6.1 ’ Introduction g1
3.7 Introduction 79 6.2 The basic theorems &84
3.2 The definition of order 21 6.3 An algorithm for global minjmization 86
3.3 Convergence to a zero 22 6.4 The rate of convergence in some special cases 57
3.4 Superlinear convergence 24 6.5 A lower bound on the number of function
3.5 Strict superlinear convergence 26 m<m\:mu.o:m required Wmm
3.6 The exact order of convergernce 29 6.6 Practical nmmﬂ o
3.7 Stronger results for g = 1 and 2 34 6.7 Some extensions and mmamwmbwmwﬁam 105
3.8 Accelerating convergence 40 6.8 An algorithm for global minimization of a
3.8 Some numerical examples 43 function of several variables 107
3.10 Summary 45 6.9 Summary and conclusions 717
6.70 ALGOL 60 procedures 712
4
7
AN ALGORITHM WITH GUARANTEED
CONVERGENCE FOR FINDING A ZERO A NEW ALGORITHM FOR MINIMIZING A
OF A FUNCTION 47 FUNCTION OF SEVERAL VARIABLES
JVE. 716
47 Introduction 47 WITHOUT CALCULATING DERIVATIVES
4.2 The algorithm 48 7.7 Introduction and survey of the literature 116
4.3 Convergence properties 53 7.2 The effect of rounding errors 122
4.4 Practical tests 54 7.3 Powell's algorithm 124
4.5 Conclusion 56 7.4 The main modification 128
46 ALGOL 60 procedures 58 7.5 The resolution ridge problem 7132
7.6 Some further detaifs 135
d 7.7 Numerical results and comparison with other
AN ALGORITHM WITH GUARANTEED Mumgwoﬁ WMM
. . 7.8 onclusion
Mmﬁ_\wmcm_“\mw\%% >_.‘.n Oﬁ”vn \NRW...@M _mw. Y MMQMEQQ:A o 67 7.9 An ALGOL W procedure and test program 155
. 7169
5.7 [Introduction 67 BIBLIOGRAPHY
5.2 Fundamental limitations because of rounding errors 63 APPENDIX: FORTRAN subroutines 187
5.3 Unimodality and §-unimodality . 65 DEX 783
54 An algorithm analogous to Dekker's algorithm 72 INDE.
5.5 Convergence properties : 75
. 5.6 Practical tests 76
- 8.7 Conclusion 78

5.8 An ALGOL 60 procedure 79

PREFACE

The problem of finding numerical approximations to the zeros and
extrema of functions, using hand computation, has a long history, Recently
considerable progress has been made in the development of algorithms suit-
able for use on a digital computer. In this book we suggest improvements
to some of these algorithms, extend the mathematical theory behind them,
and describe some new algorithms for approximating local and global min-
ima. The unifying thread is that all the algorithms considered depend entirely
on sequential function evaluations: no evaluations of derivatives are required.
Such algorithms are very useful if derivatives are difficult to evaluate, which
is often true in practical problems.

An earlier version of this book appeared as Stanford University Report
CS-71-198, Algorithms jfor finding zeros and extrema of functions without
calculating derivatives, now out of print. This expanded version is published
in the hope that it wiil interest graduate students and research workers in
numerical analysis, computer science, and operations research.

I am greatly indebted to Professors G. E. Forsythe and G. H, Golub
for their advice and encouragement during my stay at Stanford. Thanks are
due to them and to Professors J, G. Herriot, F. W. Dorr, and C. B. Moler,
both for their careful reading of various drafts and for many heipful sugges-
tions. Dr. T. I. Rivlin suggested how to find bounds on polynomials (Chapter
6), and Dr. J, H. Wilkinson introduced me to Dekker’s algorithm (Chapter 4).
Parts of Chapter 4 appeared in Brent {1971d), and are included in this book
by kind permission of the Editor of The Computer Journal. Thanks go to

Xi

xii PREFACE

Professor ¥. Dorr and Dr. I. Sobel for their help in testing some of the
algorithms; to Michael Malcolm, Michael Saunders, and Alan George for
many interesting discussions; and to Phyllis Winkler for her nearly perfect
typing. I am also grateful for the influence of my teachers V. Grenness, H.
Smith, Dr. D. Faulkner, Dr. E, Strzelecki, Professors G. Preston, J, Miller,
Z. Janko, R. Floyd, D. Knuth, G. Polya, and M. Schiffer,

Decpest thanks go to Erin Brent for her help in obtaining some of the
namerical results, testing the algorithms, plotting graphs, reading proofs,
and in many other ways,

Finally I wish to thank the Commonwealth Scientific and Industrial
Research Organization, Australia, for its generous support during my stay at
Stanford.

This work is dedicated to Oscar and Nancy Brent, who laid the founda-
tions; and to George Forsythe, who guided the construction,

R. BrRENT

INTRODUCTION
AND
SUMMARY

Section 7
INTRODUCTION

Consider the problem of finding an approximate zero or minimum of
a function of one real variable, using limited-precision arithmetic on a se-
quential digital computer. The function f may not be differentiable, or the
derivative f* may be difficult to compute, so a method which uses only com-
puted values of f is desirable, Since an evaluation of /" may be very expen-
sive in terms of computer time, a good method should guarantee to find a
correct solution, to within some prescribed tolerance, using only a small
number of function evaluations. Hence, we study algorithms which depend
on evaluating f at a small number of points, and for which certain desirable
properties are guaranteed, even in the presence of rounding errors.

Slow, safe algorithms are seldom preferred in practice to fast algorithms
which may occasionally fail. Thus, we want algorithms which are guaran-
teed to succeed in a reasonable time even for the most “difficult™ functions,
yet are as fast as commonly used algorithms for “easy” functions. For exam-
ple, bisection is a safe methed for finding a zero of a function which
changes sign in a given interval, but from our point of view it is not an
accepiable method, because it is just as slow for any function, no matter
how well behaved, as it is in the worst possible case {ignoring- the possi-
bility that an exact zero may occasionaily -be found by chance).. As a con-
trasting example, consider the method of successive linear interpolation,

7

2 INTRODUCTION AND SUMMARY Chap. 1

which converges superlinearly to a simple zero of a ! function, provided
that the initial approximation is good and rounding errors are unimportant.
This method is not acceptable either, for in practice there may be no way
of knowing in advance if the zero is simple, if the initial approximation is
sufliciently good to ensure convergence, or if the effect of rounding errors
Is important,

In Chapter 4 we describe an algorithm which, by combining some of
the desirable features of bisection and successive linear interpolation, does
come close to satisfying our tequirements: it js guaranteed to converge
{i.e.. halt) after a reasonably small number of function evaluations, and the
rate of convergence for well-behaved functions is so fast that a less reliable
algorithm is unlikely to be preferred on grounds of speed.

An analogous algorithm, which finds a local minimum of a function
of one variable by a combination of golden section search and sliccessive
parabolic interpolation, is described in Chapter 5. This algorithm fails to
satisfy one of our requirements: in certain applications where repeated one~
dimensional minimizations are required, and where accuracy is not very
important, a faster (though less reliable) method is preferable. One such
application, finding local minima of functions of several variables without
calculating derivatives, is discussed in Chapter 7. (Note that wherever we
censider minima we could equally well consider maxima,)

Most algorithms for minimizing a nonlinear function of one or more
variables find, at best, a local minimum, For a function with several local
minima, there is no guarantee that the local minimum found is the globai
(ie., true or lowest) minimum. Since it is the global minimum which is of
interest in most applications, this is a serious practical disadvantage of most
minimization algorithms, and our algerithm given in Chapter 5 is no excep-
tion. The usual remedy is to try several different starting points and, perhaps,
vary some of the parameters of the minimization procedure, in the hope
that the lowest local minimum found is the gtobal minimum. This approach
is inefficient, as the same local minimum may be found several times. It is
also unreliable, for, no matter how many starting points are tried, it is impos-
sible to be quite sure that the global minimum has been found.

In Chapter 6 we discuss the problem of finding the global minimum
to within a prescribed tolerance, It is possible to give an algorithm for solving
this problem, provided that a little @ priori information about the function
to be minimized is known. We describe an efficient algorithm; applicable
if an upper bound on /' is known, and we show how this algorithm can be
used recursively to find the global minimum of a function of several vari-
ables. Unfortunately, because the amount of computation involved increases
exponentially with the number of variables, the recursive method is practical
only for functions of less than four variables. For functions of more vari-

Sec. 7 ’ INTRODUCTION 3

ables, we still have to resort to the unreliable “trial and error” method, unless
special information about the function to be minimized is availabfe.

Thus, we are led to consider practical methods for finding local {uncon-
strained) minima of functions of several variables. As before, we consider
methods which depend on evaluating the function at a small number of
points. Unfortunately, without imposing very strict conditions on the func-
tions to be minimized, it is not possible to guarantee that an n-dimensional
minimization algorithm produces results which are correct to within some
prescribed tolerance, or that the effect of rounding errors has been taken
into account. We have to be satisfied with algorithms which nearly always
give correct results for the functions likely to arise in practical applications.

As suggested by the length of our bibliography, there has recently been
considerable interest in the unconstrained minimization problem. Thus, we
can hardly expect to find a good method which is completely unrelated to
the known ones. In Chapter 7 we take one of the better methods which does
not use derivatives, that of Powell (1964), and modify it to try to overcome
some of the difficuities observed in the literature. Numerical tests suggest
that our proposed method is faster than Powell’s original method, and just
as reliable. It also compares quite well with a different method proposed
by Stewart (1967), at least for functions of less than ten variables. (We
have few numerical results for non-quadratic functions of ten or more
variables.)

ALGOL implementations of all the above algorithms are given. Most
testing was done with ALGOL W (Wirth and Hoare {1966)) on IBM 360/67
and 360/91 computers. As ALGOL W is not widely used, we give ALGOL 60
procedures (Naur (1963)), except for the n-dimensional minimization algo-
rithm., FORTRAN subroutines for the one-dimensional zero-finding and
minimization algorithms are given in the Appendix.

To recapitulate, we describe algorithms, and give ALGOL procedures,
for solving the following problems efficiently, using only function (not deriva-
tive) evaluations:

1. Finding a zero of a function of one variable if an interval in which
the function changes sign is given;

2. Finding a local minimum of a function of one variable, defined on a
given interval; .

3. Finding, to within a prescribed tolerance, the global minimum .om.
a function of one or more variables, given upper bounds on the
second derivatives;

4. Finding a local minimum of a fuaction of several variables,

For the first three algorithms, rigorous bounds on the error and the number
of function evaluations required are established, taking the effect of rounding

4 INTRODUCTION AND SUMMARY Chap. 1

errors into account. Some results concerning the order of convergence of the
first two algorithms, and preliminary results on interpolation and divided
differences, are aiso of interest.

,m.mnﬁ.om 2
SUMMARY

. Tn this section we summarize the main results of the following chapters.
A more detailed discussion is given at the appropriate places in each chapter.
This summary is intended o serve as a guide to the reader who is interested
in some of our results, but not in others. To assist such a reader, an attempt
lsas been made to keep each chapter as self-contained as possible.

Chapter 2

In Chapter 2 we collect some results on Taylor series, Lagrange inter-
polation, and divided differences, Most of these results are needed in Chapter
3, and the casual reader might prefer to skip Chapter 2 and refer back to
it 'when necessary. Some of the results are similar to classical ones, but

“instead of assuming that f has » - 1 continuous derivatives, we only assume
that [is Lipschitz continuous, and the term f*" (£} in the classical results
is replaced by a number which is bounded in absolute value by a Lipschitz
constant. For example, Lemmas 2.3.1;2.3.2,2.4.1, and 2.5.1 are of this nature.

" Since a Lipschitz continuous function is differentiable almost everywhere,
these results are not surprising, although they have not been found in the
literature, except where references are given. (Sometimes Lipschitz conditions
are imposed on the derivatives of functions of several variables: see, for
example;, Armijo (1966) and McCormick (1969).) The proofs are mostly

“'similar to those for the classical results.

Theorem 2.6.1 is a slight generalization of some results of Ralston (1963,
'1965) on differentiating the error in Lagrange interpolation. It is included
both for its independent interest, and because it may be used to prove a

slightly weaker form of Lemma 3. 6.1 for the important case g == 2. (A

proof along these lines is sketched in Kowalik and Osborne {1968).)

. An _iﬁmm:mm result of Chapter 2 is Theorem 2.6.2, which gives an
@xﬁmﬁmwon for the derivative of the error in Lagrange interpolation at the
points of interpolation. It is well known that the conclusion of Theorem
2.6.2 holds if has n -+ 1 continuous derivatives, but Theorem 2.6.2 shows
that it is sufficient for £ to have » continuocus derivatives.

Theorem 2.5.1, which gives an expansion of divided differences, may
"be regarded as a generalization of Taylor’s theorem. It is used several times
in Chapter 3: for example, see Theorem 3.4.1 and Lemma 3.6.1. Theorem

Sec. 2 SUMMARY 5

2.5.1 is useful for the analysis of interpolation processes whenever the coef-
ficients of the interpolation polynomials can conveniently be expressed in
terms of divided differences.

Chapter 3

In Chapter 3 we prove some theorems which provide a theoretical
foundation for the algorithms described in Chapters 4 and 5. In particular,
we show when the algorithms will converge superlinearly, and what the order
(i.e., rate) of convergence will be. For these results the effect of rounding
errors is ignored. The reader who is mainly interested in the practical appli-
cations of our results might omit Chapter 3, except for the numerical exam-
ples (Section 3.9) and the summary {(Section 3.10}).

So that results concerning successive linear interpolation for finding
zeros (used in Chapter 4), and successive parabolic interpolation for finding
turning points (used in Chapter 3}, can be given together, we consider a more
general process for finding a zero { of £, for any fixed g > 1. Successive
linear interpolation and successive parabolic interpolation are just the special
cases ¢ = | and ¢ = 2. Another case which is of some practical interest is
g == 3, for finding inflexion points. As the proofs for general g are essentially
no more difficult than for ¢ = 2, most of our results are given for peneral g.

For the applications in Chapters 4 and 5, the most important results
are Theorem 3.4.1, which gives conditions under which convergence is super-
linear, and Theorem 3.5.1, which shows when the order is at least 1.618.
(for ¢ = 1} or 1.324 ... (for g = 2}. These numbers are well known, _ucﬁ
our assumptions about the differentiability of / are weaker than those of
previous authors, e.g., Ostrowski (1966) and Jarratt (1967, 1968).

From a mathematical point of view, the most interesting result of Chap-
ter 3is Theorem 3.7.1. The result for g == 11s given in Ostrowski (1966), except
for our slightly weaker assumption about the smoothness of /. For ¢ = 2,
our result that convergence to { with order at least 1.378 ... is possible,
even if f({)}s=0, appears to be new. Jarratt (1967} and Kowalik and
Osborne (1968) assume that

fim ez = &1 g, 2.1
woee | X, — {] 21
and then, from Lemma 3.6.1, the order of convergence is 1.324. ... How-
ever, even for such a simple function as

F{x) = 2x% - x2, (2.2)

there are starting points x,, x,, and x,, arbitrarily close to m such that (2.1)
fails to hold, and then the order is at least 1.378. ... We should point out
that this exceptional case is unlikely to occur: an interesting conjecture is
that the set of starting points for which it occurs has measure zero.

6 INTRODUCTION AND SUMMARY Chap, 1

The practical conclusion to be drawn from Theorem 3.7.1 is that. if
oo:<n,:womn@ is to be accelerated, then the result of Lemma 3.6.1 m:ocma“cw
used in preference to a result like equation (3.2.1). In Section 3.8 we give
one of the many ways in which this may be done. Finally, some numerical

examples, illustrating both the accelerated and unaccelerated processes
are given in Section 3.9. .

Chapter 4

- In Chapter 4 we describe an algorithm for finding a zero of a function
&:ny changes sign in a given interval. The algorithm is based on a combina-
tion of successive linear interpolation and bisection, in much the same way
as .:Umﬁamm algorithm” (van Wijngaarden, Zonneveld, and Dijkstra (1963);
Witkinson (1967); Peters and Wilkinson (1969): and Dekker (1969)). Omm
algorithm never converges much more slowly than bisection, whereas Dekker's
m_.mo:.,w._:d may converge extremely slowly in certain cases. (Examples are
given 1 Section 4.2))

It is well known that bisection is the optimal algorithm, in a minimax
sense, for finding zeros of functions which change sign in an interval, (We
o:mu\. consider sequential algorithms: see Robbins (1952), Wilde (1964), and
mmo:o.: 4.5.) The motivation for both our algorithm and Dekker's w.mv :ﬂm.;
gw.ma:oz is not optimal if the class of allowable functions is suitably re-
stricted. For example, it is not optimal for convex functions {Bellman and
Dreyfus (1962), Gross and Johnson (1959)), or for €' functions with simple
Zeros.

. Both our algorithm and Dekker’s exhibit superlinear convergence to
a simple zero of a C' function, for eventually only linear interpolations
are performed and the theorems of Chapler 3 are applicable. Thus, con-
vergence is usually much faster than for bisection. Our algorithm incorporates
mverse quadratic interpolation as well as linear interpolation, so it is often

slightly faster than Dekker’s algorithm on well-behaved functions: see Sec-
tion 4.4.

Chapter 5

. An algorithm for finding a local minimum of a function of one variable
is described in Chapter 5. The algorithm combines golden section search
{Bellman (1957), Kiefer (1953), Wilde (1964), Witzgall (1969)) and successive
hmam@omo interpolation, in the same way as bisection and successive finear
interpolation are combined in the zero-finding algorithm of Chapter 4.
Oo:xﬁmmnom in a reasonable number of function evaluations is mamﬁ.minoa
(Section 5.5). For a C? function with positive curvature at the minimum
the results of Chapter 3 show that convergence is superlinear, m;dimmﬁm

Sec. 2 SUMMARY 7

that the minimum is at an interior point of the interval. Other algorithms
given in the literature either fail to have these two desirable properties, or
their order of convergence is less than that of our algorithm when conver-
gence is strictly superlinear: see Sections 5.4 and 5.5.

In Sections 5.2 and 3.3 we consider the effect of rounding errors. Section
5.2 contains an analysis of the limitations on the accuracy of any algorithm
which is based entirely on limited-precision function evaluations, and this
section should be studied by the reader who intends to use the ALGOL
procedure given in Section 5.8,

If f is unimodal, then our algorithm will find the unique minimum,
provided there are no rounding errors. To study the effect of rounding errors,
we define “S-unimodal” functions. A unimodal function is §-unimodal
for all 6 = 0, but a computed approximation to a unimodal function is not
unimodal: it is d-unimodal for some positive d, the size of ¢ depending on

increases indefinitely.) We prove some theorems about §-unimodal functions,
and give an upper bound on the error in the approximate minimum which is
found by our algorithm, In this way we can justify the use of our algorithm
in the presence of rounding errors, and account for their effect. Our motiva-
tion is rather similar to that of Richman (1968} in developing the e-calculus,
‘but we are not concerned with properties that hold as € -~ 0. The reader who
is not interested in the effect of rounding errors can skip Section 5.3.

Chapler 6

in Chapter 6 we consider the problem of finding an approximation
to the global minimum of a function f, defined on a finite interval, if some
a priori information about f is given. This interesting problem does not seem
to have received much attention, although there have been some empirical
investigations (Magee (1960)). In Section 6.1, we show why some & priori
information is necessary, and discuss some of the possibilities. In the remain-
der of the chapter we suppose that the information is an upper bound on f.

An algorithm for global minimization of a function of one variable,
applicable when an upper bound on /" is known, is described in’ Section
6.3. The basic idea of this algorithm is used by Riviin (1970) to find bounds
on a polynomial in a given interval. We pay particular attention to the prob-
lem of giving guaranteed bounds in the presence of rounding errors, and the
casual reader may find the details in the last half of Section 6.3 rather in-
digestible.

In Section 6.4, we try to obtain some insight into the behavior of our
algorithm by considering some tractable special cases. Then, in Sections
6.5 and 6.6, we show that no algorithm which uses only function evaluations
and an upper bound on f” could be much faster than our algorithm. Finally,

& INTRODUCTION AND SUMMARY Chap. T

a generalization to functions of several variables is given in Section 6.8, The
conditions on f are much weaker than unimodality (Newman (1965)). The
generalization is not practically useful for functions of more than three vari-
ables, and it is an open question whether a significantly better algorithm
for functions of several variables is possible.

Chapter 7

In Chapter 7 we describe a modification of Powell’s (1964) algorithm
for finding a local minimum of a function of several variables without cal-
culating derivatives. The modification is designed to ensure quadratic conver-
gence, and to avoid the difficulties with Powell’s criterion for accepting new
search directions.

First, in Section 7.1, we give a brief introduction and a survey of the
recent literature. The effect of rounding errors on the attainable accuracy
is discussed in Section 7.2. Powell’s algorithm is described in Section 7.3,
and our main modification is given in Section 7.4. The idea of the modifica-
tion (finding the principal axes of an approximating quadratic form) is not
new: for example, it-is used by Greenstadt (1967) in his quasi-Newlon
method. Unlike Greenstadt, though, we do not use an explicit approximation
to the Tessian matrix. An interesting feature of our modification is that it
is possible to avoid squaring the condition number of the eigenvalue problem
by using a singular value decomposition: see Section 7.4 for the details,

In Sections 7.5 and 7.6 we describe some additional features of our
algorithm. Then, in Section 7.7, we give the results of some numerical experi-
ments, and compare our method with those of Powell (1964); Davies,
Swann, and Campey (Swann (1964)); and Stewart (1967). For the comparison
we have used numerical results obtained by Fletcher {1965) and Stewart
(1967). The numerical results suggest that our algorithm is competitive with
other current algorithms which do not use derivatives explicitly, although
it is difficuit to reach a definite conclusion without more practical experience.

Finally, we give a bibliography of some of the recent literature on non-
linear minimization, with an emphasis on methods for solving unconstrained
problems. The Appendix contains FORTRAN translations of the ALGOL
procedures given in Chapters 4 to 6.

SOME USEFUL RESULTS
ON TAYLOR SERIES,
DIVIDED DIFFERENCES,
AND LAGRANGE
INTERPOLATION

Section 1
INTRODUCTION

In this chapter we collect some results which are needed in Chapters
3 and 6. The reader who is mainly interested in the practical applications
described in Chapters 4 to 7 might prefer to skip this chapter, except for
Section 2, and refer back to it when necessary.

Some classical expressions for the error in truncated Taylor series and
Lagrange interpolation involve a term FtE), where € is an unknown point.
For such expressions to be valid, f must have n - 1 derivatives. Several of
the results of this chapter give expressions which are valid if /% satisfies
a (possibly one-sided) Lipschitz condition. In these results, the term f&* V(§)
is replaced by a number which is bounded by a Lipschitz constant. It seems
uniikely that these results are new, but they have not been found in the
literature except where references are given.

The results of Chapter 3 depend heavily on Theorem 5.1, which gives
an expansion of the divided difference f[x,,...,x,] (Section 2) near the
origin. This theorem, and the less cumbersome Corollary 5.1, are useful
for the analysis of interpolation processes when the coefficients of the inter-
polating polynomials can be expressed in terms of divided differences.

Finally, in Section 6, we extend some results of Ralston (1963} on the
derivative of the error term in Lagrange interpolation. These results are

9

10 PRELIMINARY RESIHTS Chap. 2

relevant to Chapter 3, although they are given mainly for their independent
interest. Perhaps the most interesting result is Theorem 6.2, which shows
that, if we are only concerned with the points of interpolation, then we can
differentiate the classical expression for the error {equation (6.4)), regarding
the term 7™(&(x)) as a constant. This is well known if f has w1 con-

tiuous derivatives, but Theorem 6.2 shows that it is sufficient for f to have
n continuous derivatives.

Section 2
NOTATION AND DEFINITIONS

Throughout this chapter [a, b] is a nonempty, finite, closed . interval,
and fis a real-valued function defined on la, b]. n is a nonnegative integer,
M a nonnegative real number, and ¢ a number in {0, 1].

Definitions

The modulus of continuity w(f; §) of fin [a, b] is defined, for § > 0, by
w(f30y = sup |f(x)— f(3l (2.1)

x, < la, b
br—ylis

If has a continuous »-th derivative on [a,], then we write /' & C*{a, b).
If, in addition, ' & Lip,, a, i.c.,

w(f " §) = M= 2.2)
for all § > 0, then we write f LC"a, b; M, &). (This notation is not
standard, but it is convenient if we want to mention the constants M and
o explicitly.) If f € LC"[a, b; M, 1] then we write simply /e LC"[a, b; M.

If xy,...,x, are distinct points in la, b], then IP(f;x,, ...,x,) is
the Lagrange interpolating polynomial, ie, the unique polynomial of
degree n or less which coincides with fatx,, ..., x,. The divided difference
Flxes - .5 x,1is defined by :

i f(x) _
Sxos ooyl = 25 E (x; — x| (2.3)

Fe=0

i=j
(There are many other notations: see, for example, Milne (1949), Milne-
Thomson (1933), and Traub (1964).) Note that, although we suppose for
simplicity that x,, ..., x, are distinct, nearly all the results given here and
in Chapter 3 hold if some of x,, .. ., x, coincide. (We then have Hermite
interpolation and confluent divided differences: see Traub (1964).) For the
statement of these results, the word “distinct” is enclosed in parentheses.

Sec. 3 TRUNCATED TAYLOR SERIES 711

Newton's identities

For future reference, we note the following useful identities (see Cauchy
{1840), Isaacson and Keller (1966), or Traub (1964)). The m"ﬁ. is often used
as the definition of the divided difference f[x,, ..., ».L,.Er_mw the mwnoma
gives an explicit representation of the interpolating polynomial and remainder.

I. fix,] = f{x,}and, for n = [,
Flxgs . oosx,] == Sege X,y — flx, ... %] (2.4)

uno - .M.z

2. 1P =1IP(f: x, ..., x,), then

70 = Pt (T e = 20 /b ol 25)

]
and

Px} = flxe] - (x = Hcv\.ﬁkou X J+ -
o — xg) o = x,) X, - LX)
(2.6)

Section 3
TRUNCATED TAYLOR SERIES

In this section we give some forms of Taylor’s theorem. Pmﬁ.ﬁm M._
is needed in Chapter 6, and applies if /' satisfles a one-sided Lipschitz
condition.

LEMMA 3.1 .
Suppose that /¢ C#[0, b] for some b > 0, and thai there is a constant
M such that, for all y = [0, 8],

FU — S0 = My, (3.1)
Then, for all x « [0, b}, |
O e e (3.2)
where
mix) < M. (3.3
Remarks

The proof is by induction on n, and is omitted. The ooﬂ.mmﬁcn%:m two-
sided resulf is immediate, and is generalized in Lemma 3.2 below. In Lemma
3.2, fractional factorials are defined in the usual way, so

O (@@t @)+), (3:4)

12 PRELIMINARY RESULTS

Chap. 2
LEMMA 3.2
If fe LC"[a, b; M,] and X,y [a, D], then
- Eﬁ o x — virtem(x, yvia!
k..Cmv aMc] \w m.\tv Lﬂ ‘m: “ Rvm w ¥ «umV
where
fm(x, y)| < M. (3.6)
Remarks

The Em:: H.m.ﬂz.im_ if n=0, and for #n > 1 it follows from Taylor’s
theorem with the integral form for the remainder, using the integral

X - 1) g]
—. ﬁ u d o X o

Jo fn— 1 - {r - o)t (3.7)
for x = 0.

Note that the bound (3.6) is sharp, as can be seen from the example
fx) = xree, (3.8)
with y = O and M = (#n + &) /a!. Since, for n = 1, :

(n -+ a)!
ul << Jém__a_:ivl 3.9

the bound obtained from the classical result

5 =SV E Y ooy

) =" E I gy o 0 g, (3.10)

for some £ between x and v, is not sharp.

Section 4
LAGRANGE INTERPOLATION

The @zoﬁ.sm lemma, used in Chapter 6, gives a one-sided bound on
the error in Lagrange interpolation if /™ satisfies a one-sided Lipschitz
condition. Thus, it is similar to Lemma 3.1. The corresponding two-sided
womz.x follows from Theorem 3 of Baker (1970), but the proof given here
is simpler, and similar to the usual proof of the classical result that, if
f e C'a, b], then m(x) = furU(E(x)), for some &(x) € [a, b]. (See wow.
example, Isaacson and Keller (1966), pg. 190.) v

LEMMA 4.1

Suppose that f & Crla, b]; x,, ..., x,are (distinct) points in [a, &];
P=1IP(f;x,,...,x);and, forall x, y < [a, B] with x > ¥,

FU@ — £90) < Mx—). 4.1
Then, for all x < g, 5],
7o) = P60+ ([T (5 = x0) o2 (42)

Sec. & DIVIDED DIFFERENCES 13
where
mix) << M. (4.3)
._u«ooﬁ
Suppose that # > 0 and x == x, forany r=0,...,m, for otherwise the
result is trivial. Let
W) = [T (= x), @4)
and write
£ = P(x) + w)S(x). (4.5)
Regarding x as fized, define
F(z) = f(z) — P(z) — w(2)}S(x} (4.6)

for z < [a, bl

Thus F & C"a, b}, and F(z) vanishes at the n - 2 distinct points
X, Xgs . - - » X,. Applying Rolle’s theorem n times shows that there are two
distinet points &,, &, € (a, b) such that

Fogy) = FP(E) =0, 4.7
Differentiating (4.6) r times gives
Fo(g) = f(z) = (n -+ D! Sz + o), @8)
where c(x) is independent of z. Thus, from (4.7), .
Sy i .\::Amcv ,,,,,,,, . .\.Qwﬁﬁbg s
S0 = Gl] @

and the result follows from condition (4.1).

Section &
DIVIDED DIFFERENCES

femma 5.1 and Theorem 5.1 are needed in Chapter 3. The first part
of Lemma 5.1 foliows immediately from Lemma 4.1 and the identity (2.5)
(we state the two-sided result for variety). The second part is welil known,
and follows similarly. Theorem 5.1 is more interesting, and most of the
results of Chapter 3 depend on it. It may be regarded as a generalization of
Taylor’s theorem, which is the special case n = 0.

LEMMA 5.1
Suppose that f e LC"[a, b; M] and that xg, ..., x,,, arc {distinct)
points in [, b}. Then

\AH?..JHiL = }u i mm.b

T4 PRELIMINARY RESULTS

Chap. 2
where
im{<< M. (5.2)
Furthermore, if /' = C**![a, b], then
= [(5.3)

for some & < g, bl.

THEOREM 5.1

Suppose that k, 7> 0; f e C*¥a, b]; a < 0; b > 0: and D
are (distinct) points in [a, &]. Then "

R (O SR
.\J_Huncu ...uu,n”_ T nl T A VN%M \m\ MMIW _\
1 oy o .\.STL&AOV
m Ao,‘“\.fﬂ:an‘l..\;H: T urawv O_u - mﬁ\v_ + mNu

5.4
where o9

L

R o i Ao > {x, - x,1f ?.W,ERZ::.:V _ _\JQ‘;AD&WV

(5.5)
for some ¢, . in the interval spanned by X,o...,x, and 0.
COROLLARY 51
If, in Theorem 5.1,
nm e X
 max x|, {5.6)
then
MNNA <= %x f (mb k). %
. ::ﬁ:.Cs ; 8). (5.7

Proof of Theorem 5.1

The result for k == 0 is immediate from the second part of Lemma 5.1,
S0 suppose that & = 0. Take points y,, ..., », which are distinct, and dis-
tinct from x,, ..., x,. Then

e oo x] = flye ... s Yl
Hﬂm Mv\.m“&cu e Hﬁw Mm\.*~u troroy -uﬂb - .\.ﬁ‘ﬂwcw L .X..ﬂ,iwu .wunu AR] 'H_\.HU_.W—
{5.8)
”nmu AHa — %«w.\;_”umou s X Yo, w\.:,._u . AMOV
by the identity (2.4).

Sec. & DIFFERENTIATING THE ERROR 15

We may suppose, by induction on k, that the theorem holds if & is
replaced by k — 1 and 7 by n -}- 1. Use this result to expand each term in
(5.9), and consider the limit as y,, ..., », tend to 0. By the second part of
Lemma 5.1, f{ye .. .,»] tends to f@(0)/r!, so the resuit follows. (Strictly,
to show the existence of the points &, ,,, we must add to the inductive
hypothesis the result that f"®(&,) is a continuous function of
Koo s Xy)

Corollary 5.1 is immediate, once we note that there arc exactly
(n + EY/(r1kY) terms in the sum (5.5).

Section 6
DIFFERENTIATING THE ERROR

The two theorems in this section are concerned with differentiating
the error term for Lagrange interpolation. These theorems are not needed
later, but arc included for their independent interest, and also because they
may be used to give alternative proofs of some of the results of Chapter 3:
see Kowalik and Osborne (1968}, pp. 18-20.

the result under the slightly weaker assumption that /€ LC"[a, b; M] for
some M: the only difference in the conclusion is that Ralston’s term
£ U((x)) s replaced by m(x), where |m(x)| < M. The proof is similar
to that given by Ralston (1963), and is also similar to the proef of Lenima
6.2 below, so it is omitted.

Theorem 6.2 gives an expression for the derivative of the error at the
points of interpolation. If f € LC[a, b; M] then the result follows immedi-
ately from Theorem 6.1, but Theorem 6.2 shows that /' ¢ C[a, 4] is sufficient.

THEOREM 6.1

Suppose that n > 1;f e LC"a, b; M]; x,, . . ., x,_, are (distinct) points
in o, b wx) = (x —x) -+ (x —x,); P="IP(f} xooo. .. x,000s and
F(x) = P(x) + R(x). Then there are functions ¢: [a, b]— [a, bl and
m: {a, b] - [— M, M] such that

1. f*{&(x)) is a continuous function of x & [a, b] (although {(x) is not

necessarily continuous);
2. m(x) is continuous on [a, b], except possibly at xg, ..., X, 3
3, forali x e [a, 8},

) " (n}
Nmﬁuﬂv = Eﬁ%@ ﬁm.wv
and
ey WEEG) | wm(x),
R(x)=" - RS E (6.2)

&8 PRELIMINARY RESULTS Chap, 2

and
ifxstx forr=0,...,n— 1, then

nm__ Oa ‘
e G = 1Y (63)

THEOREM 6.2

. Suppose that » > 1; .\m CMla, b; xq....,x,., are (distinct) points
n a, by wix) = (x —xp) - (x — x,_)); P = IP{S; Xy .., X,); and
fF(x) = P(x) 4 R(x). Then Hrmam is a function ¢: {a, b] -]a, E such that
SNE(x)} is a continuous function of x € Ig, b]; for all x la, B],

R(x) = :._munu.\.wwzwmﬁ\m.ﬂvvw (6.4)
and, forr =10,...,n — 1,
R(x,) = wix, v\.?wmmmﬂ vv (6.5)

Before proving Theorem 6.2, we need some lemmas. Note the m:ﬁ:mEQ
between Lemma 6.2 and Theorem 6.1.

LEMMA 6.1

Suppose that » == 1; f & Ca, b]; Xgs ..., X, are distinct points in
la, 8; P =IP(f; x4y ..., X,);

A= Hmm_xa m {6.6)
and
fx; — x, (6.7)
Then, for all x ¢ {a, &],
S = P+ (1T (v =)t (6.8)
where
A .
S0 = 2R (6.9)
Proof
If x = x, forsomer =0, ..., n then we can take S(xy = 0. Otherwise,
by the amm:Q (2.5),
SG) = gy X, X, (6.10)

Write x,,, for x, and reorder x, ..., x,,, so that, if the reordered points
are xy, ..., x.,,, then

Xy = Xhuy == max

Oicifsns)]

(6.11)

Sec. 6 DIFFERENTIATING THE ERROR 17

From (6.10) and the identity (2.4),

S(x) = Flxhs ..., x ﬁ.i \Tn_,..:k.:m_ (6.12)

Xy — Xor
so, by Lemma 5.1,
MC& s .\Aiﬁv - \:;mmv mm.“wv

AR

for some & and &’ in e, 5). In view of (6.6) and (6.11), the result follows.

LEMMA 6.2
Suppose that n = 2; f e Ca, b]; x,, ..., x,_, are distinct points in
[a, b]; A = max m%aC&r e me %, —x;; Po=1IP(f;x0 ... X,)
xd [a, b] i jeln

wix)=(x —xg) -~ {x — HzlY and f(x) =P (x) + R(x). Then there is
a function &:[a, b] — [a, 8] such that, for all x € [a, b], f™(&(x)) is a con-
tinuous function of x;

R{x) = W C&\Aimmnxg (6.14)
s wRlx), m Iw(x) A
_ﬁb : 1A, (6.15)
m:avmaﬂfwawﬁcu...u:ﬁ 1, then
GO (6.16)
Proof
Let x, be a point in [a,], distinct from x and x,, ..., x,_,. Fork ==n
or #n + 1, define
Po=1IP{f;xg .- .. Xp.1) (6.17)
and
wi(x) = (x = X} - (X — X)) (6.18)

By the classical result corresponding to Lemma 4.1, there is a function ¢
such that (6.14) holds. Suppose, until further notice, that x == x, for
r=0,...,n Then, from {6.14) and the identity

g S xwilx)
P = 5 Oy (619)
we have
[UEC) S g)
n! N ExARv ,,,,,, wMHUMu AH — HLEPAHL. h@NOu

Since the right side of (6.20) is continuously differentiable at x, so is the left
side, and

L& oy = A(LDY LS e

w (x) (x — R Wiix,)

I8 PRELIMINARY RESULTS Chap. 2

Define S(x, x) by

SO = P9 4w, ()S(, x,). (6.22)
Since
:._:A..ﬂ:v if Foss R,

f
i (x,) = . .
T (x, = x wi(x,) i r=0,...,12—1

(6.23)

>

equation (6.19) gives

Pl fix) Fx,)
TRNET R e e /s Al v T A LGRS0
S0
oy SO — i) | R fx)
St x) = Y Tx, I C e ea
(6.25)

As X, - x, the right side of (6.25) tends to the right side of (6.21). Thus, there
exists

lim (s, x,) = LA poga), (6.26)

and, from the definition (6.22) and Lemma 6.1, this proves (6.16). Now,
by differentiating the right side of (6.14) by parts, we see that (6.15) holds;
in fact

() = ML) £ v), 627

provided that x == x, for r =0, ..., n — 1. Consider (6.27) near one of
the pomnts x, r=20,...,n— 1. R(x) is continuous at X,. w,(x) =0,
wi(x,) 5 0, and, by (6.16), df “(&x)/dx is bounded for x 7= Xx,. Thus
JE(x)) has, at worst, a removable discontinuity at x,. By the continuity
of f*(&) as a function of £, a suitable redefinition of ¢(x,) will ensure that
J(&(x)) is a continuous function of x, and that

NN..ARL P _cwmkau\hwvmﬁmkbu . mmwmv

This completes the proof of the lemma.

Proof of Thearem 6.2

If n = 2 then the result follows immediately from Lemma 6.2, If 5 = 1,
choose £(x) so that &(x,) = x, and, for x = Xg,

£ = L) = Slxo), (6.29)
X — X,

Then f7(&(x)} is a continucus function of x [a, b] and, as R(x) == f(x) — f(x,)
and w(x) = x — x,, it is easy to see that equations (6.4) and (6.5) are
satisfied. Thus, the theorem holds for all s = 1.

THE USE OF SUCCESSIVE
INTERPOLATION FOR
FINDING SIMPLE ZEROS OF
A FUNCTION AND ITS
DERIVATIVES

Section T
INTRODUCTION

Suppose thatg > Tand f € C? '[q, b]. Given (distinct) points Xy oo s X,
in [a,), a sequence (x,) may be defined in the following way: fxg, . .o, x,,,
are already defined, let P, = IP(f; x,. ..., x,,,) be the ¢-th degree polyno-
mial which coincides with fat x,, ..., x_,., and choose x so that

m+gr nhg+

.Numn\:?.u,m,afv ==), (L.1)

Under certain conditions the sequence (x,) is well defined by (1.13, lies in
[a, b], and converges to a zero { of £V, In this chapter we give sufficient
conditions for convergence, and estimate the asymptotic rate of convergence,
making varjous assumptions about the differentiability of f;

Since P, is a polynomial of degree g, (1.1) is a linear equation in S |
T ooy Xg] % 0, (1.2)
then Lemma 3.1 shows that the unigue solution is
. - _. A S, .\,ﬁ.ﬁ3+._, - .. -9 .uﬂk‘_vn_umvu m \w
‘x=+a+~ h q .M KX .\n._ﬂuﬂ:.h s H..n._,n.”— A .rv

and this might be used as an alternative definition. From Section 4 on, our
assumptions ensure that x,,. .., x,,, are sufficiently close to a simple zero
{ of f97Y, s0 (1.2) holds. In Section 3 the assumption that Fo =+ 0is

19

20 SUCCESSIVE INTERPOLATION Chap. 3

unnecessary: all that is required is that x,_, ,, is a (not necessarily unique)
solution of (1.1).

The cases of most practical interest are ¢ == 1,2, and 3. For g =1,
the successive interpolation process reduces to the familiar method of succes-
sive linear interpolation for finding a zero of £, and some of our results are
well known. {(See Collatz (1964), Householder (1970), Ortega and Rheinboldt
(1970), Ostrowski (1966}, Schroder (1870), and Traub (1964, 1967).} For
g = 2, we have a process of successive parabolic interpolation for finding
a turning point; for g = 3, a process for finding an inflexion point. These
two cases are discussed separately by Jarratt (1967, 1968), who assumes
that f is analytic near {. By using (1.3} and Theorem 2.5.1, we show that
much milder assumptions on the smoothness of f sufliee (Theorems 4.1,
5.1, and 7.1). Also, most of our results hold for any g == 1, and the proofs
are no more difficult than those for the special cases ¢ = 2 and ¢ = 3.

Some simplifying assumptions

Practical algorithms for finding zeros and extrema, using the results
of this chapter, are discussed in Chapters 4 and 5. Until then we ignore the
problem of rounding errors, and usually suppose that the initial approxi-
mations x,, . . . , x, are sufficiently good.

For the sake of simplicity, we assume that any g + 1 consecutive points
Xy oo X, are distinct. This is always true in the applications described
in Chapters 4 and 5. Thus, P, is just the Lagrange interpolating polynomial,
and the results of Chapter 2 are applicable. As in Chapter 2, the assumption
of distinct points is not necessary, and the same results hold without this
assumption if P, is the appropriate Hermite interpolating polynomial.

A preview of the results

The definition of “order of convergence” is discussed in Section 2, and
in Section 3 we show that, if a sequence (x,) satisfies {1.1) and converges {0

Tn Sections 4 to 7, we consider the rate of convergence to a simple zero
¢ of £ making increasingly stronger assumptions about the smoothness
of f. For practical applications, the most important result is probably
Theorem 4.1, which shows that convergence is superlinear if / € C? and the
starting values are sufficiently good. As in similar results for Newton’s method
(Coliatz (1964), Kantorovich and Akilov (1959}, Ortega (1968), Ortega and
Rheinboldt (1970), etc.), it is possible to say precisely what “sufficiently
good” means. Theorem 5.1 is an easy consequence of Theorem 4.1, and gives
a lower bound on the order of convergence if /¢ is Lipschitz continuous.

The question of when the order of convergence is equal to the lower
bound given by Theorem 5.1 is the subject of Sections 6 and 7. Although

Sec. 2 THE DEFINITION OF ORDER 27

the results arc interesting, they are not of much practical importance, for
in practical problems it is merely a pleasant surprise if the iterative process
converges faster than expected! Thus, the reader interested mainly in prac-
tical applications may prefer to skip Sections 6 and 7 (and also Theorem 2.1),
except for Lemma 6.1.

In Section 8, we consider the interesting problem of accelerating the rate
of convergence. Theorem 8.1 shows how this may be done. We make use
of Lemma 6.1, which gives a recurrence relation for the error in successive
approximations to {, and is a generalization of results of Ostrowski (1966)
and Jarrait (1967, 1968).

Finally, in Section 9 the theoretical results are illustrated by some
numerical examples, and a brief summary of the main theorems is given
in Section 10. The reader may find it worthwhile to glance at this summary
occasionally in order to see the pattern of the results.

Section 2
THE DEFINITION OF ORDER

Suppose that lim x, = {. There are many reasonable definitions of the

Frovnm

“order of convergence” of the sequence (x,). For exampie, we could say that
the order of convergence is p if one or more of {2.1) to (2.4} holds:

lim X =81 g 2.1
O (e @b
o loglx, — 0]
lim =il o3 L g 2.2
I ST ¢ — 7 (2.2)
lim (—log|x, — {7 = p, (2.3)

lim inf (—loglx, — £/

Herr

p. (2.4)

These conditions are in decreasing order of strength, ie., (2.1) = (2.2) =
(2.3) = {2.4), and none of them are equivalent. (2.1} is used by Ostrowski
(1966), Jarratt (1967}, and Traub (1964, 1967), while (2.2) is used by Wall
(1956), Tornheim (1964), and Jarratt (1968). Voigt (1971) and Ortega and
Rheinboldt (1970) give some more possibilitics. For example, we may take
the supremum of p such that the limit K in (2.1} exists and is zera, or the
infimum of p such that K is infinite. For our purposes it is convenient to use
(2.1) and (2.4}, so we make the following definitions.

DEFINITION 2.1

We say x, — { with strong order p and asymptotic constant K if x, —
as 7 - oo and (2.1) holds.

We say x, -+ { with weak order p if x, — { as n — oo and (2.4) holds.
1f x, = for all sufficiently large n then we say that x, — { with weak order co.

22 SUCCESSIVE INTERPOLATION Chap. 3

DEFINITION 2.2
Tet

¢=limsup|x, —{

v

(2.5)

We say x, — { sublinearly if x,—{ and ¢ =1, We say x, — { linearly
if 0<c< 1. We say x,—{ superlinearly if ¢=0. We say x, > (
strictly superlinearly if x, - { with weak order p > 1.

Examples

Some remarks and examples may help to clarify the definitions. If
p > land x, = exp(—p){l + o(D)Jasn — co, thenx, — 0 with strong order
p and mmfﬁvﬁoso constant 1. If ¢ > 1 mmm x, == exp{—o)[2 + (—=1)"],
then x, — 0 with weak order ¢, but not with any strong order, for the limit
in (2.1) does not exist if p == o, is zero if p <2 o, and is infinite if p > ¢. Thus,
convergence with strong order p implies convergence with weak order p,
but not conversely.

If the Hmit in (2.1} or {2.4) exists, and x, — {, then p > 1. If the _:,::
(2.1) exists with p = 1,and x,-— {, then K <Z I. (K <Z | H,OZ:FE. convergence,
and K == 1 for sublinear convergence.)

Examples of sublinear, linear, superlinear, and strictly superlinear
convergence are x, = 1/n, 277, n"", and 2"*" respectively.

Section 3
CONVERGENCE TO A ZERO

In this section we show that if the sequence (x,) defined by (1.1)
converges, then it must converge to a zero of ", assuming only that
f e Ce*{a. b]. First, we need a lemma which gives a relation befween
the points x,,. ... X

atgt it
LEMMA 3.1
I X, X, 00 .5 X, arc (distinct) points in {a, 8], and x,,,,, satisfies
1), then

(55 s = S B s = D5 Frgeih B2D)

Proof
By the identity (2.2.6},

.Wzﬁ.&v (Nw_ma: -+ A\A o _ﬂ X X s L +

=) e (8 X DT g
@.3

Sec. 3 CONVERGENCE 7O A ZERO 23
SO
g—1
PEG) — (@~ D T Tl (5 s = 050
(3.3)

Thus, the result follows from (1.1).

THEQREM 3.1
Suppose that f e C¢ '{a, b}: that a sequence (x,) satisfying (1.1) is
defined in [, b]; and that there exists lim x, = {. Then f%~9({) = 0.

e

Proof
Suppose, by way of contradiction, that
fe (@)= 0. (3.4)
For 0 <7 r < g, the identity {2.2.4) shows that
(s = Xpr T - s X
= X oo Xpg] o DX oo Xty Xprtn - - N I

(3.5)
Thus, from Lemma 3.1,
g1
Xty 7 Xpag ™ Lor M_ Oﬂaﬁ - Hu+u+ng Aw@
where]
s = 1 - \T..:, sy Xy Kpayas s sy H:.IMH_. ﬁwﬂv

S o X
Both divided differences in (3.7) tend to £ 2(0)/(g — 1)! as n - oo, so there
is no loss of generality in assuming that the denominator f[x,, ..., Xpego1]
is nonzero for all # (on the assumption (3.4)), and we have

lim u,, =0 (3.8)
.mmEEEm (3.6 overr=0,...,9 1 and rearranging terms gives
g1
Mc muhi; — X, ig4 L ta@n - H_:vﬁ;uv chv
where
s q
o AR (3.10)
L= 2 e

By (3.8), there is no loss of generality in assuming that the anmo_z_zmﬁg in
(3.10) is nonzero for all #n z= 0. From (3.6), with r =g - 1, and (3.9), we
have

Xoyrg-1 7 Xnsg Ha mku.n ,,,,, k:fﬁlvu mwm~v

24 SUCCESSIVE INTERPOLATION Chap. 3

where

Hoy = lipgsH (3.12)
The repeated application of (3.11) gives

Xgen 7 Xg == Holly v PREIE SR (3.13)
and, by (3.8), (3.10} and G._va i, > 0 as n — oo, so the right side of (3.13)
tends 1o zero as n - oo, This contradicts the assumption that x,_, 5 x,,
so (3.4) is false, and the proof is complete. (If we do not wish to assume that
any g -+ 1 consecutive points x,. ..., x,., are distinct, then we may argue
as follows: on the assumption (3.4), the right side of (3.1) is nonzero for all
sufficiently large #, and thus at least two consecutive points from x, ...,
X,, 44 are distinct. Taking these two points in place of x,_, and x,, we get a
contradiction in the same way as from (3.13}.)

Section 4
SUPERLINEAR CONYERGENCE .

If / has one more continuous derivative than required in Theorem 3.1,
then Theorem 4.1 shows that convergence to a simple zero of £~ ! is super-
linear, in the sense of Definition 2.2, provided the starting values are suffi-
ciently good. The theorem makes precise what we mean by “sufficiently good.”
{In equation (4.1}, w is the modulus of continuity: see Section 2.2.) Conver-
gence to a multipie zero of f° ' is not usually superlinear, even if g ==
(Section 4.2), and Theorem 3.1 above is the only theorem in this chapter for
which we do not need to assume that the zero is simple. Thus, there is no
reason to expect that the algorithms described in Chapters 4 and 5 will con-
verge any faster than linearly to multiple zeros of f97 1.

THEQREM 4.1
Suppose that f e C%a, b); { € [a. b]; x,, . .., x, are (distinct) points
in {a, b]; 6, = max |x; — Ll SO D) = 05 [— 8, L -+ 6,1 = [a, B]; and
. (9 6,) < | fOO) (4.1)

ﬂan a mon:mmnw (x, u is E:n:mq defined by (1.1}, and x, —» { superlinearly

%: = Max ﬂH:.I. - ﬁm A#Nv
F=2 0,8
and
3(fP; 5,)

M. g, . . A L..m
N i (4Y 4.3

then the sequence (J,) is monotonic decreasing and
R (4.4)

Sec, 4 SUPERLINEAR CONVERGENCE 25

Proof

the statement of the theorem {equations (4.2) and ﬁ.md. m_:nm .\s\:ﬁov ===
Corollary 2.5.1 to Theorem 2.3.1 (with k = I, n == g — 1} gives

.w._wﬁf... .‘_ AMRV\.E“AOV + Ry Ahmv
where
Fw(f; ') .
R S (4.6)
if
= max x| =0, S
Similarly,
. Y _ _f"0
Sxg oax] = Qwulﬁ + Ry = TN TRy (4.8}
where
w9500 Ay 1
A T @9)
50
_ R Ao 1
Ry = TER, =y (4.10)

(Note that the assumption (4.1) ensures that fx,, ..., x] s 0.)
Frem Lemma 3.1 (with x, and x, interchanged), (4.5), and (4.8),

(B —xe) o0 = (S)2 @.11)

(=1 i=1

where
ﬁM . v\ﬁﬁﬁou L R(1+ R, (4.12)

From (4.6), (4.7}, and (4.10), equation (4.12) gives
R,| < M LITO) 30w 8)

R I RO I 19
50, from (4.3) and (4.7),
A8 [O
R,| < 20 /T 14
PR, | = G — (4.14)
Now, from (4.11), we have
PSR (4.15)

By the assumption (4.1), 1, << 1, so x,,, lies in [a, b], &, and 1, arc well-
defined, &, == &' =Z §,, 4, =< 4, and

[Xger |55 400 (4.16)

28 SUCCESSIVE INTERPGLATION Chap. 3

...... ”

Thus, the inequality (4.4) holds, and it only remains to show that x, — 0
superlinearly, From (4.4) and the above,

%E.Z < pc\f e m;é:a%_ A mrm%: A&._mu

and 4, < 1 by assumption (4.1), so §, — 0 as # — co. Thus, by the continuity
of f'@ and the definition (4.3), 4, — 0 as # -—» oo,
Take any € > 0. For all sufficiently large #,

A, = (4.19)
so, from (4.4),
Hm sup §;/" <Z €. (4.20)

n=oo

As € is arbitrarily small, this shows that

lim | x, ¥ = lim)" = 0. (4.21)

poea

Thus, x, — { = 0 superlinearly, and the proof is complete.

Remarks

The proof of Theorem 4.1 shows that, for » > 0, |x,,,,, — {] is no
greater than the second-largest of |x, — {|....,]x,,, — (| Thus, if g == 1,
the sequence (| x, - { [} is monotonic decreasing, except perhaps for the first
term. In fact, the proof shows that, forg = l and n > 1, .

j < A,_,——0asn-— oo (4.22)
{provided x, ==). This is a common definition of “superlincar convergence,”
stronger than our Definition 2.2.

If g > 2, the sequence (|x, - {[) need not be eventually monotonic
decreasing. Monotonicity would follow from strong superlinear convergence
with order greater than 1, but more conditions are necessary to ensure this
sort of convergence: see Sections 6 and 7.

Section &
STRICT SUPERLINEAR CONVERGENCE

Assuming slightly more than Theorem 4.1, Theorem 5.1 shows that con-
vergence to a simple zero of f“™V is strictly superlinear (Definition 2.2).
Before stating the theorem, we define some constants §, . and y,, which
are needed here and in Sections 6 and 7.

Sec. & STRICT SUPERLINEAR CONVERGENCE 27

DEFINITION 5.1

X = x o (5.1)

be ul?, for i =10,....q, with [t% | = {u,]
stants . and y, ., are defined by

= lulm | Then the con-

Bo.=1u] and y,.=1u2l

Since the case & = 1 often occurs, we write simply f_ for f,,, and y,
fory, ;.

Remarks

B... is the unique positive real root of (5.1}, and it is easy to sce that,
for 0 <o =C1,

(1 - /2t < B < (1 4 o)1, (5.2)

Qw\umﬁrms»_Hmﬁomamwxmnmﬁiono:ﬁu_oxoo&.:mﬁwHcoﬁmo:m.:Exr:uoaz_:w
v, 1f g =1 or 2 then y, < 1, but, for g = 3, 1 <<y, < §,. This may be
proved by applying the Lehmer-Schur test to show that, for suitable € = 0,

exactly ¢ — 2 roots of

X = x +] (5.3)
lie in the circle | x| < 1 + €. The details are omitted, for all cases of practical
interest are covered by Table 5.1, which gives f, and y, to 12 decimal places
forg = 1, ..., 10. The table was computed by finding all roots of (5.3) with

the program of Jenkins (1969), and the entries are the correctly rounded
values of B, and y, if Jenkins’s a posteriori error bounds are correct.

TABLE 5.1 The constants B, and 7y, for ¢ = 1(1)10*

q .a_n Yq
1 1.618033988750 0.618033988750
2 1.324717957245 .868836961833
3 1.220744084606 1.063336538821
4 1.167303978261 1.099000315146
5 1.134724138402 1.099174913506
4] 1.112775684279 1.091953305766
7 1.096981557799 1.083743696285
8 1.085070245491 1.076133134033
9 1.0757660066087 1.069448852721
10 1.068297188921 1.063666938404

*See Definition 5.1 and the remarks above for a description of
the constants 8, and v,

28 SUCCESSIVE INTERPOLATION Chap, 3

THEOQOREM 5.1

Suppose that /& L.C9a, b: M, a] (see Section 2.2); £ & (a, b e =0;
and) = 0. If Xgv o -5 &, are (distinet and) sufficiently close to ¢, then
@ sequence (x,} is uniquely defined by (1.1), and x,— ¢ with weak order

at least £, ,, the positive real root of x7*1 =
Remark
If 6, = max |x, —{[then, from Theorem 4.1, X,x, are
i=0,...,q
“sufficiently close” to ¢ if Oy < ~ad,<b— {, and
IMOG < | fOO (54

If these conditions are satisfied. then an upper bound on |x, — ¢ follows
from equation (5.10) below.

Proof of Theorem 5.1
Forn >0, let

zzzzz ¥

8, = max |x,,, —(|. (5.5
i=0,...,q
Suppose that x, ..., X, are so close to { that the conditions mentioned in

the remark above are satisfied. Then Theorem 4.1 shows that (§,) is mono-
tonic decreasing to zero, and

5 M 5. 5

, e 5.6
7 O 0
If eventually §, = 0, then the result follows immediately: by our defini-

tion, x, — { with weak order oo. Hence, suppose that &, s 0 for all » = 0.
Let

LR S|

wv (5.7)

(not the same 2, as in Theorem 4.1). From condition (5.4) and the fact that
(d,) is monotonic decreasing, 0 « Ao =LAy <L 2, < -, and, from equation
(5.6),

Apgir = Aoy + 0, (5.8)
Since 8, , > 1, we have
A, = Ao s (5.9)
fornm=10,... g Thus, from (5.8) and the definition of B,.., the inequality
{5.9) holds for all n > 0, by induction on n. Hence, for all n =0,

3M
o0y

X

—logjx, — {1 —logd, > A, pro . w; log (5.10)

Since 4, > O and B, , > 1, equation (5.10) shows that
liminf (—log|x, —)i > B (5.11)

Heven

which completes the proof,

Sec. 6 THE EXACT QRDER OF CONVERGENCE 29

Note that, in the important case & — l, there is a simple proof of
Theorem 5.1 which does not depend on Theorems 2.5.1 and 4.1. This
proof shows that, instead of (5.4), the condition

IM3, < 2] f ()] (5.12)

is sufficient. The idea is this: by applying Rolle’s Theorem ¢ — 1 times, we
sce that P~V(x) coincides with @ 1(x) at points &€, and & such that
€, — ¢l 8, and [& — (| < &, = the second largest of |x, — ¢l ...,

|x,., == {. Thus, from Lemma 2.4.1,
PO < MBS, (5.13)
On the other hand, equations {1.1) and {3.3) show that
. . PE-(E)
Xpeget ﬁ m..ﬂ .\JT».E N _L_ mmmnC
so we can bound | x,. .., — {|, and then the result follows in much the same

way as above.

Section 6
THE EXACT ORDER OF CONVERGENCE

Theorem 5.1 gives conditions under which x, - { with weak order at
least f. Tt is natural to ask if the order is exactly §. In general this is true,
but some conditions are necessary to ensure that the rate of convergence
is not too fast: for example, the successive linear interpolation process
{q = 1) converges to a simple zero { with weak order at Jeast 2 (= f, = 1.618
...)i it happens that £"({) = 0, for then linear interpolation is more accu-
rate than would normally be expected. Theorem 6.1 gives sufficient conditions
for the order to be exactly B, Apart from the condition SO £ 0, 0t is
necessary to impose some conditions on the initial points x,, . . ., x,. (These
extra conditions are superfluous if ¢ = I; see Section 7.

Before proving Theorem 6.1, we need two femmas. Lemma 6.2 is con-
cerned with the solution of a certain difference equation, and is closely related
to Theorem 12.] of Ostrowski (1966). The lemma could easily be generalized:
but we only need the result stated. Lemma 6.1 gives a recurrence relation for
the error x, — {. Special cases of this lemma have been given by Ostrowski
(1966) and Jarratt (1967, 1968). Ostrowski essentially gives the case g = 1,
and Jarratt gives weaker results for g == 2 and g = 3. (Our bound on the
remainder R is sharper than Jarratt’s, and we do not assume that Fis
analytic.} In Section 8, we show how the result of Lemma 6.1 may be used
to accelerate convergence of the sequence {x,).

30 SUCCESSIVE INTERPOLATION Chap, 3

LEMMA 6.1

Suppose that fe C¢*'[a, b]; = [a, b]; OBy = 0; Fely 5 0;
Xu o ooy X, are (distinct) points in [g, E and x,, .., satisfies equation (1.1).

Let 6, be the largest of |x, — (|, ..., X,+; — L] and &, the second largest.
Then
_ S
Xprgey — & = ; ¢ O e E)
ST G) et oot T O D Ry (6)
where
= 0{6,8,[6, + w(f“v; 5| (6.2)
as g, - 0.
Proof

Without loss of generality, assume that 7 = 0 and { = 0. Rearrange
Xos - - -5 X,y If necessary, so that | x, | <0 |x, <. <= [x,]. From Lemma 3.1,

Qb::xe:;ﬁu”AM&?&@:;Q feeenx, L (6.3)

Thus, as F4 9(0) = = \émovb Corollary 2.5.1 gives
_— \VEASC) _... R vﬁs 2(0) AMU v\f:@ Fr M

(q -+ 1)
— 10 A L) S
ﬁhmnu v Qq _ Aommzunkxﬁ VAQ b _vd T+ #
(6.4)
where
1< W M.e 8:@ = 08, (6.5)
<9 _,\Qa:rf O(S,0(f 105 §.)), (6.6)
and
nl= O o@Ereriay)
as ¢, — 0.
The right side of (6.4) is just . :
.\\.QT:AOU] g
mmﬁm auﬂ\a vS. A+ D1 + e 5
where
S adilral + 1rl = 0@ Sun(f5 715 (69)

as ¢, — 0, so the result follows.

Sec. 6 THE EXACT QRDER OF CONVERGENCE 37

Remarks

From the bounds on r,, ..., r,, it Is easy to derive an explicit bound
on | R | for sufficiently small §_. For our purposes, though, the relation (6.2)
is adequate. A simple ogo:mQ of (6.2) is that, if /""" = Lip,, a, then

= (5} ** &) (6.10)
as g, - 0.
LEMMA 6.2
Suppose that 1, — -koo as n— oo and, for n = 0,
Aprgrt = Ay — A, = K, (6.11)
where
k, = O (6.12)
as 1 - oo, 5 a constant, If y, < s << f_then
A, = cffz 4 Os") (6.13)
as n— oo, and if &, = o{s”) as n ~» oo then
A= cfi - o(s?) (6.14)
as i — oo, If 0 <C 5 <y, then
2, = cf + Oy (6.15)
as n — oo, where
0 ifg==1, :
T ifg 1, (6.16)

and ¢ is 4 nonnegative constant.

Proof

The restriction fuw, | <2 1in Theorem 12.1 of Ostrowski (1966) is unneces-
sary, for we can choose any A with luw, | << 1 < {u | and consider A /1"
instead of 4, in Ostrowski’s proof. Thus, in view of the remarks after Defini-
tion 5.1, (6.13) and (6.15) follow from Ostrowski’s Theorem 12.1. {(6.14) does
not follow directly in the same way, but the proof of Ostrowski’s Theorem
12.1 goes through, assuming k, = o(s") instead of k, = O(s"), and giving
a result from which (6.14) ?:9&. The only difficulty is in proving the modi-
fied form of Ostrowski’s Lemma 12.1, but this follows from the Toeplitz
lemma: if k,--0,|¢| < 1,and z, =k 4 k,_ &+ - +& " then z, - 0
as M —» oo @mm Ortega and xwesdor: ﬁ 970), pe. uuS.

THEQREM 6.1
Let fe C77'a, b]; § & (a, b); f97 () == 0; ()= 0; and [+ V({) = 0,
Suppose that | x, — | is sufficiently small, that
X, = O Al — L 6.17)

32 SUCCESSIVE INTERPOLATION Chap, 3

fori=1,2,...,q and that
(X, = L2 6| K(xg — Ox, — 01> 0, (6.18)

where

q(g + D)
Then a sequence (x,} is uniquely defined by (1.1), and x, — { with weak order

exactly B.. In fact, if g = I or 2 then x, — { with strong order f, and asymp-
totic constant | K%', and if ¢ => 3 then

—log|x, — {|= efiz ++ O(my?) {6.20)
as n - oo, for some positive constant ¢.

J— .\)S,T_wﬁﬁv A@.H@v

Remarks

Condition (6.17) ensures that x, > x, approach { sufficiently fast,
while (6.18) makes sure they do not mtﬁamo: ¢ too fast. These noc%:o:m
could be weakened, but Theorem 7.1 shows that some such conditions are
necessary if ¢ = 2, If ¢ = 1 then the conditions are superfluous: see Corol-

[ary 7.1,

necessarily hold, mo”q Ve > _ma = w

Proof of Theorem 6.1

Let
Y, = | K(x, —). (6.21)
From the assumptions (6.17) and {6.18) we have, at least for n — 0,
Vusior 22 4V (6.22)
fori=1,2,...,¢, and
Yorg = 0¥y o, (6.23)

We shall show that (6.22) and (6.23) hold for all # == 0. Suppose, as inductive
Eﬁo::wm_m that they hold for all n < m. Then, by ::::m {x, — {sufficiently

small (independent of m), we may suppose that the remainder R, of Lemma
6.1 satisfies

KR, | = - (6.24)
for all n <2 m. Thus, from Lemma 6.1,
. 2 2 3 I
N) _hﬁﬁ * m\ &.EM ST N‘w, ;J ﬂ Iml e v rw, mHﬁ
3 .
= Y Fmrr (6.25)

Sec. & THE EXACT ORDER OF CONVERGENCE 33

From (6.23) with n == m1, this gives

Yo g = /J. nwvww:l g1t AQ.N@V
Similarly,
- [2 2 3 1
T %T CTECETECET)T
1 6.27)
5 (6.27,
pl..nH @w mi1 .H.*~N~+m. AQNMU

Also, from (6.27), y,. .., > 0, so the right side of (6.28) is positive. From
{6.26) and (6.28), we see that (6.22) and (6.23) hold for n = m -4 1, s0 Emu\

held for all # = 0, by induection, Thus {6.25) and {6.27) hold for all m 2= 0.
Let
A, = —logy, (6.29)
and
b= Ay — Ay — A {(6.30)
From (6.25) and (6.27),
|k,| < log 2, (6.31)
so we may apply Lemma 6.2 with s = [. If g =» 3 then y_ 2= I, s0
A efin - O(nym) (6.32)
as # — oo, From Theorem 5.1, ¢ = 0, so the result for ¢ 2= 3 follows.
Ifg=1or2theny < I, so
2, = eBr+ 00) (6.33)
as n - oo, From (6.29), (6.30), (6.33) and Lemma 6.1, we now see that
k= o{1) {6.34)
as 7 -— oo, 80, by equation {6.14) with s = 1,
== cfit + o{l} {6.35)
as n - oo, Thus, there exists
lim Fot e (6.36)

.v_ma

s0 the result follows from equation (6.21). Note that, if f<"7 < Lip, o

for any M and & > 0, then (6.34) may be replaced by k&_ == o(s") for any s >
50 (6.15) holds, and

_ N g i,ﬁ_ P
x, — O

[K Pt e Oty . (6.37)

as # — oo,

34 SUCCESSIVE INTERFOLATION Chap. 3

Section 7
STRONGER RESULTS FOR g=1 AND 2

In this section we restrict our attention to the two cases of greatest
practical interest: ¢ = | (successive linear interpolation) and g = 2 (succes-
sive parabolic interpolation for finding an extreme point). Corollary 7.1

shows that the conditions (6.17) and (6.18) of Theorem 6.1 are unnecessary
if g == 1.

COROLLARY 7.1

suppose thatg = |; f & CHa, bl; ¢ = (. b); F(O)=0; F({)=0;and
FE) == 00 I x,, x, and { are distinct and sufficiently close together, then
a sequence (x,) is uniquely defined by (1.1), and x, ~» { with strong order

Proof

From Lemma 6.1,

(Y]
Xy = § == ugca — Oxy - O + o(1) (7.1

as max (|x, — £, |x, — ([} — 0. Thus, Theorem 6.1 is applicable to the
sequence (x,), where x; = x_, ., provided x, and x, are sufficiently close to {.

Remarks

Ostrowski (1966) gives Corollary 7.1 with the stronger assumiption
that /' = C?[a, b]. He also shows that, if /& C3[a, b] and the conditions of
Corollary 7.1 are satisfied, then

X — SO
lx, — ¢ 12770
as n — oo, As we remarked at the end of the proof of Theorem 6.1, the rela-
tion (7.2} holds provided that f e LC?a, b; M, o] for some M and « (see
equation (6.37)). For an even weaker condition, see (7.7) and (7.8) below.

The following theorem removes the rather artificial restrictions (6.17)
and {6.18) of Theorem 6.1, if f%*?" is Lipschitz continuous and g = 1 or 2.
The proof does not extend to g == 3 because it depends on the assumption
that y, <¢ |, which is only true for g = 1 and ¢ = 2 (see Table 5.1).

" ogn (7.2)

THEOREM 7.1

Supposethatg = 1 or 2;f e LC* Va, b M1; ¢ € (a,b); f (0 =0;
and [() = 0. if x,, ..., x, are (distinct and) sufficiently close to £, then a
sequence (x,)} is uniquely defined by (1.1}, and either

1. x, - [with strong order f, and asymptotic constant

Sec. 7 STRONGER RESULTS FOR gq=1 AND 2 35

, in fact

_ \.EiAD P,,;
qlg + 1}/

(e 4 O Y A (9]
[x, =1 Jglg + D0

as n-—r oo (recall that g, = 1.618, £, = 1325, y, = 0.618, and
y, = 0.869); or

2. x, — { with weak order at least 2 if g = 1, or at least
3+ /3)2]V3 ~ 1378 ifg=2.

e

: - O) (7.3)

Remarks

If g == 1 then, by Corollary 7.1, case 2 of Theorem 7.1 is possible oaly if
F7E) = 0 (or if one of x, and x, coincides with {, when the weak order is o).

If g = 2 then case 2 is possible, although unlikely, even if %)== 0
and x, = { for all . All that is necessary is that the terms in relation (7.28)
repeatedly nearly cancel out. Jarratt (1967 and Kowalik and Osborne (1968}
assume that such cancellation will eventually die out, so the order will be
£,. The conditions (6.17) and (6.18) are sufficient for this to be true, but with-
out some such conditions there is a remote possibility that canceliation will
continue indefinitely. For example, with f(x} = 2x* 4 x?, there are starting
values x,, x, and x, such that

HNJ ~ QN@AIIN.AU ~
and (7.4)
Haprr ™ ~—exp(-2"), _
so x, — { = 0 with weak order ./ 2 . Similarly, if

poe= A3 4 /5= 2618, .., (7.5
then there are starting values such that

Xy, o~ exp(—yp,

X3per ~ eXp(—{y — "), (7.6)
and

Xypez ~ —eXp(—(y — Dy"")
50 x, — 0 with weak order p'* = 1.378 The proof is omiited, but the
reader may easily verify that (7.4) and (7.6) are compatible with Lemma
7.3 below (this depends on the relation 2y — 1 = p(y — 1)

For the sake of simplicity, we have not stated Theorem 7.1 in the sharpest
possible form, If F@*1({) = 0, then x, > { with weak order at least 8, ,,. >
B, provided that f“*V & Lip, « for some M and ¢ > 0. If f4"7(() == 0,
then the theorem holds provided that f < Ce'![g, b]. Equation (7.3) may

no longer hold, but if there is an € > 0 such that
w(fr D, §) = Ofllog 8| (1.7}

36 SUCCESSIVE INTERPOLATION Chap. 3

as & — 0, then

| Oty If € 2 1,
ST 4 R A (S N E D PO S
%, =" gl ¥ D ey 0 =10 (78)
Oyr) if €< 1,
as n— co. (A condition like (7.7) occurs in some variants of Jackson’s
theorem: see Meinardus (1967).)
Before proving Theorem 7.1, we need three rather technical lemmas.

LEMMA 7.1
Suppose that, for n = 0,
ey = XX, 0y X Xy + XX,y M, 67 8, (7.9)

where §, is the Jargest of |x, |, Ix,, | and |x_,, 1, and &, is the second largest.
If there is a positive constant L such that

I
151

ih
and

m | < L (7.10)
foralln =0, then |x,} = 3|x,.,| for all n > 0.

Proof
As in the proof of Theorem 6.1, it follows by induction on n that

22 22
X112 45 (XX, | = 5 [X, 1%, 122 3 [X0l (7.11)

LEMMA 7.2

If the conditions of Lemma 7.1 are satisfied, then either x, = 0 for all
sufficiently large n, or

[0 -+ Ony)

B
A8 M —» oo,

Proof

If x, = 0 for infinitely many # then, by Lemma 7.1, x, == O foralln > 0.
If this is so, define A, = —log|x,] and k== 2.3~ A4, — A, From equa-
tion (7.11}, k, is bounded, so Lemma 6.2 with 5 = 1 gives 4, = ¢cfi1 -+ O(1)
asn — co. By Lemma 7.1, 4, — + oo, 50 ¢ > 0. Thus, from (7.9,

ke, = Ofexp[—c(f, — 1)) (7.12)
as i1 — eo. (This is not necessarily true in the proof of Theorem 6.1.) Now,

Sec. 7 STRONGER RESULTS FOR g=1 AND 2 37

Lemma 6.2 with s < y, gives
A, = cf} -+ Olnyz) (7.13)

as n - oo, and the result follows from the definition of 1 .

LEMMA 7.3

Suppose that (7.9) and (7.10) hold. There are constants & and N
(depending on L) such that if, for some n > N,

R EA T EN (7.14)

and
IW, Z Xz alx,.,|, (7.15)

then
vy = XX (0w,), (7.16)
Hpse = X X0 (1 -+ V) b X X (L NI R (7.17)
Xyus = Xix3, (1 - ﬁa.:v + XX X1 4 ﬁm:bu (7.18)

and
Xt — unw.vﬂwiﬂ.m + @a,:v + Hakw,.,_un:;: + @.q.avu Q,wov

where

o, < K (7.20)

i

fori=1,...,7

Proof

The lemma follows by repeated use of the recurrence relation (7.9)
and the inequalities (7.10), (7.14), and (7.15).

Proof of Theorem 7.1

Without loss of generality assume that { = 0. First suppose that g == 1.
If 7*(0) = O then the theorem holds, by Corollary 7.1. If /7(0) = 0 then, by
Lemma 6.1,

X,z = O(836)) (7.21)
as g, —» 0, where §, and &, are as in Lemma 6.1. If x, and x, are sufficiently
small, equation (7.21) implies that

5, =1x | (7.22)
and
8= x,.,| (7.23)

38 SUCCESSIVE INTERPOLATION Chap. 3

forall w 2> 1. Thus x_ - 0 as n —» o0, and
- A x| (7.24)
for ali n 2= 0, where A4 is some positive constant. If some x, = 0 then x_, | ==
X oy 0, and we are finished (weak order co). Otherwise, there is
no loss of generality in assuming that

Alx, | < exp(—29) {7.25)

for =0 and n = {. From {7.24), equation (7.25) holds for all » = 0, by
induction on #n. Thus, the weak order of convergence is at least 2, and the

%000

From now on suppose that g = 2. By Lemma 6.1,

Npry 7 O.\«:ACV ﬁ\w.a./:;; I P T ur:\/._??w.v H QA%:%:V A\Nmm.v

as i1 — oo, If f240) == 0 then the weak order of convergence is at feast 4, .
the positive real root of x% = x -- 2, by a proof like that above for g == 1},
and the theorem helds as f, , = 1.52 ... > 1.38.

. H f4(0) = 0, then we may as well suppose that

AU

6r(0) 1 (7.27)
3.\ a change of scale, as in the proof of Theorem 6.1. Thus, we must study the
interesting recurrence relation

" % X - - - 1 25
«x:.w..u o .#:«X:.A; Iml .\/...n.f_.y..l.m. Iml .Va,?._u._.m. IWI Qﬁmzmzvg ﬂﬂ.MMV

and, by Theorem 5.1, we can assume that x, - 0 with weak order at least
B .

First suppose that there is an infinite sequence N == (n,, #,, ...} with
the property that, for every / > 0 and #n = n, either

L. Ry = 042 (7.29)
and
: (7.30)
or
2. Py 5043 {(1.31)
and
x5] < dnix Xk | {7.32)

I éither (7.30) or (7.32) holds, then Lemma 7.3 13 mnn:omdwm for alt sufficiently
large n = n, in the sequence N. To avoid confusion with subscripts, write

and (7.30) hold, then
_ [x, 002 xx,,0 (7.33)

Sec. 7 STRONGER RESULTS FOR =1 AND 2 39

and, by Lemma 7.3,

| X | 21 %,%,0 0 | (7.34)
If (7.31) and (7.32) hold then, similarly,

|2, =< 2 x,x,0, (7.35)

and
X | << 42,020 | (7.36)

Let
Y, =2/x,| (7.37)
After a fixed n == p, in N, suppose that the next r > 1 elements of & satisfy

{7.31), and then the next s 2> 1 satisfy (7.29). Then repeated use of the in-

equalities (7.33) to (7.36) gives

ujmxﬁ\wnz,‘,uﬂ,rwzu u&..n,_,uw%m,q‘?_u m m.sm.vﬂﬁ.wu:u .w»..?*;vﬁn_..zlu A\w.wmwv
where
S P 2 S T REVE U PV Sy [EESVE A g
o) = 271 VAl) NES)
(7.39)
Let
ﬁ\c.u .m,v — Qc.u %v_\c?_,w.&. AﬂhOu
For fixed s == 1, w{r, 5) 1s a decreasing function of r, with limit
¢ Aw@aw&;wv: = inf w(r, 5) (7.41)

as r — co. Thus, x, — 0 with weak order at least ¢, so case 2 of the theorem
holds.

Now suppose that there is no such infinite sequence N. By the super-
linear convergence of (x,), Lemma 7.3 is applicable for infinitely many .
Choose such an # {sufficiently large). There are only three possibilities:

I. Equation (7.30) holds;

2. Equation (7.32) holds; or

3. Neither (7.30) nor (7.32) holds, so

[%y02] = 2]2,%,, | (7.42)

In the first case, Lemma 7.3 shows that we can replace # by n - 2, and con-
tinue with one of the three cases (it is crucial to note that Lemma 7.3 is still
applicable). In the second case, Lemma 7.3 shows that we can replace n
by n + 3 and continue. Since no infinite sequence N with the above proper-
ties exists, the third case must eventually arise. Then, from (7.42) and Lemma
7.3, we see that Lemma 7.2 is applicable to the sequence (x),), where x/, =
Xinvye By Lemma 7.2, (x,,) converges with strong order f, and asymptotic

constant 1, and hence so does (x). In view of the assumption (7.27), this
completes the proof.

40 SUCCESSIVE INTERFOLATION Chap, 3

Section 8
ACCELERATING CONVERGENCE

If a very accurate solution is required, and high-precision evaluations
of / are expensive, then it may be worthwhile to try to increase the order of
convergence of the successive approximations by some acceleration technique.
For example, we can use Lemma 6.1 to improve the current approximation
at each step of the iterative process. Jarratt (1967) suggests. one way of doing
this if ¢ = 2, but the method which we are about to describe seems easier
to justify (see Theorem 8.1), and applies for any ¢ == 1.

- Suppose that x,,...,x,,, are approximations to a simple zero { of
J974,. For example, they could be the last ¢ + 2 approximations generated
by the successive interpolation process discussed above. We may define

X125 X440 - - - i0 the following way: if » => 1 and Xos « oy X0, ATe already
defined, let P, = IP(f; x,, . . ., X,+g)» and choose y, such that
Pl D(py == 0, (8.1)

Le., y, is just the next approximation generated by our usual interpolation
process. From Lemma 3.1, y,_ is given explicitly by

_Aa \:Tni... Hiwv
aH;;il uﬁ::..!s .xu ua . amw
T\ e R :
Instead of taking p_ as the next approximation Xiger: WE use Lemma 6,1

10 compute a correction to ¥,» and take the corrected value as the next ap-
proximation. Formally, we define Xyiqry DY

HM,%.\?:;:..., Ha.EMv
Kot | Y AQ_”H% T HiL K (8.3)

where
»Wu == M A.Ve..w_l.n. _ .H\EVﬁ«‘Ku._.h. - .ux.xv. ﬁm.h.u

DRI jg
For a justification of equations (8.3) and (8.4), see the proof of Theorem 8.1

below. This theorem shows that, under suitable conditions, the sequence
(x,} is well-defined, and x, — ¢ with weak order appreciably greater than

7

o B, which is the usual order of convergence of the unaccelerated process (see

Sections 5to 7). Note that there is very little extra work involved in computing
X,4q+1 from equations (8.3) and (8.4) if y, is computed via (8.2), for flx,,
wenxgdand flx, oL, X,4q-:] Will already be known, except at the first
iteration.

. Before stating Theorem 8.1, we define some constants B which take the
place of the constants §_ (Definition 5.1) if the accelerated process is used.

DEFINITION 8.1
For g > 1, f, is the positive real root of

X=Xt Loy | (8.5)

Sec. 8 ACCELERATING CONYERGENCE 47

Remarks
It is easy to see that §, > f_and, corresponding to the bound {5.2),
we have
VR0 o B 31, (8.6)
If x, —» { with weak order 8 > 1 then, by the definition of order (see
Section 2), for any € > 0 we eventually have

—loglx, — {1 = (B — ey (8.7)
Assuming that approximate equality holds in (8.7), the number of function
evaluations required to reduce | x, — {| below a very small positive tolerance
is inversely proportional to log f. Thus, the ratio (log f)/log B, suggests how

much we gain by using the accelerated process, rather than the unaccelerated
process, if very high accuracy is required. From the bounds {5.2) and (8.6),

tim 98 8s — 100 2 06309 . (8.8)

so there is a 37 percent saving for large ¢. Of course, the only practical interest
is in small values of ¢, and in Table 8.1 the values of B, B, and (log 8.)/
log B, are given forg =1, 2, . ., , 10. The entries for f, are correctly rounded

TABLE 8.1 The constants i, for ¢ = 1(1)10%

q i By (log By)ilog By
I 1.839286755214 1.6180 0,7897
2 1.465571231877 1.3247 0.7357
3 1.324717957245 1.2207 0.7093
4 1.249851588864 1.1673 0.6936
§ 1.203216033518 1.1347 (.6832
6 1.171321856385 1.1128 0.6757
7 [.148113497353 1.0970 0.6702
8 1.130459571864 1.0851 0.6638
9 1.116575158368 1.0758 0.6623

10 1.103367322949 1.0683 0.6595

*See Definition 8.1, and the remarks above, for a description of the
constants 2 and the significance of the ratio (fog B /log 2.

to 12 decimal places, and the other entries are given to four places. (See
Table 5.1 for the f, to 12 places.) The table suggests that By = B, and this
is true, for X% — x% — x — [= (3% — x — Dix? -+ 1)

THEOREM 8.1

Suppose that /' ¢ LCa, b MT;¢ & (a, b); £91() = 0; £@() 5 0:
and xg, . . ., x,,, are (distinct) points in [a, b). I x,, ..., x,,, are sufficiently
close to £, then a sequence (x,) is uniquely defined by equations (8.2) to (8.4),
and x, — { with weak order at least #, (Definition 8.1) as # — co.

42 SUCCESSIVE INTERPOLATION Chap. 3

Froof
Forn = 1, let §, be the fargest of [x, — |, ..., |x,,, — {|:let d, be the
second-largest; and let
8, —max(d, |x,., — L (8.9)

If y, is defined by equation (8.2), then Lemma 6.1 shows that
Yo— (=K . 2 G O, — £ - 0(026) (8.10)

=il jEg

as ¢, — 0, where

_ ST
A= dq+ Doy (1D

In particular, (8,10} implies that

as g, — 0. Thus, for 0 < i < j < g,

o Cﬁ::. J.Ebmkiq - %L = Q..::. - QAH%_Q —)+ 0(8:6,) (8.13)
aso,— 0

.- If §,is sufficiently small then, since f*”({}==0, we have f[x,,..., x,,,]#0
and, by Theorem 2.5.1,

._‘_”R:l_....wuﬂ..lngl . -
GI%0 s Xprad K+ 006, (8.14)

asé — 0.

n

If s_is as in (8.4), then {8.13) and (8.14) give

\T.al.?...,kinu _ . W iy 4
A,llllg@_? e)5, = K ¥ (o= Dlxy — O+ 06,55
(8.15)

as &, — 0. Thus, from (8.3) and (8.10),
Xprger — (= 06,6,8) (8.16)

as m: — 0. This shows that, provided & , is sufficiently small, the sequence
-(x,) is uniquely defined, lies in [a, 8], and x, - £ as n — co.
From equation (8.16), there is a positive constant A such that, for ail
n=>1,
| Xy qe1 — 1< A%0,6,6.. (8.17)
Also, if 8, is sufficiently small, then
| ~log(d |x, — () = B (8.18)

for n=0,...,g9 + 1. From equation (8.17) and the definition of £, we

lim inf{—log | x, — (V" = B, (8.19)

Ay

L.e., the weak order of convergence is at least f,, so the proof is complete.

Sec. 9 SOME NUMERICAL EXAMPLES 43

Section 9
SOME NUMERICAL EXAMPLES

To illustrate the theoretical results obtained in Sections 4 to 8, we give
the following examples:
Loge= 1, fla) == x4 x* -] x3, x, =2, x, == I
20¢=2, flx) = 8 4+ 6x7 |- 4x* - 3x%, xy =2, x, = |, x, = 0.5;
Lg=3 fix)=1+40x + 10x* 4 5x* - 3x% x, =2, x, =1,
x, == 0.5, x, = 0.25; and
4. g=4, f(x) =134 2x -+ 40x? - 5x% + 2x® - X%, x, =2, x, = |,
x, = 05, v, = 0.25, x, = 0.125.

converges, even though the initial values are not very close to {. Apart from
constant factors, the polynomials are obtained by differentiating the iast
one (Example 4) 4 — g times, so we are solving the same problem in four
different ways.

Table 9.1 gives the sequences (x,) produced by the successive interpola-
tion process, for the functions and starting values given above. To illustrate
the superlinear convergence, the entries are given until | x, | <2 10729, although
such high precision would seldom be required in practical problems. The
table also gives the sequences (x,) produced by the accelerated interpolation
process described in Section 8, with starting values xj = x, for i =10, ...,
g -+ 1. As predicted by Theorem 8.} and Table 8,1, the accelerated sequences
converge appreciably faster than the unaccelerated ones.

To verify relations (8.12) and (8.16), the table gives

X
F,= —a 9.1)
.H:\uuﬂa\a\m
and
. 9.2}

¥ 7 "
,vmaln‘x\uin.lu‘x,:..mlm
when they are defined. With a few exceptions near the beginning of some of

the sequences, both (| x,) and (| x,|) are monotonic decreasing, so r, and r,
should be bounded. From Lemma 6.1, we expect that

i L Ev
w:u T glg + DD (9.3)

and this is just 2/[g(g -+ 1)} for our examples. Similarly, from the proof of
Theorem 8.1, we expect that

ST i (s M
N R (R (s} 04

and this is just —6/[g(g + 1){g -|- 2)]. The results support these predictions.

TABLE 9.1 Numerical results for g = 1, 2, 3 and 4 Sec. 10 SUMMARY 45
g " X 0, n Tn TABLE 9.1 (continued)
1 0 2.000 2.000 0 . x, « v !
1 1.000 1000
2 7.273-1 7.273-1 0.3636 4 0 2.000 2 000
3 39801 2.100-1 0.5473 0.1444 i 1.000 1.000
4 1.983"1 4.389"-2 0.6851 0.2874 2 5.000°~1 5.000"-1
5 6.7271-2 —1.846"-3 0.8523 —0.2755 1 250071 2,500~
i) 1.276°-2 1.22F-5 (.9568 —Q. 7178 4 12501 1.250"_1
7 8.543'-4 1.035-9 0.9949 —1.0455 5 2.840"-1 2 8401 0.1420
8 1.090°-5 2.350°-17 (3.9998 —[.0066 P 1.258°_1 3 8872 0.2517 0.0389
9 9.314"-9 - 2982731 1.0000 - 1.0039 9 5.453°.2 7 030°_3 0.4362 0.0562
10 1.015"-13 1.0000 8 2,492"-2 14613 0.7975 0.0935
1t 9.457-22 1.0000. 9 1.274'-2 4,448 4 0.3588 0.0501
10 7.507-3 1.168"-4 0.2101 0.0846
2 0 2.000 2.000 1 1.564"-3 —4.334°-6 0.2279 —0.0558
1 1.000 1.600 12 3.2274 —2.390"-8 0.2374 ~0.0598
2 5.000%1 3.000™1 13 6.871-5 ~2.370-10 0.2164 ~-0.0519
3 51621 51621 0.2581 14 1.360"-5 —2.500°-12 0.1423 —0.0329
4 2.681'-1 L2191 0.5362 0.1219 15 15456 9.027~15 0.1316 —0.0401
5 _..mmm‘_ 3271 ‘|~ 0.5291 0.1267 16 6.639-.8 —6.201-19 0.1316 —0.0520
6 6.978'-2 5.618°-3 0.5042 0.1786 17 28149 1.243"-24 0.1270 —0.0506
7 2.053'-2 —3.363"-4 .5607 —0.1634 18 1.067-10 0.1142
8 4.547-3 3,484 0.4772 —0.1556 19 290712 0.1050
9 6.154"-4 1.325-8 0.4296 ~0.2144 20 07314 0.1046
10 3.631"-5 —1.728"-12 03890 0.2625 2 1 o4a'17 0.1040
11 9.956".7 -3 84418 0.3558 —0.2477 22 3.069'_20 01022
12 7.606'-9 —2.008-26 0.3430 --(.2518 23 2367723 0.1005
I3 121511 0.3360
14 2.548"-15 0.3339
15 3.104°-20 (.3334
16 1.032°-26 0.3333 Table 9.1 was computed on an IBM 360/91 computer, with 14-digit
3 o 2000 2000 truncated floating-point arithmetic to base 16, When computing the divided
differences in equations (8.2) and (8.3), we took advantage of the fact that
1 1.000 1.000 e .nm . £
2 5.000°~1 5.000°-1 n-th divided differences of I, x, x%, ..., x"~! vanish identically. Otherwise
3 2.500°-1 2.500"-1 it is not possible to reduce | x,| or [x,]to 1072° without using higher precision
M w.mmwm wwmwgw w.wmwm 0.0688 arithmetic, because of the effect of rounding errors, except when g = 1.
6 8 ST4’_0 {5672 0.6860 0.1253 Forg = 2 our .mxmB.Em is the same as that used by Jarratt (1967), .mwa
7 471422 3.572-3 0.4465 0.0757 our results agree with his for n <C 9. For n = 10 and 11 our results differ
8 2.268-2 7.222'-4 0.3313 0.1112 slightly, presumably because of rounding errors, The example given by Jarratt
9 5.580"-3 ~3.949%-5 0.3588 —0.0970 {1968) for g == 3 has also been verified.
10 1,227-3 —3.547-7 0.3395 -{3,0921
11 2.3474 -2 8939 (0.2455 —0.0716
12 2.809-5 8.630°-12 0.2219 —0.0847 .
13 1.441"-6 —1.067-15 4.2105 —0.1055 Section 10
14 5.518-8 4,009-21 01917 0.0989 SUMMARY
15 1.164°-9 0.1766
021~ 0.1735
Mw wwwwvww 0.1703 The main results of this chapter for ¢ = 1 (successive linear interpola-
18 107717 0.1677 tion for finding a zero) and g = 2 (successive parabolic interpolation for
19 1.365-21 0.1670 finding a turning point) are summarized on p. 46.
44

46 SUCCESSIVE INTERPOLATION Chap. 3

THEOREM 3.1
== 1:If fe Cand x, - {, then f({} == (.
g=2:1ffec C*and x, > {, then f{) =
THEOREM 4.1
= 11§ fe CF /) == 0, and a good start, then superlinear convergence,
g=2:1ff < C* f"({} = 0, and a good start, then superiinear convergence.
THEOREM 5.1
g=1:1f fe LCT, f{{) % 0, and a good start, then weak order at least

f,o=1.618....
g==2:1f f & LC? f({)+ 0, and a good start, then weak order at least
B, = t324. ..
. THEOREM 7.1
g=1:1If fe LC?)+ 0, and a good start, then either strong order
B, = 1618 ... or weak order at least 2,

g=20f fe LCY, f"({) = 0, and a good start, then either strong order
B, = 1.324 ... or weak order at least [(3 -+ /5)/2]' % = 1.378

THEOREM 8.1
g=1:1ff e LC% f'{{)== 0, and a good start, then the accelerated sequence
converges with weak order at least f§) = [.830 ...,

g = 2:10f & LC? /(L) = 0, and a good start, then the accelerated sequence
converges with weak order at least 5, == 1.465. ...

AN ALGORITHM

WITH GUARANTEED
CONVERGENCE FOR FINDING
A ZERO OF A FUNCTION

Section 1
INTRODUCTION

Let /" be a real-valued function, defined on the interval [a, b], with
flay f(B) = 0. f need not be continuous on [a,]: for example, f might be a
limited-precision approximation to some continuous function (see Forsythe
{1969)). We want to find an approximation £ to a zero ¢ of £, to within a given
positive tolerance 24, by evaluating / at a small number of points. Of course,
there may be no zero in [a, b] if f is discontinuous, so we shall be satisfied if [
takes both nonnegative and nonpositive values in Tw — 26,0+ 28] M ia, b).

Clearly, sucha ¢ may always be found by bisection in about log, [(b—a)/d]
steps, and this is the best that we can do for arbitrary /. In this chapter
we describe an algorithm which is never -much slower than bisection (see
Section 3), but which has the advantage of superlinear convergence to a
simple zero of a continucusly differentiable function, if the effect of rounding
errors 1s negligible. This means that, in practice, convergence is often much
faster than for bisection (see Section 4). There is no contradiction here: bisec-
tion is the optimal algorithm (in a minimax sense) for the class of all func-
tions which change sign on [g, b], but it is not optimal for other classes of
functions: e.g., C' functions with simple zeros, or convex functions. (See
Gross and Johnson (1959), Bellman and Dreyfus (1962}, and Chernousko
{1970).)

47

48 FINDING A ZERO Chap. 4

Dekker’s algorithm

The algorithm described here is similar to one, which we call Dekker’s
algorithin for short, variants of which have been given by van Wijngaarden,
Zonneveld, and Dijkstra (1963); Wilkinson {1967); Peters and Wilkinson
{1969); and Dekker (1969). We wish to emphasize that, although these vari-
ants of Dekker’s algorithm have proved satisfactory in most practical cases,
none of them guarantees convergence in less than about (b — @)/d function
evaluations. An example for which this bound is attained is given in Section 2,
On the other hand, our algorithm must converge within about {log,[(5—a)/d]}?
function evaluations {see Section 3). Typical values are b — a =1 and

== 10712, piving 10'* and [600 function evaluations respectively. Our
point of view is that 1600 is a reasonable number, but 102 is not, for a com-
puter program which attempts to evaluate a function 102 times is almost
certain to run out of time.

On well-behaved functions, e.g., polynomials of moderate degree with
well-separated zeros, both our algorithm and Dekker’s are much faster than
bisection. Our algorithm is at least as fast as Dekker’s, and often slightly
faster (see Scction 4), so the only price to pay for the improvement in the
guaranteed rate of convergence is a slight increase in the complexity of the
algorithm,

Section 2
THE ALGORITHM

The algorithm is defined precisely by the ALGOL 60 procedure zero
given in Section 6. Here we describe the algorithm, but the ALGOL proce-
dure should be referred to for points of detail. For the motivation behind
both cur algorithm and Dekker’s algorithm, see Dekker {1969) or Wilkinson
{1967).

At a typical step we have three points a, b, and ¢ such that f(5) f{c) < 0,
| (B =Z| ()], and a may coincide with ¢. The points «, b, and ¢ change duar-
ing the algorithm, but there should be no confusion if we omit subscripts.
b is the best approximation so far to {, a is the previous value of &, and {
must lie between & and c. (Initially g = ¢.)

If f(b) = 0 then we are finished. The ALGOL ﬁanmaﬁm given by Dekker
{1969) does not recognize this case, and can take a large number of small
steps if f vanishes on an interval, which may happen because of underflow.
This occurred with f{x) = x* on an IBM 360 computer.

Iff(b) = 0, let m == L{c -~ b). We prefer not to return with £ = 4(b + ¢)
as soon as |m| <7 28, for if superlinear convergence has set in then b, the
most recent approximation, is probably a much better approximation to

Sec. 2 THE ALGORITHM 49

¢ than (b 4 ¢) is. Instead, we return with m - hif |m| = & (so the error is
no more than ¢ if, as is often true, / is nearly linear between » and ¢), and
otherwise interpolate or extrapolate f linearly between @ and b, giving a new
point 7. (See later for inverse quadratic interpolation.) To avoid the possibil-
ity of overflow or division by zero, we find numbers p and g such that
f == b - Eﬁ and the &smmo: is not ﬁm_.mom.:ﬁa if N_ _cm =3 Ei for w:m: i _.m

ooaﬂ:a § == @CA& p =t Q — B)s, and g = F(1 — 5).

Unmzmoaﬂ ﬁ Hml_mm wmgm‘wm Wm.ma w. +:§ ::ﬁmanoumco:v.
b -} m otherwise (“bisection”),
Aaa if|b—b"| = 6,
b - d sign{m) otherwise (a “step of §7).
Dekker’s algorithm takes & as the next point at which £ is evaluated,
forms a new set {a, b, ¢} from the old set {b, ¢, '}, and continues. Unfortu-
nately, it is easy to construct a function f for which steps of § are taken every

time, so about (b — @)/8 function evaluations are required for Convergence.
For example, let

and b o=

2% fora -} § < x

\Eﬁ éﬁu g sz for x = a,b 2.1)

arbitrary for a < x < a - 4.

|7
K

The first linear interpolation gives the point & — §, the next (an extrapola-
tion) gives b — 24, the next & — 36, and so on.

Even if steps of & are avoided, the asymptotic rate of convergence of
successive linear interpolation may be very slow if / has a zero of sufficiently
high multiplicity. (Note that none of the theorems of Chapter 3, apart from
Theorem 3.3.1, apply for a-multiple zero.) Suppose that f € C*[a, b], # > 1,
Ce@b), A= Q) =... =7V =0, and ™)+ 0 (ie, { is a
root of multiplicity -» = 3 :. >0, (x;, —Of(x; — 0 e (6.1 — €), and
X, is sufficiently close to {, then successive linear interpolation gives a se-
quence (x,} which .no=<3mmﬁ linearly to {. In fact, equation (3.2.1) holds
with p = 1 and K = f;,, where the constants B, = 28291 are defined in
Definition 3.5,1. The proof is simple: if

— ,vﬂ:l - ﬁ
Vo = ﬁ; (2.2)

is the ratio of successive errors, then a Taylor series expansion of f about
{ gives

Pes == (2B)L+ (1)) @3

50 FINDING A ZERO Chap, 4

as x,, - {, provided y_, remains bounded away from 1. Now the iteration

Zmiy = 8(2,); (2.4)
where .
et
8(2) = " (2.5
has fixed point z = §,!;, and
g2 <1 (2.6)

forz £ (0, 1). Thus, the result follows from Theorem 22,1 of Qstrowski (1966).

An example for which oob<2wgon is sublinear (Definition 3.2.2) is

if x=0

== ’)
S = x-exp(—x7%) if xs320, @D
on an interval containing the origin. This is an extreme case, for f and all
its derivatives vanish at the origin. {As a function of a complex variable,

f has an essential singularity at the origin.) If
0<x <Tx, <a/2, (2.8)
then (x,} is a positive, monotonic decreasing sequence, and, by Theorem
3.3.1, its limit must be 0. Thus, successive linear H.im:uommmom does converge,

but very slowly.

Some of the examples above are rather artificial, and unless an extended
exponent range is used (see later) we may be saved by underflow, i.e., the
algorithm may terminate with a “zero” as soon as underflow occurs. Even
so, it is clear that convergence may occasionally be very slow if Dekker’s
algorithm is used.

Our main moedification of Dekker’s algorithm ensures that a bisection
is done at least once in every 2 log,(| b — ¢ /d) consecutive steps. The modifica-
tion is this: let e be the value of p/g at the step before the last one. If |e] < &
or | p/g| = 1]e] then we do a bisection, otherwise we do either a bisection or
an interpolation just as in Dekker’s algorithm. Thus, | e| decreases by at Jeast
a factor of two on every second step, and when |e| << § a bisection must be
done. {After a bisection we take e = m for the next step.) This is why our
algorithm, unlike Dekker’s, is never much slower than bisection.

A simpler idea s to take e as the value of p/q at the last step, but practi-
cal tests show that this slows down convergence for well-behaved functions
by causing unnecessary bisections. With the better choice of ¢, our experience
has been that convergence is always at least as fast as for Dekker’s algorithm
{(see Section 4).

Inverse guadratic interpolation

If the three current points a, b, and ¢ are distinct, we can find the point
i by inverse guadratic interpolation, i.e., fitting x as a quadratic in y, instead
of by linear interpolation using just g and 5. Experiments show that, for

Sec. 2 THE ALGORITHM 51

weli-behaved functions, this device saves about 0.5 function evaluations per
zero on the average (see Section 4). Inverse interpolation is used because
S:: direct quadratic interpolation we have to solve a quadratic equation for
f, and there is the problem of which root should be accepted. Cox (1970)
gives another way of avoiding this problem: fit p as a function of the form
P(x)/4(x), where p and g are polynomials and p is Jinear. A third possibility is
to use the acceleration technique described in Section 3.8. (See also Ostrowski
(1966), Chapter 11.)
Care must be taken to avoid overflow or division by zero when comput-
g the new point /. Since 4 is the most recent approximation to the root £,
and a is Lhe previous value o; we Qomgmno:o: iFLABY = | f(ay]. Otherwise
we have | f(B)| < | f < so a safe way to find 7 is to compute
= fla)fle), r, iESS& ry=J0) fla), p e = Bliylry = ry) -
Qu —alr, — D] and g = ¥, — e, - - D)(r, By, Then = b+ p/g,
but as before we do not @m:.oﬁﬂ the division unless it is safe to ao so. (If a
bisection is to be done then / is not needed anyway.) When inverse quadratic
interpolation is used the interpelating parabola cannot be a good approxi-
mation to / unless it is single-valued between {b, f{byy and (¢, f{e)). Thus, it is
natural to accept the point 7 if it lies between b and ¢, and up to three- quarlers
of the way from b to ¢: consider the _:,:_::m case where the interpolating
parabola has a vertical tangent at ¢ and f{b) == — fle). Hence, we reject 7 if
2[piz3]mgl

The tolerance

As in Peters and Wilkinson (1969), the tolerance (2§) is a combination
of a relative tolerance (4¢) and an absolute tolerance {2r). At each step we
take

§ = 2 b| | 1. (2.9}

where & is the current best approximation to {, € == macheps is the relative
machine precision (f'~* for -digit truncated floating-point arithmetic with
base f#, and half this for rounded arithmetic), and ¢ is a positive absolute
tolerance. Since & depends on b, which could lie anywhere in the given interval,
we should replace § by its (positive) minimum over the intervaf in the upper
bound for the number of function evaluations required. In the ALGOL
procedures the variable tof is used for 4.

The effect of rounding errors

The ALGOL procedures given in Section.6 have been written so that
rounding errors in the computation of i, m etc. cannot prevent convergence
with the above choice of §. The number 2¢ in (2.9) may be increased if a

52 FINDING A ZERO Chap. 4

higher relative error is acceptable, but it should not be decreased, for then
rounding errors might prevent convergence.

The bound for Wm — {1 has to be increased slightly if we take rounding
errors into account. Suppose that, for floating-point numbers x and y, the
computed arithmetic operations satisfy

Sl) = xp(l -+ €) (2.10)

and
FHx 4 y) = x4+ e) £ 31 + €}, (2.11)
where |€,] <Z € for i==1,2,3 (see Wilkinson {1963)}. Also suppose that

Sl x]) = | x| exactly, for any floating-point number x. The algorithm com-
putes approximations

it = fI{0.5 % (¢~ b)) (2.12)
and
ol = fI(2 x e x |bj+ 1), {2.13)
terminating only when
|| < t61 (2.14)
(unless f(b) = 0, when £ = £ = B). Our assumptions (2.10) and (2.11) give
[t = 4 e — b~ €(lb] 4 [cD)(1 — €) (2.15)
and
101 <2 (2el b + M1 + €)3, (2.16)
50 {2.14) implies that
e — bl (2) @elbl + D1+ € + ebl + e @217)

Since | — (] < |c— bland b = £, this gives
1§ — ¢ < 6elg] + 21, 2.18)

neglecting terms of order e and ¢ {|. Usually the error is less than half this
bound (see above). .

Of course, it is the user’s responsibility to consider the effect of rounding
errors in the computation of f. The ALGOL procedures only guarantee to
find a zero ¢ of the computed function f to an accuracy given by (2.18), and
{ may be nowhere near a root of the mathematically defined function that the
user is really interested in!

Extended exponent range

Tn some applications the range of / may be larger than is aliowed for
standard floating-point numbers. For example, f{x) might be det(4 — H.J,
where A is a matrix whose eigenvalues are 1o be found. In Section 6 we give
an ALGOL procedure (zereZ) which accepts fi{x) represented as a pair

Sec. 3 CONVERGENCE PROFPERTIES 53

(¥(x), z(x)}, where f(x) = p(x)-27% (p real, z integer). Thus, zero2 will accept
functions in the same representation as is assumed by Peters and Wilkinson
(1969), although zers2 does not reguire that 1/16 < | p(x)] <2 b (unless
¥(x) = 0), and could be simplified slightly if this assumption were made.

Section 3
CONVERGENCE PROPERTIES

If the initial interval is [a, b], assume that

b—a>4, (3.D
and let

k = [log,((b — @)/d,)]. (3.2)
where d,, is the minimum over [a, b] of the tolerance

(x) == 2macheps

X

(see Section 2), and [x| means the least integer y >» x. By assumption {3.1),
k = 0. (Procedure zero takes only two function evaluations if k <)

First consider a bisection process terminating when the interval known
to contain a zero has length < 2§ (so the endpoint minimizing | flis probably
within 4, of the zero, and certainly within 28). It is easy to see that this pro-
cess terminates after exactly k& + 1 function evaluations unless, by good
fortune, /" happens to vanish at one of the points of evaluation.

Now consider procedure zero or zero2. If k = 1 then the procedure
terminates after two function evaluations, one al ecach end-point of the
initial interval. If &£ = 2 then there are two initial evaluations, and after no
more than four more evaluations a bisection must be done, for the reason
described in Section 2. After this bisection, which requires one more function
evaluation, the procedure must terminate. Thus, at most 2 4 5 == 7 evalua-

tions are required. Similarly, for & > 1, the maximum number of function
evaluations required is

24 HT A9 2+) = (k1) 2 (3.4)
Since Dekker’s algorithm may take up to 2% function evaluations (see Section
2), this justifies the remarks made in Section 1. Also, although the upper
bound (3.4) is attainable, it is clear that it is unlikely to be attained except
for very contrived examples, and in practical tests our algorithm has never
taken more than 3(k -4 1} function evaluations {see Section 4). This justifies
the claim that our algorithm is never much slower than bisection.

Superiinear convergence

Ignoring the effect of rounding errors and the tolerance d, we see, as
in Dekker (1969), that the algorithm will eventually stop doing bisections
when it is approaching a simple zero { of a €' function. Thus, temporarily

54 FINGING A ZERO Chap. 4

ignoring the improvement described in Section 2, the theorems of Chapter
3 are applicable {with g == 1). In particular, convergence is superlinear, in

3.4.1). If £ is Lipschitz continuous near {, then the weak order of convergence
is at least (I + /5) = 1.618... (Theorem 3.5.1).

If £ is Lipschitz continuous near the simple zero { then, even with the
inverse parabolic interpolation modification described in Section 2, the weak
order of convergence is still at least 3{1 4 /5). The idea of the proof is that,
by Lemma 2.5.1, the curvature at { of the approximating parabolas is
bounded, so the inequality (3.5.13) still holds for some M (no longer the
Lipschitz constant) and sufficiently small §,.

Thus, our procedure always converges in a reasonable number
of steps and, under the conditions mentioned above, convergence is
superlinear with order at least 1.618.... It is well known that, since

if an evaluation of /' is as expensive as an evaluation of /0 In practice, con-
vergence for well-behaved functions is fast, and the stopping criterion is
usually satisfied in a few steps once superlinear convergence sets in.

Section 4
PRACTICAL TESTS

The ALGOL procedures zero {for standard floating-point numbers)
and zero? (for floating-point with an extended exponent range) have been
tested using ALGOL W (Wirth and Hoare {1966), Bauer, Becker, and
Graham (1968)) on IBM 360767 and 360/91 computers with machine precision
16713 The number of function evaluations for convergence has never been
greater than three times the number required for bisection, even for the
functions given by (2.1) and (2.7), and for these functions Dekker’s algorithm
takes more than 10¢ function evaluations. Zero2 has been tested extensively
with eigenvalue routines, and in this application it usually takes the same or
one less function evaluation per eigenvalue than Dekker’s algorithm, and
considerably less than bisection. .

In Table 4.1, we give the number of function evaluations required for
convergence with procedure zero2 and functions x®, x'%, fi(x), and f,(x),
where

iE o -4
£) 0 i jxj f<u.w » 10 . @
fi{x exp{—x"%)) otherwise,
and
flexp(x)) if x> —108,

Fliexp(—10%) — {x - 10°)?) otherwise.

{(4.2)

Sec. 4 PRACTICAL TESTS 5§

The parameters a, b, and ¢ of procedure zero2 are given in the table. In all
cases macheps == 16713,

TABLE 4.1 The number of fuunction evaluations for convergence with procedure

zero2
. Function
Flx) a b 4 L —4£ Evals.
x9 —1.0 + Lt 1'-9 4.99-10 81
x9 N 4.0 120 4.92°.21 189
x19 —1.0 +4.0 1°-20 4.81-21 195
Fix) -1.0 g, 1°-20 0* 33
Falx) — 1401200 0 1720 1'-9 79

£ 2174 m:abﬁ@ = 0.

In Table 4.2, we compare the procedure given by Dekker (1969) with
procedure zero (procedure zero2 gives identical results as no underflow or
overflow occurs) for a typical application: finding the eigenvalues of a sym-
metric band matrix by repeated determinant evaluation. Let 4 be the » by n
S-diagonal matrix defined by

p—r if i=j=lori=j=nmn,

P if 1<i=j<n,

a,, =429 if |i—jl=1, (4.3)
r i i—jl=2,
0 if |i—jl=2

For n > 2, A has eigenvalues

A, =p — 4g-cos Am.mﬂﬁ._,v “ 2r-c08 A%ﬁv (4.9
for k = 1,2,...,n (Ehrlich (1970)). Table 4.2 gives the eigenvalues A,,
the number #, of function evaluations per eigenvalue for Dekker’s proce-
dure, and the number s, of function evaluations for procedure zero. For
each eigenvalue, the tolerances for Dekker’s procedure and for procedure
zerg were the same. (The tolerance was adjusted by the eigenvalue program
to ensure that the computed eigenvalues had a relative error of less than
5 x 10714} Tests were run for several values of n, p, g, and r: the table gives
a typical set of results for n = 15, p =7, g = 7/4; and r = 1/2, To obtain

- the same accuracy with bisection, at least 40 function evaluations per eigen-

value would be required, so both our procedure and Dekker’s are at least
four times as fast as bisection for this application.

56 FINDING A ZERG Chap. 4

TABLE 4.2 Comparison of Dekker’s procedure with
procedure zero®

k Ax Hp nz
i 1.05838256968867 10 10
2 £.23995005360754 10 9
3 1.56239614624727 10 10
4 2.0502525316%9417 10 10
5 2.72832493649769 11 10
6 3.61410919225782 11 10
7 4.71048821337581 10 10
8 6.00000000000000 G 9
9 7.44175272160161 84] 9

0 8.97167724336908 10 i0

il 10.5063081987721 10 10

12 11.9497474083058 10 9

13 13.2029707184829 10 9

14 14,1742635087655 10 9

i5 14.7893764953339 9 8

*For a definition of Ak, #p, und nz, see above. The Ag have a
relative error of less than 3'-14.

Some more experimental results are given in Chapter 5. For an illustra-
tion of the superlinear convergence, see the examples given in Section 3.9.

“Section &
CONCLUSION

Our algorithm appears to be at least as fast as Dekker’s on well-behaved
functions and, unlike Dekker’s, it is guaranteed to converge in a reasonable
‘number of steps for any function. The ALGOL procedures zere and zero2
given in Section 6 have been written {o avoid problems with rounding errors
‘or overflow, and floating-point underflow is not harmful as long as the result
is sef to zero. .

Before giving the ALGOL procedures zero and zero2, we briefly discuss
'some possible extensions.

Cox's algorithm

Cox (1970} gives an aigorithm which combines bisection with inter-
polation, using both £ and f. This algorithm may fail to converge in a
-reasonable number of steps in the same way as Dekker’s. A simple modifica-

Sec. & CONCLUSION 57

tion, exactly like the one that we have given in Section 2 for Dekker's
algorithm, will remedy this defect without slowing the rate of convergence
for well-behaved functions.

Parallel algorithms

In this chapter we have considered only serial algorithms. It is well
known (see, for example, Traub (1964)) that all serial methods which use
oniy function evaluations and Lagrange interpolating polynomials have weak
order less than 2, unless certain relations hoid between the derivatives of

Jat {. Winograd and Wolfe (1971) have shown that no serial method, using

only function evaluations, can have order greater than 2 for all analytic
functions with simple zeros. Thus, nothing much can be gained by going
beyond linear or quadratic interpolation. However, Miranker (1969) has
shown that, if a parallel computer js available, a class of algorithms using
Lagrange interpolating polynomials gives superlinear convergence with weak
order greater than 2 under certain conditions. Also, it is possible to generalize
the bisection process to “(r 4 1)-section” with advantage if a parallel
computer with » independent processors is available. See, for example, Wilde
(I964). There does not appear to be any fundamental difficulty in combining
generalized bisection with one of Miranker’s parallel algorithms so that
convergence in a reasonable number of steps is guaranteed for any function,

and superlinear convergence with order greater than 2 is likely for well-
behaved functions.

Searching an ordered file

A problem which is commonly solved by a binary search (i.c., bisection)
method is that of locating an element in a large ordered file. The problem may
be formalized in the following way. Let § be a totally ordered set, and
¢: 85— Ran order-preserving mapping from S into the real numbers. Suppose

that 7= {r,,¢,,. .., 1] is a finite subset of S, with 7, < ¢, < ... <1,
Given ¢ & [p(7,), @(r,)], we may define a monotonic function / on [0, #] by
S = p(2) — «, _ (5.1)

where x & [0, n] and i = [x — 4. Thus, finding an index i such that oft,) ==
iIs equivalent to finding a zero of f in [0, #], and our zero-finding algorithm
could be used instead of the usual bisection algorithm. It might be worth-

while to modify our algorithm slightly to take the discrete nature of the
problem into account,

58 FINDING A ZERO Chap. 4

Section 6
ALGOL 60 PROCEDURES

The ALGOL procedures zero (for standard floating-point numbers)
and zere2 (for floating-point with an extended exponent range) are given
below, For a description of the idea of the algorithm, see Section 2. Some
test cases and numerical resulis are described in Section 4. A FORTRAN
translation of procedure zere is given in the Appendix.
real procedure zero (a, b, macheps, 1, §);
value o, b, macheps, i; real a, b, macheps, t; real procedure [;

begin comment:

Procedure zero returns a zero x of the function f in the given interval

[a, 5], to within a tolerance 6macheps|x| -+ 2t, where macheps is the

-relative machine precision and ! is a positive tolerance. The procedure

assumes that f{a) and f(b) have different signs;

real ¢, d, e, fa, fb fo, tol, m, p, g, v, 85!

Ja:=fla); é %ms

int: ¢ == fa; d er=h —a

ext: if iuwa& mUmC@v then

begina: = b b:=¢; ¢t = a;

= fby fb: = fe; fe: = fa

“tol: = 2 % macheps > abs(b) -+ 1; m: = 0.5 % {c — b);
if abs(m) = rol A fb 5= 0 then
begin comment: See if a bisection is forced;
if abs(e) << fol v/ < abs{(/b) then d: = e: = mn else
hegin 5 = .NJE\?. if @ = ¢ then
begin comment: Linear interpolation:
pr=2xmxsgq =1z
end
else
begin comment: Inverse quadratic interpolation;
g: = falfe; ro = fblfc;
«.. ‘.QXANXE/Q (g — r)— (b a) % (r-— 1),

m:m“
itp > 0theng: = —gelse p: = —p;
§r=e; e =d;
it 2= p<3xmxg-abs{tol X g) A p <2 abs(0.5 x5 xg)
‘then d: = p/g else d: == e = m

= fb;
b= :m abs(d) = tof then o else if m > 0 then ro! else —1ol);

Sec. §

real

ALGOL 60 PROCEDURES 58
Jb: = jb);
go to if & = 0 == fe = 0 then int clse ext
end;
zero: = b
end zero
procedure zero? (a, b, macheps, t, f);

value a, b, macheps, t; veal a, b, macheps, t; procedure f;

begin comment:

Procedure zero? finds a zero of the function f in the same way as
procedure zero, except that the procedure f{x, v, z} returns y{real) and
z {integer) so that f(x) == y-27. Thus underflow and overflow can be
avoided with a very large function range;
real procedure pwr2 (x,), value x, n; real x, integer n;
comment: This procedure is machine-dependent. It computes x-2" for
1 <2 0, avoiding underflow in the intermediate results;
pwr2: = if n > —200 then x X 27 n else
ifn > \&oo then (x x 27 (—200%) x 27 (n - 200) elsc
it > —600 then ((x > 27 (~200)) x 27 (~200)) x 27 (n + 400)
else 0;
integer ea, eb, ec;
real ¢, d, e, fa, [b, fc, tol, m, p, g, r, s;
fla, fa, ea); f(b, fb, eb);
int: ¢: == g, fe: = fa; ec: = ea; d. ;
ext: if (ec << eb A pwr2(abs{fc), ec — eb) << abs(\ by

\ (ec == eb A pwr M@GwQS eb — ec) = abs{f¢)) then

begin a; == b, fa: = fb; ea: = eb;

b= fe,eb: = ec;

end;
tol: = 2 % macheps x abs{h) + 1; m: == 0.5 x {¢c — b);
if abs(m) > rol A fb =+ 0 then
begin if ahs(e) << tol V/
(ea << eb p pwr2(abs{fa), ea — eb) << abs(fD)) v
(ea = eb A pwr2(abs(fb), ¢b — ea) = abs(fa)) then
dr = e: = m else
_Emmn 5. = pwr2(fb, eb — ea)[fa; if a = c then
beginp: =2 X m x 5,4, = 1 — send

else
begin q: = pwr2(fa, ea — ec)ife;
i = pur2(fb, b — ec)lfe;
pr=sx @ xmxgx{g—ry—(b—axF—1N)y
gr=(g— DX —DxE—1D

60

FINDING A ZERC Chap. 4

ifp>0theng: = —qgelsep, = —p; s =¢; e; = d;
if 2 p<<3xmxg—abs(tol X q) A
P << abs(0.5 x 5 > gq) then
d:==plgelse d: = ¢: =m
end;
a:=b; fa: = fb; ea: = eb;
b: = b - (if abs(d) > fol then d else if m = O then fo/ else — tol);
Sb, b, eb);
go to i /b > 0 == fr > 0 then int else ext
end;
zero2: = b
end zero?;

AN ALGORITHM WITH
GUARANTEED CONVERGENCE
FOR FINDING A MINIMUM

OF A FUNCTION

OF ONE VARIABLE

Section 1
INTRODUCTION

A common computational problem is finding an approximation to the
minimum or maximum of a real-valued function fin some interval [a, L.
This problem may arise directly or indirectly. For example, many methods
for minimizing functions g{x) of several variables need to minimize functions
of one variable of the form

7(A) = g(x, -+ 49), _ (LD
where x, and s are fixed (a “one-dimensional search™ from x; in the direction
s). In this chapter we give an algorithm which finds an approximate local
minimum of f by evaluating f at a small number of peints. There is a clear
analogy between this algorithm and the algorithm for zero-finding described
in Chapter 4 (see Section 4). Uniess f is unimodal (Section 3), the local
minimum may not be the global minimum of fin [, 5], and thé problem
of finding global minima is left until Chapter 6.

The algorithm described in this chapter could be used to solve the prob-
lem (1.1}, but it would be more economical to use special algorithms which
make use of any extra information which is available (e.g., estimates of the
second derivative of y), and which do not-attempt to find the minimum very
accurately. This is discussed in Chapter 7. Thus, a more likely practical use
for our algorithm is to find accurate minima of naturally arising functions of
ong variable. . : :

67

62 - MINIMIZING A FUNCTION OF ONE VARIABLE Chap, §

In Section 2 we consider the effect of rounding errors on any minimiza-
tien algorithm based entirely on function evaluations. Unimodality is de-
fined in Section 3, and we also define “S-unimodality” in an attempt to explain
why methods like golden section search work even for functions which are
not quite unimodal (because of rounding errors in their computation, for
example). In Sections 4 and 5 we describe a minimization algorithm analo-
gous to the zero-finding algorithm of Chapter 4, and some numerical results
are given in Section 6. Finally, some possible extensions are described in
Section 7,’and an ALGOL 60 procedure is given in Section 8.

Reduction to a zero-finding problem

If 7is differentiabie in [4, 8], a necessary condition for / to have a local
minimum at an interior point g & (a, &) is

J () = 0. (1.2)
There is also the possibility that the minimum is at @ or &: for example, this
is true if /" does not change sign on [a, b]. If we are prepared to check for this
possibility, one approach is to look for zeros of /7. If " has different signs
at @ and b, then the algorithm of Chapter 4 may be used to approximate
a point g satisfying (1.2).

Since f” vanishes at any stationary point of £, it is possible that the point
found is a maximum, or even an inflexion point, rather than a minimum,
Thus, it is necessary to check whether the point found is a true minimum,
and continue the search in some way if it is not.

If it is difficult or impossible to compute £’ directly, we could approxi-
mate /' numerically (e.g., by finite differences), and search for a zero of #
as above. However, a method which does not need £ seems more natural,
and could be preferred for the following reasons:

I. It may be difficult to approximate /" accurately because of rounding
errors,

2. A method which does not need /" may be more efficient (see below);
and

3. Whether /' can be computed directly or not, a method which avoids
difficuity with maxima and inflexion points is clearly desirable.

Jarratt’s method

Jarratt (1967) suggests a method, using successive parabolic Eﬁwmﬁoﬁ-
tion, which is a special case of the iteration analyzed in Chapter 3. With
arbitrary starting points Jarratt’s method may diverge, or converge to a
maximum or inflexion point, but this defect need not be fatal if the method
is used in combination with a safe method such as golden section search, in the

Sec. 2 FUNRDAMENTAL LIMITATIONS BECAUSE OF ROUNDING ERRCARS 63

same way that we used a combination of successive linear interpolation and
bisection for finding a zero. Theorem 3.5.1 shows that, if / has a Lipschitz
continuous second derivative which is positive at an interior minimum g,
then Jarratt’s method gives superlinear convergence to g with weak order
at least f#, = 1.3247 ... (see Definitions 3.2.1 and 3.5.1), provided the ini-
tial approximation is good and rounding errors are negligible.

Let us compare Jarratt's method with one of the alternatives: estimating

/' by finite differences, and then using successive linear interpolation to

find a zero of /', (This process may also diverge, or converge to a maximum.)
Suppose that f"(u) > 0 and f'(x) = 0, to avoid exceptional cases (see
Sections 3.6, 3.7, and 4.2). Since at least two function evaluations are needed
to estimate /' at any point, and ./1.618... = 1.272.,. < 1.324 ..., Jarratt’s
method has a slightly higher order of convergence. The comparison is similar
to that between Newton’s method and successive linear interpolation: see
Section 4.3 and Ostrowski (1966).

Section 2
FUNDAMENTAL LIMITATIONS BECAUSE
OF ROUNDING ERRGRS

Suppose that £ LC?a, b; M] has a minimum at g & (a, b). Since
J() =0, Lemma 2.3.1 m?mm, for x € [a, b],

SO =y filx = -+ 7 9 ,,,,,,, - 1), (2.1)

ESQETEMA\E\O\ C&u man mH.WAE.woomcmno?ocmmmnm .m:cam.,
the best that can be expected if single-precision floating-point numbers are
used is that the computed value fI{ /(%)) of f(x) satisfies the (nearly mﬁm‘SmE@

bound .
JUL) = fF(l + @. (2.2)

where
el <<, . . (2.3)

and € is the relative machine precision (see Section 4.2). The error bound is
unlikely to be as good as this unless f is a4 very simple function, or is eval-
uated using double- ﬁ_dﬁm_oz and then rounded or truncated to single-pre-
cision,

Let § be the largest number such that, according to equations (2.2)
and (2.3), it is possible that

- A+ 8D < o _ (2.4)
1t is unreasonable to expect any minimization procedure, based on single-
precision evaluations of £, to return an approximation 4 to g with a guar-

64 MINIMIZING A FUNCTION OF ONE VARIABLE Chap. 5

anteed upper bound for | 4 — u|less than 8. This is so regardiess of whether
the compuied values of f are used directly, as in Jarratt’s method, or in-
directly, as in the other method suggested in Section 1. The reason is simply
that the minimum of the computed function f/(£(x)) may lie up to a distance ¢
from the minimum g of f(x}: see Diagram 2.1.

DIAGRAM 2.1 The effect of rounding errors

If £ = 0, equations (2.1} to (2.4) give

2.5

~ Thus, if g5 0 and the term M/(6fy) is negligible, an upper bound for
the relative error (2 — u)/u| could hardly be less than [21 £ | €/C e,
w:a full single-precision accuracy in fi is unlikely unless | Fo {2 3y is of
..o?._mm, € or less, although f#(f()) may agree with Ju) to full single-precision
accuracy. (See also Pike, Hill, and James (1967).)

If /" has a simple analytic representation, then it may be easy to compute
S accurately. For example, perhaps

JIS) =11+ €N + €)), (2.6)

:where [€,| <l € and | €] | < €, so we can expect to find a zero of /7 with a
relative error bounded by € {see Lancaster (1966) and Ostrowski (1967b)).
1f (2.6) holds it might be worthwhile to use the algorithm described in Chapter
4 10 search for a zero of £, or at least use it to refine the approximation g
given by a procedure using only evaluations of 7. However, this is not so if
.J" has to be approximated by differences, for then (2.6) cannot be expected
to hold. . :

. Evenif f(x) is a unimodal function, the computed m@nﬁoi.ammom\:&@d
- will not be unimodal: f1(£(x)) must be constant over small intervals of real
‘numbers x which have the same floating-point approximation fi(x). In the
next section we define “d-unimodality” to circumvent. this difficulty.

See. 3 UNIMODALITY AND 8-UNHAODALITY 65

From now on, we consider the problem of approximating the minimum
of the computed function, or, equivalently, we ignore rounding errors in the
computation of /. The user should bear in mind that the minimum of the
computed function may differ from the minimum that he is really interested
in by as much as é (see equation (2.5} above). There is no point in wasting
function evaluations by finding the minimum of the computed function to
excessive accuracy, and our procedure localmin (Section 8) should not be
called with the parameter eps much less than [2| £, | e/(u2f o V>

Section 3
UNIMODALITY AND S-UNIMODALITY

There are several different definttions of a unimodal function in the
literature. One source of confusion is that the definition depends on
whether the function is supposed to have a unique minimum or a unique
maximum {we consider minima). Kowalik and Osborne (1968) say that f
is unimodal on {a, b] if / has only one stationary value on {a, b]. This defini-
tion has two disadvantages. First, it is meaningless unless f is differentiable
on [a, b], but we would like to say that x| is unimodal on —1, 1]. Second,
functions which have inflexion points with a horizontal tangent are prohib-
ited, but we would like to say that f{x} == x® — 3x* + 3x? is unimodal on
[—2, 2] (here f'(:t-1) = f"(£ 1) =). _

Wilde (1964} gives another definition: fis unimodal on {a, 5] if, for all
X, x, e la, b,

Xy DXy DX < x* o flx) = flady A Oz xF oo filx) < fx)),

(3.1)
where x* is a point at which f attains its least value in [a, #]. (We have
reversed some of Wilde’s inequalities as he considers maxima rather than
minima.} Wilde’s definition does not assume differentiability, or even conti-
nuity, but to verify that a function f satisfies (3.1) we need to know the
point x* (and such a point must exist). Hence, we prefer the foliowing defi-
nition, which is nearly equivalent to Wilde’s (see Lemma 3.1), but avoids any
reference to the point x*. The definition is not as complicated as it looks: it
merely says that / cannot have a “hump” between any two points x, and
x, in [a, £). Two possible configurations of the points x,, x,, x,, and x* in
(3.1} and (3.2) are illustrated in Diagram 3.1.

DEFINITION 3.1
/18 unimodal on [a, b] if, for all x,, x, and x, & [a, b,

X <Xy A X <D xg 2 () =T 2 () < S) A

(f(x,) 2 () o f(xg) = F(x,)). (3.2)

66 MINIMIZING A FUNCTION OF ONE VARIABLE Chap. 5

Xy

Xy
X1

Xy

Xg X1

DIAGRAM 3.1 Unimodal functions
LEMMA 3.1
If a point x* at which fattains its minimum in [a, 5] exists, then Wilde’s
definition of unimodality and Definition 3.1 are equivalent.
Proof

Suppose that fis vnimodal according to Definition 3.1. If x, < x, and

x, <0 x*, take xj = x, ¥} = x,, and x, = x*. Since f attains its least value
at x¥,
FD) 2 f(x) = f(x), (3.3)
so equation (3.2) with primed variables gives
f(x) = f(x)), (3.4)
and thus
J(x,) = flxy). (3.5
Similarly, if x, < x, and x, = x*, equation (3.2) gives
T <) (3.6)

Thus, from (3.5) and (3.6), equation (3.1) holds.

Conversely, suppose that (3.1} holds and x, < x, <= x,. If /(x,) << /(x,)
then there are three possibilities, depending on the position of x*:

I x, > x*. Thus, by (3.1),
J(x)) < fxo) (3.7)
2, x, = x* Take x| == J(x, + x,) and x;, = x,.
Since x* < x} < xi, equation {3.1) with primed variables gives
S =<2 fx5), (3.8}
$0

Sx) = f(x%) < flx) < f(x) = fxy). (3.9)

Sec. 3 UNIMODALITY AND §-UNHMODALITY 67

3. x, = x* Take x, = x, and x} . Since x|, =7 x, <0 X%, B:a:ow
{3.1) gives f(x\) > NQ), nc::ma_o::m the mmmcivro: that f{x,) <
F(x,). Hence case 3 is impossible and, by (3.7} and (3.9), we m_éﬁéw
have f{x,) << f(x,).

Similarly, if f{x,) = f(x,) then f{x;) = f(x,), so equation (3.2) holds,
and the proof is complete.

A simple corollary of Lemma 3.1 is that, if f is continuous, then
Wilde's definition of unimodality and ours are equivalent. For arbitrary /
the definitions are not equivalent. For example,

fw—f T esd (3.10)
x if x>0
is unimodal on [—1, 1] by our definition, but not by Wilde's, for x* does not
exist.

The following theorem gives a simple characterization of unimodality.
There is no assumption that f is continuous. Since a strictly monotonic
function (e.g., x*) may have stationary points, the theorem shows that
hoth our definition and Wilde’s are essentiaily different from Kowalik and
Osborne’s, even if f is continuously differentiable. (Although this point Is
obvious, it is sometimes overlooked! Sec also Corollary 3.3.)

THEOREM 3.1

7 is unimodal on [a, 5] (according to Definition 3.1) iff, for some
(unique) 1 & [a, b), either [is strictly monotonic decreasing on [g, xt) and
strictly monotonic increasing on [g, b], or [is strictly monotonic aoﬁnmm_:m
on [a, 1] and strictly monotonic increasing on {4, b].

The theorem is a special case of Theorem 3.2 below, so the proof is
omitted. The following corollaries are immediate,

COROLLARY 3.1

If fis unimodal on [a, 4], %m:\m:m_mn its least value at most once on
[a, b]. (If f attains its least value, :6: it must attain it at the vo:: e given
by Theorem 3.1.)

COROLLARY 3.2

 If fis unimodal and continuous on [@, B}, then f attains its least value
exactly once on [a, b].

OOEO_,er,\ 3.3

If /& C'[a, b} then f is unimodal iff, for some u & [a, b, f" <
almost everywhere on [a, g] and f* > 0 almost everywhere on [z, &]. AZOE
that f* may vanish at a finite number of points.}

68 MINIMIZING A FUNCTION OF ONE VARIABLE Chap, §

Fibonacei and golden section search

If /" is unimodal on [g, 5], then the minimum of /£ (or, if the minimum
is not atfained, the point g given by Theorem 3.1) can be located to any
desired accuracy by the well-known methods of Fibonacei search or golden
section search, The reader is referred to Wilde (1964) for an excellent descrip-
tion of these methods. (See alse Boothroyd (1965a, b), Johnson (1935), Krolak
(1968), Newman (1965), Pike and Pixner (1967}, and Witzgal! (1969).) Care
should be taken to ensure that the coordinates of the points at which f is
evaluated are computed in a numerically stable way (see Overholt (1965)).
Fibonacci and golden section search, as well as similar but less efficient
methods, are based on the following result, which shows how an interval
known to contain g may be reduced in size.

COROLLARY 3.4

Suppose that fis unimedal on [a, b}, g is the point given by %wmo_.m_.:

3lhanda < x, <<, < b I f(x) < f(x,) then g <2 x,, and if f{x)) = f{x,)
then u >» x,.

Proof

If HN < g then, by Theorem 3.1, f(x,) = f(x;). Thus, if f{x,) < flix,)
then g <C x,. The other half follows similarly,

If the reader is prepared to ignore the problem of computing unimodal
functions using limited-precision arithmetic, he may skip the rest of this
section.

d-unimodality

We pointed out at the end of Section 2 that functions computed using
limited-precision arithmetic are not unimodal. Thus, the theoretical basis
for Fibonacci search and similar methods is irrelevant, and it is not clear
that these methods will give even approximately correct results in the pres-
ence of rounding errors, To analyze this problem, we generalize the idea of
‘unimodality to d-unimodality. Intuitively, § is'a nonnegative number such
that Fibonacci or golden section search will give correct results, even though
f is not necessarily unimodal {unless § = 0), provided that the distance
between points at which fis evaluated is always greater than 8. The results
of Section 2 indicate how large & is likely to be in practice. (Our aim differs
from that of Richman (1968} in defining the e-calculus, for he is interested
In properties that hold as € — 0.) For another approach to the wu_.ozmﬁ of
rounding errors, see Overholt (1967).

In the remainder of this section, § is a fixed nonnegative number. As
well as d-unimodality, we need to define §-monotonicity. If 6 = 0 then

Sec. 3 UNIMODALITY AND &-UNIMODALITY 63

d-unimodality and é-monotonicity reduce to unimodality (Definition 3.1)
and monotonicity.

DEFINITION 3.2

Let 7 be an interval and f a real-valued function on 7. We say that /s
strictly o-monotonic increasing on Iif, forall x,, x, € I,

Xy b 0 <Xy 2 f(x) <L) (3.1D

As an abbreviation, we shall write simply “/ is 8-7 on I, mﬁnm« o~
monotonic decreasing functions (abbreviated 8-]) are defined in the obvious
way.

DEFINITION 3.3

Let { be an interval and fa real-valued function on 1. We say that f is
g-unimodal on I'if, forall x,, x,, x, € 1,

Xo+d<x, Ax,+d<x, D (fxg) < f(x)) = flx) << flx,)
C.ARL = flxy) o f(xy) > f(x D).
(3.12)

The following thearem gives a characterization of d-unimodal functions,
It reduces to Theorem 3.1 if § =

THEOREM 3.2

fis 6-unimodal on [q, b] iff there exists u = [a, b] such that either fis
8-} on [a, g) and &-1 on [u, b], or fis §-] on [a, g} -and é-1 on (g, b]. Fur-
thermore, if f is §-unimodal on [a, &), then there is a-unique interval [z,]
< [a, b] such that the points g with the above properties are precisely the

elements of [g,, u,), and p, << g, + 4.

Proof

Suppose g exists so that f is 8-} on [a, g) and &-1 on [u, b]. Take any
Xpe Xp» X, 10 [@, B) with x, + & < x, and x, + & < x,. ﬁ...ikb%\?b
then, since fis -] on [a, Eq i< x. As fis -7 on [u, b), it follows that

F(x,) << f(x,). The other cases are similar, mo_,m J-unimodal.
Conversely, suppose that f is d-unimodal on {a, &]. Let

i, = inf{x € l{a,b}} fis 6-1 on [x, b}}. {3.13)
(s0 g, < max(a, b — §)), and |
i, = suplx & [a, b]| fis §-] n [a, x1, (3.14)

(s0 p, = min{a -+ 4, b)).

It is immediate from the definitions (3.13) and (3.14) that w is m-_ on
(u,, Pl and fis 8- onla, u,). We shall show that .

< s - (3.15)

[Pt

70 MINIMIZING A FUNCTION OF ONE VARIABLF Chap. 5

Suppose, by way of contradiction, that

My 2 e {3.16)
This implies that g, > a and g, < . From the definitions of ayand g,
there are points x” and x*, with

o (B) < g, 617

such that f is not 4-7 on [x, b] and f is not §-| on [a, x"]. Thus, there are

points ¥, ¥, 2, z” in [a, b] such that

PRy S X Ly 2 — (3.18)
SET) < ("), (3.19)

and
SO = fzZ). (3.20)

letx,=2z" x, =12 and

,. N pf

., = ﬁ_ :ﬁ).ﬁ. = fO, (3.21)
¥" otherwise,

From relations (3.18) to (3.21), the points x,, x,, and x, contradict §-uni-

modality (equation (3.12)). Thus (3.16) is impossible, (3.15) must hold,

and [g,,] is nonempty.

Choose any g in ?: #,]. From the definitions of g, and u,, 1 is 6-]

on [a, 1) and -7 on (g, b]. Suppose, if it is possible, that 7 is neither §- H

“on [a, g] nor §-1 on (g, b]. Then there are points ¥; and p,, in [a, 5], such

that

Yool & <p <y — 6, (3.22)
Fr) =), (3.23)

and
1) <2 F (). (324

ﬁ:wm, the points y,, 4, and p, contradict the §- unimodality of £, so [is
cither -] on [a, u] or §-7 on r:v). This oo::u_mﬂmm the proof of the first
-part of :,ﬁ theorem.

. Finally, by the definitions (3.13) and (3.14), the set of points y satisfying
the conditions of the theorem is precisely [z, u,]. Since £ is both d-1 and
m-w on (u,, u,). we _Eé o <2 piy -+ 0, and the proof is complete.

Remarks

The interval [g,. u,] depends on §. Suppose that £ attains its ::::3:5
in [a, 8] at ji. By Theorem 3.2, fis -7 on (&, b] and d-lonfa, u,).s0 g e
(2, — 6, #; + 4], an interval of length at most 2§.

Sec. 3 UNIMODALITY AND &-UMIMODALITY 71

As an example, consider

J(x) = x* -+ glx) _ (3.25)
on[—1, 1], where g is any function (not necessarily continuous) with| g{x)| < e,
and € > 0. Since f{x) is bounded above and below by the unimodal func-
tions x* |- ¢ and x? — ¢, we see that f is §-unimodal for any § = ./Ze.
In a practical case € might be a small multiple of the relative machine preci-
sion, and the fact that the least § for which f'is e-unimodal is of order €!/2,
rather than ¢, is to be expected from the discussion in Section 2. .

The following theorem is a generalization of Corollary 3.4 (which is
, and shows why methods like Fibonacci search
and golden section search work on §-unimodal functions while the distance
between points at which f is evaluated is greater than 4.

THEOREM 3.3

Suppose that fis d-unimodal on ? b, u, Ea.hu are the points m?mm.
by Theorem 3.2, x, and x, are in [a, 8], and x, -+ § << x,. If f(x,) < f(x,)
then u, <7 x,, and if f(x,) > f(x,) then g, > x,.

Proof

If x, < g, then f(x,) > f(x,) for, by Theorem 3.2 with g = u,, [
is d-f on [a, i,). Hence, if f(x,) << f(x,) then u, << x,. The second half is
similar.

Remarks

Theorems 3.2 and 3.3 show that, provided § is known, methods like
Fibonacci search and golden section search can locate the interval [u,, p,]

~ in an interval of length as close to § as desired. Since the minimum j ¢

[p, — 0, pt, -+ &] (see the remarks above), this means ﬁrmm can be _OOmSa
in an interval of length as close to 3§ as desired.

In practice f may be §-unimodal for ali § = 8, but a sharp upper s.o.c:m
for 8, may be difficult to obtain. If the usual golden section search method
is used, giving a nested sequence of intérvals I, with limit 2, then Theorem
3.3 shows that [u,, u,] & I, as Jong as the two function evaluations giving
I, were at points separated by more than d,. The smallest such interval f,
has length no greater than (2 +- /5 ume 50 :

A — Zl <3 +/5)8, = m_.mw@o. . (3.26)

Thus, golden section search gives an approximation 4 which is nearly as good
as could be expected if we knew &,. This may be regarded as a justification
for using golden section or ‘Fibonacci-search to approximate minima of
funetions which, because of EEEEW errors, are only “approximately”
unimodal.

72 MINIIZING A FUNCTION OF ONE VARIABLE Chap. §

Section 4
AN ALGORITHM ANALOGOUS TO DEKKER'S
ALGORITHM

For finding a zero of a function f, the bisection process has the advan-
tage that linear convergence is guaranteed, because the interval known fo
contain a zero is halved at each evaluation of f after the first. However, if
fis sufficiently smooth and we have a good initial approximation to a simple
zero, then a process ‘with superlinear convergence will be much faster than
bisection. This is the motivation for the algorithm, described in Chapter 4,
which combines bisection and successive linear interpolation in a way which
retains the advantages of both.

There is a clear analogy between methods for finding a minimum and
for finding a zero. The Fibonacci and goelden section search methods have
guaranteed linear convergence, and correspond to bisection. Processes like
successive parabolic interpolation, which do not always converge, but under
certain conditions converge superlinearly, correspond to successive linear
interpolation. In this section we describe an algorithm which combines
golden section search and successive parabolic interpolation. The analogy
with the algorithm of Chapter 4 is illustrated below.

Zeros FExtrema

Linear convergence Bisection < Golden section search
Superlinear convergence . Successive linear <—> Successive parabolic
interpolation inferpoiation

Many more or less ad hoc algorithms have been proposed for one-
dimensional minimization, particularly as components of n-dimensional
minimization algorithms. See Box, Davies, and Swann (1969); Flanagan,
Vitale, and Mendelsohn (1969); Fletcher and Reeves (1964); Jacoby, Kowalik,
and Pizzo (1971); Kowalik and Osborne (1968); Pierre (1969); Powell (1964);
ete. The algorithm presented here might be regarded as an unwarranted
addition to this list, but it seems to be more natural than these algorithms,
which involve arbitrary prescriptions like “if . . . fails then halve the step-size
and try again”. Of course, our algorithm is not quite free of arbitrary pre-
scriptions either; a more objective criticism of the ad hoc algorithms is that
for many of them convergence to a local minimum in a reasonable number
of function evaluations cannot be guaranteed, and, for the exceptions, the
asymptotic rate of convergence (when f is sufficiently smooth) is less than
for our algorithm (Section 5). Note that we do not claim that our algorithm
is suitable for use in an a-dimensional minimization procedure: an ad hoc
algorithm may be more efficient (see Sections 7.6 and 7.7).

Sec. 4 AN ALGORITHM ANALOGOUS TO DEKKER'S ALGORITHM 73

A description of the algorithm

Here we give an outline which should make the main ideas of the algo-
rithm clear. For questions of detail the reader should refer to Section 8, where
the algorithm is described formally by the ALGOL 60 procedure localmin.

The algorithm finds an approximation to the minimum of a function f
defined on the interval [a, b]. Unless a is very close to b, fis never evaluated
at the endpoints @ and b, so / need only be defined on (a, b), and if the mini-
mum is actually at @ or b then an interior point distant no more than 2tol
from a or b will be returned, where fo/ is a tolerance (see equation. (4.2}
below). The minimum found may be local, but non-global, unless [is &-
unimodal for some § << rol

At a typical step there are six significant points a, b, u, v, w, and x, not
all distinct. The positions of these points change during the algorithm, but
there should be no confusion if we omit subscripts. Initialty {a,) is the
interval on which fis defined, and

p=we=x—at ﬁ{v@ —a). (4.1)

The magic number (3 — /5)/2 = 0.381966. . . is rather arbitrarily chosen

so that the first step is the same as for a golden section search.

At the start of a cycle (label “loop” of procedure /ocalmin) the points
a, b, u, v, w, and x always serve as follows: a Jocal minimum lies in [a, b];
of all the points at which f has been evaluated, x is the one with the least
value of f, or the point of the most recent evaluation if thereis a tie; w is the
point with the next lowest value of f; v is the previous value of w; and u is
the last point at which f has been evaluated (undefined the first time). One
possible configuration is shown in Diagram 4.1.

|
|
L
1
|
I
|
|
;
a u m .
w X v
DIAGRAM 4.1 A possible configuration

As in procedure zero (Chapter 4), the tolerance is a combination of a
relative and an absolute tolerance. If .

tol == eps|x|+1, . (4.2)

74 MINIMIZING A FUNCTION OF ONE VARIABLE Chap. 5

then the point x returned approximates a minimum to an accuracy of
2iol 4 § < 3tol, provided f'is é-unimodal near x and J < tol. The user must
provide the positive parameters eps and 7. In view of the discussion in Section
2, it is generally unreasonable to take eps much less than €'2, where € is the
machine-precision (see Section 4,2). The parameter ¢ should be positive in
case the minimum is at 0. It is possible that the error may exceed 2tol | o
because of the effect of rounding errors in determining if the stopping cri-
terion is satisfied, but the additional error is negligible if eps is of order €'/?
or greater. :

Let m = 4(a -~ b) be the midpoint of the interval known to contain
the minimum. If {x — m|<C 2ol — L(b — a), ie, if max(x —a, b —x)
<2 2tol, then the procedure terminates with x as the approximate position
‘of the minimum. Otherwise, numbers p and g(g > 0) are computed so that
x -+ p/q is the turning point of the parabola passing through (v, f()), (w, f(w}),
and (x, f(x)). If two or more of these points coincide, or if the parabola degen-
erates to a straight line, then g == 0.

p and g are given by

p= £l — P — SO — (¥ = W@ — [(43)

. = 4(x — v x — w)w — ¥ (x — wyflo, w, x] + fw, xl}, (4.4
and :

g = TAx —)~ 00 — (&= W — 1) @5

= F2x ~ v){x - w)(w — v)f[v, w, x]. (4.6}

From (4.4) and (4.6), the correction p/g should be small if x is close to a mini-
mum where the second derivative is positive, so the effect of rounding errors
in computing p and g is minimized. (Golub and Smith (1967) compute a
correction to } (v - w) for the same reason.)

As in procedure zero, let e be the value of p/g at the second-last cycle.
Ifle] = tol, g =0, x -+ plg ¢ (a, b), orip/g| = L|e|, then a “golden section”
step is performed, i.e., the next value of u is

(LD (2755)a it xzm,
A;\M_ D+ (3= 22N it x<m

(If the next & steps are golden section steps, then this is the limit of the opti-
mal choice as k —» co: see Witzgall (1969).) Otherwise u is taken as x - p/g
{a “parabolic interpolation™ step), except that the distances |v ~ x|, u - @,
and b — u must be at least rol. Then fis evaluated at the new point u, the
points @, b, v, w, and x are updated as necessary, and the cycle is repeated
(the procedure returns to the label “loop™). We see that f is never evaluated
at two points closer together than fof/, so d-unimodality for some & < fol
is enough to ensure that the global minimum is found to an accuracy of
20! -+ & (see Theorem 3.3 and the following remarks).

(4.7)

See. & CONVERGENCE PROPERTIES 75

Typically the algorithm terminates in the following way: x = b — fol
(or, symmetrically, @ + fol) after a parabolic interpolation step has been
performed with the condition |u — x| = 7o/ enforced. The next parabolic
interpolation point lies very close to x and b, so w is forced to be x — vrol.
If /(1) = f(x) then @ moves to u, b -- a becomes 2so0/, and the termination
criterion is satisfied (see Diagram 4.2). Note that two consecutive steps of
tol are done just before termination. If a golden section search were done
whenever the last, rather than second-last, value of | p/g| was tof or less, then
termination with two consecutive steps of rol would be prevented, and un-
necessary golden section steps would be performed.

% a X b

to! fof

DIAGRAM 4.2 A typical configuration after termination

Section b
CONVERGENCE PROPERTIES

There cannot be more than about 2log, [(b - a)/tol] consecutive para-
bolic interpolation steps (with the current @ and b, and the minimum of fof
over the interval), for while parabolic interpolation steps are being performed
| p/g| decreases by a factor of at least two on every second cycle of the algo-
rithm, and when |e| < ol a golden section step is performed. (In this section,
“ahout” means we are not distinguishing between a real number and its

" integer part. Precise results may easily be obtained as in Section 4.3.) A

golden section step does not necessarily decrease # — «a significantly, e.g.,
if x == b — tol and f() < f(x), then b — a is only decreased by fo/, but iwo
golden section steps must decrease b — a by a factor of at least (1 + ,/5)/2
= 1.618.... As in Section 4.3, we see that convergence cannot require more
than about . ’ -

. b a\]? }
Mw?mwﬁ[&wﬁ : - GD
function evaluations, where

e 144 ... (52

1
log,[(L + /' 5)/2]

76 MINIMIZING A FUNCTION OF ONE VARIABLE Chap. &

By comparison, a golden section or Fibonacci search would require about

K _omwhﬁmﬂmv (5.3)

function evaluations, and a brute-force search about (b — @)/{2tol).

The analogy with procedure zere of Chapter 4 should be clear, and
essentially the same remarks apply here as were made in Section 4.3. In
practical tests convergence has never been more than 5 percent slower than
for a Fibonacci search (see Section 6).

In deriving (5.1) we have ignored the effect of rounding errors inside
the procedure. As in Section 4.2, it is easy to see that they cannot prevent
convergence if floating-point operations satisfy (4.2.10) and (4.2.11}, pro-
vided the parameter eps of procedure focalmin is at least 2¢.

Superlingar convergence

If fis C* near an interior minimum g with /"(u} > 0, then Theorem
3.4.1 shows that convergence is superlinear while rounding errors are nggli-
gible. Usually the algorithm stops doing golden section steps, and eventually
does only parabolic interpolation steps, with f{x) decreasing at each step,
until the tolerance comes into play just before termination. This is certainly
true if the successive parabolic interpolation process converges with strong
order f§, = 1.3247 .. (sufficient conditions for this are given in Sections 3.6
and 3.7).

For most of the ad hoc methods given in the literature, convergence
with a guaranteed error bound of order fof in the number of steps given
by (5.1) is not certain, and, even if convergence does occur, the order is no
greater than for our algorithm. For example, the algorithm of Davies, Swann,
and Campey (Box, Davies, and Swann (1969)) evaluates [at two or
more points for each parabolic fit, so the order of convergence is at most

S, = 1150 ...

Section 6
PRACTICAL TESTS

‘The ALGOL procedure localmin given in Section 8 has been tested using
ALGOL W (Wirth and Hoare (1966); Bauer, Becker, and Graham {1968)}
on 1BM 360/67 and 360/91 computers with machine precision 1677 Although
it is possible to contrive an example where the bound (5.1} on the number
of function evaluations is nearly attained, for our test cases convergence
requires, at worst, only 5 percent more function evaluations than are needed
to guarantee the same accuracy using Fibonacci search. In most practical

Sec. 6 PRACTICAL TESTS 77

cases superlinear convergence sets in after a few golden section steps, and the
procedure is much faster than Fibonacci search.
As an example, in Table 6.1 we give the number of function evaluations
required to find the minima of the function
: 20 (2j — 5\ :
fo =3 (2=3)" ©.1

Al —

This function has polesat x = 12, 2%, ..., 20% Restricted to the open interval
(@ (i D) fori=12,...,19itis unimodal (ignering rounding errors)
with an interior minimum. The fourth column of Table 6.1 gives the number
n, of function evaluations required to find this minimum g,, using procedure
localmin with eps = 16”7 and £ = 107'° (so the error bound is less than 3ra/,
where fol == 1677 | g, | + 1071%)
The last column of the table gives the number n,, of function evaluations
required to find the zero of
20 y 2
re=-2 58 6.2)

=1
in the interval [i2 -+ 107%, (i + 1)*"— 107°], using procedure zero {Section
4.6) with macheps = 1677 and 1 = 10-'°, so the guaranteed accuracy is
nearly the same as for localmin. Of course, in practical cases we would seldom
be lucky enough to have such a simple analytic expression for /', so procedure

TABLE 6.1 Comparison of procedures Jocalmin and gero

i Hi Fiud i, Hg
1 3.0229153 3.6766990169 12 14
2 6.6837536 1.1118500100 11 8
3 112387017 1.2182217637 13 14
4 19.6760001 2.1621103109 10 12
B 29.8282273 3.0322905193 il 12
6 41.9061162 3.7583856477 11 1%
7 55.0535958 4.3554103836 10 11
8 71.9856656 4.8482659563 10 1t
9 90.0088685 5.2587585400 10 - 10
19 110.0265327 5.6036524295 10 10
11 132.0405517 5.8956037976 10 10
12 156,0321144 6.1438861542 9 10
13 182.0620604 6.3550764593 9 10
14 210.0711010 6.5333662003 9 10
15 240.0800483 6.6803639849 9 10
i6 272.0902669 - 6.7938538365 9 10
17 306.1051233 £.8634981033 9 it
18 342.1369454 6.8539024631 9 9
19 380,2687097 6.60084 70481 9 9

78 MINIMIZING A FUNCTION OF ONE VARIABLE Chap, 5

zerp could not easily be used to find minima of #in this manner. Also, pro-
cedure zero could find a maximum rather than a minimum.

Table 6.1 shows that the number of function evaluations required by
procedure focal/min compares favorably with the number required by proce-
dure zere. Both are much faster than Fibonacci search, which would require
45 function evaluations to find the minimum for i == 10 to the same accuracy.

For some numerical results illustrating the superlinear convergence
of the successive parabolic interpolation process, see Section 3.9.

Section 7
CONCLUSION

The algorithm given in this chapter has the same advantages as the al-
gorithm described in Chapter 4 for finding zeros: convergence in a reasonable
number of steps is guaranteed for any function (see equation (5.1)), and on
well-behaved functions convergence is superlinear, with order at least 1.3247
..., and thus much faster than Fibonacci search. There is no contradiction
here: Fibonacei search is the fastest method for the worst possible function,
but our algorithm is faster on a large class of functions, including, for
example, C* functions with positive second derivatives at interior minima.

A similar algorithm using derivatives

We pointed out in Section 4.5 that bisection could be combined with
interpolation formulas which use both fand /’. We could combine golden
section search with an interpolation method using both f and /7 in a similar
way. Davidon (1959) suggests fitting a cubic polynomial to agree with / and
[at two points, and taking a turning point of the cubic as the next approxi-
mation. (See also Johnson and Myers (1967).) This method, which gives the
possibility of superfinear convergence, could well replace successive parab-
olic interpolation {using f at three points) in our algorithm if 7 is easy to
compute. If the cubic has no real turning point, or if the turning point which
is a local minimum les outside the interval known to contain a minimum
of f, then we can resort to golden section search.

Farallel algorithms

So far we have considered only serial (i.e., sequential) algorithms for
finding minima. If a parallel computer is available, more efficient algorithms
which take advantage of the parallelism are possible, just as in the analogous
zero-finding problem (see Section 4.5). Karp and Miranker (1968) give a
parallel search method which is a generalization of Fibonacci search, and

Sec. & AN ALGQL 60 PRQCELURE 79

optimal in the same sense, if a sufficiently parallel processor is m<m=m.ﬁo.
See also Wilde (1964) and Avriel and Wilde (1966). Miranker (1969) gives
parallel methods for approximating the root of a function, and these nor.:a
be used to find a root of f*. (Parallel methods for finding a root of /', using
only evaluations of /; could also be used.) These parallel methods could be
combined to give a paralle]l method with guaranteed convergence, and often
superlinear convergence with a higher order than for our serial method.

Section 8
AN ALGOL 60 PROCEDURE

The ALGOL procedure localmin for finding a local minimum of a f unc-
tion of one variable is given below. The algorithm and some numerical
results are described in Sections 4 to 6. A FORTRAN translation of proce-
dure localmin is given in the Appendix.

- real procedure localmin (a, b, eps, 1, 1, x);

value g, b, eps, t; veal a, b, eps, t, x; real procedure
begin comment: .

If the function fis defined on the interval (a, b), then localmin finds
an approximation x to the point at which fattains its minimum (or the
appropriate limit point), and returns the value of fat x. r and eps amm:o
a tolerance fol = eps|x |+ ¢, and f is never evaluated at two points
closer together than fof. If f is d-unimodal (Definition 3.3) for some
§ < tol, then x approximates the global minimum of f with an error
less than 3tol (see Section 4). If /'is not §-unimodal on (a, b), then x may
approximate a local, but non-global, minimum. eps should be no smaller
than Zmacheps, and preferably not much less than sqrt {macheps), where
macheps is the relative machine precision (Section 4.2). ¢ should be
positive. For further details, see Section 2. .

The method used is a combination of golden section search and
successive parabolic interpolation. Convergence is never much .m_oémﬂ
than for a Fibonacci search (see Sections 5 and 6). If £ has a continuous
second derivative which is positive at the minimum (not at g or h) then,
ignoring rounding errors, convergence is superlinear, and usually the
order is at least 1.3247 ... ;
real ¢, d, e, m, p, g, r, tol, 12, u, v, w, fu, fo, fw, fx;
¢: = 0.381966; comment: ¢ = (3 — sqri(3))/2;
=l =x=a+c X (b—a);e =0;
for = fw: = fx: = f(x);
comment: Main loop;

Toop: m: == 0.5 ¥ (a + b);
tol: = eps » abs(x) + 1; 12: = 2 x tol;

&l

0

MINIMIZING A FUNCTION OF ONE VARIABLE Chap, 5

-.comment: Check stopping criterion;

if abs(x — m) > 12 — 0.5 x (b — a) then
begin p: = g: == : = 0
if abs(e) > 1o/ then
begin comment: Fit parabola;

roes (x = w) K (fx — o) g (0 — 0)) (fx — fw);

ifg>Othenp: = —pelseq: = —g;

roem e ==

end;

if abs(p) < abs{0.5 X g x 1) A p<g ¥ (a—x) A

P <q ¥ (b~ x)then

begin comment: A “parabolic interpolation” step;

d:i=plg; u: = x - d;

comment: f must not be evaluated too close to a or b;

if v—a<<12Vb—u<t2 then d: = if x <<m then rol
else —tol

end

else
begin comment: A “golden section” step;
e:=(fx<<mthenbelsea) —x;d:=¢ X e
end;
comment: /' must not be evaluated too close to x;
u: = x + (if abs(d} > tol then d else if 4 > 0 then ro/ else —r0l);
Jur = flu);
comment: Update @, b, », w, and x;
if fu < fx then
begin if u# < x then b: = x else a: = x;
vrsw oW o= fwyowne X s g x s g X = fu
end :
else

begin if & <2 x then a: = u else b = y;
if fu << fw v w= xthen
begin v = w; for = fw; wi = u; fiw: = fuend-
else if fu << fo vV » = x.V © = w then
begin v: = u; fo: = fu
end
end;
go to loop
end;
localmin: = fx
end localmin;

GLOBAL MINIMIZATION

- GIVEN AN UPPER BOUND

ON THE SECOND DERIVATIVE

Section 7
INTRODUCTION

Minimization procedures like the one described in Chapter 5 ¢an only
guarantee to find a local, not necessarily global, minimum of a function
f e Cla, b]. If f happens to be unimodal then a local minimum must be the
global minimum, but in practical problems it often happens that f is not uni-
modal, or that unimodality is difficult to prove. In this chapter we investigate
the problem of finding a good approximation to the global minimum, given
weaker conditions on f than unimodality. As usual, we consider methods
which depend on the sequential evaluation of f at a finite number of points,
and our aim is to reduce, as far as possible, the number of function evalua-
tions required to give an answer which is guaranteed to be accurate to within
some prescribed tolerance. .

In Sections 2 to 6 we describe an efficient algorithm for approximating
the global minimum of a function of one variable, given an upper bound on
the second derivative. There are many obvious applications for this algo-
rithm. For example, when finding o posteriori error bounds for the approxi-
mate solution of elliptic partial differential equations, we may need to find the
maximum of | f(x}| (Fox, Henrici, and Moler (1967)). Instead of working
with | f(x)|, which may have discontinuous derivatives, it is probably better
to use the relation

max | £(x)| = —min[min /(x), min(—fCNL. (1)

81

82 . GLOBAL MINIMIZATION Chap. 6

In .m.mozo:m 7 and 8 we show how to extend the method to functions of several
variables, and ALGOL 60 procedures are given in Section 10,

Some fundamental limitations

Iffe Cla, b, let

g, = inf {f(x)]x € [a, b} (1.2)
and
fp = inf [x < [a, Bl f(x) = ,}. (1.3)
.mé: ﬁ\,mm:mmmw very stringent smoothness conditions, the problem of find-
ing p, is improperly posed, in the sense that z, is not a continuous function
of f (with the uniform topology on Cla, b]). For example, consider
Js{x) = cos(ax) — dx (1.4)

on[—2,2LIf 6 = Othen g, == 1, butif § <Z 0 then = —1, 50 a very small
change in fcan cause a large change in My

Instead of trying to approximate g, we should seek to approximate
¢, == flu,). Since

lo; — @, <|f— gl (1.5)
for m:\.\.mza gin Cla, b], ¢ is a continuous function on Cfa, b], so the probiem
of finding g, is properly posed. However, given ¢ > 0, it is still impossible
to find ¢ such that

16— =1t (1.6}

with a finite number N, of function evaluations, unless we have some a priori
information about £,

A priort conditions on f

N ..HQ € Cla, b], the modulus of continuity w(f; 6) is defined (as in Section
2.2) by .

W(f,8) = sup |fx) — f(3)] (1)
.y & k]
for ¢ = 0. Suppose that a function W(8) is given such that
m:ws W(9) == 0, (1.8)
and - |
o w(f;8) < W(S) (19)
- forall § > 0. Given ¢ > 0, choose § = 0 such that
. W) <t (1.10)

Ser. 7 INTROQDUCTION 82

{always possible by (1.8)), and evaluate f at points x,, ..., x, in [, b] such
that
max min |x - x| << 4. (1.1

xEfabl 05isn
(For example, we might choose x; = a+ J, x, = a + 34, x, = a + 53,
ete) If

= min f(x)) (1.12)

0=i<n

then, from (1.7), (1.9), (1.10), and (1.11),
0@ —g,=<1 (1.13)

Thus, a quite weak condition enabling us to approximate ¢, with a finite
number of function evaluations is that we have a bound W(§), satisfying
{1.8), on the modulus of continuity w(f; §) of f.
For example, if f € C'a, b} and

151 < M, (114
then we can take

W(d) = Mé. (1.15)
The procedure suggested above will be very slow if ¢ is small: in fact,
about (b — @)M/(2¢) function evaluations will be required. However, it may
be impossible to do much better than this without knowing meore about I
Consider minimizing a function which is known to be in the class

[f.(x) = min (.01, Mjx — c]} | ¢ € [a, b} {1.16)
If

_ 1.0l .,
§ =t (1.17)

and ¢ is computed from (1.12) for some set of poinis x,, . .., x,, then there
is a choice of ¢ & {a, b] for which ¢ fails to satisfy (1.13) unless (1.11} holds,
so at least [(b — a)M/(2.02r)] function evaluations are required.” Sometimes
fewer function evaluations are necessary: for example, if

f(x) = Mx, (1.18)

then it is enough to evaluate fat @ and b, (See also Section 5.)
Instead of having an a priori bound on | f'{.., we could have a bound

T =M (1.19)

on | f)., for some r > 1. We show below that, with such a bound, the
maximum number of function evaluations required to find § satisfying (1.13)
is of order (M/e)¥".

The case r == 1 is discussed above, so suppose r 7= 2, and let

(b —a) (431

n = %Aﬁ:

2r

(1.20)

84 GLGBAL AINHAHZATION Chap. 6

Define § = (b —a)fn, g, ==a + i§ for i == 0,... 0 (so a, = b), and

5[eos (BT
S PR W) 121
a,; i p) cos Amv ﬂ v
T\ 2r
for i=0,...,a—1F and j==1,...,r (so a; == a, d, = a.,). Let

P.=1IP(f;a,,,....4;,) be the polynomial of degree r — 1 which coincides
with fata, ,,...,a,,. Lemma 2.4.1 and the bound (].19) show that, for all
x € a, a.,,l,

) = PO =1 @) a) (1.22)

The right side of (1.22) is no greater than {§/[2cos(m/2N]FMf(r! 2771 and,
by (1.20) and the choice of &, this is no greater than #/2. Thus, we need only
find the minimum of each polynomial P{x) in [¢,, ,,] to within a tolerance
1f2. This is easy if r = 2, for then each polynomial P(x) is linear. If r > 2,
then we can bound | P;(x)] in [a,, a,,,}, and apply the procedure for r == 2
to minimize £,(x). (This idea for finding bounds on polynomials in an interval
was suggested by Rivlin (1970). Another possibility is to minimize P(x) by
the method of Goldstein and Price (1971).) Because successive intervals
la.. a.,] are adjacent, the number of function evaluations required to find
@ satisfying (1.13) does not exceed

N == {r — I - 2, (1.23)

where # is given by (1.20).

Since N is of order (M/r)'”, the method described above is not likely
to be practical for small 7 unless r>> 2. On the other hand, in practical prob-
lems it is usually difficult to obtain good bounds on the third or higher
derivatives of f(if they exist). Thus, in the rest of this chapter we suppose that
r = 2. It turns out that a one-sided bound

frxy=M (1.24)

is sufficient, instead of the two-sided bound (1.19). If /"{x) has a physical
interpretation (e.g., as an acceleration), then a bound of the form (1.24) can
sometimes be obtained from physical considerations.

Section 2
THE BASIC THEOREMS

The global minimization algorithm which is described in the next section
depends on the simple Theorems 2.1, 2.2, and 2.3. Theorem 2.1 is related to
the maximum principle for elliptic difference operators, and also to some
results in Davis (1965). We assume that / & C'[a, b], and that

S = 1) = M(x —) (2.1

Seq. 2
<. THE BASIC THEOREMS &5

for all x, y in [a, b] with x = ¥. (Weaker conditions suffice: see Section 7.}

Iff € C*a, b], then the one-sided Lipschitz condition (2.1} is equivalent to

S =M (2.2)
forall x & [a, b]. .
THEQREM 2.1
Suppose (2.1) holds. Then, for all x & [a, b),

- (b —), - (x —
S = o X amw[w DIb) TME =k N, @23

The proof is immediate from Lemma 2.4

LEMMA 2.1

£ < bmivmlfﬁ@ — :HW.I_A a. (2.4)

Proof
Applying Lemma 2.3.1 to f/{—x), we have

J(@) << f10) + af"(0) + tMa?, (2.5)
so the result follows,

THEOREM 2.2

. Suppose (2.1) holds, M = 0, g < ¢ = b, fla) == fle), and f'(c) = 0.
hen ,

¢ as M@,,VHIEEJ\E (2.6)

Proof

Applying Lemma 2.1 with a suitable transiation of the origin gives

0=ro= DM@ Lyg 4, 2.7
50
J(@) = fie) < {M(c — ay, 28

and the result follows.

LEMMA 2.2

Proof
By condition (2.1),

LBy <70 -+ Mb, (2.9

86 GLOBAL PINIMIZATION Chap. 6

hut
—~ ' O
b % (2.10)
s0 the result follows,
THEGREM 2.3
Suppose (2.1) holds, M =0, ¢ < ¢ < b, and
- ac fla) _
¢ < x < min A.o 5 M=o v (2.11)
Then
1(x) < 0. (2.12)
Proof

There is no loss of generality in assuming that ¢ = 0 and & = x. By
condition Q.:vv

- 0 -
by ga— MOS0 - L@ =10 WE&, (2.13)
mo“gfﬂsgmw._“énrmé

—f(0
b < il (2.14)

Now the result follows from Lemma 2.2.

Remarks

Theorems 2.1, 2.2, and 2.3 are sharp, as can casily be seen by taking
f(x)as asuitable nmqm_uoﬁm with leading term { Mx2. The theorems are general-
ized in Section 7, and the proofs given M:Qm show that everything needed to
justify our minimization algorithm follows from the fundamental inequality

(2.3). The proofs given in this section are, however, simpler and more intui-
tive than those in Section 7.

Section 3
AN ALGORITHM FOR GLOBAL MINIMIZATION

Suppose that f & C?[q, b} and, for all x « [a, b],

Fxy < M. (3.0
We want to find g € [a, b] and § == f(j) m&mm@am
1§ — .l =< (3.2)
where t Is a given positive tolerance and
P, = min f(x). (3.3)

Sec. 3 AN ALGORITHM FOR GLOBAL MINIMIZATION 87

If M < 0 the problem is quite trivial, for Theorem 2.1 says that f{x) cannot

lie below the straight line _.Eoﬁo_mtmm.\mﬁ a and b, so

p; = min (f(2),/(B))- (34)

If M > 0 the problem is not trivial, although we saw in Section 1 that there
does exist an algorithm to solve it. .

The basic algorithm

The algorithm described in this section is an elaboration and refinement
of the following basic algorithm. {The notation is consistent with that of the
ALGOL procedure glomin (Section 10), except that we write M for m, fi for
x, ¢ for v (= glomin), and ¢ for macheps.)

1. Set ¢ « min {f(a), f(b)), i « if § = f(a) then a else b, and a, «—a

2.If M <0 or a, > b then halt. Otherwise set @, < some point in

{a,, B] Ao.m.. b see below for a better choice).
I f(a,) < @ then set @ «— a, and § «- f(a,).
4, If the parabola y = P(x), with P"(x)= M, P(a,})=fla;), and
P(a,) = f{a,), satisfies P(x) = @ — ¢ for all x in {a,, a,]. then go to
3 Ogm?:mm set a, «— 4(a, -+ a;) and go back to 3.
5. Set a, <~ a; and go hack to 2.

(¥S]

We shall see shortly that (with a sensible choice of a, at step 2) the basic
algorithm must terminate in a finite number of steps. In view of Theorem 2.1
and step 4, it is clear that the algorithm terminates with § satisfying (3.2).

Refinements of the basic algorithm

The crux of the problem is how to make a good choice of a, at step 2
of the basic algorithm. We want to choose a, as large as possible, but not
so large that it has to be reduced at step 4. Theorems 2.2 and 2.3 provide
useful lower bounds. If the global minimum g, lies outside (a,, b), or if

A

@, = ¢ — ¢, then we may halt, for § already satisfies (3.2). Otherwise

Flu) = (3.5)
fupy <@ —1 (3.6)

so, from Theorem 2.2 with a replaced by a, and ¢ by x,,

$|sv>:§% ukd 3.7

Thus, at step 2 it is safe to take a, = a}, where

._.___,__ \\Q EILLV _
mui:,;: ?u nu T3 . Q_.wv

88 GLOBAL MINIMIZATION Chap. 6

and with this choice there is no risk that a, will have to be reduced at step
4. Since the right side of (3.7) is at least (2¢/M)!2, the basic algorithm must
converge in a finite number of steps if, at step 2, we choose any a, in the range
[a3, B).

If fis decreasing rapidly at a,, then Theorem 2.3 may give a better bound
than (3.7). Apply Theorem 2.3 with ¢ replaced by a, and a replaced by a
point @, - d, (with d, > 0) where f has already been evaluated. (This is not
possible if @, = a.} Combining the result with (3.8), we see that it is safe to
choose a; = a4y at step 2, where

== min Aw max TN)\\E 2) = \AE

a, — WA& 4 flay) = .\AMﬂmoﬁv + m.c_m:v.

(3.9
Here ¢ is a positive tolerance, and the term 2.0le is introduced to combat
the effect of rounding errors {see equations (3.41) and (3.52)).

. The choice a, == @Y is safe, but it is possible to speed up the algorithm
by sometimes choosing @, = 4. Because we want to avoid having to decrease
a, at step 4, the best choice would be to take a, = min (b, a¥)) where a¥ is
the abscissa of the point to the right of a, where the curve y == f(x) intersects
the parabola P, with second derivative A, which passes through {(a,, f{a,))
and attains its minimum value ¢" — ! to the right of a,. Here

== min (@, f{a) (3.10)

is the value of @ after step 3 has U@mm executed, and we can extend the domain

of / by defining f(x) = f(b) for x = b if this is necessary. A typical situation
is tllustrated in Diagram 3.1.

a w/ a, a; b
DIAGRAM 3.1 A typical situation

It is not practical to choose a, == a7, for, although a¥ exists, several
function evaluations are needed to approximate it accurately. Procedure
glomin (Section 10) finds a rough approximation a¥* to a¥, without any extra
- function evaluations, by assuming that / can be approximated sufficiently
*‘well by the parabola which interpolates f at the last three points at which f
~ has been evaluated. To avoid overstepping a¥ too often because of the inad-

See. 3 AN ALGGRITHM FOR GLOBAL MINIMIZATION 89

equacy of the parabolic approximation to f, the procedure uses a heuristic
“safety factor™ A < (0, 1), If

A

d, = min (b, a, -+ hlaZ* — a,)), (3.11)
then at step 2 we choose
a, = max (a5, d,), (3.12)

and if it is neccessary to reduce a; at step 4 then we set a, — max (@},
+(a, + as}). Procedure glomin also makes a rather primitive attempt to adjust
h, the adjustment depending on the outcome of step 4.

Some details of procedure glomin

The ALGOL 60 procedure glomin given in Section 10 uses the basic al-
gorithm with the refinements suggested above. From equation (3.8) and the
criterion in step 4 of the basic algorithm it is clear that, to speed up conver-
‘gence, we want to find a rough approximation to the global minimum as soon
as possible. In other words, ¢ should be nearly at its final value as soon as
possible. For this reason, procedure glomin incorporates several heuristic
strategies which are designed to reduce ¢ quickly. We emphasize that the
global minimum would be found without using these strategies: the strategies
merely reduce the number of function evaluations required (see Sections
5 and 6).

The first strategy for reducing ¢ quickly is a pseudo-random search.
About ten percent of the function evaluations are used to evaluate fat “ran-
dom” points uniformly distributed in (a,, #). (fis not evaluated at the random
point a, if Theorem 2.1, with a replaced by @, and x by a,, indicates that

- fla;) = ¢ — 1, for such an evaluation would be a waste of time.} At worst,

this strategy wastes ten percent of the function evaluations, but the saving
in function evaluations caused by quickly finding a good value of @ is usually
much more than ten percent. The arbitrary choice of ten percent was made
after some numerical experiments.

By comparison with the random search strategy, the second strategy
is highly nonrandom. f is evaluated at the minimum of the parabola which
interpolates f'at the last three points at which f has been evaluated, provided
that this minimum a, lies in {a,, by and Theorem 2.1 does not show that the
evaluation is futile for the purpose of reducing @. The details are similar to

: those of procedure localmin (see Chapter 5). This strategy helps to locate the

local minima of f which are in the interior of [a, 5], and, unless the global
minimum is at @ or b, one of these Jocal minima is the global minimum. A
bonus is that, if f'is sufficiently well-behaved near the global minimum (see

- Chapter 3 for more precise conditions), then the minimum will be found

more accurately than would be expected with the basic algorithm. The numer-

98 GLOBAL MINIMIZATION Chap. &

ical examples given in Sections 6 and & illustrate this. To avoid wasting func-
tion evaluations by repeatedly finding the same local minimum, this strategy
is only used once in about every tenth cycle, although it is always used if
¢ == f(a,), for then there is a good chance that f{a,) << ¢.

Finaily, the user may be able to make a good guess at the global mini-
mum. For example, he may know a local minimum which is likely to be the
global minimum, or he may know the global mirimum of a slightly different
function (sce the application discussed in Section §). Thus, procedure glomin
has an input parameter ¢ which may be set by the user dt the suspected posi-
tion of the global minimum, and on entry the procedure evaluates f at ¢ in
an attempt to reduce @. If the user knows nothing about the likely position
of the global minimum, he can set ¢ = g or b.

We can now summarize procedure glomin. (For points of detail, see
Section 10.) Step | of the basic algorithm is performed, and the algorithm
terminates immediately unless A >0 and a < b. Before choosing
a, € {a,, b} at step 2, the strategies described above are used to try to
reduce @. Then a, is chosen, and perhaps reduced at step 4, as described above.

The reader who is not very interested in the murky details of procedure
glomin, or in the effect of rounding errors, would be well advised to skip
the rest of this section.

Some of the formulas used by procedure glomin need an explanation.
When either the random or nonrandom search strategy is performed, we
have numbers ¢ and r, and wish to determine if the relation

,

g0 A ?pﬁamrramiﬂwv
(b (@ + L)@ + L)
g - Mriy . IV <o —

A b " a, ma? Anm+mvaﬁ !

(3.13)

is true. If m, = {M >0, z, = b — a, > 0, ¥, = f(h), and y, = f{a,), then

(3.13) is equivalent to
qlr(yvy — y2) + 29(y, — § + D} < 2ty (2,9 1), (3.14)

which is the condition tested after iabel “retry” of procedure glomin. (If
g == 0 then (3.14) is false, and it is also false if a, + r/g lies outside {a,, b)
since m, > 0 and ¢ — ¢ <2 min (p,, 3,).)

To approximate a¥f, we need the point a** where the parabola y = P(x),
passing through {a,, y,) for i = 0, 1, 2, intersects the parabola

7y 2
_\HENT gy —)\MWHEEV SNy - (3.15)
’ 2

(In procedure glomin we use ¢ in place of a, to save a storage location.) Let

2

Sec. 3 AN ALGORITHM FOR GLOBAL MINIMIZATION 57

Zo =Y, = VI =Yy = Yo dy =4, — 4y, d, =a, —agand d, = a, —a,.
In the nonrandom search we have already compuied numbers p and g,
(r and g above) with
p=diz, — diz, (3.16)
and
g, = Hd,z, — d,z;) (3.17)

in order to find the turning point a, + pfg, of P{x). By forming the quadratic
equation for a¥*, and dividing out the unwanted root a,, we find that

’

a¥* = q, b s.wq. 3.18)
q

where
p = p s, (3.19)
7 =1+ . (20
¢ o= dod d,m,, (3.21)

and
g (2 —f+1 (3.22)
i,

Finally, there is the inspection of the lower bound on f'in (a,. a;) given
by the parabola

y = 8= 207 gt G5 — pry(x — a)la, —), (323)

where m, == 1M > 0 and

dy == a, — a, = 0. (3.24)

If
=Y Vs, 3.25
? mad, (3-23)

then the parabola (3.23) is monotonic increasing or decreasing in (a,, 4,)
provided

tp| = dy. (3.26)
Otherwise, the parabola (3.23} attains its minimum in (a,, ,), and the mini-

num value is {y, + ¥,) — dm,(di + p*) at x = (a, -+ a, -+ p). Thus, at
step 4 of the basic algorithm, o, must be reduced if

[Pl <do A4+ yy) — dmaldi - p?) < — 1, (3.27)
ie., if

|pl <dy NIMUEG A+ > (. — @)+ (0, —) + 20 (328)

82 GLOBAL MINIMIZATION Chap. 6

The effect of rounding errors

So far we have ignored the effect of rounding errors, which actually
occur both in the computation of f(x) and in the internal computations of
procedure glomin. Now we show how these rounding errors can be accounted
for.

Let € be the relative machine precision (parameter macheps of procedure
glomin), i.e.,
. — “h_ ot (truncated arithmetic),
Y {rounded arithmetic),

for z-digit floating-point arithmetic to base §. We suppose, following Wilkin-
son {1963), that

SIx #3) == (x4 y)1 4 8), (3.29)
where £ stands for any of the arithmetic operations -, —, x, /, and
8] <€ (3.30)

On machines without guard digits, the relations (3.29) and (3.30) may fail
to hold for addition and subtraction: we may only have the weaker relation

il £)y = x(1 4 6,) +)1 4 8y), |
% (3.31)

where

|§,l<Ce for =12

With these machines it seems difficult to be sure that rounding errors com-
mitted inside procedure glomin are harmless. At any rate, our analysis
depends heavily on relation (3.29). {See equation (3.52) and the following
analysis.)

We also suppose that square roots are computed with a small relative
error, Say

FHsqri(x) = (1 + 36)/ %,
where (3.32)
16| <e.

(Any good square root routine should satisfy (3.32) very casily. The library
routines for IBM 360 computers certainly do: see Clark, Cody, Hillstrom,
and Thieleker {1967).)

Let us first consider the effect. of rounding errors in the computation
of /. supposing for the moment that the internal computations of procedure
glomin are done exactly. The user has to provide procedure glomin with a
positive tolerance ¢ which gives a bound on the absolute error in computing

- More precisely, we assume that, for all § and x with [d] < eand x, x(1 4 &)
in [a,], we have

IS (L +8)) — f(x)| < e, (3.33)

= we have

See. 3 AN ALGGRITHM FOR GLOBAL MINIMIZATION 93

where f(x) is the exact mathematical function (satisfying condition (2.1)),
and f(f{x)} is its computed floating-point approximation. The reason for
cendition (3.33) will be apparent later: at present we only need the special
case with 6 = 0, i.e.,

L)~ [y e (3.34)
forall x € [a, b].

We have seen that, without rounding errors, procedure glomin would
return @ (or y = glomin} and f (or x) satisfying

0, =@ <9, + 1. (3.35)
With rounding errors, (3.35) no longer holds, but we shall show that
P S <, -+t + 2e (3.36)
and
gr—e<§=[fIf{D)<g,+1+e (3.37)

H the error ¢ in computing f is much less than the tolerance ¢, then {3.36)
and (3.37) are much the same as (3.35), so rounding errors have little effect
on the accuracy of &,

The left hand inequality in {(3.36) is obvious from the definition of @
To prove the right hand inequality, we must ook closely at the “critical”
sections of procedure glomin, i.e., the sections where rounding errors could
make an essential difference, (Examples of noneritical sections are the random
and nonrandom searches.)

In computing the safe choice a” for a, according to equation (3.9), we
compute

5= «g (3.38)
1,
and
: . {zy - 2.01e) ,
r= (e + 2 dom,) (3-39)

o whered, =a, —a,,z, =y, — Yy, oy =ML @ = fI(f(2)), and y, = fl(f{a,))

for i == 1, 2. Thus

o JT@ = F %), (3.40)

B,

s0, as far as the computation of s is concerned, everything said above holds

~if ¢ is replaced by £ - 2e. (Remember that we are regarding ali computations
" inside the procedure as exact.) We are only interested in » when d, > 0 and
0 my > 0, and as

Zy o M.Omm_ = Zp \T 2e HV \,ﬁmmv - .\,Ahnvu

S (R e R

84 GLOBAL MINIMIZATION Chap. 6

(The reason for the extra 0.01e will be apparent later.} Thus, the computed
ay will not exceed the correct value, given by (3.9), if ¢ is replaced by 7 -~ 2e.

The other point where rounding errors in the computation of f are criti-
cal is when we determine whether the parabola y = P(x), with P'(x) = M,
Pla,) = y,, and P(a,) = y,, lies above the line y = § — ¢ in the interval
(a,, a,). Let y == Q(x) be the parabela with Q"(x) = M, Oa,) = f(a,), and
Ola,) = fla,). Since

yi= JIf @) < fla) +e for i=2,3,
it is clear that

P(x) << Q(x) -+ e (3.42)
in {a,, a,}. Thus, if
PXyz=¢—1 (3.43)
in {a,, a,), then
Qx) = ¢ —t—e=flf) — 12 (3.44)

in {a,, a,), so again everything is accounted for by changing 7 to ¢ - 2e. This:

completes the proof of (3.36), The left inequality in (3.37) is obvious, and the
right inequatity follows from the above argument if we note that it is sufficient
to replace tby t + e + (F(f) —).

Now, let us consider the effect of rounding errors committed inside
procedure glomin. We shail show that (3.36) and (3.37) still hold, provided
some minor modifications are made In the algorithm. These modifications
are included in procedure glomin, but, to aveid confuston, they were not
mentioned in the description above. The most important modification is that,
instead of having s, = 1M, procedure glomin has

my = fI(}(1 + 16€)M), (3.45)

where the factor 1 - 16¢ is introduced purely to nullify the effect of rounding
CITOrS.

For the sake of simplicity, terms of order €* are ignored in the rest of
this section. Because of the slack in some of our inequalities, these terms may
be accounted for if € < il From (3.45) and the assumption (3.29), we
certainly have

.
m, .z

11+ 130M. (3.46)

In the computation of &} according to (3.9), procedure glomin actually
computes

5= \.A%vﬁ“ (3.47)

ny

and since errors in the computation of f have already been accounted for,
we can assume that y, and @ are exact floating-point numbers. From (3.46)

Sec. 3 AN ALGORITHM FOR GLOBAL MINIMIZATION 85

and the assumptions {3.29) and (3.32),

s (1 38 (2= 20 +me~_w_ﬁi:m% LTIV gy

where |§,|< ¢ for i=1,...,4. Since y, — ¢ and 7 are both nonnegative,

(y, — AU+ ey +1=<(y,— &+ (1 +), (3.49)
50
. — @ + 2
§ <5 == A%v . (3.50)

Thus, the slight modification of =, has ensured that the computed s is no
greater than the exact s. Note that, in the derivation of (3.50), it is essential
that y, — @ is computed with a small relative error, so the assumption (3.29)
is necessary: (3.31) is not enough.

Similarly, to find &, we actually compute

R R AR e IR

d, — a3,

where e > 0, m, > 0, and a, > a,. We are only interested in 7 if # > 0, 50

0> fI(rs — 1) + 201e)
=y)+ €+ 200e(l —)(1 + €)
= (1 =y + 200+ O, (3.52)

assuming that ¢ <{ ;{. (The reason for the extra 0.0le in (3.39) is now clear.)
Thus

Fo= fl(—3r, +) (3.53)
where
OAaDNEQ_vQ E:mvt.AEwu mﬁbu - QDQ -+ €) mum#v
and
(yy — ¥ + 2e)(1 —9¢)
0>, =22 wks“..@mlnb (3.55)
Since 7 > 0, (3.53) shows that |», | < |r, |, so, from (3.53) to (3.55),
= " Ilm- . Yo — Vs AT Nm .
rer < —gl@ e+ (=) (3.56)

As before, the computed F is no greater than the correct . The same is not
tr

true for &5, the computed value of 4y, but 4] is either b, fl{a, + 7}, or
Jl{a, + 5). Suppose, for example, that
= fl(a, -I- §). (3.57)
Then .
FC@) = fliflla, + HUA -+ Ol o (3.58)

96 GLOBAL MINIMIZATIGN Chap. 6

where |d] < g, so, from (3.33),

ILA@D) — fla, + i <e. (3.59)
(This is why we required (3.33) instead of the weaker (3.34).) Thus, the error
in computing a, + § or a, 4 7 can be ignored, for it has been absorbed into
the assumption (3.33) on e.

Finally, we have to consider the effect of rounding errors when testing
the condition (3.28). First

=i) a0

is computed. It is important to note that we use 4 M, not the slightly different
m, (given by (3.45)) here. Thus

- Yy o V3
b= (i) (1 + 58) (3.61)

)

and
dy = flla; — ay) = (a, ~ a)(1 + &), (3.62)
where |4, | <Cefori=1,2.
The test actually made by procedure glomin is whether
P11 1+ 9e)d o) A fIGma(dl + 5D > 1y, — @) + (v, — @) + 2],
(3.63)

and we shall show that (3.63) is true whenever the condition (3.28) is true.
First, | p| << d, implies that | 5| << d (1 + 5¢), and thus

5] < S1(1 + 96)d,). (3.64)
Similarly, if | p| << 4, and
M+ p) > (5, —)+ (v — 6) + 21, (3.65)
then
&+ * 2= (d} + p)(1 — 6o, (3.66)
$0

FlGmoAds + p*) = JM(d3 + p*)(1 + 4¢)
=10 =)+ (72— §) + 21(1 - 3¢)

2y — @)+ (v, — @) -+ 24 (3.67)
(Note the importance of grouping the terms: since Y, — @, y, — @, and
2t are all nonnegative, their sum can be computed with a small relative error.)
From (3.64) and (3.67), the inexact test (3.63) results in a, being reduced
whenever the exact test (3.28) says that it must be. a, may occasionally be
reduced unnecessarily because of rounding errers, but this does not invalidate
the bounds (3.36) and (3.37); it merely causes some unnecessary function

evaluations. .
- We should mention a remote possibility that rounding errors can
prevent convergence. This is only possible if Jlia, + §) == a, and, as

Sec. 4 THE RATE OF CONVERGENCE IN SOME SPECIAL CASES 97

§ 2= (1 — 14e)(2t/M)'2, it is impossible if
t = Me* max (a2, b?). (3.68)
Thus, convergence can only be prevented by rounding errors if ¢ is unreason-
ably small.
In conclusion, procedure glomin is guaranteed to return ¢ and g satisfy-

ing the bounds (3.36) and (3.37), provided the input parameters macheps,
t, and e are set correctly.

Section 4
THE RATE OF CONVERGENCE IN SOME
SPECIAL CASES

It is difficult to say much in general about the number of function evalua-
tions required by the algorithm described in Section 3. In the next section
we compare the algorithm with the best possible one for given M and r. In
this section, we try to gain some insight into the dependence of the number
of function evaluations on the bound A and the tolerance t, by looking at
some simple special cases.

The worst case

As pointed out above (equation (3.4)), two function evaluations are

enough to determine 4 and ¢ if M < 0, so suppose that M = 0, and let

Y (4.1}

We showed above that, if the last function evaluation was at a, € la, b),
we could safely choose

a, = min(b, a, -+ §) (4.2)

for the next evaluation {step 2 of the basic algorithm). With this simple choice
of a,, about (b — 4)/§ function evaluations would be required. Procedure

*. glomin tries to do better than this, and is nearly always successful (see Section

6), but the worst that can happen is that a, will be chosen to be &, and then
a; will be reduced several times at step 4 of the basic algorithm. As a, - d,

~is halved at each such reduction of t1,, there can be at most

(][5 s

consecutive reductions of a, at step 4. Thus, at worst, about

() e () “9

58 GLOBAL MINIMIZATION Chap. 6

function evaiuations will be required. We have ignored the random and
nenrandom searches, but these can only add about 2(h — @)/ extra function
evaluations,

If & 1s given by (4.1), the term log, (b — a)/§ in (4.4) varies only slowly
with M and ¢, so the upper bound is roughly proportional to (b — a)(M[)"2.
In particaiar, the upper bound is roughly proportional to /M, and it seems
to be a good general rule that the number of function evaluations is roughly
proportional to /M, even when the upper bound (4.4) is not attained (see
aiso Section 6).

A straight line

If the global minimum of f occurs at an endpoint g = a or b, and

u# by considering the linear approximation f{u) -+ (x — p)/ () to f(x).
Suppose, for example, that

SO = k(x — @) + ¢ (4.5)

for some & = 0, so g = a. Ignoring the random searches, the algorithm will
evaluate fat the points a, b, ¢, and then at points x, <X x, << x, < -+ <x,_,.
Here x, = a << x,, x,, 2> b, and the points (x,.f(x)) and (x_,,,/(x,,) lic

on the parabola ¥ == P, (x) which touches the line y = 0 and has P/(x) = M.
{See Diagram 4.1.) If P (x) touches y = 0 at x = g, then

NU:mum,v Ed Wh\y\ﬂ«& . D.\:VMV ﬁ&\@v
50
4, = x, +)\%:? @) D)=,] 2 k(x5 — @)+ D).
4.7
1f
. N.: e uma s (F Iml w > A&..mv
then (4.7) gives
. 2k ,
Ty = 2,4 o) 250 (49)
50
z, = VAR (4.10)
Thus
a8 AWJ
X, = 4 - R \E$ "\ (4.11)

See. 4 THE RATE OF CONVERGENCE IN SOME SPECIAL CASES 9%

and as ¥ is the least positive r such that x, = b, this gives

B T

T
N = ?iwﬁﬁ;\»@ y vx_. (4.12)
_
(4.12) shows that & is essentially proportional to ./ M.

Y]

Xg=4 X, Xy Xg X4 Xg b Xg
DIAGRAM 4.1 A straight line

Two limiting cases of (4.12) are interesting. If ¢ is small and & not too
small, so that k(6 — a) > ¢, then

~ [M{b— a}
N = ,\,iamﬂ,al (4.13)

which is independent of ¢ (In this section we are neglecting the effect of
rounding errors, but these should not be important if ¢ satisfies the weak
condition (3.68).)

If k is very small, so that k(b — a) <& ¢, then (4.12) gives
b—a
25
and the algorithm proceeds in steps of size about 24, where & is given by (4.1).

N = (4.14)

A parabola

If the globai minimum of f occurs at an interior point g, then /() = 0.
If f7(u)== 0 we may analyze the behavior of the algorithm near g .by
considering the parabolic approximation f(u) + /" (1)(x — w)* to f{x).
Thus, suppose that
. M>m>0 4.15)
and
Jx) = fmlx — pp + 1, (4.16)

100 GLOBAL MINIMIZATION Chap. 6

where 4 © (a, b). The nonrandom search will quickly locate y, so we may
suppose that @ = x and, without loss of generality, g = 0. The mmm.c:x::
will call for the evaluation of fat points to the left, and then to the right, of

points x,, x,, . . . defined above, except that now fis given by (4.16) instead
of by (4.5). In place of (4.7), we find that

wh
IN f. &.:
NE. Auﬂn.,rw A)l B\HV ﬂ v
It does not seem to be possible to give a simple expression like (4.11)

for x,, defined by the recurrence relation (4.17), but we may solve for x,,,

in terms of x,, obtaining
(Mt §v " {4.18)
Kpap =2 A}\\ — R
If
(4.19)
this may be written as
+ 1y
Novi = ATY + Aw%l|l (4.20)
Suppose that p is close to I, i.e., M is not much larger than n1 = ().
Then
X, o A Nmu v 2 (4.21)
pt—1 m
and, for n > 1,
Spr = (BE)0 - Op = 1P a5 pol (422)

Thus

As the factor (p + 1)/(p — 1) is large, only a few function evaluations will
be required.

Section 5
A LOWER BOUND ON THE NUMBER OF
FUNCTION EVALUATIONS REQUIRED

Suppose that a positive tolerance ¢ and bound M are given, that £ attains
its global minimum ¢, 1n [a, b} at ., and that

Six)y <M (5.1

Sec. 5 THE NUMBER OF FUNCTION FVALUATIONS REQUIRED 101

for all x € [a, b]. (Similar resulis to those below hold if equality is aflowed,

but the definitions and proofs have to be modified slightly,) First, we need
a lemma.

LEMMA 5.1

If x* = [a, b), then there is at most one point x” € (v, b] such that the
parabola y = P(x), with P"(x) = M, P(x") = (), and touching the line
¥ == g, — 1, satisfies P(x") = f{x").

Proof

mcu@oma“gémw%no::m&n:osuSﬁﬁéom:or distinct points x”
and x™ exist. Then .

M= 2f[x, x", x"] = f(&) (5.2)
for some & € [x', b] (see Chapter 2), contradicting
SN < M. (3.3)

DEFINITION 5.1
For x’ € [a, b), define

%C&! *H\‘ :.:.Hovom:ﬁkaoh,hmEEmm;mﬁ.mﬁ“
b otherwise,

LEMPMA 5.2
If x @ [a, b) and s(x) = b, then

$(x) — x = W - (5.4)

Proof

This follows by considering the parabola, with second derivative M,
which passes through (x, F(x)) and (s(x), fIs(x)]), and touches the line
Y=g, =t since f(x) = p, and f[s(x)] > @

BEFINITION 5.2

An integer N and points @' = Xy <UX, <X, < ... << x, = hare defined
thus: x; = a and, for #n > 2 and Kooy < b, X, 5= 5(x,_,). (See Diagram 5.1
Lemma 5.2 shows that N is finite, in fact

N1+ ? &A%v:g. (5.5

The following lemma shows that in order to prove that f(x) > w, — 1 for

all x € [a, b}, given only condition (5.1), it is sufficient to evaluate f at
XpsXgs oot s X

7102 GLOBAL MINIMIZATION Chap. &

b ———_——

T 7 7 it
Xi—=a X X3 X4 5 Xg| X7 Xg g b= Xy
Hy
DIAGRAM 5.1 The points Xy, ...,%x
LEMMA 5.3
ifg & C¥a,bl, g"(x) << M for all x € [a,], and
glx,) = f(x,) (5.6)
forn=1,2,..., N, where the points x_ are defined above, then
9y =0, — 1. (5.7)

The lemma follows immediately from the definitions and Theorem 2.1.
Our interest in the points x,, ..., x, stems from the following theorem,
which complements Lemma 5.3.

THEOREM 5.1

Let x| << x < ...< x| be any v points in [a,), with v << N. Then
there is a function g & C~{a, b), satisfying

gix)y<< M (5.8)
forall x £ [a, b}, and
g(x,) = fx,) (3.9)
forn=12,...,v, such that
P, < g, L {5.10}

Proof

Suppose, by way of contradiction, that

Doy — (5.11)
for all such g. Then x| = q, for otherwise —g{a) can be arbitrarily large, and,

’

similarly, x, = b. Since v < N, there is an n, 1 <C n <C v, such that x, <7 x,
and x),, > x_,,. Thus, the parabola y = P(x), with P"(x) = M, P(x;) =

Sec. 6 PRACTICAL TESTS 103

F(xD), and P{x),,) == f{x].,), 1s such that
min P(x) < ¢, — 1. (5.12)
xEjxy, xa
Since there is a function g as above which is arbitrarily close to P(x) in

f

[x!, xI.). this contradicts (5.11), so the theorem holds.

Consequences of the theorem

Theorem 5.1 says that, if ali that is known a priori about {is that f =
C*a, b] and satisfies condition (5.1}, then any algorithm which is guaranteed
to find f so that /() < ¢, 4 1 must require at least N evaluations of /2 If an
algorithm required only v <¢ N evaluations, at points x| < x} <0 ... < x|,
then it would be sure to fail for either for for g, for fand g are indistinguish-
able on the basis of the v function evaluations, but g, + 1 << ¢,. OFf course,
we are only considering algorithms which sequentially evaluate f at a finite
number of points.

Conversely, Lemma 5.3 implies that N 4+ | function evaluations are suffi-
cient: just evaluate f at u, and at x,,. .., x,. (See Diagram 5.1.) Unfortu-
nately, Lemma 3.3 does not give us an effective algorithm for approximating
@, for we do not know N or the points x,, . . ., X,_, in advance.

Efficiency

Suppose that an algorithm requires N’ function evaluations to find

E of the algorithm by
E = NIN'. (5.13)
{Note that F depends on f, M, t, g, and b, as well as on the algorithm.}) We
have shown that
E<1 (5.14)
for any correct (i.e., guaranteed) algorithm. Thus, if an algorithm has an
efficiency close to 1, we are justified in saying that the algorithm is nearly

optimal for that f/, M, 1, etc. In the next séction we give numerical results
which show that the algorithm described in Section 3 is often nearly optimal.

Section 6
PRACTICAL TESTS

The ALGOL procedure glomin given in Section [0 was tested using
ALGOL W (Wirth and Hoare (1966); Bauer, Becker, and Graham (1968))
on an IBM 360/91 computer with machine precision 16713, Some representa-

104 GLOBAL MINIMIZATION Chap, €

tive numerical results are summarized in Table 6.1. For all of these results
the parameters e and macheps were set at 10-!* and 16-13 respectively.

TABLE 6.1 Numerical results for procedure glomin

s M N N N E = NN’
0 2 2 2 1.00
7 100 15 15 11 0.73
10000 106 106 101 0.95
2 4 4 2 0.50
2.1 8 1 8 0.73
I 2.2 9 13 9 0.69
8 25 34 29 0.85
32 48 63 60 0.88
128 95 141 120 0.85
14 38 51 37 0.73
£y 28 48 68 54 0.79
56 67 o8 76 0.78
7 72 222 246 126 0.51
£ 72 456 542 437 0.81

The symbols are expiained below. The functions are-

Jix) =2 — xon [7,9 (in all cases 4 = 9.6 =17,

S2(x) = x2 on {1, 2] (in all cases Ao g o=0),

Filxy = x2 4 x3on[—L, 2 {forr = FOTI2 121 <03 % 10710 | 3] < 6 x 10-20),
Falx) = (x - sin xyexp{—x2) on [10, 10]

(d = —0.6795786599525, ¢ — - 0.824239398476077), and
Js(x) = €x — sinx)exp(—x2) on [—10, 10]

(F = —1.195136641665, § =~ —0.0634905289364399).

The table gives the upper bound M (parameter m of glomin) on j”,
and the total number of function evaluations required by procedure glomin:
N with tolerance == 10"%, and N’ with tolerance ¢ == 1072, The lower
bound N defined in Section 5 is also given for ¢ = 10-12, (Recall that no
algorithm which is guaranteed to succeed can take fewer than N function
evaluations.) N and the points x,, . . ., x,, of Section 5 were computed in the

obvious way from Definition 5.2, using procedure zero of Chapter 4 to solve
the nonlinear equation

Plx) = f(x), (6.1)
where P(x) is the parabola of Lemma 5.1. Finally, the efficiency £ — N/N'
{(equation (5.13)) is given.
For some more numerical results, see Section 8.

See. 7 SOME EXTENSIONS AND GENERALIZATIONS 105

Comments on Table 6.7

The results for the simple functions f,(x} = 2 — x and f,(x) = x? verify
the predictions made in Section 4.. For example, the values N = 11 and
N = 101 for f, are exactly as predicted: one more than the right side of equa-
tion (4.12). N, N’, and N are roughly proportional to /8 if M > /"'(u) (see
also the results for £3), but this rule breaks down if M =~ f”(n), as expected
from equation (4.23). (See the results for f, with M = 2, 2.1, 2.2.)

It appears that the number of function evaluations does not depend
strongly on ¢: comparing N’ with N', we see that the average number of func-
tion evaluations required is only about twenty percent more for ¢ = 10-12
than for r == 1078,

Finally, the efficiency £ of the algorithm is fairly high, even for the
difficult functions f; and f;. This means that no correct algorithm based entire-
Iy on function evaluations could do very much better than ours, at least on
these examples.

Section 7
SOME EXTENSIONS AND GENERALIZATIONS

So far we have assumed that / € Ca, b} and

Sy <M (7.1)
for all x € [a, b}, or at least that f = C'[a,] and
@)= < Mx —) (72)

fora < y << x < b. Condition (7.2) was necessary to prove the basic Theorem

- 2.1. For the application discussed in Section 8 (global minimization of a

function of several variables), we need to find the global minimum of a func-
tion which is continuous, but not necessarily differentiable. We can justify

using procedure glomin, even though f may not be differentiable, because of

the following Theorems 7.1 to 7.3, which generalize Theorems 2.1 to 2.3.

I the reader is prepared to accept the fact that Theorems 2.1 to 2.3 can be
generalized in the appropriate way, hé may skip this section.

THEOREM 7.1
Let f € Cla, b], and suppose that there is a constant M such that, for all

~sufficiently small /2 > 0,

Fl by = 26 () + flu — by < M#?)

o forallw € [a-+ h, b — K. Then, for all x « [a, b],

o= C= 0@ L& =B Ly o — 2. (4

106 GLOBAL MINIMIZATION Chap. 6

Proof
There is no loss of generality in assuming that
Ha) =fb) =0 (7.5)
and
M =10, (7.6)
for we can consider f(x} — P(x), where P(x) is the right side of (7.4), instead
of /{x). Thus, we have to show that
0y = 0, (1.7

where g, is the least value of f on [a, 5], Suppose, by way of contradiction,
that

@, <0, (7.8)
and let
u = sup(x < [a, b]| f(x) = o, (7.9
By the continuity of £, f(u) = ¢, << 0, so u % a or b. Thus, for sufficiently
small 2 > 0, u & [a -+ h, b — k] and, from the definition of u,

flu— = flu) (71.10)
and .

S+ by > flu). (7.11)
Because of the assumption (7.6), this contradicts (7.3), so (7.8) is impossible,

and the result follows, (Note the close connection with the maximum prin-
ciple for elliptic difference operators.)

THEOREM 7.2
Suppose that (7.3) holds, M >0, a<C ¢, < ¢, <(b, and f(a) > flc,) = flc,).
Then . .)
€y — a > K\AavWMA.HAnL (7.12)
Proof

Apply Theorem 7.1 with x mnﬁ&nma by ¢, and b by ¢,. The hypothesis
that f(c,) = f(c,) gives, after some simplification,

A —a) = % RENCAE)

and the result follows since ¢, — a > ¢, — a > 0.

THEOREM 7.3

Suppose that (7.3) holds, M >0, a< ¢ < b, and the interval
I=[c,b] N[, 4a +) — {fla) — f(OY{M(a — ©)}] has positive length.
Then f(x) is strictly monotonic decreasing on 7.

See. 8 GLOBAL MINIMIZATION OF A FUNCTION OF SEVEBAL VARIABLES 107

Proof
Suppose x,, x, & f with x, < x,. We have to show that

Fxy) = J(x,). (7.14)

Apply Theorem 7.1, first with x replaced by ¢ and b by x,, then with a re-
placed by ¢, x by x, and & by x,. The two resulting inequalities give, after some
simplification,

fOr)) abe @)~ f@ x +x
Mix, — x,) =7 M(a — ¢} 3 {(1.15)

The right side of (7.15) is positive, so (7.14) holds.

Remarks

Theorems 7.1 to 7.3 generalize Theorems 2.1 to 2.3 respectively. Since
the algorithm described in Section 3 is based entirely on Theorems 2.1 to
2.3, it is clear that condition (7.3} is sufficient for the algorithm to find a cor-
rect approximation to the global minimum of /. This is not surprising, for
condition (7.3} is equivalent to (7.2) if f &€ C'[a, b],and to (7.1)if f & C?a, b].
In the next section, we use this result to develop an algorithm for finding the
global minimum of a function f of several variables. The conditions on f
are much weaker than those required by Newman (1965}, Sugie (1964), or
Krolak and Cooper (1963). {See also Kaupe (1964) and Kiefer (1957).)

Section 8
AN ALGORITHM FOR GLOBAL MINIMIZATION

"OF A FUNCTION OF SEVERAL VARIABLES

Suppose that D ={a,, b.} = [a,, b,] is a rectangle in R?, /1 D — R has
continuous second derivatives on D, and constants M, and A, are known
such that

Jedx, 1) << M, (8.1)
and

Flx,) << M, (8.2)
for all (x, y) & D. Let us define ¢: [a,, b,] — R by
_ o(y) = min f(x,y). (8.3)

Clearly ¢{») is continuous, and

min f{x, ¥) = min we@v. (8.4)

tx,FleD yEiayby

Thus, we have reduced the minimization of /(x,), a function of two variables,

to the minimization of functions of one variable. Procedure glomin (see

~.Sections 3 and 10) can be used to evaluate g(v) for a given y, using condition

108 GLOBAL MINIMIZATION Chap. €

(8.1). If we could show that
e ()= M, (8.5)
then procedure glomin could be used again (recursively) to minimize g(y), and
thus, from (8.4), f(x, »). Unfortunately, g(») need not be differentiable every-
where in [a,, b,], so (8.5) may be meaningless. For example, consider
S(x,py = xy (8.6)
on D=[—1,1] x [—1, 1} Then
@(¥) = min (y, —y) = —|p}, (8.7
which is not differentiable at y = 0, and we cannot expect to prove (8.5).
The same problem may arise if the minimam in (8.3) occurs at an interior
point of D: one example is
flx,) =(x* —3x)siny (8.8)
on D =[/73,.,/3Fx [—10,10]. (fAx,)) vanishes for x = +1, so
@{)) = —2|sin y|, which is not differentiable at 0, Lz, etc.)
Fortunately, the following theorem shows that ¢(y) does satisfy a condi-
tion like (7.3), so the results of Section 7 show that procedure glomin can

be used to find the global minimum of p(y} even if g(y) is not differentiable
everywhere,

THEOREM 81

Let f(x, y) and @()) be as above. Then, for ali # > 0 and y « [a, + A,
b, — A},

p(y +) — 20(y) + oy — by << M 1> (8.9)
Proof

From the definition (8.3) of ¢(y), there is a function p(y) from {a,. b,]
into [a,, b,] (not necessarily continuous), such that

o()) = (), »). (8.10)
Thus

oy -+ h) = flu(y) vy £+ h), (8.11)
SO
oy -+ kY — 2000y + @y — W) << fQp(yh y + By — 2£ (@), ¥)

(8.12)
and the result follows from condition (8.2).
COROLLARY 8.1
Forall y = [a,, b,] at which p”(¥) exists,
PN < M, (8.13)

Sec. 8 GLOBAL MINIMIZATION OGF A FUNCTION QF SEVERAL VARIABLES 109

Funictions of n variables

Theorem 8.2 generalizes Theorem 8.1 to functions of any - finite number
of variables.

THEOREM 8.2

PR

nt+1; D=1 =x1i,x---x1I, < R*,; fi D— R is continuous, and

FO5 4 e = 2f(x) + fx — he) < M2 @19
for all sufficiently small & > 0, all x ¢ R*! such that x,x - he, & D,
andi=1,2,...,n+ 1. Let D' =1, = --- x I, and define g: 2 —» R by
EA%«W b= HHMHMS .Nwﬁ.u\.t feea .wvzu .Hv AWMMV
Then g is continuous on D',
min f{x} = min p{¥), {8.16)
XED ye Lo
and
oy + hel) — 20(¥) + (v — he)) << M * (8.17)

for all sufficiently small & >0, y & R® such that y, y + /e, = I, and

J=1,2,..., n (Heree, is a unit vector in R**', and ¢} is a unit vector in R".)
The proof is an easy generalization of the proof of Theorem 8.1, so the

details are omitted.

Theorem 8.2 shows that it is possible to use procedure glomin to find the

: global minimum of a function f(x,, ..., x,) of any finite number n > | of

variables, provided upper bounds are known for the partial derivatives f, , (x)
(i=1,...,n). It is interesting that no bounds on the cross derivatives

- FexfX) (i % j) are necessary.

If a one-dimensional minimization using procedure glomin requires

" about X function evaluations, then we would expect that about K function

evaluations would be required for an n-dimensional minimization. Since
K is likely to be in the range 10 << K < 100 in practice (see Section 6), the

- computation involved is likely to be excessive for n = 3. Thus, for functions

of more than three variables, we probably must be satisfied with methods

which find local, but not necessarily global, minima (see Chapter 7). The

‘theorems of Section 5 have not been extended to functions of more than one

.. variable, so we do not know how far our procedure is from the best possible
“ (given only upper bounds on £, for i = I, ..., x). Thus, there is a chance
-~ that a much better method for finding the global minimum of a function of

-several variables exists. It is also possible that slightly stronger a priori

. conditions on f (e.g., both upper and lower bounds on certain derivatives)
. -might enable us to find the global minimum much more efficiently.

110 GLOBAL MINIMIZATION Chap. 6

Minimization of a function of two variables: procedure glomin2d

In Section 10 we give an ALGOL 60 procedure (glomin2d) for finding
the global minimum of a function f(x, y) of two variables, using the method
suggested above. Note that glomin2d uses procedure glomin in a recursive
manner, for glomin is required both to evaluate and to minimize ¢. The error
bounds given in the initial comment of procedure glomin2d are easily derived
from the error bounds {3.36) and (3.37) for procedure glomin.

Procedure glomin2d was tested on an IBM 360/91 computer (using
ALGOL W), and some numerical results are summarized in Table 8.1.
In all cases shown in the table the parameters macheps, ¢; and t were set
at 16713, 1074, and 107'° respectively. (Thus p, — 107" << § < ¢, -+
1.0002 x 10~!°is guaranteed, where g, is the true minimum of f, and @ is the
value returned by the procedure.) In the table we give the upper bounds M,
and M, (see equations (8.1) and (8.2)), the total number of function evalu-
ations N, and the approximate global minimum @ (always very close to the
true global minimum ¢).

TABLE 8.1 Numerical results for procedure glomin2d

f M, M, N 7
£ @ O 4 |
4 4 ° e 1
2 4 i3 0
I 2 16 16 0
10 4 446 335
1¢ 10 956 4'-39
I 2210 200 13320 218
I 200 2210 - 1815 0
s 4 4 1954 —0.396652961085471
s 4 4 100336 —0.396652961085468
8 8 130496 0 0.396652961085434

The symbols are explained above. The functions are:
£i(x,) =133 + 99y — 35y on[—4L 1] = [L1}
folx,) = x2 4 xp 3+ 22 on{—1,3] x [—2,4];
Falx, ¥ = H0(r — x2)2 + (1 =~ x)% on [~1.2,1.2] » [—1.2, 1.2}

Fi(x,) = sin(x)cos(pexp(-~(x? -+ y2) on 11, 2] > [, 21
Foloe, ¥) == fi{x,) on [—2,4] % [-2, 4],

Sec. 9 SUMMARY AND CONCLUSIONS T17

Comments on Table 8.7

The results for the simple functions /, and f, are hardly surprising. As
expected from the behavior of procedure glomin on functions of one variable
(see Sections 5 and 6), the number of function evaluations (N} increases with
M, and M,. .

falx, 3) = 100(y — x2)* + (I — x)* is the well-known Rasenbrock
function (Rosenbrock (1960)), and it has a steep curved valley along the
parabola y = x%. Note that f; is just the Rosenbrock function in disguise,
and it is interesting that only 1815 function evaluations were required

. to minimize £, compared to 13320 for f;. Thus, it can make a large difference

whether we minimize first over x (with y fixed) and then over v, or vice versa,
but it is difficult to give a reliable rule as to which should be done first. Of
course, even the lower figure of 1815 function evaluations is very high by

' comparison with 100 or less for methods which seek local minima (see

Chapter 7), but perhaps this is the price which must be paid to guarantee that
we do have the global minimum, (This is only a conjecture, for the results
of Section 5 have not been extended to functions of several variables.)

The functions f; and f; are the same, but the domain of fj is four times
as large as the domain of /5. For this function the size of the domain has much

. more influence on N than do the bounds M, and M, : increasing the size of

the domain by a factor of four increased N by a factor of about 50, but
doubling M, and M, only increased N by about 30 percent, With a different

" function, though, we could easily reach the opposite conclusion.

To summarize: if it is possible to give upper bounds M and M, on the

o -partial derivatives /, and f,,, then procedure glomin2d will find a guaranteed

good approximation to the global minimum, but a considerable number of
function evaluations may be required if the domain of fis large or if the

‘bounds M, and M, are weak. As for one-dimensional minimization, the size

of the tolerance ¢ has a fairly small influence on the total number of function

‘evaluations required.

Finally, we should note that we have restricted ourselves to rectanguiar
domains merely for the sake of simplicity: there is no essential difficulty

- in dealing with nonrectangular domains.

- Section 9
SUMMARY AND CONCLUSIONS

In Section 1 we show that the problem of finding the global minimum
9, = f{u,) of a function f defined on a compact set is well-posed, whereas
the problem of finding g, is not well-posed. Some a priori conditions on b

" are necessary to ensure finding the global minimum, and several possible
- "conditions are discussed in Section 1. We concentrate our attention mainly

112 GLOBAL MINIMIZATION Chap. &

on one such condition, a given upper bound on 7, and small variations of
this condition,

An efficient algorithin for one-dimensional global minimization, based
on theorems in Sections 2 and 7, is described in Section 3. The effect of round-
ing errors, and the number of function evaluations required, are discussed
in Sections 3 to 5, and numerical results are given in Section 6. Finally, in
Section 8 the results for functions of one variable are used to give an algorithm
for finding the global minimum of a function of several variables (practicalty
usefu] for two or three variables), and ALGOL procedures are given in Sec-
tion 10. The ALGOL procedures are guaranteed to give correct results,
provided the basic arithmetic operations are performed with a small relative
error, (See the remark following equation (3.30).)

For practical problems, the main difficulty in using the results of this
chapter lies in finding the necessary bounds on second derivatives. One
intriguing idea is that, if f(x) is expressed in terms of elementary functions,
then the second derivatives can be computed symbolically, and upper bounds
can then be obtained from the symbolic second derivatives via simple inequal-
ities. Thus, the entire process of finding the global minimum can be auto-
mated. In some cases functions defined on unbounded domains can also be
dealt with antomatically by using suitable elementary transformations.

Section 10
ALGOL 60 PROCEDURES

The ALGOL procedures glomin (for global minimization of a function
of one variable) and glomin2d (for global minimization of a function of two
variables) are given below. The algorithms and some numerical results are
described in Sections 3 to 6 and 8. A FORTRAN translation of procedure
glomin is given in the Appendix.

real procedure glomin (a, b, ¢, m, macheps, e, t, f, x);

value a, b, ¢, m, macheps, e, t;

real a, b, c, m, macheps e, t, x; real procedure [,
begin comment:

glomin returns the global minimum value of the function f(x)

defined on [a, b]. The procedure assumes that /& C?[a, b] and F”(x)
< m for all x & [a, b] (weaker conditions are sufficient: see Section 7).
¢ and 7 are positive tolerances: we assume that f(x) is computed with
an absolute error bounded by e, ie., that |f1(f(x(1 - macheps))) —
Sx)| =2 e, where macheps is the relative machine precision. Then x and
glomin are returned so that min (f) < f(x) << min () -+ ¢ -+ 2e and
min (f} — e < glomin = fI{f(x)) < min(f) -+t + e

o Sec. 70 ALGOL 60 PROCEDURES 713

¢ is an initial guess at x (a or b will do). The number of function evalua-
tions required is usually close to the Jeast possible, Eo&a& ¢ is not
unreasonably small (see Sections 3 to 5);
integer &; real a0, a2, a3, d0, d1, d2, h, m2, p, q, gs, r, 5, ¥, Y0, y1, 12,
y3, vb, 20, z1, 22,
ncﬂigﬁ ?Emmmmmo:w
X o [@. D_N. —
yb: eo. = f{b); yi =)2 = fla);
_:é < y then y: ,Jr;xo Emn X =g,
Hm>0A a<bthen
begin comment: Nontrivial case (im > 0, a < b);
m2: = 0.5 x (1 4+ 16 x macheps) x m;
ife<{aV c¢zbthenc: =105 % (¢ 4 b);
ylo=flc); k1= 3; d0: = a2 — ¢; Iy = 9/11;
if y1 << y then
begin x: = ¢; y: = yl end;
comment: Main loop;
next: dl: == a2 — a0; d2: = ¢ — al);
22: =5 —a2; z0: = y2 — p1; z1; = y2 — y0;
pr=r:=dl X dl x z0 — d0 x 40 x z1;
gr==g5 =2 x (d0 x z1 — d x z0);
comment: Try to find a lower value of f using quadratic inter-
polation;
if & = 100000 A y << ¥2 then go to skip;
retry:if g > (r 3 (b — p2) + 22 X g X ((¥2 — ¥) - 1)
<22 ¥ m2 > r % (22 % q - r) then
begin a3: = a2 - r/q; ¥3: = f{a3);
if 3 < e then

end
end;
comment: With probability about 0.1 do a random search for a lower
value of /. Any reasonable random number generator can be used
in place of the one here (it need not be very good);
skip: k: = 1611 x k; k: =k — 1048576 = (k = 1048576);
g:=1;r: = (b — a) x (k/100000);
if r << z2 then go to retry;
comment : Prepare to step as far as possible; .
roem2 o d0 oo dl % d2; 50 = sqri(((y2 — ¥) + Ofm2);
=05 x {14
pr=hx (p+2xrxsiq =r-+0.5xqgs
ro= 0.5 % (d0 4+ (20 4 2.01 x e{d0 x m2));
rre=gd (i r << sV d0 << 0 then s else r);

114 GLOBAL MINIMIZATION Chap. 6

comment: It is safe to step to », but we may {ry to step further;
a3: =il p X g > 0 then a2 + p/g else r;
inner: if a3 << ¥ then a3: == r;
if a3 > b then
else ¥3: = f(43);
if y3 < y then
begin x: == a3; y: = ¥3 end;
d0: = a3 — a2;
if a3 = r then
begin comment: Inspect the parabolic lower bound on fin
(a2, a3):
pi=2 % (y2 — ¥3)/(m x dO);
if abs(p) < (1 + 9 x macheps) = d0
AGSx m2 x (d0xdd+pxp =
(2 —3) -+ ()3 —y)+ 2 x ¢ then
begin comment: Ialve the step and try again;
a3: = 0.5 % (@2 + a3); h: = 0.9 x A; go to inner
end
end;
if a3 < b then
begin comment: Prepare for the next step;
al: == ¢; ¢: = a2; a2: = a3,
yv0: = yl; vl = 32; y2: = ¥3;

go to next
end
end;
glomin: =y

end glomin;

real procedure glomin2d (ax, ay, bx, by, mx, my, macheps, e, 1, f, x. ¥);
value ax, ay, bx, by, mx, my, macheps, e, t;
real ax, ay, bx, by, mx, my, macheps, €, {,x, y;
real procedure f;
begin comment:

Glomin2d returns the globa! minimum z = f{x, ») of the function '

Sf{x, y) defined on the rectangle fax, bx] x [ay, byl mx and my are upper
bounds on the second partial derivatives of /* we assume that 7, (x,)
< mx and £, (x, ¥) << my in the rectangle. e and ¢ are positive tolerances:
f must be evaluated to an accuracy of ¢, and on return

min(f) < f(x, ¥) < min(f} + ¢ + 3e and

min(f) — e < z = fI(f(x, y) < min(f} + + 2e.

macheps is the relative machine precision, and procedure glomin (for

Sec. 70 ALGOL 60 PRGCEDURES

one-dimensional minimization) is assumed to be global;
real procedure phi (¥); value y; real y;
begin comment: Returns min f(x, ¥) over x (¥ fixed), and may
alter the global variables first, xs and zm;
real procedure fx(x), value x; real x;
begin fx: = f(x, ») end fx;
real ym;
ym: = glomin(ax, bx, x5, mx, macheps, e, t1, fx, xs);
if first \/ ym << zm then
begin first: = false; zm: = ym; x1 = xs5 end;
phi: = ym
end phi;
real 71, x5, zm; Boolean first;

first: = true; zm: = 0);

tlo==0.5 x 7; x57 = ax;

glominld: = glomin (ay, by, ay, my, macheps, t1 - e, 11, phi, ¥)
end glomin2d,;

715

A NEW ALGORITHM FOR
MINIMIZING A FUNCTION
OF SEVERAL VARIABLES
WITHOUT CALCULATING
DERIVATIVES

Section 1
INTRODUCTION AND SURVEY OF THE
LITERATURE

In this chapter we consider the general ::oo;m.:mm:na Emiimw.maon
problem: given a function /7 R* — R, find an mv?,ox:dw”o WOOm,m minrimumn
of f. There is no need to emphasize the practical HBwo&m:Gm of this @.BEQ:_
and the recent literature on the subject is quite extensive. Here we give qu
a brief introduction, and no atiempt is made to duplicate the survey articles
by Box (1966), Fletcher (1965, 1969c), and Powell (1970a, ¢), or the books
by Beale (1968); Box, Davies, and Swann (1969); Eﬁnrﬂ :um@.&“ wmnogw
Kowalik, and Pizzo (1971); Kowalik and Osborne (1968); Wilde (1964);
and Wilde and Beightler (1967). .

in practical problems the global minimum, not a mere _Onm_._z_m::a:w
is usually of interest. Mcthods for finding global minima are aamcmmoa in
Chapter 6, but for functions of a moderate or large number of <E._m@r.wm the
methods of Chapter 6 are impractical. Usually the best that we can g.ow.E .:uw
absence of any special knowledge about f, is to use a momx.u lecal minimizer
and try several different combinations of starting .ﬁow_:ozm“ mﬁmmmw:mﬁ:mv
etc., in the hope that the best local minimum found is the global minimum.

116

Sec, 7 INTRODUCTION AND SURVEY OF THE LITERATURE 117

Constrained problems

It often happens that we want to minimize f(x) subject to the constraint
that x is in some subset D of R”. (Sometimes £'is only defined on D) Simple
upper and/or lower bounds, of the form

D._.Mp\Hmmv_. A_uv

on the components x, of x, are particularly common, and problems with
such constraints can be reduced to unconstrained problems by a transforma-
tion of variables (Box (1966)).

More general constraints may be of the form

gx)=10 (an equality constraint) 1.2y
or
gx) =0 {an inequality constraint), (1.3)
where g;: D, = R — R is some given function, for j=1,.. ., m. £.(x)
may be linear, say
g/%) = alx + ¢, (1.4)

for some a, € R and ¢, ¢ R, or g{x) may be nonlinear, and perhaps quite
difficult to compute. From the point of view of efficiency. it is [probably hest
to deal with linear constraints directly, but this is difficult for nonlinear con-
straints. Direct methods for linear constraints are given in Fletcher (1968b),
Goldfarb (1969), and Rosen (1960). (See also Bartels and Golub (1969);
Bartels, Golub, and Saunders (1970); Giil and Murray (1970); Goldfarb
and Lapidus (1968): Hanson {1970); and Shanno {1970b).)

Problems with nonlinear constraints can be reduced to a sequence of
unconstrained problems by the use of penalty or barrier functions. See Carroll
(1961); Fiacco (1961, 1969); Fiacco and Jones (1969); Fiacco and McCormick
(1968); Fletcher (1969a,b); Kowalik, Osborne, and Ryan (1969); Lootsma
(1968, 1970); Murray (1969); Osborne and Ryan (1970, 1971); Pietrzykowski
(1969); and Zangwill (1967b). Attempts have also been made to deal with
nonlingar constraints directly: see Allran and Johnsen (1970): Box (1965);
Fletcher (1969a); Haarhoff and Buys (1970); Luenberger {1970); Mitchell
and Kaplan (1968); Rosen (1961); and Zoutendijk (1960).

Methods using derivatives

- Many methods for the constrained or unconstrained minimization of
J: D> R explicitly use the partial derivatives offdx, for i=1,:.., A,
and some methods also use the secand partial derivatives of £, Methods for
constrained minimization may also use the partial derivatives of the constraint
functions. An example of a derivative method is the classical method of

118 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

steepest descent (Akaike (1959), Cauchy (1847), Curry (1944), Forsythe
(1968), Goldstein (1962, 1965), and Ostrowski (1966, 1967a)), which
repeatedly minimizes f in the direction —g, where

dffdx,
g) (1.5)

afidx,

is the gradient of /- Perhaps the most successful methods using derivatives are
the Davidon-Fletcher—Powell “variable metric” method (Davidon (1959),
Dixon (1971a,b), Fletcher and Powell (1963), Huang (1970}, and McCormick
(1969), and the “conjugate gradient” method of Fletcher and Reeves (1964),
which is slower but requires less storage than the variabie metric method.
For other methods using derivatives, and related topics, see Bard (1968,
1970); Broyden (1965, 1967, 1970a,b); Cantrell (1969); Cragg and Levy
(1969); Crowder and Wolfe (1971); Daniel (1967a,b,1970); Davidon (1968,
1969); Fletcher (1966, 1970}; Goldfarb (1970); Goldfeld, Quandt, and Trotter
(1968); Goldstein and Price (1967); Greenstadt (1967, 1970); Luenberger
(1969b); Matthews and Davies (1971); McCormick and Pearson (1969);
Miele and Cantreli (1969); Myers (1968); Pearson (1969); Powell (1969b,
1970b, ¢, d); Ramsay (1970); Shanno and Kettler (1969); Sorensen (1969};
Takahashi (1965); and Wells (1965).

In many practical problems it is difficult or impossible to find the partial
derivatives of f(x) directly. One possibility is to compute derivatives numeri-
cally, and then use one of the methods requiring derivatives. Stewart (1967)
has successfully modified the variable metric method so that difference
approximations to derivatives can be used. The difficulty is in balancing the
influence of rounding errors and truncation errors when using finite differ-
ences o estimate derivatives. For a computer program, see Lilt (1970).

Methods not using derivatives

Stewart’s modification of the variable metric method appears to work
well in most practical cases (see Stewart (1967), Powell (1970a), and Section 7),
but it is more natural to use a method which does not need derivatives if
derivatives can only be found numerically. In Chapter 5 we showed that,
for one-dimensional problems, such methods can be more efficient than
methods which approximate derivatives numerically, although it is not clear
whether the same applies in » dimensions.

Several methods which do not use derivatives have been compared in
the survey papers of Box {1966), Fletcher (1965, 1969¢), Powell (1970a, ¢),

Sec, T INTROBUCTION AND SURVEY OF THE LITERATURE 118

and Spang (1962). (See also Bell and Pike (1966); Berman (1969); Box (1957);
Chazan and Miranker (1970); Hooke and Jecves (1961); Kowalik and
Osborne (1968); Nelder and Mead (1965); Smith (1962); Spendiey, Hext,
and Himsworth (1962); Swann (1964); and Winfield (1967).) Excluding
Stewart’s method, the most successful method appears to be that of Powell
(1964), described in Section 3. The main object of this chapter is to present
some modifications which improve the speed and reliability of Powell’s
method. The modifications are discussed in Sections 4 to 6, and some numeri-
cal results are given in Section 7.

Quadratic convergence

Suppose that f(x) has continuous second derivatives

. &*f
Jip = I, 9%, (1.6)

for i, j=1,...,n, in a neighborhood N of a local minimum p. Since p

© . is a minimum, the gradient of f vanishes at g, and the Hessian matrix

A=(f) (1.7
is positive definite or semi-definite. Near u, the quadratic function
QX)) = f(w) + (x —)" A(x — p) (1.8)

is a good approximation to f(x). Thus, any minimization method which has
ultimate fast convergence for a general function f(x) with continuous second
derivatives must have fast convergence for a positive definite quadratic func-
tion, and we might expect the converse to hold too. This observation has
led to the investigation of methods which have quadratic convergence, i.c.,

. which find the minimum of a positive definite quadratic function in a finite

number of function and/or derivative evaluations (apart from the effect of

“rounding errors). Examples of methods with quadratic convergence are those
of Davidon-Fletcher-Powell, Fietcher -and Reeves, and Powell . (1964).

(This is not quite true: see Section 3.} The method of steepest descent exhibits

only linear convergence on a quadratic function, so it is not quadratically
convergent.,

A few methods which are not quadratically convergent do exhibit

- superlinear convergence on quadratic forms. Examples are the methods of
.- Rosenbrock (as modified by Davies, Swann, and Campey: see Swann (1964));
. Goldstein and Price (1967); and Greenstadt (1970), There is no apparent
reason why such methods should fail to perform as well as quadratically

convergent methods on nonquadratic functions. Thus, quadratic convergence

" is a desirable property, but it is neither necessary nor sufficient for a good
" minimization method.

120 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

Stability: the descent property

In many methods for unconstrained minimization f{x) has been evaluated
at x,, the current best estimate of the position of the minimum of f{x). A
new estimate, x¥, is made on the basis of the values of fat x, and a small
number of other points {previous best estimates. or poinis close to xow.
Additional infermation built up from previous iterations, e.g., an approxi-
mation to the Hessian matrix of / at x,, may also be used. The prediction x¥
may be unreliable, and it may happen that

JOxE) = 1) (L9

For example, this often occurs if x4 is not ¢lose to a local minimum and an
inadequate quadratic approximation to f(x) is used.

To avoid the possibility of instability, most procedures do not accept
x* as the next approximation to the minimum. Instead, they perform a

“linear search™ in the direction x¥ — x,, t.e., they take the point
X, == Xo b A(xF — x) (1.1
as the next approximation, where 4, is chosen to minimize the function
p(d) = fix, + AxXF — x)) (1.113
of one variable. This ensures that
Jix) < fxg) (1.12)
so the successive poinis generated must lie in the “level set”
S=fx € RS < fix,)) (1.13)

In practice, it is not worthwhile to try to minimize the function ¢(4) very
accurately. In fact, the minimum may not even exist: g(1) may be monotonic
increasing or decreasing, or have a maximum but no minimum. Box (1966)
gives examples where an attempt to minimize p(4) too accurately mmmmmﬂm
a minimization procedure from finding the desired minimum. 1t is sometimes
stated that the quadratic convergence property of certain methods depends
on @(A) being minimized exactly, but all that is really m,n@c:ma. w.cﬂ.:ﬁmm
methods is that the one-dimensional minimization procedure minimizes a
guadratic Tunction of J exactly. Thus, for quadratic convergence it is sufficient

Because of the danger of instability, this simple procedure is not acceptable,
but it is reasonable to take 1, = A¥ provided that
@(Ag) < p(0), (1.14)

which ensures that {1.12) holds. (Powell {1970¢) gives some reasons for re-
quiring rather more than (1.14).) See also Sections 6 and 7.

Golub and Wilkinson (1966), Hanson and Dyer (1971}, and Stoer (1971)

Sec. 1 INTROGOUCTION AND SURVEY OF THE LITERATURE 121

Sums of squares

A very common unconsirained minimization problem is to minimize
a function f{x) of the form

Fx) = 3 [0 (1.15)

for some (generally nonlinear) functions fi(x). For example, this problem
arises when parameters x,, . . ., x, are fitted by the method of least squares,
using m7 observations. An important special case occurs when the minimum
value of /(x) is zero: then we have a solution of the system of equations

Si(x) = (1.16)

n
= 1

fori=1,...,nm.

Applying a general function minimizer to f(x) may not be the most
efficient way to minimize (1.15). Methods which make use of the individual
_residuals fi(x) are likely to be considerably more efficient than methods which
merely try to minimize f(x} without considering the individual residuals, at
least if the minimum value of f(x) is close to zero. Methods which make use
of the residuals are described in Barnes (1965), Box (1966), Brent (1971a, b},
Brown and Dennis (1968, 1971a, b), Brown and Conte (1967), Broyden (1963,
1969}, Dennis (1968, 1969a, b, Fletcher (1968a), Gauss (1809), Hartley (1961),
Jones (1970), Levenberg (1944), Marquardt (1963), Ortega and Rheinboldt
{1970), Peckham (1970), Powell (1965, [968b, 1969a), Rall (1966, 1969),

. Schubert (1970), Shanno (1970a), Spith (1967), Voigt (1971), Wolfe (1959),

and Zeleznik (1968). Good numerical methods for solving linear ieast squares
problems are aiso relevant: see Bjdrck (1967a, b, 1968), Businger and Golub
(1965), Golub (1965), Golub and Reinsch (1970), Golub and Saunders (19693,

Let us see why it may be worthwhile to use the residuals. Suppose that

~-we have a good initial approximation to the minimum of /(x), so the functions
© . fi(x) can be closely represented by linear approximations in the region of
~interest. To find a linear approximation to fi(x), we need to evaluate Sz
‘.-atn -+ 1 points, or evaluate f(x) and the # components of its gradient at one
-/ point, Thus, after the same amount of work as is required for »# -+ 1 evalua-
- tions of f{x), or one evaluation of /{x) and its gradient, the solution of a linear

least squares problem gives an approximation to the minimum. This approxi-

- mation is usually good if the minimum value of /(x) is small (Powell (1965)),

-unless the linear problem is very ill-conditioned. On the other hand, if the

- special form (1.15) of f(x) is disregarded, then it is necessary to evaluate
-~ f(x) at 4{n + 1){n + 2) points to find an approximating guadratic form.
- (Alternatively, f and its gradient must be evaluated at [4(n -+ 2)T or more
- points.) This suggests that methods which disregard the special form of
- f(x) are likely to be much slower than methods which use the individual

122 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

residuals, at least if » is large. Empiricai evidence supports this conclusion
{see particutarly Table 3 of Box (1966)), aithough some of the present methods
which make use of the residuals appear to be rather unreliable.

Despite our conclusion, most of the test functions given in Section 7
are of the form (1.15). This is because a particularly simple way to construct
test functions with bounded level sets is to use functions of the form (1.15).

Some additional references

The following general references on function minimization and related
topics should also be mentioned: Abadie (1970); Balakrishnan (1970); Ben-
nett (1965); Colville {1968); Dold and Eckmann (1970a, b); Evans and Gould
(1970); Hadley (1964); Kiinzi, Tzschach, and Zehnder (1968); Lavi and
Vogl (1966); Luenberger {1969a); Mangasarian {1969); Murtagh and Sar-
gent (1970); Powell (1966, 1969¢); Ralston and Wilf (1960); Rice {1970);
Rosen and Suzuki (1965); Shah, Buehler, and Kempthorne (1964); Wolfe
(1963, 1969, 1971); Zadeh (1969); Zangwill (19694, b); and Zoutendijk (1966).

Section 2
THE EFFECT OF ROUNDING ERRORS

Rounding errors in the computation of f(x) limit the accuracy attain-
able with any minimization method using only the computed values of f{x).
In this section we generalize the results of Section 5.2, where the same problem
is considered for functions of one variable. As in Section 3.2, the results of
this section do not apply to methods which use the gradient of /. computed
analyiically. (They do apply if the gradient is computed by finite differences.)

Suppose that, in a neighborhood N of a local minimum g, the partial

LX) — LAY < M X = L (2.1)
where M, is a Lipschitz constant (i, j = 1, ..., #), and any of the usual
vector norms may be used. Since the gradient of f{x) vanishes at g, a simple
extension of Lemma 2.3.1 shows that, for x ¢ N,

A — p) 4 R(), (2.2)

where
A == (f, (1) (2.3)
is the Hessian matrix of f{x) at p, and .
| RO < M| x -~ pi], (2.4)

for some constant M depending on #, the Lipschitz constants M, and the
norm.

Sec. 2 THE EFFECT OF ROUNDING ERRORS 123

Asin Section 5.2, the best that can be expected is that the computed value
JIU(f(x)) of f(x) satisfies the nearly attainable bound

HS (X)) = 31+ €,) (2.5)
where
lexi e, (2.6)

m.mnm € is the relative machine precision (Section 4.2). If 1 is computed using
single-precision arithmetic, the error bound will probably be considerably
worse than this.

Let § be the Jargest number such that, according to equations (2.2) to
(2.6), it is possible that

SIS+ Su)) < f(w), (2.7)
for some unit vector u. Then it is unreasonable to expect any minimization
Hu.m.o%mcg“ based on single-precision evaluations of £, to return an approxima-
tion i to p with a guaranteed upper bound for || — p|| less than 6.

Let the eigenvalues of 4 be 4, >> 1, > ... > 1, with a set of cor

responding normalized eigenvectors u,, u,, . .., u,. Since p is a local mini-

muim of f(x), certainly
2,20, (2.8)

.mm.m we suppose that A, > 0. (The position of the minimum is less well deter-
mined if 1, == 0.) If M&/4, is small compared to unity, and we take u == "

then (2.7) is possible with
—~ 2lf(m]e 2
d = !I;iaii_\mav_ . (.@v

Thus, an upper bound on || — p|| can hardly be less than the right side of
(2.9).
The condition number

With the assumptions above, and § given by (2.9),
S+ du) = flp) + xe | (W), (2.10

where

= .11

- .. is the spectral condition number of 4. We shall say that & is the condition

number of the minimization problem for the local minimum p. The condition

mumber determines the rate of convergence of some minimization methods

(e.8., steepest descent), and it is also important because rounding errors make

it difficult to solve problems with condition numbers of the order of ¢!
- 0T greater,

124 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

Scaling

A change of scale along the coordinate axes has the effect of replacing
the Hessian matrix 4 by SA4S, where § is a positive diagonal matrix. The
problem of choosing S to minimize the condition number of SA4S is difficult,
even if A is known explicitly. {(See Forsythe and Moler (1967) for the problem
of minimizing the condition number of §,45,, where A is not necessarily
symmetric.} A good general rule is that S48 should be roughly row (and
hence column) equilibrated: sce Wilkinson (1963, 1965a). In practical mini-
mization problems little is known about the Hessian matrix until a reasonable
approximation to the minimum has been found. This suggests that a scale-
dependent function minimizer could incorporate an automatic scaling pro-
cedure, using current information about A to determine the scaling. One way
to do this is described in Section 4.

Section 3
POWELL'S ALGORITHM

In this section we briefly describe Powell’s algorithm for minimization
without calculating derivatives. The algorithm is described more fully in
Powell (1964), and a small error in this paper is pointed out by Zangwili
(1967a). Numerical results are given in Fletcher (1965), Box (1966}, and
Kowalik and Osborne (1968). A modified algorithm, which is suitable for
use on a paraliel computer, and which converges for strictly convex C?
functions with bounded level sets, is described by Chazan and Miranker
(1970).

Powell's method is a modification of a quadratically convergent method
proposed by Smith (1962). Both methods ensure convergence in a finite
number of steps, for a positive definite quadratic function, by making use
of some properties of conjugate directions.

Conjugate directions

If A is positive definite and symmetric, then minimizing the quadratic
function

XTAx — 2% = (x — A"'byfA(x — 47'b) — b4~ 'b 3.1y
is equivalent to solving the system of linear equations
Ax = h. (3.2

If the matrix A is known explicitly then, instead of minimizing (3.1), we can
solve (3.2) by any suitable method: for example, by forming the Cholesky
decomposition of 4. In the applications of interest here, A is the Hessian

Sec. 2 POWELL'S ALGORITHM 125

matrix of a certain function, and is not known explicitly, but the equivalence
of the problems (3.1) and (3.2} is still useful.

DEFINITION 3.1

Two vectors w and v are said to be conjugate with respect to the positive
definite symmetric matrix A4 if

' Ay = Q. (3.3

When there is no risk of confusion, we shall simply say that n and v are
conjugate. By a set of conjugate directions, we mean a set of vectors which are
pairwise conjugate.

Remark

If fu,,...,u,} is any set of wonzero conjugate directions in R*, then
u,,...,u, arelinearly independent. Thus m < n;andm =wn iffu,,...,m
span R".

m

THEOREM 3.1

If A4 is positive definite symmetric, Ax = b, and {u,, ..., u,}is a set of

‘honzero coniugate directions, then

e & ub
xR G4
is conjugate to cach of u,, ..., u .
Proof
If 1 << j < m then, from (3.4),
WAy = ui{4dx — b} = 0. (3.5)

COROLLARY 3.1
Ifm = min Theorem 3.1, theny == 0, so

(3.6)

Returning to the minimization problem, Theorem 3.1 and the equiva-
lence of problems (3.1) and (3.2) give the following result.

THEOREM 3.2

If A4 is positive definite symmetric,

f(x) = xTAx — 207x - ¢ (3.7

~forsomeb = Rand ¢ € R, and u,, ..., u, is a set of nonzero conjugate
" directions, then the minimum of f(x) in the space spanned by u,,...,u,

126 MINIMIZING A FUNCTION OF SEYERAL VARIABLES Chap., 7

el
ogcurs at the point %, fu,, where
i=1

[&
B, = u’b
toof Aw,

(3.8)

Proof

This follows from Theorem 3.1 or, alternatively, from the relation

NAW szhv = M (o, — f)uf Au, - ¢ — Msu (ufb) 3.9}

4 =1 uf Au,
(cross terms vanish because of the conjugacy ofu,, ..., u,).

The usefuiness of Theorem 3.2 stems from the following result, which
shows how we can calculate the B, of (3.8) using function evaluations, even
if 4, b, and ¢ are not known explicitly. The prool is immediate from equation
(3.9).

THEQREM 3.3
With the notation of Theorem 3.2, a fixed ;j satisfying 1 < j <2 m, and
fixed &,8, 1, &;40s ..., 0, the minimum of
pia) = \AM_ scmv (3.10)

occurs at o, == f§

From Theorems 3.2 and 3.3, we see that the minimum of the quadratic
function f(x) can be found by » one-dimensional minimizations along nonzero
conjugate directions u,, . .., u,, and the order in which the ong-dimensional
minimizations are performed is irrefevant. To use this result, we have to be
able to generate sets of conjugate directions. Both Poweli’s method and
Smith’s method do this by using the following theorem, given in Powell (1964),

THEOREM 3.4

If the minimum of f(x) (given by (3.7)) in the direction u from the point
X is at x,, for i = 0, 1, then x, — x, is conjugate to u.

Proof
Fori=0and 1, .
%_me - Auy =0 (3.1
at 4 = 0, so, from (3.7),
u'(Ax, — by =0, (3.12)
Subtracting equations (3.12) for i = 0 and 1 gives
wAR, —x) =0, (3.13)

which completes the proof.

. the iterations may have f§, = 0. This results in the directions u,...,u
- becoming lincarly dependent, and from then on the procedure can only
- find the minimum of f{x) over a proper subspace of R". Even though it is

Sec. 3 POWELL'S ALGORITHM 127

Powell's basic procedure

We can now describe the basic idea of Powell’s algorithm. Let x, be
the initial approximation to the minimurm, and let u,, . . ., u, be the columns
of the identity matrix. One iteration of the basic procedure consists of the

- following steps:

1. For i==1,...,n, compute B, to minimize f(x, , + fu), and
define x, == x,., + fu,.
2. Fori==1,...,n— 1, replace u, by u,_,.

3. Replaceu, by x, — x,,.
4. Compute f# to minimize f(x, + fu,), and replace x; by x, -+ fu,.

For a general (non-quadratic) function, the iteration is repeated until
some stopping criterion is satisfied. If f is quadratic, consider the situation

- after the k-th iteration, where 1 <<k <C». Thenw,_,,,, ..., u, are conju-
gate, by Theorem 3.4 and the choice of u, at step 3: see Powell (1964). After

n iterations we have minimized along s conjugate directions u,,...,u,
and, by Theorems 3.2 and 3.3, the minimum has been reached if the u, are
all nonzero. This is true if f, % 0 at each iteration, for then the directions

Uy, ..., u, cannot become linearly dependent.

The problem of linsar dependence

Zangwill (1967a) observed that, even for a quadratic function /, one of

n

unlikely that #, will vanish exactly, Powell discovered that the directions

u,,...,u, often become nearly linearly dependent. Thus, he suggested that

the new direction x, — %, should be used, and one of the old u,,...,n,

discarded, only if this does not decrease the value of |det(v, .. ., v,)|, where

v, = (ul Au) V2, (3.14)

: .”_. for i==1,...,n With this modification the algorithm is quite successful

(see Fletcher (1965) and Box (1966) for a comparison with other methods),
but the desirable property of quadratic convergence is lost, for a complete

- set of conjugate directions may never be built up. In the next section, we

describe a different way of avoiding the problem of linear dependence of the

. search directions. The numerical results given in Section 7 suggest that our

" method -of ensuring linear independence may be preferable to Powell’s,
. Zangwill (1967a) suggested a simpler way of ensuring independence, but
- numerical experiments (Rhead (1971)) show that Powell’s modification is
“preferable to Zangwill’s.

128 MINIMIZING A FUNCTION OF SEVFRAL VARIABLES Chrap. 7

Section 4
THE MAIN MODIFICATION

The simplest way to avoid linear dependence of the search directions
with Powell’s basic procedure, and retain quadratic convergence if B, =0,
is to reset the search directions u,....,u, to the columas of the identity
matrix after every # or n 4- 1 iterations. A similar “restarting” device is
suggested by Fletcher and Reeves (1964) for their conjugate gradient method,
and restarting is actually necessary to ensure superlinear convergence
(Crowder and Wolfe (1971)). For other methods, restarting may slow down
convergence, because information built up about the function is periodically
thrown away,

Instead of resetting U = [u,,...,u,] to the identity matrix, we can
equally well reset U to any orthogonal matrix Q. To avoid discarding useful
information about £, we choose O so that u,,...,u, remain conjugate if
fis quadratic. Principal vectors q, . . . » 4, are computed on the assumption
that /s quadratic, and U is reset to Q = [q,, . . ., 9,1 The motivation for
this procedure may be summarized thus:

L. If the quadratic approximation to f is good, then the new search
directions are conjugate with respect to a matrix which is close to the
Hessian matrix of / at the minimum, and thus subsequent iterations
give fast convergence.

2. Regardless of the validity of the quadratic approximation, the new

search directions are orthogonal, so the search for a minimum can
never become restricted to a subspace.

The extra computation involved

We show below that finding principal axes does not require any extra
function evaluations, but it does involve finding an orthogonati set of eigen-
vectors for a symmetric matrix H of order ». This requires about 6x° multipli-
cations, and a similar number of additions, if done as suggested below. Since
the principal axes are found only once for every »? linear minimizations, and
a linear minimization requires about 2.25 function evaluations on the average
(see Section 7), the extra computation is less than 3n multipfications per
function evaluation. We can expect the evaluation of a nontrivial function
of n variables to require considerably more than 3n multiplications, so the
overhead caused by our modification is not excessive. Also, it may be worth
paying a little for the principal axis reduction, for the extra information about
fis often of interest. For example, it shows the sensitivity of J(x) to slight
changes in x near the minimum. The principal axes and eigenvalues may be
useful in statistical problems: see Nelder and Mead (1965).

Sec. 4 THE MAIN MGDIFICATION 129

Finding the principal vectors

Suppose that
x\,va = X AX - 2hTX ;T c AL.MU

is a positive definite quadratic function, although A, b, and ¢ may not be
known explicitly. If » iterations of Powell's basic procedure are performed
as described above, and at each iteration §, =& 0, then we obtain # nonzero
conjugate directions u,,...,u,. Let U= [u,...u). By the conjugacy of
W,...,Hu,

UTAU = D, {4.2)

where D is a diagonal matrix with positive diagonal elements d..
During the last (i.e., #-th) iteration, we have performed one-dimensional

- minimizations in the directions u,, . . ., u,. Consider a minimization from

the point x,_,, in the direction u,, for 1 < 7 < »n. We minimize the function

plo) = f(x, -+ o) (4.3)
= grulAn, -+ 2ol Ax,_, — olb) + (x_, Ax,_, — 2%7.,b | o)
(4.4)

~* To minimize p o) we fit a parabola, which necessitates computing the second

difference ¢ [a,. o,, ®,] for three distinct points a,, o.,, and o,. From equation
4.4),

F@Rcu %y, QL = nw,\hm_. = _&: A&.mv

.. so the diagonal elements 4, of D are known without any extra computation.
~(If the quadratic approximation to g(a) is bad and ¢/[a,, &,, &,] < 0, then

we arbitrarily set d, to a small positive number.)

Let
V=UD"1? (4.6)
be the matrix with columns v,, ..., v, given by (3.14), and let
_ H= A" (4.7)

© Since U s nonsingular, equation (4.2} gives

H oz UD7YUT = VT, {4.8)

" The matrix ¥ is easily computed from U in #* multiplications and n square

roots, but the computation of ¥V7 is more expensive, and can be avoided:
see below.

Our aim is to find the principal axes of the quadratic function f, i.e., to

" find an orthogonal matrix @ such that

. . QTAQ == A, (4.9)
where A = diag(1,) is diagonal. Thus, the columns g, of O are just the eigen-

- vectors of A, with corresponding eigenvalues 1,, . .., A, and we can assume

130 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

that 4, > ... 2> 4. The obvious way to find @ and A is to compute H =

F¥T explicitly, and then find @ and A such that
O"HO = A"! (4.1
by finding the cigensystem of /.

Use of the singular value decomposition to find O and A

machine precision (Section 4.2), then rounding errors may lead to disastrous

errors in the computed small eigenvalues 171, 437, ... of H, and in the cor-
responding eigenvectors (, q,, ..., even if they are well-determined by |

V. Thus, it may be necessary to compute H, and find its eigensystem, using

double-precision arithmetic. This difficulty can be avoided if, instead of -

forming H = ¥¥'7, we work directly with V. Suppose that we find the singular
value decomposition of V, i.e., find orthogonal matrices @ and R such that

OTVR = %, (4.11)

where ¥ == diag(s)) is a diagonal mairix, (See Golub and Kahan (1965), and
Kogbetliantz (1955).) Then :

A"l = QTHQ = (Q"VRYQTVR)Y = X2, (4.12)

so @ is the desired matrix of eigenvectors of 4, and the eigenvalues A; are
given by

A, = g2, {4.13)
Note that the matrix R is not required, and it is not necessary to compute
VT,

Since it is desirable that the computed matrix @ should be close to an
orthogonal matrix, we suggest that O and I should be found by the method
of Golub and Reinsch (1970). This involves reducing ¥ to bidiagonal form by
Householder transformations (Parlett (1971)), and then computing the
singular value decomposition of the bidiagonal matrix by a variant of the
QR algorithm.

Let us compare the amount of computational work involved in comput-
ing Q and A via

1. The singular value decomposition (SVD) of ¥ as described above, -

and

2. Finding the matrix H and its eigensystem, using Householder’s
reduction to tridiagonal form and then the QR algorithm. {See
Bowdler, Martin, Reinsch, and Wilkinson (1968); Francis (1962);
Householder (1964); Kublanovskaya (1961); Martin, Reinsch, and
Wilkinson (1968); and Wilkinson (1965a, b, 1968).)

See. 4 THE MAIN MODIFICATION 137

For purposes of comparison we count only multiplications, and ignore
terms of order »*. We also suppose that the QR process requires pn itera-
tions, for some modest number g.

For method 1, the Householder reduction requires 413/3 muitiplications,

“accumulation of the left-hand transformations requires another 4n3/3

multiplications, and the QR process with accumulation of the transformations
requires 2pn® multiplications if no splitting occurs. Thus, method 1 requires

(8 + 6p)3/3 multiplications in all,

For method 2, the Householder reduction requires 243/3 multiplications
(only half as much as for method 1 because of symmetry), accumuliation of

~ the transfermations requires 2s%/3 multiplications, and the QR process
--requires 2pn®, giving (4 4+ 6p%/3 altogether. This could be reduced to
- 4n3/3, still ignoring terms of order #2, if inverse iteration were used to compute

the eigenvectors of the tridiagonal matrix, but then it would be difficult to

;- guarantee orthogonality of eigenvectors corresponding to close or multiple

by the usual method (but taking advantage of symmetry), making
{11 + 12p)n*/6 multiplications in all.
The ratio of the work involved for methods 1 and 2 is thus

164 12p 16
T 12p 11
and for a typical value of p = 1.6 we have r = [.17. Thus, method ! can be
expected to be only about 20 percent slower than the numerically inferior
method 2. Both methods require temporary storage for only a few n-vectors,
apart from the # by n matrix ¥ which is overwritten by Q.

Foum

(4.14)

Automatic scaling

We mentioned in Section 2 that a general minimization procedure could

incorporate automatic scaling of the independent variables, in an attempt
- to reduce the condition number of the problem. Scaling has the effect of re-
- placing the matrix ¥ above by $™'¥, where S is a positive diagonal matrix.
" The ALGOL procedure praxis of Section 9 chooses S automatically to try
‘to reduce the condition number of $°1V, § is chosen so that S™'¥ is row-
-equilibrated, with the constraint that

| < s, << schd, (4.15)

~.where schd is a bound which may be set to 1 if no scating is desired. I

schd = co, then our algorithm (like Powell’s) is- independent of scale

- changes, except for the stopping criterion. Numerical experiments on the
~examples described in Section 7 suggest that sebd should be fairly small

(about 10) unless the axes are very badly scaled initially. The automatic

scaling is worthwhile, but it may be unreliable, which is the reason for

L 7
132 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap

introducing scbd. Thus, the user should not forget to try to scale his problem
as well as possible.

Another modification

For Powell's basic procedure to minimize a @om:m.,ﬁ definite quadratic
function in n iterations, steps 1 to 3 of the first H.Sn.psom are unNnecessary.
Thus, our algerithm omits steps 1 to 3 on the first iteration, and also after
each singular value decomposition (i.e., at the {n -+ 1}-st, .@x -+ C-.mr e
iterations). Thus there are exactly | + {(n — 1)(n - 1) = n* linear minimiza-
tions, instead of n{n + 1), between successive singular <m_:.m decompositions.
This modification is not important for large », but numerical resuits suggest
that it is worthwhile for small n.

Section 5
THE RESOLUTION RIDGE PROBLEM

Suppoese temporarily that we are trying to :S.ﬁ.::..mm a function f(x,, ML
of two variables by an ascent method. Wilde (1964) points .o:w.:gmﬁ rounding
errors in the computation of £ may lead to premature termination because of
the “resolution ridge™ problem illustrated in Diagram 5.1.

b #A T —— —— et e e et 3 X

DIAGRAM 5.1 A resolution ridge

Sec. § THE RESOLUTION RIDGE PROBLEM 133

Regard the surface defined by f(x, x,) as a hill. We may reach a point
X, situated on a narrow ridge, and then try to proceed to a higher point
by performing linear searches in certain directions. Suppose, for example,
that we attempt linear searches in the EW and NS directions. The point
X, Is not at the true maximum of £in both these directions but, because of the
effect of rounding errors in evaluating £, our one-dimensional search pro-
cedure will only attempt to locate the position of maxima to within some
positive tolerance & (sec Section 2). Let X == X, + dey, X, = X, — Je,,
Xy == X, + dey, and xg = x, — de,. It may happen that f£(x,) is greater than
each of /(x,), f(xy), 7/{x;), and f (Xy), 50 X, is within the tolerance § of local
maxima in both of the search directions, even though x, is a long way from
the true maximum, which could be reached by climbing up the ridge. The
same problem can arise with functions of more than two variables, or if
we are looking for a minimum rather than a maximum {when we might speak
of a “resofution valley” problem).

It is clear from the diagram that, if we know another point x;, on the
ridge, then a linear search in the direction X, — x, will give a point x; with
J(X5) = f(x,) unless the ridge is sharply curved. This is one motivation for
the method suggested by Rosenbrock (1960), and improved by Davies,
Swann, and Campey. (See Swann {1964), and also Andrews (1969), Baer
(1962), Fletcher (1963, 1969¢, d), Osborne (1969), Palmer (1969), Powell
(1968a), and Section 7.)

Finding another point on the ridge

If linear searches from the point X, fail to give a higher point, and a reso-
lution ridge is suspected, then the following strategy may be successful - take
a step of length about 108 in a random direction from X4, reaching the point
Xz Then perform one or more linear searches, starting at x,, and reaching
the point x,. As Diagram 5.1 shows, the point x}, is likely to be on the ridge,
50 a linear search in the direction X, — X, may now be successful.

Although he does not refer to the resolution ridge problem, Powell {1964)
uses such a strategy as part of his stopping criterion. We propose to use this
strategy during the regular iterations as well,

Incorporating a random step into Powell’s basic procedure

Suppose that we are commencin g iteration &k of Powell’s hasic procedure,
and 2 <C k =2 n. To ensure quadratic convergence, we must search along the
directionsw,_,,....,u, instep ! of iteration k, but the searches along direc-
tions w,,...,u,_,,, are not necessary for quadratic convergence. (They
are desirable for other reasons: see Fletcher (1965) for a comparison of
Powell’s method and Smith’s method.) The quadratic convergence property

134 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

still holds if, at step 1, we move to any point
.uﬁz\»: == umo _l MUM QHEN Am.wu

with f # 0, before performing linear searches in the directions w,_,.,.
..., u, Thus, before performing linear searches in directions u;,.... 8,
at step 1 of iteration k, we may try the random step strategy as described
above. Procedure praxis does this if the problem appears to be ill-conditioned
or if recent linear searches have failed to improve the current approximation
to the minimem,

This modification is not necessary for well-conditioned problems, but
numerical resnlts show that it is essential in order to ensure that a good ap-
proximation to the minimum is found for very iil-conditioned problems.
For example, consider minimizing

(5.2}

where 4 is a ten by ten Hilbert matrix (i.e., a, = 1/(i+j—1) for
1 << i, j <7 10), with a condition number of 1.6 x 10'*, Using an IBM 360
computer with machine precision 167'%, and starting from (1, 1, .. ., D7, our
algorithm successfully found the position of the minimum of f(x} to within
the specified tolerance of 107%, but it failed without the random step strategy.
(For further details, see Section 7.)

Extrapolation along the valley

If the function minimizer has been descending a valley for several
complete cycles, the quadratic approximation to f is obviously inadequate
{or the minimum would already have been found), and it may be worthwhile
to try an extrapolation along the valley. Suppose that, immediately before
three successive singular value decompositions, the best approximations
to the minimum are x', x”, and X', with d, =||x" — x"]|, > 0 and
d, = |Ix" — x'"{}, > 0. Numerical tests indicate that curved valleys are
often approximated fairly well by the space-curve

M -d) o QA d)A—d) o Mt dy) o

._mr = - 3
MO g T dyd, JEXCAES N
(5.3)
which satisfies x(—d,) = x’, x(0) = x”, and x(d,) == x'"". Before the third,
fourth, fifth, ... singular value decompositions, procedure praxis (Section

9} moves to the point x{2,), where 1, approximately minimizes f(x(1)}.
%, is computed by the procedure that performs linear searches.

Sec. 5 . SOME FURTHER DETAILS 135

Section 6
SOME FURTHER DETAILS

In this section we give some more details of the ALGOL procedure

= praxis of Section 9. The criterion for discarding search directions, the linear

search procedure, and the stopping criterion are described briefly.

The discarding criterion

Suppose for the moment that f{x) is the quadratic function given by

. equation {(3.7). In steps 2 and 3 of Powell’s basic procedure (Section 3), we

effectively discard the search direction w, and replace it by X, — %, The
algorithm suggested by Powell does not necessarily discard u,: instead, as
mentioned in Section 3, it discards one of u,, ..., u, u,, = x — Xg, SO a8
to maximize

Jdet(v, ... v}, (6.1}

where v, is given by equation (3.14) after renumbering the remaining n direc-
tions. We wish to retain convergence for a quadratic form in 7 iterations, so
we are not free to discard any one of u, ..., u, .. At the k-th iteration, for
2T k<In weecan aan.m:d any one ofu,, . .., u, ., without losing quadratic
convergence (see Section 5). For lack of a better criterion, we choose to
discard the direction, fromu,, ..., u,_,,,, to maximize the resulting determi-

. nant (6.1).

Suppose that the new direction x, - x, = u,,, satisfies

AEL.._.I_:EF I 3 I....Em:.—«.
{ul,, Adu,)2 2 (ul Au)2’ {6.2)

i=1

- The effect of discarding u,, replacing it by U, ., and then renumbering the

directions, is to multiply the detérminant {6.1} by |e,|. Thus, our criterion

<., B, are as in the description of Powell’s basic procedure (Section 3),

7 is to choose 7, with | < i<Zn — k -+ 1, so that lo;| is maximized. If f,,

......m:a the linear minimization with step fu, decreases f(x) by an amount A,
¢ then, from (3.7),

Dm e hmzw_’.&:: (6.3)

50 3/AJ| B,] may be used as an estimate of (uf Au)"2. (If B, = 0 we use the
" result of a previous iteration.)

Suppose that the random step procedure described in Section § moves

o from x; to

T 64

136 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

before the linear searches in the directions u,, . . ., u, are performed. Then
u,, =X, — X, = MMU (5 +), (6.5)
and the B of equation (5.1) are given by
. o ift<i<<n—k+1, .
p = W_ﬂrx ifn—kt2<i<n (6-6)
From (6.2}, (6.3), and (6.5},

ﬁﬁsﬁl@; (6.7)

so we must discard direction u,, with 1 <</ < n - k -- 1, to maximize the
modulus of the right side of {6.7). Since this does not explicitly depend on
the matrix A4, the same criterion is used even if fis not necessarily quadratic.
Note that our criterion reduces to Powell’s, apart from our restriction that
i< n - k- 1,if there are no random steps (i.e., if y, = 0fori=1,...,n).
Oﬂmmaﬁmn convergence is guaranteed if we ensure that, for k= 2,...,n,

Bi=fh= =ty =0 (6.8)

never holds at iteration k.

(ul, Au,,) e,

The linear search

Our linear search procedure is similar to that suggested by Powell {1964).
We wish to find a value of 4 which approximately minimizes

¢(A) = f{x, + Au), (6.9

where the initial point x, and direction u == 0 are given, and @{0) == f(x,)
1s already known. If a linear search in the direction u has already gww per-
formed, or if u resulted from a singular value decomposition, then an estimate
of ¢"’{0) is available. A parabola P(1) is fitted to (), using ¢(0), :ﬁ.awtﬁmg
of @""(0) if available, and the computed value of g(1) at another point, or at
two points if there is no estimate of ¢''(0). If P(4) has a minimum .m; .» e pK
and @(i%) < p(0), then 1* is accepted as a value of 1 to minimize {6.9)
approximately. Otherwise 4* Is replaced by 1%/2, p(4*) is re-evaluatied, and
the test is repeated. (After a number of unsuccessful tries, the procedure
returns with 4 == 0.)

The stopping criterion

The user of procedure praxis provides two parameters: ¢ (a positive
absolute tolerance), and ¢ = macheps (the machine precision). The proce-
dure attempts to return x satisfying

Ix — Bl < €2 ix]; + 1 (6.10)

Sec. 7 NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS 137

where p is the position of the true local minimum near x. The exact form of
the right side of (6.10) is not important, and could easily be changed. It was
chosen because of the analogy with the one-dimensional case (Chapter 5).

It is impossible to guarantee that (6.10) will hold for all functions Fi
or even for fwhich are C? near p. Our stopping criterion is, however, rather
cautious, and (6.10) is satisfied for all but one of the numerical examples

discussed in Section 7. The sole exception is the extremely ill-conditioned
problem

FX) = x7Ax, (6.11)

~where 4 is a twelve by twelve Hilbert matrix with condition number K

.7 3 10 = g7t~ 4 » 105, 1n most cases the stopping criterion is over-
cautious, and some unnecessary function evaluations are performed. We
remark, as does Powell (1964), that the stopping criterion is not an essential
part of our algorithm. An improved criterion could easily be incorporated.
. Let x" be the current best approximation to the minimum before an
iteration of the basic procedure, and let x” be the best approximation after
the jteration. We test if

X" x", < eV x|, -t (6.12)

The stopping criterion is simply to stop, and return the approximation x”,
if (6.12) is satisfied for a prescribed number of consecutive iterations. The

- number of consecutive iterations depends on how cautious we wish to be:

two is reasonable, and was used for the examples described in Section 7.
Because the random step strategy described in Section 5 is always used if

. (6.12) was satisfied on the previous iteration, there is no need for a more
. complicated criterion such as the one used by Powell (1964).

 Section 7
NUMERICAL RESULTS AND COMPARISON
WITH OTHER METHODS

The ALGOL W procedure praxis, given in Section 9, has been tested
on IBM 360/67 and 360/91 computers with machine precision 16713, In
this section we summarize the results of the numerical tests, and compare

. them with results for other methods reported in the literature. Our proce-
~ . dure has also been translated into SAIL (an extension of ALGOL: sece
. Swinehart and Sproull (1970)), and used to solve least-squares parameter-

fitting problems with up to 16 variables on a PDP 10 computer with machine
. precision 2725, The parameter-fitting problem is described in Sobel (1970).

Table 7.1 summarizes the performance of procedure praxis on the test

- functions described below. In all cases the tolerance r = 105 and macheps
.= 16713, The table gives the number of variables, n; the initial step-size (a
- tough estimate of the distance to the minimum), /; and the starting point,

138 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

X,. So that the resuits can be compared with those of methods EE._. a different
stopping criterion, we give the number », of function m<m_cm:o:m. and the
number #, of linear searches (including any parabolic axﬁmvomm:n:”& re-
quired to reduce f(x) — f(p) below 1077° where f(p) is the true minimum
of J As f(x) was only printed out after each iteration of the G.m.ﬂo ?.onma.,.:mu
{i.e., after every n lingar minimizations), the number of function evaluations
required to reduce f(x) — f{p) to 1077 is usually slightly Eumm than n, 50 we
also give the actual vatue of f(x) — f(p) after n, function evaluations.
Finally, the table gives &, the estimated condition number of Eo ?.oc_m_,:.
Except for the few cases where it is easily found analytically, & is estimated
from the computed singular values, and may be rather inaccurate.

TABLE 7.1 Results for various test functions

Function i b/ x4 Ny mo fxy — () K
Rosenbrock 2 1 {(—1.2,) 120 47 6.61-18 2508
Rosenbrock 2 3 3,3 110 42 8.53'-17 2508
Rosenbrock 2 12 {8, 8) 181 67 97118 2508
Cube 2 1 {(—1.2, —1) 177 68 7.18-18 10018
Beale 2 1 (0.1, 0. 54 22 2.00-15 162
Helix 3 1 (—1,0,0) 155 67 1.75°-11 500
Poweli 3 1 0, 1,2) 55 23 1.99°-11 28
Box* 3 20 (0, 10, 20} 100 37 2.37-13 8300
Singular® 4 1 3, ~1,0,1) 234 106 9.76'-11 S
Wood* 4 10 —(3, 1,3, 1) 452 191 6.06"-14 1400
Chebyguad 2 0.1 y=in+1 31 12 7.89-20 1.3
Chebyquad 4 0.1 xp s i 4 1) 74 32 q.mowlﬂ 7
Chebyquad 6 0.1 i - 1 223 10t .._..oo\tmu 50
Chebyquad 8 0.1 e if(n 4 1) 326 147 6.32-11 2007
Watson* 6 t or 316 145 2.83-12 86000
Watson* 9 1 or 1184 541 218-11 179
Tridiag 4 8 or 27 11 0 29.3
Tridiag 6 12 07 51 22 0 64.9
Tridiag 8 16 or 126 55 4 113
Tridiag 10 20 0" 20 89 1.56"15 175
Tridiag 12 24 or 259 118 22%-15 250
Tridiag 16 32 o7 488 222 1.26-13 438 .
Tridiag 20 40 or 8035 379 0 67!
Hiibert 2 10 (L....H 13 4 3.98°-15 19
Hilbert 4 10 (I..., 1 50 22 6.11-15 1.54
Hilbert 6 10 (,,....D 133 58 £.50-11 1.57
Hilbert 8 10 1,..., 95 262 119 8.14°-11 1.5°10
Hilbertt C 10 10 (I,...,1} 392 267 7.84°-11 1.6°13
Hilbertt 12 10 (i,..., 0 73 328 1.98°-11 1.716

*For these results we sel iffc: = troe in the initialization phase c.ﬁ procedure praxis, and the
random number generator was initialized by calling raninif(2) in procedure test. L
tFor these resulls the stopping criterion was more conservative: we set krm; = 4 in the initializa-

tion phase of procedure praxis.

See. 7 NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS 139

For those examples marked with an asterisk, the random step strategy
was used from the start. (In the iitialization .phase of procedure praxis,
the variable ilfc was set to true.) For the other examples the procedure was
used as given in Section 9 (with il/c set to false initially). Although the auto-
matic scaling feature (Section 4) reduces 1, by about 25 percent for some of
the badly scaled problems, this feature was switched off for the examples
given in the table. {The bound scbd of equation (4.15) was set to 1.)

Definitions of the test functions, and comments on the results sum-
marized in Table 7.1, are given below.

A cautionary note

When comparing different minimization methods such as ours, Powell’s,

-~ and Stewart’s, the reader should not forget that the numerical results reported

for the methods may have been obtained on different computers (with differ-
ent word-lengths), and with different linear search procedures. Except for

- ill-conditioned problems, the effect of different word-lengths should only be

significant in the final stages of the search, when rounding errors determine

" the limiting accuracy attainable. This is another reason why we prefer to

consider the number of function evaluations required to reduce f(x) — f(p)
fo a reasonable threshold, rather than the number required for convergence.

Because apparently minor differences in the linear search procedure can
be quite important, Fletcher (1965) prefers to consider the number of linear
searches, »,, instead of the number of function evaluations, n,. This approach
discriminates against methods such as Powell's, which use most of the search

" directions several times, and can thus use second derivative estimates to

reduce the number of function evaluations required for the second and later
searches in each direction. Note that, for the examples given in Table 7.1,
#./m lies between 2.1 and 2.7, but it would be at least 3.0 for methods which
do not use second derivative information, if the linear search involves fitting

~+ aparabola and evaluating £ at the minimum of the parabola. Also, there are

promising methods which do not use linear searches at all (see Broyden (1967),

.”...” Davidon (1968, 1969), Goldstein and Price {1967), and Powell (1970g)),
. and these methods can be adapted to accept difference approximations to

derivatives. Thus, we prefer to campare methods on the basis of the number
of function evaluations required, and regard the linear search procedure, if

" any, as an integral part of each method.

Definitions of the test functions and comments on Table 7.1

- Rosenbreck (Rosenbrock {1960)):

S0 = 100(x, — x3)? 4 (1 — x))2. (7.1

. This is a well-known function with a parabolic valley. Descent methods tend
to fall into the valley and then follow it around to the minimum at (I, 1)7.

140 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

Detaifs of the progress of the algorithm, for the starting point (—1.2, 1)7,
are given in Table 7.2, In Diagram 7.1 we compare these results with those
reported for Stewart’s method {Stewart (1967)}, Powell’s method, and the
method of Davies, Swann, and Campey (as reported by Fletcher (1963)).
The graph shows that our method compares favorably with the other
methods. Although the function (7.1) is rather artificial, similar curved
valleys often arise when penalty function methods are used to reduce
constrained problems to unconstrained problems: consider minimizing
(I — x)%, with the comnstraint that x, = x?, by a simple-minded penalty
function method.

Cube (Leon (1966)):

Jx) = 100(x, — x3) - (I — x,). (7.2)
This function is similar to Rosenbrock’s, and much the same remarks apply.
Here the valley follows the curve x, = x3.
Beale (Beale (1958)):
S0 =3 [e — 0, (1 — P, (1.3)

i=1

where ¢, = 1.5, ¢, = 2.25, ¢; = 2.625. This function has a valley approach-
ing the line x, = I, and has a minimum of 0 at (3, })™. Kowalik and Osborne
(1968} report that the Davidon-Fletcher-Powell algorithm reduced f to
2.38 x 107" in 20 function and gradient evaluations (equivalent to 60 func-
tion evaluations if the usual (n + 1) weighting factor is used), and Powell’s
method required 86 function evaluations to reduce f to 2.94 x 10-%, Thus,
our method compares favorably on this example.

Helix (Fletcher and Powell (1963)):

F(xX) = 100[(x, — 100)* -+ (r — 1)3] -+ x2, (7.4)
where
F= (5 4 xB (7.5)
and
f) — arctan(x,/x,) if x, >0, 76

7 -+ arctan(x,/x,) if x, << 0.

This function of three variables has d helical valley, and a minimum at
(1, 0, 0. The results are given in more detail in Table 7.3 and Diagram 7.2.
For this example our method is faster than Powell’s, but slightly slower
than Stewart’s.

Powell (Powell (1964)):

1015 () () =3 -]

(1.7)

See. 7 NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS 1471

For a description of this function, sec Powell (1964). Perhaps by good luck,
our procedure had no difficulty with this function: it found the true minimum
quickly and did not stop prematurely.

Box (Box (1966)):

(%) — m ?xvﬁéwﬁto.v — mxuml_..ﬁ\.mox N. (7.8)
&1 xyfexp{—if10) — exp(—1)]

This function has minima of O at (1, 10, 1)7, and also along the line A A 07
{Our procedure found the first minimum.) Kowalik and Osborne (1968)
report that Powell’s method took 205 function evaluations to reduce f to
3.09 > 107°, so our method is aboul twice as fast. Our method took 79
function evaluations to reduce /'t0 2.29 % 1077, so it is faster, in this example,
than any of the methods compared by Box (1966), with the exception of
Powell’s method for sums of squares {Powell (1965)). See the comment in
Section 1 about special methods for minimizing sums of squares!

Singular (Poweli (1962)):
S = (x4 10x,)% + 5(0x; — x, P + (x, — 2x)* - 10(x, — X%
(7.9

This function is difficult to minimize, and provides a severe test of the stop-
ping criterion, because the Hessian matrix at the minimum (x = 0) is doubly
singular. The function varies very slowly near @ in the two-dimensional sub-
space {{104,, —A4,, A;, 4,)7}. Table 7.4 and Diagram 7.3 suggest that the
algorithm converges only linearly, as does Powell's algorithm. It is interesting
to note that the output from our procedure would strongly suggest the singu-
larity, if we did not know it in advance: after 219 function eval uations, with
Sx) = 7.67 < 1077, the computed eigenvalues were 101.0, 9.999, 0. 003790,
and 0.001014. (The mxmoﬁ eigenvalues at 0 are 101, 10, 0, and 0.) After 384
function evaluations, with f(x) reduced to 1.02 x 10717, the two smaliest

: . -eigenvalues were 1.56 < 1077 and 5.98 < 1075, Thus, our procedure should

m:oé singularity of the Hessian matrix to be detected, in the unlikely event

~_thatit occurs in a practical problem, {For one example, see Freudenstein and

Roth (1963).)

- Wood (Colville (1968)):

F(x) = 100(x, — %)% 4 (1 — x)* 4 900, — ¥ + (1 — x3)?
+ 10000, — 1)* 4 (xy — D]+ 19.8(x, — Dix, — D).
(7.10%

©-This function is rather like Rosenbrock’s, but with four variables instead

of two. Procedures with an inadequate stopping criterion may terminate

142 MINIMIZING A FUNCTION OF SEVERAL VARJABLES Chap. 7

prematurely on this function (McCormick and Pearson (1969)), but our
procedure successfully found the minimum at p == (1, 1, 1, 7.

Chebyquad (Fletcher (1965)):

J(x) is defined by the ALGOL procedure given by Fletcher {1965,
As the minimization problem is still valid, we have not corrected a small
error in this procedure, which does not compute exactly what Fletcher
intended. In contrast to most of our other test functions, which are designed
to be difficult to minimize, this function is fairly easy to minimize. For n =
1(1)7 and 9 the minimum is 0; for other » it is nonzero. (For n = § it is ap-
proximately 0.00351687372568.) The results given below, and illustrated in
Diagrams 7.4 to 7.7, show that our method is faster than those of Powell
or Davies, Swann, and Campey, but a little slower than Stewart's.

Watson (Kowalik and Osborne (1968)):
Jx) = x4 Gy — xf — 1)

cBlg0 o5 - (el T

Here a polynomial
Py = x, + xpt + o A x 7 (7.12)

is fitted, by least squares, to approximate a solution of the differential equa-
tion

92 4 22, 2(0) = 0, (7.13)

for ¢ & [0, 1]. (The exact solution is z = tan +.) The minimization problem
is Hl-conditioned, and rather difficult to solve, because of a bad choice of
basis functions {l,7,...,#"'}. For n= 6, the minimum is f(p)==
228767005355 x 1077, at p ~ (—-0.015725, 1.012435, —0.232992, 1.260430,
—1.513729, 0.992996)". For n =9, f(p) == 1.399760138 x 107%, and p ==
(—0.000015, 0.999790, 0.014764, 0.146342, 1.000821, —2.617731, 4.104403,
—3.143612, 1.052627)". (We do not claim that all the figures piven are
significant.)

Kowalik and Osborne (1968) report that, after 700 function evaiuations,
Powell's method had only reduced f to 2.434 < 1073 (for n = 6), so our
method is at least twice as fast here. The Watson problem for n = 9 is very
ill-conditioned, and seems to be a good test for a minimization procedure.

Tridiag (Gregory and Karney (1969), pp. 41 and 74):
J(x) = x"Ax — 2x,, (7.14)

Sec. 7 NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS 143

where

A = . (7.15)

This function is useful for testing the quadratic convergence property. The
minimum f{p} = —n occurs when p is the first column of A7 e,

pRe={o,n—4n—2...,2 1" {7.16)

The results given in Table 7.1 show that, as expected, the minimum is found
in n? or less linear minimizations. The eigenvalues of 4 are Just 1, =
dcost{m/(Cn-}- D for j=1,..., m

Hilbert

S(x) = x"4x, (7.17)
where 4 is an n by n Hilbert matrix, ie.,

a4y = (7.18)

S I Ay
for 1</, j=<a. Like (7.14), (7.17) is a positive definite quadratic function,
but the condition number increases rapidly with . Because of the effect of
rounding errors, more than »? linear minimizations were required to reduce
fto 1071 for n > 4. The procedure successtully found the minimum p = 0,
to within the prescribed tolerance, for 7 < 10, For s - 12, some compo-

nents of the computed minimum were greater than 0.1, even though f was
reduced to 2.76 x 1075, This illustrates how ifl-conditioned the problem is!

Some more detailed results

Tables 7.2 to 7.8 give more details of the progress of our procedure (B)
on the Rosenbrock, Helix, Singular, and Chebyguad functions. In Diagrams
7.1 to 7.7, we plot

A =log,, (f(x) — f(u) (7.19)
against a1, the number of function evaluations. Using the results given by
Fletcher (1965) and Stewart (1967), the corresponding graphs for the methods
of Davies, Swann, and Campey (D), Powell (P), and Stewart (S) are also given,
for purposes of comparison. Results for Stewart’s method on Chebyquad

{# == 8) are not available,

144 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7 Sec. 7 NUMERICAL RESULTS AND COMPARISON WITH QTHER METHODS 145

TABLE 7.2 Rosenbrock TABLE 7.4 Singular®

ny ny Six) Xy X2 ny "y Fix) Ry Hy fx)
1 0 2.42'% —1,200000 1.000000 1 0 21572 219 99 7.67-9
11 4 414 e 1.034611 1.071270 19 6 1181 234 106 9.76"-11
24 8 3.42 —0.811598 0.621199 31 I 7.96 244 iy 2.03-12
31 12 2.59 -().54903 1 —0.258076 42 16 1.75 254 116 41113
43 17 1.67 ~0.268211 0.046503 58 22 2.94 269 123 26114
58 22 1.07 —0.028125 ~0.010783 68 27 9.86"-1 279 128 6.43°-15
72 27 3711 0.482692 0.200894 78 32 £34-1 289 133 8.88-16
84 32 2,793 0.947231 0.897130 94 38 6.92°-3 308 140 7.3516
98 a7 5894 0.996384 0.990382 104 43 7.18-3 319 145 38716
109 42 6.69"-9 $.99999] 0.999974 14 48 5.25'-5 330 150 9.92°-17
120 47 5.61-18 1000000 1.000000 129 55 8.25-6 358 157 9.92°-17
132 52 113223 1.000000 1000000 139 60 2136 373 162 1.65'-17
155 57 4.47-24 1.000000 1.000000 149 65 2707 384 167 1.02-17
164 72 7.91-8 404 174 9,95 18
174 77 3.95°8 421 179 6,02'-23
. 184 82 3.90-8 436 184 5.89°-23
TABLE 7.3 Helix 199 89 3.90-8 464 191 5.897-23
209 94 3.89°-8 486 196 5.89-23
ny i fix) X1 Xy X3
AT S (5073 5 1077,9.73 % 1078, 5,31 % 1077, 5.31 % 107, lying approximately in the
1 0 2,503 —1.000600 0.000000 (.0060000 subspace [{104,, -~ Ay, Ay, A2}, as expected. See also the first comment under Table 7.1.
14 5 1,622 1.000000 2.000000 2.000000
23 9 1,182 0.563832 1.952025 1.759493
36 14 502 0.311857 1.000020 2.096124
44 18 4.04 0.305534 0.967190 - 1.987145
57 23 1.78 0.347506 0.907981 1.922708
65 27 3.01 0.847973 0.734103 1.074593 .)
82 33 9.46"-1 0.816717 0.566910 0.969820 TABLE 7.5 Chebyguad: n = 2*
9] 37 3.66'1 0.965734 0.342023 0.548844
105 43 2.46'-1 1.004624 0239418 0.364506 ny ny S
113 47 2.84%.2 0.993843 0.091699 0.153178
126 53 6353 1.002319 0.045726 0.072132 1 0 1.98°-1
134 57 8.014 1.002726 0.002303 0.002966 12 4 4.53'-3
147 63 8.66'~6 0.999906 0.001853 0.002942 22 8 1.89°-8
155 67 17511 1.000000 8.49"-9 247 7 3 12 7.89°-20
169 73 1.12°-20 1.000000 — 64511 —9.92 11 45 iy 4.89'-24
178 .- 77 1.99"-24 1.000000 - —1.69-13 —2.47-13 73 22 4.89"-24
200 83 1.94°-24 10000060 —1.60°-13 -2.53-13

AT == (0,2113249, 0.7886751)

146 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7 Sec. 7 NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS 147

TABLE 7.6 Chebyquad: n == 4 TABLE 7.8 Chebyquad: p — 8*

ny #r fix) ny "y F(x)
| 0 71222 1 0 0.0386176982859
17 6 1432 29 10 0.0171124413073
X 11 1.59'~3 47 19 0.0109131815074
38 16 1.00"-4 65 28 0.0102860269896
54 2 4227 83 37 0.0093337335931
64 27 1.86'-8 102 46 0.0071908595069
74 2 7.89'-11 125 55 0.0049952481593
87 38 77514 144 64 0.0044432513463
93 4 1.88"-16 172 74 0.0037940416125
190 83 0.0035390722159
*AT = (0.1026728, 0.4062037, 0.5937963, 208 92 0.0035269968747
0.8973272) 226 101 0.0035191392494
244 t10 0.0035180637576
262 119 0.0035176364629
280 128 0.0035171964541
e 308 138 0.0035168743745
TABLE7.7 Chebyquad: x =6 326 147 0.0035168737890
345 156 0.0035168737290
ny g A 364 165 0.0035168737288
] 0 4.64°-2 AT — (0.043153, 0193091, 0.266329, 0.500000,
21 e 2,352 0.300000, 0.733671, 0.806910, 0.956847)
37 15 1802
51 2 1212
66 29 5.69'3
81 36 2,073
103 44 9.89'_5
117 51 1475
131 58 21475
145 65 1145
159 75 2716
181 80 1137
195 87 6.59'-10
200 94 1.38-10
7 101 7.00-13
238 108 37715

T - (0.066877, 0.288741, 0.366682, 0.633318,
0.711259,0.933123

148 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap, 7 Sec. 7

NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS 748

A amlog, {T{x)~ f(u)}

A A=log{fix) —f (u))

8

— o4]]] i 1] i

; 1
0 25 50 75 100

i !
125 150 n

—a4 | i I | 1 1
Q 50 100 150

200 mmo n,
DIAGRAM 7.1 Rosenbrock
Key:
B: Our method;
D: The method of Davies, Swanmn, and Campey, as given by Fletcher
(1965);
P: Powell’s (1964) method, as given by Fletcher (1965);

31 Stewart’s method, as given by Stewart (1967)

DIAGRAM 7.2 Helix

1560 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7 Sec. 7 NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS 1571

AZ[0g o (X1 {u)}

1 1 ! 1 | I 1 i 1 |
0 100 200 300 400 500 n,

DIAGRAM 7.3 Singular

DIAGRAM 7.4 Chebyguad, n = 2

752 MINIMIZING A FUNCTION OF SEVERAL VABRIABLES Chap. 7

a=logf f{{x)—flul)

25 50

75 100 125 n

DIAGRAM 7.5 Chebyquad, n = 4

Sec. 7

1

6

NUMERICAL RESULTS AND COMPARISON WITH OTHER METHODS

A= ioglHx)—f(u))

153

! }] |
100 200 300 400

DIAGRAM 7.6 Chebyquad, n = 6

56

G

ny

1684 MINIMIZING A FUNCTION QF SEVERAL VARIABLES Chap, 7

0] a=loglilx)d—tu))

1]] ! ! i { ! 1 H -

- I | .
14 0 100 200 300 400 500 n,
DIAGRAM 7.7 Chchyquad, # == 8
Section 8
CONCLUSION

Powell (1964) observes that, with his suggested criterion for accepting
new search directions (Section 3), there is a tendency for the new directions to
be accepted less often as the number of variables increases, and the quadratic
convergence property of his basic procedure is lost. Qur aim was to avoid
this difficulty, keep the quadratic convergence property, and ensure that the
search directions continue to span the whole space, while using basically the
same method as Powell to generate conjugate directions.

The numerical results given in Section 7 suggest that our algorithm
Is faster than Powell’s, and comparable to Stewart’s, if the criterion is the

Sec. § AN ALGOL W PROCEDURE AND TEST PROGRAM 155

number of function evaluations required to reduce (%) to a certain threshold.
Also, our algorithm seems to be reliable even for very ill-conditioned prob-
lems like Watson (# = 9) and Hilbert (n = 1), while Stewart’s method
breaks down because of numerical difficultics on some functions, e.g., the
Rosenbrock and Singular functions (see Stewart (1967)). However, we should
not try to conclude too much from the numerical results: see the warning in
Section 7.

Theoretical convergence results

Suppose that all arithmetic is exact, and consider our algorithm with the
stopping criterien removed. Since the algorithm keeps on performing linear
searches along » orthogonal directions, the same conditions that ensure
convergence of the method of coordinate search will ensure convergence
of our algorithm to a local minimum. In particular, the algorithm will
converge to the (unique) minimum for all functions /" which are C', strictly
convex, and satisfy

lim f(e) = oo (8.1)

J-sen

for all nonzero vectors e. Of course, this result has limited practical interest,
for in practice rounding errors may be very important: see Section S.

It is plausible that our algorithm converges superlinearly if the Hessian
matrix of /s strictly positive definite at the minimum. McCormick {1969)
shows that this is true for the reset Davidon-Fletchér—Powell algorithm,
provided a Lipschitz condition is satisfied. Figures 7.1, 7.2, and 7.4 to 7.7
certainly suggest that convergence is superlinear until rounding errors become
important, but we do not have a proof of this conjecture: perhaps additional
conditions on /; or a slight modification of the algorithm, are necessary.
Some algorithms for which it is fairly easy to prove good theoretical conver-
gence results are described in Brent (1971c).

Section 8
AN ALGOL W PROCEDURE AND TEST
PROGRAM

The procedure praxis, with a driver program and test functions, is given
befow. The language is ALGOL W (Wirth and Hoare (19606}; Bauer, Becker,
and Graham (1968)}, but none of the special features of ALGOL W have
been used, so translation into another dialect of ALGOL should be straight-
forward.

156 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

Sec. 9 AN ALGOL W PROCEDURE AND TEST PROGRAM 157
BEGIN COMMENT S FOR K = [UNTIL N DO F := F 4 AB(K, 1 1%A8(K, U35
TEST PROGRAM FUOR PROCEDURE PRAXIS. F iz F/H;
HEEFEEEFLAL KRG HERTETEFE DR LKA | FOR K == | UNTIL N DO AB{K,J) := AB{K,J} + FEAB{K,1)
END J
LONG REAL PROCEDURE PRAXIS {LONG REAL VALUE T, MACHLPS, H; END S
[NTEGER VALUE N, PRIN; QLLY = G3 § 1= O
LUNG REAL ARRAY X(*); LONG REAL PROCEDURE F, RANUDMI; IF [<=N THEN FOR J 1= L UNTIL N DO
BEGEN COMMENT: S 1= 5 0+ AB(l,g)%%2;
TF S<TOL THEN G := O ELSE
THIS PROCEDURE MINIMIZES THE FUNCTION FIX, N} GOF N AEGIN
VARTABLES X{lly oouw XIN}y USING THE PRINCIPAL AXES METHOD. F oi= AB{I,1+1); 6 := [F FCO THEN LONGSQRT{(S)
0N ENTRY X HCLDS A GUESS, 0N RETURN LT HOLDS THE ESTIMATED ELSE ~LONGSORTIS) ;
POINT CF MINIMUM, WITH {HOPEFULLY} [ERROR| < H oi= F¥G-S3 AB{L,1+1} := F-G:
SQRTIMACHEPSI*iX| ¢ T, WHERE MACHEPS [S THE MACHINE FIIR = L UNTIL N 0D F(J} 1= ABLI.JI/R;

PRECISION, THE SMALLEST NUMBER SUCH THAT 1 + MALHEPS > |,

J ot
; N FOR J = L UNTIL N DO
T IS A TOLERANCE, AND f.F 1§ THE 2-NORM, H 15 THF MAXEMUM

STER SIZE: SET TO ABUUT THE MAXIMUM FXPLECTED DISTANCE FROM wmmhﬁ wu L mpﬂmr N DD S t= 5 + ABIJsRI®AB(LK);
THE GUESS TO THE MINIMUM (LF H [S SET TOO SMALL OR T0D FOR K 1= L UNFIL N N8 AB(Jsk) 3= AB(J. K] 4 SwE{x]
LARGE THEN THE INITIAL RATE OF (GNVERGENCE WILL BE SLOW). END U

THE USER SHUULD UBSERVE THE COMMENT UN HEURISTIC NUMBERS END §:
AFTER PROCECURE QUAD. i= ; .

PRIN CCNTROLS FHE PRINTING OF INYERMEOTATE RESULTS. Mzm _“>mm.a-n_u T ARSIECDIIG IF Y > THEN X = v
iF PRIN = 0, NO RESULTS ARE PRINTEQ,

LF PREIN = 1+ F IS PRINTED AFTER EVERY N+l QR K#+2 [INEAR
MEINIMIZATIGNS sy AND FINAL X 15 PRENTED, DUT INTERMEDIATE
A GNLY IF N <= 4.

COMMENT: ACCUMULATION OF RIGHT-HAND TRANSFOAMATIGNS:
FOR T = N STEFP -1 UNTIL L DO

REGIN
IF PRIN = 2, EEGENVALUES OF A AND SCALE FACTORS ARE ALSO IF G-=0 THEN
PRINTED. BEGIN
EF PRIN = 3, F AND X ARE PRINTED AFTER EVERY FEW LINEAR Hot= ABI1,1+#1)%Gs
MEINIMIZATIONS . FOR J t= L UNTIL N D3O A8{J.0) 1= AB{EI,d1/H:
IF PRIN = 4, EIGENVECTORS ARE ALSO PRINTED. FOR J = L UNTIL N DO ! ’ '
FMIN IS A GLUBAL VARTIABLE: SEE PROCEDURE PRINT. REGIN § == U;
RANDOM IS A PARAMETERLESS LONG REAL PROCFDURE wHICH RETURNS FOR K t= L UNTIL N DU S £= S ¢ ABUE.KI%AB(K,d):
A RANDCM NUMBER UNIFORMLY DISFRIBUTED IN {0, I). ANY FOR K = L UNTIL N DD AB(K i= ABLK + CEAm
INITEALIZATICN MUST BE DONE BEFORE THE CALL TO PRAXIS. END U v SR (rdd+ SeAstK, 1)
THE PROCEDURE IS MACHINE-INDEPENDENT, APART FROM THE QUTPUT END Gj ’

STATEMENTS AND THE SPECIFECATEON 0OF MACHEPS. WE ASSUME THAT
MACHEPS** (-4} DOES NOT OVERFLOW {IF [T DOES THEN MACHEPS MUST
8E INCREASED), AND THAT ON FLOATING-POINT UNDERFLOW THE
RESULT 18 SET TO ZERO;

ZDODwHH.LvuubmaL.M_"HO"
Elids L =1

COMMENT: O1AGUNALIZATION OF TRE BIDIAGGNAL FORM;
EPRS 1= EPS*X;
FOR K = N STEP -1 UNTIL 1 10

BEGIN KT = (3

TESTFSPLITTING:

PROCEDURE MINFIT (INTEGER VALUE N; LONG REAL VALUE EPS, TOL:
LONG REAL ARRAY AB{*,%}j3 LONG REAL ARRAY Q(*));
BEGIN COMMENT: AN [MPROVED VERSION 0F MINFIT, SEE GOLUB &
REINSCH [1969), RESTRICTED TO M = Ny P = 0,
THE SINGULAR VALUES OF THE ARRAY aB ARE

RETURNED IN O, AND A8 IS OVERWRITTEN WITH M toin bk, Ik KT > 30 THEN
FHE ORTHUGONAL MATRIX V SUCH THAT WRITE [“QR FATLEO™)
UuDIAGIQE = AB,.V, END;
. _ AHERE U IS ANCTHER ORTHOGONAL MATREX; FOR L? := K STEPF —1 UNTIL 1 O
INTEGER L, XT3 . BEGIN
LONG REAL CeFeGeHsSeXyYel r‘.n L7
LONG REAL ARRAY E{L::N); . .

IF ABSIE(L)I<=EPS THEN GOIC TESTFCONVERGENGES
EF ABS{QIL-1})<=EPS THEN GOTO CANCELLATION

LOMMENT: HOUSEHOLDER'S REDUCTICN T SIDIAGONAL FORM;
G 3= X = 03

FOR T := 1 UNTIL N DO END L23
BEGIN ; .
) COMMENT: CANCELLATION DF E{L) IF. L>1;
E(1) := Gi 5 1= O3 L i= I+Ej CANCELLAT[ON:
FOR J t= | UNTTL N DO § 3= S+ABLJ,11%%2; ¢ t= 03 § = 13
IF SCTOL THEN G := 0 ELSE R T 1= 1 UNTIL
I FOR T := L UNTIL K DD

BEGIN :

Foi= S®E(I}: E{[} := C¥E(i};

IF ABSIF}<=EPS THEN GOTO TESTFCONVERGENCES

G = 0113 QII) = H := IF ABS(F) < ABSIG) THEN
ABSIGI®LDONGSQRTUL + [F/G}#%2) ELSE [F F == O THEN
ABS{FI#LONGSQRTUL + (G/F)I%%2} ELSE 03

£ oi= AB{I+1); G &= [IF F<CO THEN LONGSQRT(S}
ELSE -LONGSQRTISI;
= FEG-S5 AB(LE) = F-0G;
OR J = L UNTIEL N DO
BEGIN F = 0%

158 MINMMIZING A FUNCTION OF SEVERAL VARIABLES Chap, 7 Sec. § AN ALGOL W PROCEDURE AND TEST PROGRAM 159
IF H = 4 THEN G = H 2= 13 END
COMMENT: THE ABOVE REPLACES QLII:=H:={ONGSRRT{GRG+Fw|} END
WHICH MAY GIVE INCORRECT RESULTS I[F THE END
SQUARES UNDERFLOW DR 1F F = G = O3 END SORT;
C t= G/H; & 3= «F/H
END I; PROCEDURE PRINT:
COMMENT: THE VARLABLE FMIN IS GLOBAL, AND ESTIMATES THE
TESTFCONVERGENCES VALUE UF £ AT THE MINIMUM: USED ONLY FOR
Z := QIK}: IF L=K THEN 60TO CONVERGENCES PRINTING LOGIFX - FMEN);
[F PRIN > 0 THEN
COMMENT: SHEFT FROM BOTTOM 2%2 MINUR; BEGIN INTEGER SVINT; SVINT z= INTFIELDSIZE;
X o= Q{LY; Y = QIK-1); G = E(Xk~1); H 1= E(K}; INTFEELDSIZE := 10;
For= UIY=Z1%(Y+Z) + (G-HI®(G+HI I/ [23HEY); WRITE (NL., NF, FX);
G 1= LONGSQRT{F%F+}}; COMMENT: IF THE NEXT TwO LINES ARE OMITTED THEN FMIN 1S
E otz ((X-23%{ X+ 21 +H2IY/{1F F<U THEN F—G ELSE F+G)-H11/X; NOT REQUIRED;
_IF FX <= FMIN THEN WRITEON (" UNDEF INED ™) ELSE
COMMENT: NEXT QR TRANSFORMATION: WRITEUN (ROUNOTGREAL [LONGLUG (FX ~ FMINI)};
C = 5 1= 13 COMMENT: WIQCONTROL{21}" MAVES TU THE NEXT LINE;
FOR 1 := L+l UNTIL K DO IF N > 4 THEN TQCONTROL(2);
BEGIN IF (N <= 4) OR {PRIN > 2} THEN
G 3= E{1}; ¥ = QUl); H 3= S%G: G = G#(C3 FOR I == 1 UNTIL N DO WRETEON(ROUNDTOREAL (X{F})1:
E{i-1) = Z = IF AAS[F} < ABS({H)} THEN [OCONTROLEZ2Y; INTFIELDSIZE t= SYINT
ARSEHI®LONGSQRTEL + {F/H)%%2) ELSE if F -= O THEN END PRINT;
ABSEFIRLONGSORTIT + (H/F}#%2) ELSE 03
IF 7 = 0 THEN 7 == F 2= 13 PROCEDURE MATPRINT {STRING(BO) VALUE S35 LONG REAL ARRAY
C = F/Z3 5 1= H/Z; Vi%y®); INTEGER VALUE M, N1
Foi= X#(C & G%5i G 1= —X%5 #G¥C; K 1= Y¥5 BEGIN COMMENTZ PRINTS M X N MATRIX ¥V COLUMN BY COLUMNG
Y t= y#(: WRITE (S});
FOR 4 $= § UNTIL N DO FOR K = [UNTIL (N + 7) DIV 8 OG
BEGIN BEGIN FOR 1 := 1 UNTIL M DO
Xot= AB{JyI-103 Z = AB(J,0}; BEGIN IODCONTROL(21;
AB{JaI=13 1= X¥C + 72%5; AB{J,01] 1= ~X%¥5 + 7eC FOR J t= 4%K — 7 UNTIL (IF N < {8%K) THEN N ELSE B%K)
END J3 DO WRITEON (ROUNDTOREAL (V {[,J}1}
QUI-1} = I 1= If ABSIF) < ABS[H) THEN ABSi{H}* END;
LONGSQRT(L + {F/H)*%2) ELSE [F F ~= 0 THEN WRITE {™ “}; IGCONTROL(Z}
ABS{FI#LONGSIRT{] + [H/F)1%%2) ELSE 0% END d
IF 7 = 0 THEN Z = F 1= 1% END MATPRINT;
C = F/Z7 5 1= H/fZ
Foi= CHG + SkY; X i= —S%G ¢ Chy PROCEDURE VECPRINT {STRING{32} VALUE S3 LONG REAL ARRAY V{x*};
END B3 INTEGER VALUE N);
ELL) 1= 03 E{X) = F; QLK) 1= X; BEGIN CUMMENT: PRINTS THE HEADING S AND N-VECTOR V3
GO TO TESTFSPLITTING: HRITELS) 3
FOR ! := 1 UNTIL N DI WRITEON{ROUNDTGREAL{IVII}IY

CONVERGENCE:
IF 21<0 THEN
BEGIN COMMENT: QUK} [S MADE NON-NEG:

END VECPRINT:

PROCEDURE MEN [INTEGER VALUE Jy NITS: LONG REAL VALUE

QiKY 1= ~71 RESULT N2y Xl; LONG REAL VALUE FI13 BOOLEAN VALUE FK}:
FOR J := 1 UNTIL N DO AR{J,K) = —AB{J.K] BEGIN COMMENT:
END 1 MINIMIZES F FROM X IN THE DIRECTION Vi%,d)
END K

UNLESS J<l» WHEN A QUADRATIC SEARGH IS DONE
iN THE PLANE DEFINED BY Q0d, Q1 AND X.

D2 AN APPROXIMATIGN TO HALF F'* (OR ZERO),
K1 AN ESTIMATE OF DISTANCE TO MINIMUM,
RETURNED AS THE DISTANCE FOUND.

IF FK = TRUE THEN F1 IS FLIN(XI}, OTHERWISE
X1 AND Fi ARE [GNORED ON ENTRY UNLESS FINAL
FX > Flo NITS CONTROLS THF NUMBER OF TIMES

END MINFIT;

PROCEDURE SORT;
BEGIN CUMMENT: SORTS THE ELEMENTS OF 5 AND CORRESPONDING
COLUMNS OF v INTO DESCENDING CRDER:
INTEGER Kj
LONG REAL 53

FOR I = 1 UNTIL N = 1 DO AN ATTEMPT IS MADE TO HALVE THE INTERVAL.
BEGIN K &= T3 S 3= D{I}; FOR J = § & 1 UNTIL N DO SIDE EFFECTS: USES AND ALTERS X, FX, NF, Ni.
IF DUJY > S THEN [F J € 1 USES VARIABLES Qeee o
BEGIN K 3= J3 § 3= DIJ) END: USES Hy Ny Ty M2, M4, LDT, DMIN, MACHEPS;
IF K > B THEN
BEGIN DIK) == D{I¥; DII) := $; FOR J = 1 UNTIL N DO LGNG REAL PROCEDURE FLEN (LONG REAL VALUE L)
BEGIN S = VI{JdeIdi: VIJeI} 27 VEJeK)E VIJeK} := § COMMENT: THE FUNCTION DF ONE VAR]ABLE (WHICH IS

MINIMIZED BY PROCEQURE MINj
BEGIN LUNG REAL ARRAY T{l:z:N);

160 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

1F 4 > Q@ THEN
BEGIN COMMENT: LINEAR SEARCH;
FOR I 3= 1 UNTIL N DG TUI) = X(I} & E=V{T.Jd}
END
ELSE
BEGIN COMMENT: SEARCH ALONG A PARABOLIC SPACE-CURVE:

QA == L*{L - QDLY/A{Q0D*={QE0 + QDL
OB == {L + QDOIKIGDRL —~ LI/LGDG*QDL) S
QC = L¥IL + GQDOY/UQDI*{QCO + QDit}Es

FOR I 3= 1 UNTIL N DO T(IY 2= QAXQOLII+Q8*X{I)}4QC*QE{ 1}
END;

COMMENT: INCREMENT FUNCTION EVALUATIEN COUNTER:

NF 1= NF + 13

F{Ts N}

END FLING

INTEGER K3 BOOLEAN DI

LGNG REAL X2y XMy, FO4 F24 FM, D1y T2y Sy SFLlsy SX13

SF1 = F1l; SX1 := Xl;

K &= 03 XM t= 0 FQ = FM i= FX; 02 1= (D2 € MACHEPS!:
COMMENT: FIND STEP SIZEj

S = 03 FOR I 2= 1 UNTIL N DO S 1= S + X({[}%%2;3

5 = LONGSQRT{S};

T23= M&*LCNGSQRTOABSIFX)/(1F DI THEN OMIN ELSE D2)
+ S¥LOTY + MZ*LDT3

5 i= M4x5 + T3

IF DZ AND 1T2 > §5) THEN T2 = 53
[F T2 < SMALL THEN T2 3= SMALL;
EF T2 > {0.01%H) THEN T2 = Q.01%H;
[F FK AND {F1 <= FM} THEN BEGIN XM 1= X137 FM 1= F1 END;
[F =FK GR {ABS{X1) € T2} THEN
BEGIN X1 = IF X1 >»= OL THEN T2 ELSE -T2:
F1 1= FLIN(XL!}
END;
[F F1 <= FM THEN BEGIN XM = X1j FM = Fl END3
Ld: IF DI THEN
BEGIN COMMENT: EVALUATE FLIN AT ANOTHER PUOINT AND
ESTIMATE THE SECOND DERIVATIVE:
X2 = IF FO < F1 THEN —-X1 ELSE 2%xXl; F2 = FLINIXZ2):

IF F2 <= FM THEN BEGIN XM = X237 FM 1= F2 END;
G2 = {X2%(FL - FO} — XI1#%{F2 ~ FOII/UX1eX2%{xX]l - %X21)
END:

COMMENT: ESTIMATE FIRST DERIVATIVE AT O3
D1 1= (F1 - FCI/X1 — X1*D23% DI i= TRUL;
COMMENT: PREDICT MINIMUMS
¥2 = [F 02 <= SMALL THEN {IF DL < O THREN H ELSE -H) ELSE
~0.5L%D1/D25%
EF ABS({X2) > H FHEN X2 := IF X2 > ¢ THEN ¥ ELSE —H;
COMMENT: EVALUATE F AT THE PREOICTED MINIMUMS
Ll: F2 5= FLINIX2};
IF (K < NITSE AND (F2Z > FO) THEN
BEGIN (OMMENT: ND SUCCESS 50 TRY AGAIN; K
[F (FO < #1) ANG {{X1%x2} > G) THEN G TO L
X2 = (.5L%X23 GO TO L1
END S
COMMENT: INCREMENT ONE-DIMENSINNAL SEARCE COUNTER;
NL = NL + 13
EF F2 > FM THEN X2 = XM ELSE FM = F23
COMMENT: GET NEw ESTIMATE DOF SECOND DERIVATIVE:
D2 = IF ABS{XZ¥{X2 - X1)} > SMALL THEN
IX2%LFL — FO1 — X1#{FM — FOP)/EXLHXI={K]L ~ X2 H)
ELSE IF K > 0 THEN O ELSE 023
[F D2 <= SMALL THEN B2 1= SMALL:
X1 1= X23 FX i= FM3
EF SF1 < FX THEN BEGEIN FX = SFLli X1 = §X]1 ENDj

See. 9 AN ALGOL W PROCERURE AND TEST PROGRAM 161

COMMENT: UPDATE X FOR LINEAR SEARCH 8UT NOT.-FUR PARABDLIC
PARABOLIC SEARGCH;

IF 0 >3 TREN FOR T := | UNTIL N DO X =
END MIa, I¥ 3= X{I) + A1=v{{,d)

PROCEDURE QUAD;
BEGIN COMMENT: LOOKS FOR THE MINIMUM ALONG A CURVE
DEFINED BY §0, Q1 4ND X3
LONG REAL b, §;
S &= FX; FX == OFLl:y QFL = S5: Q0L t= 3;
FOR T t= 1 UNTIL N DO
BEGIN § == X({1); X{I) = L s= QI(fb; QL(L} == §;
GO1 := QDL + {S — Ljxx2
END 3.
Lor= QD1 i= LONGSGRTIWDLE; § t= y;
TF {000 > G) AND (QDL > D) AND (NL >= [3%h#N
BEGIN MIN (0y 24y S, L, QFl, TRUE};
QA 1= L¥(L - QULI/{ODU*(QD0 + GOL1Y;
OB = (L + QDOI®(EGDL ~ L) /{Q00=QD1):

QC *= L¥(L + QUOI/LQDL*{OQDC + Q1Y)
END
ELSE BEGIN FX 1= QFl; QA := QB := O 1= 23
Qo0 = QD1 FOR T := | UNTIL N DO o S
BEGIN S == QU131 QOCI1 2= X{I};
KUE) 3= QA%S & QB*X(I) + QC®Qi{1}
END
END QuAO;

BOOLFAN ILLC:

INTEGER NLs NF, Kb, KT, KTM;

LONG REAL S+ SLs DNy DMIN, FX, F

QF1, QD0, QUi, G4, 4B, Dﬁ“ PPl LOSe LOTy e DE.
M2y M4y SMALL, VSMALL, LARGE, VLARGE, SCBCy LDFAC, T2;
LONG REAL ARRAY O, Y, 7, QO0, QL (1::N):

LUONG REAL ARRAY ¥ (1::N, TiNE

COMMENT: INITIALIZATIONG

COMMENT: MACHINE DEPENAENT NUMBERS 3

SMALL 1= MACHEPS®%2; VSMALL 2= SHALL*%2;
LARGE = 1L/SMALL: VLARGE = 1L/VSMALL;

M2 1= LONGSQATIMACHEPS); M4 := LONGSGRT (M2

CUMMENT: HEURISTIC NUMBERS
ok ok W ROK K

1F AXES MAY BE BADLY SCALED (WHICH IS TH BE AVOIDED IF
POSSIBLE) THEN SET SCBD = 10, CTHERWISE 1.

1F THE PROBLEM 1S KNOWN TO RE FLECONDITIUNED SET
ILLC == TRUE, OTHERWISE FALSE.

KTM+1 IS THE NUMBER OF ITERATEONS WITHDUT EMPROVEMENT HEFJRE
THE ALGUORITHM TERMENATES (SEE SECTIUN &) . KTM = & 15 VERY
CAUTIOUS: USUALLY KTM = | J§ SATISFACTORY:

SCBN 3= 13 ILLC = FALSE; KTM :=];

LOFAC t= IF [LLC THEN .1 ELSE a0l

KF 2= NL 1= (3 NF 1= 13 QFL 3= FX = FI{X,N)}

T &= T2 t= SMALL + ABS(T); ODMIN = SMALL:

IF H < [1U0*T] THEN H 1= 100*T3 LOT := H:

FOR 1 = 1 UNTIL N DO FOR J := 1 UNTIE N GO

VIE.d) 3= IF 1 = 3 THEN IL ELSE OL:

GELY == aD0 2= 03 FUR T = 1L UNTIL N OO0 G1U1) == X(§);
PRINT; : :

COMMENT: MAIN LOOP;
LO: SF := D{1ts; DML} = § := ¢

H

162

MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7

COMMENT: MEINIMIZE ALONG FIRST DIRFCTION:
MIN tis 2y DIE1)s S+ FXy FALSE):

IF § <= (0 THEN FOR | = 1 UNTEL N DO VI{Is1) = ~¥{I,L1);
IF (SF <= (0.9=D01}}) OR ((0.9%5F) >= D{)1) THEN
FOR T = 2 UNTIL N DO DI1) i= O3
FGR K 1= 2 UNTIL N DO
BECIN FOR T z= [UNTIL N DO Y(T} = X{l)5 SF 3= FX;
TLEC 2= ELLC OR {KT > O}
Ll: XL = Ki ©OF = {3 [IF ILLC THEN
REGIN COMMENT: RANDOM STEP TD GET OFF RESOLUTION VALLEY:
FOR I := 1 UNTIL N 0O
BEGEIN § == I{F) = {0Q.1%L0T + T2%*10*%%KT}*(RANOOM-0.5L};
COMMENT: PRAXIS ASSUMES THAT RANDOM RETURNS A RANDOM
NUMBER UNEFORMLY DISTRIBUTED IN [0, 1) AND
THAT ANY INETIALEZATION OF THE RANMDOM NUMBER
GENERATNR HAS ALREALRY BEEN DBONE:
FOR J 3= 1 UNTIL N DO XUJY 3= X031 + SxV{Js11
END3
FX 2= F(Xy N}; NF 1= NF + 1
END 5
FOR K2 1= K UNTIL N DO

BEGIN SL = FX;3 S t= O;
COMMENT: MINIMIZE ALONG "NCN-LCONJUGATE"™ DIRFCTIONS
MIN [KZy 2y DIKZ2)+ S+ FX, FALSE}:

5 = IF TLLC THEN DIK2)*(5 + 7(K2}i**2 ELSE SL - F¥:
IF DF < 5 THEN

BEGIN OF 1= 53 KL &= K2

END
END 3

IF ~1LLC AND [DF < ABSULOO0*MACHEPS®FX)) THEN

BEGIN COMMENT: NO SUCCESS ILLC = FALSE SO TRY ONCE

WiTH [LLC = TRUE;

ILLC = TRUE: GO 70 L}

EN(;
PF AR = 2) AND (PRIN > 1} THEN VECPRINT {“NEW D*, D, N};
FOR K2 == 1 UNTIL K - 1 DO

BEGIN COMMENT: MINIMIZE ALONG “CONJUGATE® DIRECTIONS;

5 i= 03 MIN (K2y 2y DIK2Y, Sy FX4 FALSE)
END3
Fl 2= FXj3 FX &= SF{ LOS 1= O3
FOR I = 1 UNTIL N DO
BEGIN 5L = X({1}; X(1) = ¥{I}; 5L = ¥Y{I} = 8L - ¥Yi{1};
LDS = LDBS + SL*SL
END3

LIS = LONGSQRTILOSY; IF L3S > SMALL THEN
BEGIN COMMENT: THROW AWAY DIRECTION KL AND MEINIMIZE
ALONG 'THE NEW "CONJUGATE™ DIRECTEIONG

FOR I 3= KL - 1 STEP -1 UNTTIL X DO
BEGIN FOR J = 1 UNTIL N DO Vit + 1) = VIJdsl};
DIl + 1) = DIEY
ENDS

CiK} = Q3 FOR [2= 1 UNTEL N DO VI1.K} 1= Y{1}/LD5;

MIN {Ky 4, DIK), LDSy Fly TRUEDSZ
IF LBS <= 0 THEN

BEGIN LDS := —LDS;

FOR I == I UNTIL N DG VII K} 1= -V(14K}

£ND

END; . .

LDT := LDFAC*LDY; If LDT € LGS THEN LDT := LOS;
PRINT;
T2 t= 03 FODR [®= 1 UNYIL N 00 T2 := T2 + x([}=s2;
T2 = MZELONGSQRT(T2E + T
COMMENT? SEE IF STEP LENGTH EXCEEDS HALF THE TOLERANGE:
KT 2= IF LDT > {0.5%T2) THEN 0 ELSE KT + 13

[F KT > KTM THEN GO TO L2
CND;

Sec. §

AN ALGOL W PROCEDURE AND TEST PROGRAM 163

COMMENT: TRY QUAGRATIC EXTRAPOLATION [N CASE wWE ARE STUCK
IN A CURVED VALLEY:

QuAD;

ON 3= 07 FOR I = 1 UNTIL N DB
BEGIN D{E} = 1/LONGSORT{DII)};
[F ON < DUE} THEN DN := DI}
END3

IF PRIN > 3 THEN MATPRINT {"NEW DIRECTIONS®™, V, N, N}z
FOR } = L UNTIL N DO

BEGIN S i= DLJY /DN
FOR T = 1 UNTIL N DO Vil,d} 1= Sxy(1,J)
END;

1F SCBD > 1 THEN
BEGIN COMMENT: SCALE AXES TC TRY TO RELUCE CONDITION

NUMBER ;
S 1= VLARGE; FOR [:=] UNTIL N 0O
BEGIN SL 1= 03 FOR J 5=] UNTIL N D0 SL := SL+VIT,i%%2;
Z01Y 1= LONGSOQRTISL):
[F 241} < M4 THEN Z(I} 1= M43 I¥F S5 > Z{I3 THEN S = I{([)
END;
FOR I 3= 1 UNTIL N DO
BEGIN SL &= S/z{13; Z{I) 1= 1/SL; IF 72{(I} > SLBD THEN
BEGIN SL == 1/8CBD; Zt(I) 1= SCBD
END;
COMMENT: TRANSPGSE V FOR MINFIT:
FOR T := 2 UNTIL N DO FOR J = 1 UNTIL I - 1 0O
BEGEN S &= VIEyJ}; ViIgd) 1= Videl); VIJyE) 1= S END;

COMMENT: FIND FHF SINGULAR VALUE DECOMPOSITICN DE V. THES
GIVES THE EIGENVALUES AND PRINCIPAL AXES OF THE
APPRUXIMATING QUADRATIC FUHM WITHOUT SQUARING THE
CONDETION NUMBER;

MINFIT (N, MACHEPS, VSMALL, V, D);

1F SCBD > 1 THEN

BEGIN COMMENT: UNSCALINGS FOR [t= 1 LNTIL N 0O
REGIN § = Z(1);
FOR J i= [UNTIL N 00 V(1,4) t= S*V{[,J}
ENDj;
FOR T z=] UNTIL N BB
8FEGEN S = U3 FOR J 2= } UNTIL N DO § z= § + Vidy FhRaz;
S = LONGSQRT{S); J01) t= S*D(id; $ 1= 1/§:
FOR J 3= 1 UNTIL N D0 VId,0) 2= S2vV(Jde1}
END
END3:
FOR T = } UNTIL N DO
BEGIN DOIY == [F (DN®D(11} > LARGE THEN VSMALL ELSE
IF (ON%DIT}) < SMALL THEN VLARGE FLSE (OGN®D(1))%x{—72}
ENDS
COMMENT: SORY NEW FIZENVALUES AND EIGENVECTORS ;
SORT;
DMIN 2= DIN); IF DMIN < SMALL THEN OMIN-:= SMALL:
TLLC = (M2%D{1l1} > DMIN;

[F {PRIN > L} AND (SCBD > 1) THEN

VECPRENT ("SCALE FACTORS", Z, N);

IF PRIN > 1 THEN VECPRINT ("ETGENVALUES QF AT, Dy NI

[Ff PREN > 3 THEN MATPRINT (“EIGENVECTORS OF AMy Yy Ny N3
COMMENT: GO 8ACK TO MAIN LDOP;

GO TO LOs
L2: IF PRIN > O THEN VECPRINT (X [5%, X, N} 3
FX

END PRAXIS;:

COMMENT: RANDOM NUMBER GENERATOR

030 o g R o o e 0 oo

PROCEDURE RANDUM RETURNS A LONG AFAL RANDOM NUMBER UNITFORMLY

764 MINIMIZING A FUNCTIGN OF SEVERAL VARIABLES Chap. 7 Sec. 9 AN ALGOL W PROCEDURE AND TEST PROGRAM 165

DISTRIBUTED IN (0y1) C(INCLUDING O BUT NOT 13, e % INTEGER VALUE NI
RANINITER] WITH R ANY INTEGER MUST BE CALLED FOR | COMMENT: SEE KOWALIK & OSBORNE {19a8};
INITIALIZATION BEFDRE THE FIRST CALL TO RANCOM, AND THE S BEGIN LONG REAL S, Ts U, ¥s

DECLARATIONS DF RANL, RAN2 AND RAN3 MUST BE GLOBAL, S ie X(LIWE2 + (X(2) - X112 — 10)2
THE ALGORITHM RETURNS X{N)/Z2¥%56, WHERE FOR 1 1= 2 UNTIL 30 DN
XN} = X(N-11 + X(N—127) {MOD 2%%551, BEGIN Y t= (1 - 11/29; T := x(Nb:
SINCE 1 + X ¢ Xw#127 IS PRIMITIVE (MDD 2), THE PERIUD IS AT R FOR J 1= N = 1 STEP =1 UNTIL 1 DO T t= X{4) + vers
LEAST 2%%127 - 1 > 10*%38, SEE KNUTH (1969}, PP. 26+ 34y 4G4, R U t= [N — ZHEX{N);: 3
X(NY IS STORED IN A LOCNG REAL WORD AS o FOR J = N — | STEP - ‘e _ .
RANI = X{N}/2%%56 — 1/2, AND ALL FLOATING POINT ARITHMETIC S S = 5 & (U - T*T - mm*mmwhr 200U 3= 14 - 11ex(J) + yey;
1S EXACT3 S END3
i S

LONG REAL RAND; [INTEGER RANZ; LONG REAL ARRAY RAN3 (0::126); e END WATSON:

PRCCECURE RANINIT {INTEGER VALUE R}; g LONG REAL PROCEDURE CHEBYQUAD (LUNG REAL ARRAY X(#}:
BEGEN R 3= AB5(R) REM 8190 + 13 L INTEGER VALUE NJj; !
RANZ := 127; WHILE RANZ > G DO g COMMENT: SEE FLETCHER (1965);

BEGIN RAN2 f= RAN2 — 1i RANI 1= -20L=%55; BEGIN
FOR [= 1 UNTIL 7 0O i LONG REAL F, DELTA, TPLHS:
BEGIN R := {L756%R) REM 81913 5 BOOLEAN EVEN;
RANL 1= {RANE + (R DIV 321)%(1/256); . LONG REAL ARRAY ¥, TI, TMINUS (l::N};:
END; :
RAN3 {RANZ) i= RANL L DELTA 1= OL3;
END o FOR J := 1 UNTIL N DO
ENDG RANINIT; BEGIN Y{J} = 2i%x{3) - 143
DELTA := DELTA 4+ YU.J};
LONG REAL PROCEDURE RANDUM; TICJ) 5= YU3)5 THINUS(J) 2= 1L
BEGIN RANZ = IF RANZ = O THEN 126 CLSF RANZ - i3 e 3 END;
RAN1 = RANL + RAN3 (RANZ); e F o= DELTA%%2; EVEN := FALSE
RAN3 (RANZ] = RANL := IF RANL < OL THEN RANL + 0.5L FOR I := 2 UNTIL N DO
ELSE RAN1 - C.5L3 BEGIN EVEN t= -EVEN] DELTA := 6L
RANL + 0.5L FOR J := 1 UNTTIL N DD
END RANDOM; : BEGIN TPLUS = ZLAY{JI*TILS) - TMINUS(J):
DELTA == DELTA + TPLUS;

COMMENT: TEST FUNCTIGNS TMINUSEJ) t= TI(J);

LA E S EE L LS TITJd) = TPLUS .
. END;

LONG REAL PROCEDURE RGS {LONG REAL ARRAY K(+%); INTEGER VALUE NI; =i DELTA := DELTA/N = {IF EVEN THEN 1/(1 - I=[) ELSE 015
COMMENT: SEF ROSENBROCK (196013 i F otz £ + DELTA#%y ;
LOGLH*({XE2) ~ XULI®%2)e%2) 4+ (3L ~ X{1)}##2; - END;

B F

LONG REAL PRUCEDURE SINGILONG HREAL ARRAY XI{*};INTEGER VALUE NI END CHEBYQUAD;

COMMENT: SEE POWELL (196213
(X{1) ¢ LOL#X(2))%%2 + SLa(X{3)-X{4))1%%2 + {X{2}~2L*K{3])}=*q

+ 10L¥{XI1] — Xlathreksd;

LONG REAEL PROCECURE POWELL (LONG REAL ARRAY X{=
INTEGER VALUE N);

COMMENT: SEE POWELL [19641;

LONG REAL PROCEDURE HELIX{LUNG REAL ARRAY X{%}3iINTEGER VALUE NI; : 3L - AL/HIL + ARX(1) - g(2})%s2) -
COMMENT: SEE FLETCHER & POWELL {1963)3 g LONGSIN(0.5L%3, 141592653589 T9L4X02)% X(3))-(1F X(2) = 0 THEN
BEGIN LONG REAL R, T3 g OL ELSE LONGEXP(~{(X(1)+X(31)/X(2] - 2L)%=2)}:
R 1= LONGSORT (X(LI#%2 + X{2}%%2)3 8
Y t= [F X{L} = O THEN 0.25L ELSE LONGARCTAN (X{2)/X{11}/(2L% - LONG REAL PROCEDURE WOODILONG REAL ARRAY X{*}:INTEGER VALUE W) s

3.14159265358979L1 3 S COMMENT: SEE MCCORMICK & PEARSON (1969) DR COLVILLE {19681:

[F X(1) < O THEN T 2= T + 0.5L3 S LOOL¥(XT2) w X{L)e#2)%%2 & [1L - X(1)b#%2 + 9GL%(Xid] ~ ’
LO0EA{[X{3} —~ 10L*T3#%2 + (R — 1LI**2) + X(3)*%2 RR REZPDRE2P2H2 (1L - X(300%52 + 10.10%00X(2) — LL}A%2 + (X(4)
£ND HELIX3 o T LLI#RZ) o+ 19.8LFIX(2) — LLIR(X(4} - 1L}

LONG REAL PROCEDURE CUBE{LONG REAL ARRAY X{%)iINTEGER VALUE N ” LONG REAL PR .
COMMENT: SEE LEON (196603 o INTEGRE <pmmmsmwm HILBERT (LCNG REAL ARRAY X(#%);
100L* (X621 — X{LI*#31%2 + (1L — X{1)}%*2; C COMMENT: COMPUTES XT.A.Xy WHERE A TS THE N BY N HILBERT

LONG REAL PROCEDURE BEALE(LONG REAL ARRAY Xi%);INTEGER VALUE N}j i BEGIN LONG AEAL &, 5 CRECURY & KARNEY (19691, PP. 33, 66;
COMMENT: SEE BEALE {1958)3 By S 1= OL; FOR I == 1 UNTIL N DO
(L.5L = xUADHOIL - xE2ib1%sz S BEGIN T := 0L: FOR J := 1 UNTIL N 0O
(2,250 = XOL¥®QLL - X{2)%32))%%2 + 1 T = T4 XD+ e 11

(26250 — XA{L1P¥(1L ~ XE2P¥¥3)pax2g

|LONG REAE PRBCEDURE WATSON {LONG REAL ARRAY XI[¥)3

Sec. 9

166 MINIMIZING A FUNCTION OF SEVERAL VARIABLES Chap. 7
s AN ALGOL W PRGCEDURE AND TEST PROGRAM 167

xﬁw_ = X{2) = 33
TEST (MROSENBROCK®S FUNCTION “s 3, ROS, 2};

S 1= 5 % T*X[1}
END

-

s

END HILBERT; XEL) 3= x{2} = 3;

TEST (“ROSENBROCK'S FUNCYION", 12, ROS, 2):

LONG REAL PROCEDURE TRIDIAG {LUGNG REAL ARRAY X{=*}3 ¥
INTEGER VALUE NYj
COMMENT = COMPUTES XT.A.X — Z2E1T.%, WHERE N > .

[

K{1) 2= ~1; X{2) 3= X{3) := 431
«mmqn:Imerz.H.ImFHx.u_u

XU1) t= —1.2L5 X(2) 1= -1;

1 UG e O :
TEST (“CUBE™, 1, CURE, 2);

1
=1 2 -1 0 «.. U}
0 -1 2 -1 »+s Q)
vevssnrevenennrnlt
0 «+s =1 2 -1}
O e 0 ~1 2k,

1

X{1) 2= X(2) := 0.1L;
TESY {"BEALE™, 1, BEALE, 2i1;

XCL) 2= 03 X2} = 13 X(3) 1= 23
ANB E1T = U1y Uy was 4 O)s TEST ["POWELL™y 1. POWELL, W_" 23
SEE GREGORY & KARNEY (19691, PP. 4l, 743 FMIN t= 05 X{1) := 0: xX42) ie 1cs .
REGTM LONG REAL Si TEST (wboxns sor paxs ey X020 1T 1B K31 = 20
§ 1= X(L)®{X[L} - X12)}3
FGR I 3= 2 UNTIL N ~ 1 0O XOLV 3= 3L: X021 = 115 x(3) :e
- . : : i = GLi Xta) = 1L;
S z= § + XILI®UIXLE) — X(I - L}) & [X(1) - XU + 11033 TEST {“POMWELL*S FUNCTION }
S ¢ XINVE(ZEXIN} - X(N - 11) - 2%X(1) TON WETH A SINGULAR JACOBIAN“,1,SING,4);
ENG TRIDEAGS FMIN = 03 X{i) 1= X{3) := —ar L
TEST (MW0OD®, 10, wonp, 41z o 0 X4 e -k

LONG REAEL PROCEDURE ROX {LONG REAL ARRAY X{*¥)3INTEGER VALUE N);

COMMENT: SEE BUX (19661 UR SROWN & DENNIS (1970); FOR N := 2 STEP 2 UNTIL 8 DO
AFGIN LONG REAL Py, S; BEGIN FOR I = 1 UNTIL N DO X(1) := I/(N + 113
$ 3= 07 FOR I := 1 UNTIL 10 DD EMIN == {F N < 8 THEN OL ELSE o.Gmepomﬂwﬁmmomqor.
REGIN P 1= ~[/10% TEST ["CHEBYQUAD", J.1, CHEBYQUAD, N} ’
S z= § + [({LONGEXPIPSX(L}} — (IF (P*X{2)) < [-40) THEN O END; '
ELSE LONGEXP(P®X{2}))}} - FUR N 2= & STEP 3 UNTIL 9 DO
XI3)V#{LONGFXP{P) — LONGEXBLIL®PY)) %%2 BEGIN FOR I := 1 UNTIL N DO X{(I] := Qi
- - = M
END3 FMIN 2= IF N = 6 THEN 0.0C228767C05355L ELSE
S IF K = 9 THEN 1.399760138098'-41 ELSE oL; ‘
END BOX: TEST (MwATSCN", 1, WATSON, N} '
END
COMMENT: GFNERAL TESTING PROCEDURE
s 3ot o o o e o S ok s e K R g FOR N 3= 4, &5, 8, 10, 12, 1las 20 8o
) BEGIN FOR I := 1 UNTIL N OO X(I) t= OL; FMIN t= —N:
PROCENURE TEST (STRING [8U) VALUE St LONG REAL VALUE H; TEST {"TRIDLAG", 2%N, TRIDIAG. N} ' - :
LOMG REAL PROCEDURE F3 INTEGFR VALUE NI; END;

BEGIN LONG REAL FMIN: INTEGER TIM:
FMIN := 05 FOR N := 2 STEP 2 UNTIL 12 DO

WRITE(Y "3 WRITE(™ "3; WRITE{S);
WRITE{UN =, N, © H =%, ROUNDTUREALCH)}; WRITE(Y)3 BEGIN FOR | 2= | UNTIL N OO X{[} 2= 1
COMMENT: INITIALIZE RAHOOM NUMBER GENERATOR; RANENLIT(413 TEST ("HILBERT", 10, HILRERT, N} ’
COMMENT: TIME{2) RETURNS CLOCK TIME IN UNITS UF 26 MICROSECS END

TIM := TIME[Z), END,

EMIN 1= PRAXIS (1'-5, L6%%{-13), H, N, L, X, F, RANDOM};

WRITE {"TIME {MILLESEC) =", ROUNDI(TIMEL2) — TIMI/33.41)3

ixﬁnﬂ—ﬂn_- -u

END TEST:

COMMENT: TESTING PROGRAM
ESTEE LTS 2 2L N

LUONG REAL FMIN, LAM3

COMMENT: INCREASE DIMENSIONS FOR N > 293

LONG REAL ARRAY X(1::20%;

COMMENT: INTFIELDSEZE COCNFROLS THE OUTPUT FORMAF OF INTEGERS:

INTFIELDSIZE 3= 73

X{L) = -l.2L3 w{2) = 1ii FMIN 3= 0
A

. : :
A TEST {"ROSENBROCK'S FUNCTIUN WITH A PARABCLIC VALLEY",1,R05+2)5%

BIBLIOGRAPHY

This bibliography contains references relevant to the minimization
of nonlinear functions. There is no attempt at completeness, but marny recent
references on unconstrained minimization have been included. There are
also some references dealing with constrained problems, with methods for
converting constrained problems to unconstrained problems, and with
methods for solving nonlinear cquations. For a brief survey, see Section 7.1
References on linear and quadratic programming have generally been ex-
cluded, and we have not attempted to duplicate the large bibliographies in
Jacoby, Kowalik, and Pizzo (1971); Kiinzi and Oettli (1970); Lawson (1968):
and Ortega and Rheinboldt (1970,

In lieu of annotations, the chapter and section numbers of references
to each entry are given in parentheses after the entry,

References “to appear” have arbitrarily been assigned the year 197].

Abadie, I, {ed.), 1970, Nowulinear and integer programming, North-Holland, Amster-
dam. (7.1}

Akaike, H., 1959, On a successive transformation of probabifity distribution and
its application to the analysis of the optimum gradient method, 4xan. fnst.
Statist. Math. of Tokyve 11, 1-16. {7.1)

Akilov, G.P., see Kantorovich and Akiloy (1959).

Allran, R. R, and Johnsen, 8. E. 1, 1970, An algorithm for solving nonlinear pro-

gramming problems subject to nonlinear inequality constraints, Comp. J. 13,
2,171-177. 7.

169

BIBLIGGRAPHY 1771

170 BIBLIOGRAPHY

Andrews, A, M., 1969, The calculation of orthogonal vectors, Comp. J. 12, 411,
(7.5) o . .

Armijo, L., 1966, Minimization of functions having Lipschitz continuous first partia
derivatives, Pacific J. Math. 16, 1-3. {(1.2) ‘ .

Avriel, M., and Wilde, D. 1., 1966, Optimal search for a maximum with sequences of
simultancous function evaluations, Mgmi. Sci. 12, 722-731. (5.7}

Baer, R. M., 1962, Note on an extremum locating algorithm, Comp. J. 5, 193.(7.5)

Baker, C. T. H., 1970, The error in polynomial interpolation, Numer. Math. 15,
315-319. (2.4) . .

Balakrishnan, A. V., 1970, see Symposium on optimization {(Nice, Jung [1969),
Springer-Verlag, Berlin. (7.1) .

Bard, Y., 1968, On a numerical instability of Daviden-like methods, Math. Comp.
22, 665-666. (7.1) . ‘

Bard, Y., 1970, Comparison of gradient methods for the solution of nonlinear
parameter estimation problems, STAM J. Numer. Anal. 7, 157-186. (7.1)

Bard, Y., see Greenstadt (1970). . i
Barnes, J. P. G., 1965, An algorithm for solving nonlinear equations based on the
secant method, Comp. /. 8, 66-72, (7.1) .
Bartels, R. H., 1968, 4 numerical investigation of the simplex method, Report CS
104, Computer Sci. Dept., Stanford Univ. (7.1) . .
Bartels, R, H., and Golub, G. H., 1969, The simpiex method of linear programming

using LU decomposition, Comm. ACM 12, 266-268. (7.1) , ,
Bartels, R. H., Golub, G. H., and Saunders, M. A., 1970, Numerical technigues in
§m3§3:¢& programming, Report CS 162, Computer Sci. Dept., Stanford
Univ. (7.1 "
Bauer, H., Becker, S., and Graham, 8., 1968, ALGOL W language a.m,wn_.%:@.w,
W,mwuomﬂ CS 89 (revised as CS 110 with E. Satterthwaite, 1969), Computer Sci.
Dept., Stanford Univ. (4.4, 5.6, 6.6, 7.9) N ‘
Beale, E. M. L., 1958, On an iterative method for finding a focal minimum af a fitnction
QWES.Q than one variable, Tech. Report No. 25, Statistical Techniques Research
Group, Princeton Univ. (7.7, 7.9) . . .
Beale, E. M. L., 1968, Mathenatical programming in practice, Wiley, New York,
(7.1)
Becker, S., see Bauer, Becker, and Graham (1968).
i ee Wilde : ightler (1967).
Beightler, C. 5., see Wilde and Beig . . ‘
Bell, M., and Pike, M. C., 1966, Remark on algorithm 178{E4), Direct Search,
Comm. ACM 9, 684, (7.1} . .)
Beilman, R. E., 1957, Dynamic programming, Princeton Univ. Press, Princeton,
New Jersey. (1.2) . . ,
Bellman, R, E., and Dreyfus, S. E., 1962, Applied dvnamic programming, Princeton
. Univ. Press, Princeton, New Jersey. (1.2, 4.1}
Bennett, J. M., 1965, Triangular factors of modified matrices, Numer. Math. 7,
217-221. (1.1)

Berman, G., 1969, Lattice approximations to the minima of functions of several
variables, J. ACM 16, 286-204. 7.0

Bjorck, A., 1967, Solving linear least squares problems by Gram-Schmidt ortho-
gonalization, BIT 7, 1-21. 7.0

Bjorck, A., 1967b, Iterative refinement of linear least squares solutions 1, BIT 7,
257-278. (7.1}

Bjorek, A., 1968, lterative refinement of linear least squares solutions II, BIT 8,
8-30. (7.1)

Boothroyd, I., 1965a, Algorithm 7, MINTX, Comp. Bulletin 9, 104. (5.3)

Boothroyd, 1., 1965b, Certification of Algorithm 2, Fibonacci Search, Comp.
Bulletin 9, 105. (5.3)

Bowdler, H., Martin, R. §., Reinsch, C., and Wilkinson, J. H., 1968, The QR and
QL algorithms for symmetric matrices, Numer. Math. 11, 293-306. (7.4)

Box, G. E. P, 1957, Evolutionary operations: a method for increasing industrial
productivity, Appl, Stat. 6, 3-23. 7.0

Box, M. 1., 1965, A new method for constrained optimization and a comparison
with other methods, Comp, 1. 8, 42-52.(7.1)

Box, M. J., 1966, A comparison of several current optimization methods, and the
use of transformations in constrained problems, Comp. J. 9, 67-77. (7.1, 7.3,
7.7,.7.9)

Box, M. 1., Davies, D, and Swann, W. H., 1969, Non-linear optimization tech-
#igues, ICI Monograph No. 5, Oliver and Boyd, London. (54,5.5,7.1)

Brent, R. P, 1971a, 4 note on the Davidenko-Branin method for solving ronlinear
equations, Report RC 3506, IBM T. I. Watson Research Lab., Yorktown
Heights, New York, to appear in [BM Jour, Res. and Dev. (1.1}

Brent, R. P., 1971b, On maximizing the efficiency of algorithms for solving systems
of nenlinear equations, Report RC 3725, IBM, Yorktown Heights. (7.1)

Brent, R. P, 1971c, An efficient algorithm for unconstrained optimization without
derivatives, to appear. (7.9)

Brent, R. P., 1971d, An algorithm with guaranteed convergence for finding a zero
of a function, Comp. I, 14, 422-25.

Brown, K. M., and Conte, S. D., 1967, The solution of simultaneous nonlinear
equations, Proc. 22nd National Conference of the ACM, Thompson Book Co.,
Washington, D. C, 111-]14. (7.1)

Brown, K. M., and Dennis, I. E., 1968, On Newton-like iteration functions: general
convergence theorems and a specific algorithm, Numer. Math. 12, 186-19].
(7.H .

Brown, K. M., and Dennis, J, E., 1971a, On the second order convergence of
Brown’s method for solving simultaneous nonlinear equations, to appear. (7.1)

Brown, K. M., and Dennis, I. E., 1971h, Derivative-free analogues of the Levenberg-

Marquardt and Gauss algorithms for nonlinear least squares approximation,
to appear in Numer. Math, (7.1

172 BIBLIOGRAPHY
Broyden, C. G., 1965, A class of methods for solving nonlinear simultaneous

Broyden, C. G., 1967, Quasi-Newton methods and their application to function
minimization, Math. Comp. 21, 368-381. (7.1, .7} ,
Broyden, C. G., 1969, A new method of solving nonlinear simuitaneous eguations,
Comp. J. 12, 94-99, (7.1} o
Broyden, C. G., 1970a, The convergence of a class of double-rank minimization
algorithms, Parts T and 11, J. fnst, Maths. Apps. 6, 76-90 and 222231, (7.1)

Broyden, C. G., 1970b, The convergence of single-rank quasi-Newton metheds,
Math, Comp. 24, 365-382. (1.1}

Buehler, R. J., see Shah, Buehler, and Kempthorne (1964).

Businger, P., and Golub, G. H., 1965, Linear least squares solutions by Householder
transformations, Numer. Math. 7, 269-276. (7.1}

Buys, J. D., see Haarhoff and Buys (1970).

Cantrell, J. W., 1969, Relation between the memory m&&mi method and the
Eomorwﬂwﬁoém: method, J. Optzn. Thry. and Apps. 4, 67-71. (1.1}

Cantrell, J. W., see Miele and Cantreli (1969, 1570).

Carroll, C. W., 1961, The created response surface technique for optimizing non-
linear restrained systems, Operations Res. 9, 169-184. (7.1)

Cauchy, A., 1840, Sur les fonctions interpolaires, Q R. Acad. Sci. Puris 11, 775
{or see Qeuvres complétes, Gauthier-Villars, Paris, 1897, Vol. 5, &ows&.mé. A.N.B

Cauchy, A., 1847, Méthode générale pour la résciution des sysicmes %mﬁcm:.onm
simultanées, C. R. Acad. Sci. Paris 25, 536-338 {or see Qewvres complétes,
Gauthier-Villars, Paris, 1897, Vol. 10, 399-402). (7.1}

Chazan, D., and Miranker, W. L., 1970, A non-gradient and parallel algorithm
#.om::oo:m:.mw:wa minimization, SIAM J. Controf 8, 207-217. (7.1, 7.3}

Chernousko, F. L., 1970, On optima! algorithms for search, in Dold and Eckmann
(1970a). (4.1)

Clark, N. A., Cody, W. 1., Hillstrom, K. E., and Thieleker, E. A., 1967, Performance
statistics of the FORTRAN IV (H) library for the IBM System{360, Argonne
Nat. Lab, Report ANL-7321. (6.3}

Caody, W. 1., see Clark, Cody, Hiilstrom, and Thieleker (1967).

Collatz, 1., 1964, Functional analysis and numerical mathematics, Springer-Verlag,
Beriin (translation by H. Oser, Academic Press, New York, 1966). (3.1)

Colville, A. R., 1968, 4 comparative study of nonlinear programming codes, 1IBM
New York Scientific Center Report 320-2%49, (7.1, 7.7, 7.9}

Conte, 8. D,, see Brown and Conte (1967).

Cooper, L., see Krolak and Cooper {1963).

Cox, M. G., 1970, A bracketing techniggue for computing a zero of a function, Comp.
J. 13, 101-102. (4.2, 4.5)

Cragg, E. E., and Levy, A, V., 1969, Study of a supermemory gradient method for
the minimization of functions, J. Opizn. Thry. and Apps. 4, 191, (7.1)

‘BIBLIOGGRAPHY 173

Crowder, H., and Wolfe, P., 1971, Lincar convergence of the confugate gradient
method, Report RC3330, IBM T. J. Watson Research Lab., Yorktown
Heights, New York, to appear in IBM Jour. Res. and Dev. (7.1, 7.4)

Curry, H., 1944, The method of steepest descent for nonlinear minimization prob-
fems, Quart. Appl. Math. 2, 258-261, (7.1

aniel, J. W., 1967a, The conjugate gradient method for linear and nonlinear
operator cquations, STAM J, Numer. Anal. 4, 10-26. 7.1y

aniel, J. W, 1967b, Convergence of the conjugate gradient method with computa-
tionally convenient modifications. Numer. Math. 10, 125-131. (7.1
Daniel, J. W,, 1970, A correction concerning the convergence rate for the conjugate
gradient method, STAM J. Numer. Anal. 7,277-280. (7.1)

Pavidon, W. C., 1959, Variahle metric method Sfor minimization, Argonne Nat, Lab.
Report ANL-5990, (5.7, 7.1}

D

1M

Davidon, W. C., 1968, Variance algorithm for minimization, Comip. J. 10, 406-410,
(7.1, 7.1

Daviden, W. C,,
(7.1, 7.1

Davies, D., see Box, Davies, and Swann {1969), Matthews and Davies (197D,
Swann (1964).

1969, Varitance algorithms for minimization, in Fletcher {196%a).

Davis, P. I., 1965, Interpelation and approximation, 2nd ed., Blaisdell, New York
and London, (6.2)

Dejon, B., and Henrici, P. (eds.), 1969, Censtructive aspects of the fundamental
theorem of algebra, Interscience, New York.

Dekker, T. J. (ed.), 1963, The series AP200 of pracedures in ALGOL 60, The Mathe-
matical Centre, Amsterdam.

Dekker, T. I., 1969, Finding a zero by means of successive linear interpolation, in
Dejon and Henrici (1969). (1.2, 4.1,4.2,4.3, 4.4)

Dekker, T. J., see van Wijagaarden, Zonneveld, and Bijkstra (1963).

Dennis, 1. E., 1968, On Newton-like methods, Numer. Math. 11, 324-330. (7.1}

Dennis, 1. E., 196%a, On the local comnvergence of Broydew’s method for nonlinear

systems of equations, Tech. Report 69-46, Dept. of Computer Science, Cornell
Univ. (7.1)

Dennis, J. E., 1969b, On the convergence of Broyden's method for nonlinear systems

of equations, Report 69-48, Dept. of Computer Science, Cornell Univ., to
appear in Marth. Comp, (1.1}

Dennjs, J. E., see Brown and Dennis (1968, 1971a, b).
Dijkstra, E. W, see van Wijngaarden, Zonneveld, and Dijkstra (1963).

Dixon, L. C. W., 1971a, Fariable metric algorithms: necessary and sufficient condi-

tions for identical behaviour on nen-quadratic functions, Report 26, Numerical
Optimisation Centre, The Hatfield Polytechnic. (7.1

Dixon, L. C, W., 1971b, All the quasi-Newton family generate identical points, to
appear. (7.1)

174 BIBLIOGRAPHY

Deld, A., and Eckmann, B. {eds.), 1970a, Colloquium on methods of optimization
(Novisibirsk, June 1968), Springer-Verlag, Berlin. (7.1)

Dold, A., and Eckmann, B., 1970b, see Symposium on optimization (Nice, June
1969), Springer-Verlag, Berlin, (7.1}

Preyfus, S. E., sce Bellman and Dreyfus {1962).

Dyer, P., see Hanson and Dyer (1971).

Eckmann, B., see Dold and Eckmann (1970a, b).

Ehrlich, L. W., 1970, Eigenvalues of symmetric five-diagonal matrices, unpublished.,
(4.4)

Evans, 1. P, and Gould, F. 1., 1970, Stability in nonlinear programming, Oper.
Res. 18, 107-118. (7.1

Fiacco, A. V., 1961, Comments on the paper of C. W, Carroll, Oper. Res. 9, 184.
(1.1

Fiacco, A. V., 1969, A general regularized sequential unconstrained minimization
technique, STAM J. Appl. Marh. 17, 1239-1245. (7.1)

Flacco, A. V., and Jones, A, P., 1969, Generalized penalty methods in topological
spaces, SIAM J. Appl. Math. 17, 996-1000. (7.1)

Fiacco, A, V., and McCormick, G. P., 1968, Nonlinear programming: sequential
unconstrained minimization technigues, Wiley, New York. (7.1)

Flanagan, P. D., Vitale, P. A., and Mendelsohn, ., 1969, A numerical investigation
of several one-dimensional search procedures in nonlinear regression problems,
Technometries 11, 265-284. (5.4)

Fletcher, R., 1965, Function minimization without evaluating derivatives—a
review, Comp. J. 8, 33-41. (1.2,7.1,7.3,7.5,7.7, 7.9)

Fletcher, R., 1966, Certification of Algorithm 251, Comm. ACM 9, 686. (7.1)

Fietcher, R., 1968a, Generalized inverse methods for thie best least squares solution
of systems of non-linear equations, Comp. J. 10, 392-399, (7.1}

Fletcher, R., 1968b, Programming under near equality and inequality constraints,
ICI Management Services Report MSDH/68/19. (7.1)

Fletcher, R. (ed.), 1969a, Oprimization, Academic Press, New York. (7.1)

Fletcher, R., 1969b, 4 class of methods for nonlinear programming with termination
and convergence properties, Report TP 386, AERE, Harwell, England. (7.1)

Fletcher, R., 1969c, A review of methods for unconstrained optimization, in
Fletcher (1969a). (7.1, 7.5)

Fletcher, R., 1969d, A technigue for orthogenalization, J. Inst. Maths. Apps. 5,
162-166. (1.5)

Fletcher, R., 1970, A new approach to variable metric algorithms, Cemp. J. 13,
317-322. (7.1)

Fletcher, R., and Powell, M. J. ., 1963, A rapidly convergent descent method for
minimization, Comp. J, 6, 163-168. (7.1, 7.7, 7.9

Fletcher, R., and Reeves, C. M., 1964, Function minimization by conjugate
gradients, Comp. J. 7, 149-154. (5.4, 7.1, 7.4}

BIBLIQGRAPHY 175

Forsythe, G. E., 1968, On the asymptotic directions of the s-dimensional optimum
gradient method, Nymer. Math. 11, 5776, (1.1

Forsythe, G. E., 1969, Remarks on the paper by Dekker, in Dejon and Henrici
(1969). (4.1)

Forsythe, G. E., and Moler, C. B., 1967, Computer solution of linear algebraic
systems, Prentice-Hall, Englewood Cliffs, New Jersey. (7.2)

Fox, L., Henrici, P., and Moler, C. B., 1967, Approximations and bounds for
eigenvalues of elliptic operators, STAM J. Numer. Anal. 4, 89-102, (6.1)

Francis, I., 1962, The QR transformation: a unitary analegue to the LR transforma-
tion, Comp. J. 4, 265-271.(7.4)

Freudenstein, F., and Roth, B., 1963, Numerical solution of systems of nonlinear
equations, J, ACM 10, 550-556. (7.71)

Gauss, XK. F., 1809, Theoria motus corporum caelestium, Werke, Vol. 7, Book 2,
Sec. 3. (7.1}

Gill, P, E., and Murray, W., 1970, 4 sumerically stable form of the simplex algorithm,
Tech. Report Maths. 87, NPL, Teddington, England. (7.1)

Goldfarb, 3., 1969, Extensions of Davidon’s variabie metric method fo maximiza-
tion under linear inequality and equality constraints, SIAM J. Appl. Mazh. 17,
739-764. (7.1)

Goldfarb, D., 1970, A family of variable-metric methods derived by variational
means, Math. Comp. 24, 23-26. (7.1)

Goldfarb, D., and Lapidus, L., 1968, A conjugate gradient method for nonlinear
programming problems with linear constraints, [ndust. Eng. Chenr. Funda-
mentals 7, 142-151, (7.1)

Goldfeld, S. M., Quandt, R, E., and Trotter, H. F., 1968, Maximization by improved
quadratic hill-climbing and other methods, Econometrics Research Program
Res. Mem. 95, Princeton Univ., (7.1}

Goldstein, A. A., 1962, Cauchy’s method of minimization, Numer. Math. 4, 146-
150. (7.1)

Goldstein, A. A., 1965, On steepest descent, SIAM J. Control 3, 147-151. {7.1)

Goldstein, A. A., and Price, J. F.. 1967, An effective algorithm for minimization,
Nuwmer. Math. 10, 184-189. {7.1,7.7)

Goldstein, A. A, and Price, J. F., 1971, On descent from local minima, Math. Comp.
25, 569-574. (6.1}

Golub, G. H., 1965, Numerical methods for solving linear least squares problems,
Numer., Marh. 7, 206-216. (7.1)

Golub, G. H., see Businger and Golub (1965), Bartels and Golub (1969}, Bartels,
Golub, and Saunders (1970).

Golub, G. H., and Kahan, W., 1965, Calculating the singular values and pseudo-
inverse of a matrix, SIAM J. Numer. Anal. 2, 205-224. (7.4)

Golub, G. H., and Reinsch, C., 1970, Singular value decomposition and least
squares solutions, Mumer. Math. 14, 403-420. (7.1, 74,79

176 BIBLIOGRAPHY

Golub, G. H., and Saunders, M., 1969, Linear least syuares and quadratic program-
ming, Report C§ 134, Computer Sci. Dept., Stanford Univ. (7.1)

Golub, G. H., and Smith, L. B., 1867, Chebyshev approximation of continuous
Jfunctions by a Chebyshev system of functions, Report CS 72, Computer Sci.
Dept., Stanford Univ. (5.4)

Golub, G. H., and Wilkinson, 1. H., 1966, Note on the iterative refinement of least
squares solutions, Numer. Math. 9, 139-148. (7.1}

Gould, F. J., see Evans and Gould (1970).

Graham, 8., see Bauver, Becker, and Graham (1968).

Greenstadt, J. L., 1967, On the relative efficiencies of gradient methods, Mark.
Comp. 21, 360-367. (1.2, 7.D)

Greenstadt, J. L., 1970, Variations on variable metric methods, Math. Comp. 24,
1-22 (appendix by Y. Bard). {7.1)

Gregory, R. T., and Karney, D. L., 1969, A collection of matrices for testing com-
putational algorithms, Interscience, New York. (7.7, 7.9)

Gross, 0., and Johnson, S. M., 1959, Sequential minimax search for a zero of a
convex function, MTAC (now Math. Comp) 13, 44-51. (1.2, 4.1)

Haarhoff, P. C., and Buys, I. D., 1970, A new method for the optimization of a
nonlinear function subject to nonlinear constraints, Comp. J. 13, 178-184,
(7.1)

Hadley, G., 1964, Nonlinear and dynamic programming, Addison-Wesley, Reading,
Massachusetts. (7.1)

Hanson, R. J., 1970, Computing quadraric programming problems: linear inequality
and equality constraints, Tech, Memo. 240, JPL, Pasadena. (7.1)

Hanson, R. L, and Dyer, P., 1971, A computational algorithm for sequential
estimation, Comp. J. 14, 285-280. (7.1}

Hartley, H. O., 1961, The modified Gauss-Newton method for fitting of nonlinear
regression functions by least squares, Techunometrics 3, 269-280. (7.1)

Herrici, P., see Dejon and Henrici (1969}, Fox, Henrici, and Moler (1967).

Hext, G. R., see Spendley, Hext, and Himsworth (1962).

Hill, I. D., see Pike, Hill, and James (1967).

Hillstrom, K. E., see Clark, Cody, Hillstrom, and Thieleker (1967).

Himsworth, F. R, see Spendley, Hext, and Himsworth (1962).

Hoeare, C., see Wirth and Hoare (1966).

Hooke, R., and Jeeves, T. A., 1961, Direct search solution of numerical and
statistical problems, J. ACM 8, 212-229. (7.1)

Householder, A. S., 1964, The theory of matrices in numerical analysis, Blaisdell,
New York. (7.4)

Householder, A, S., 1970, The numerical treatment of a single nonlinear equation,
McGraw-Hill, New York. (3.1)

Huang, H. Y., 1970, Unified approach to quadratically convergent algorithms for
function minimization, J. Opiza. Thry. and Apps. 5, 405-423. (7.1)

BIBLIOGRAPHY 177

Isaacson, E., and Keller, H. B., 1966, Analysis of numerical methods, Wiley, New
York. (2.2, 2.4)

Jacoby, S. L. 8., Kowalik, I. 8., and Pizzo, 1. T., 1971, Iterative methods for nonlinear

optimization problems, Prentice-Hall, Englewood Cliffs, New J ersey, to appear.
(54, 7.1}

James, F. D., sec Pike, Hill, and James (1967).

Jarratt, P., 1967, An iterative method for locating turning points, Comp. J. 10,
82-84.(1.2,3.1,3.2,3.6,3.7, 3.8, 3.9, 5.1)

Jarratt, P., 1968, A numerical method for determining points of inflexion, BIT 8,
31-35, (1.2, 3.1, 3.2, 3.6, 3.9)

Jeeves, T. A., see Hooke and Jeeves (1961).

Jenkins, M. A., 1969, Three-stage variable-shift iterations for the solution of
polynomial equations with a posteriori bounds for the zeros, Report CS 138,
Computer Sci. Dept., Stanford Univ. {3.5)

Johnsen, S. E. J., see Allran and Johnsen {1970).

Johnson, 1. L., and Myers, G. E., 1967, One-dimensional mininization using search
by golden secrion and cubic fit methods, Report N68-18823 (NASA), Manned
Spacecraft Center, Houston, (3.7)

Johnson, 8. M., 1955, Besr exploration for maximum is Fibonaccian, RAND Corp.,
Report RM-1590. {(5.3)

Johnson, 8. M., see Gross and Johnson (1959}, Bellman (1957), Bellman and
Dreyfus (1962).

Jones, A. P., 1970, Spiral—a new algorithm for non-linear parameter estimation
using least squares, Comp. J. 13, 301-308. (7.1}

Jones, A. P, see Fiacco and Jones (1969).

Kahan, W., sce Golub and Kahan (1965).

Kantorovich, L. V., and Akilov, G. P., 1959, Functional analysis in normed spaces,
Moscow (translation by D. Brown, edited by A. Robertson, MacMillan, New
York, 1964}, (3.1)

Kaplan, J. L., see Mitchell and Kaplan (1968).
Karney, D. L., see Gregory and Karney (1969),

Karp, R. M., and Miranker, W, L., 1968, Parallel minimax search for a maximum,
J. Comb. Thry. 4, 19-35. (5.7)

Kaupe, A, F., 1964, On optimal search techniques, Comm, ACM 7, 38, (6.T)
Keller, H. B.. see Isaacson and Keller (1966).

Kempthorne, O., see Shah, Buehler, and Kempthorne (1964).

Kettler, P. C., see Shanno and Kettler (1969).

Kiefer, I., 1953, Sequential minimax search for a maximum, Proc. Amer, Math. Soc.
4, 503-506. (1.2)

Kiefer, J., 1957, Optimal sequential search and approximation methods under
minimun regularity assumptions, SIAM J. Appl. Math. 5, 105-136. (6.7)

7178 BIBLIOGRAPHY

Knuth, D, E., 1969, The art of computer programming, Vol, 2, Addison-Wesley,
Reading, Massachusetts. (7.9}

Kogbetliantz, E. G, 1955, Selution of linear equations by diagonalization of coeffi-
cients matrix, Quart. Appl. Math. 13, 123-132, (7.4)

Kowalik, 1. 8., and Osborne, M. R., 1968, Methods for unconstrained optimization
problems, Elsevier, New York. (1.2,2.6,3.7,5.3,54,7.1,7.7, 7.9)

Kowalik, J. S., Osborne, M. R., and Ryan, D. M,, 1969, A new method for con-
strained optimization problems, Oper. Res. 17, 973. (7.1}

Kowalik, J. 8., see Jacoby, Kowalik, and Pizzo (1971).

Krolak, P. D., 1968, Further extensions of Fibonaccian search to nonlinear pro-
gramming problems, STAM J. Control 6, 258-265. (5.3)

Krolak, P. ., and Cooper, L., 1963, An extension of Fibonaccian search to several
variables, Comm. ACM 6, 639. (6.7)

Kublanovskaya, V. N., 1961, On some algorithms for the solution of the complete
eigenvalue problem, Zf. Vvch. Mar. 1, 555-570. (7.4)

Kiinzi, H. P., and Oettli, W., 1970, Nichtlincare Optimicrung: Neuere Verfohren
Bibliographie, Springer-Verlag, Berlin.

Kinzi, H. P., Tzschach, H. G., and Zehnder, C, A., 1968, Numerical methods of
mathematical optimization, Academic Press, New York. (7.1)

Lancaster, P., 1966, Error analysis for the Newton-Raphson method, Niumer.
Math. 9, 55-68. (5.2)

Lapidus, L., see Goidfarb and Lapidus (1968).

Lavi, A., and Vogl T. P. (eds.), 1966, Recent advances in optimization technignes,
Wiley, New York. (7.1, 8)

Lawson, C. L., 1968, Bibliography of recent publications in approximation theory with
emphasis on computer applications, Tech, Mem. 201, JPL, Pasadena.

Leon, A., 1966, A comparison of eight known optimizing procedures, in Lavi and
Vogl (1966). (1.7, 7.9)

Levenberg, K. A,, 1944, A method for the solution of certain non-linear problems in
least squares, Quarr. Appl. Math. 2, 164-168. (7.1}

Levy, A. V., see Cragg and Levy (1969).

Liil, 8. A., 1970, A modified Davidon method for finding the minimum of a func-

tion using difference approximations for derivatives, Algorithm 46, Comp. J.
13, 111-113, (7.1}

Lootsma, F. A., 1968, Constrained optimization via penalty functions, Philips Res.
Report 23, 408. (7.1)

Lootsma, F. A., 1970, Boundary properties of penalty functions for constrained
minimization, thesis, Eindhoven, Holland. (7.1}

Luenberger, D, G., 1969a, Optimization by vector space methods, Wiley, New York,
.n

Luenberger, D. G., 1969b, Hyperbolic pairs in the method of conjugate gradients,
SIAM J. Appl. Math. 17, 1263-1267, (7.1)

BIRLIOGRAPHY 178

Luenberger, D. G., 1970, The conjugate residual method for constrained minimiza-
tion problems, SIAM J. Numer. Anal. 7, 390-398. 7.1

Magee, E. 1., 1960, An empirical investigation of procedures Jor locating the maxinmum
peak of a multiple-peak regression function, Lincoln Lab. Report 22G-0046.
(1.2)

Mangasarian, O, L., 1969, Nonlincar programming, McGraw-Hill, New York. (7.1}

Margquardt, D. W., 1963, An algorithm for least squares estimation of nonlinear
parameters, J. STAM 11, 431-441, (7.1)

Martin, R. §., see Bowdler, Martin, Reinsch, and Wilkinson (1968},

Martin, R. 8., Reinsch, C., and Wilkinson, J. H., 1968, Houscholder’s tridiagonaliza-
tion of a symmetric matrix, Numer. Math. 11, 181-195. (7.4)

Matthews, A., and Davies, D., 1971, A comparison of modified Newton methods for
unconstrained optimization, Comp. J. 14, 293-294, (7.1)

McCormick, G. P., 1969, The rate of convergence of the reset Davidon variable metric
method, MRC Report 1012, Univ. of Wisconsin. (1.2, 7.1 L7.8)

McCormick, G. P., see Fiacco and McCormick (1968).

McCormick, G. P, and Pearson, 1. D., 1969, Variable metric methods and uncorn-
strained optimization, in Fletcher (1969a). (1.2, 7.1, 7.7, 7.9

Mead, R., see Nelder and Mead (1965).

Meinardus, G., 1967, Approximation of functions: theory and wmerical methods,
Springer-Verlag, Berlin. (3.7)

Mendelsohn, 1., see Flanagan, Vitale, and Mendelsohn (1969).

Miele, A., and Cantreli, J. W., 1969, Study of a memory gradient method for the
minimization of functions, J. Optze. Thry. and Apps. 3,459-470. (7.1)

Milne, W. E., 1949, Numerical calculus, Princeton Univ, Press, Princeton, New
Jersey. (2.2)

Milne-Thomson, L. M., 1933, The calculus of finite differences, Macmillan, London,
2.2

Miranker, W. L., 1969, Parallel methods for approximating the root of a function,
IBAM Jour. Res. and Dev. 13, 297-301. (4.5, 5.7

Miranker, W, L., see Chazan and Miranker (1970), Karp and Miranker (1968).

Mitchell, R. A, and Kaplan, J. L., 1968, Nonlinear constrained optimization by a
non-random complex method, J. Res. NBS (Engr. and Instr) 72C, 249, (7.1)

Moler, C. B., see Forsythe and Moler (1967}, Fox, Hearici, and Moler {1967).

Murray, W., 1969, Ill-conditioning in barrier and penalty functions arising in con-
strained nonlinear programming, in Proceedings of the sixth international symi-
posium on mathematical programming, Princeton, New Jersey, 1967. (7.1)

Murray, W, see Gill and Murray (1970).

Murtagh, B. A., and Sargent, R. W. H., 1970, Computational experience with
quadratically convergent minimization methods, Comp. J. 13, 185-194, (7.1)

Myers, G. E., 1968, Properties of the conjugate gradient and Davidon methods,
J. Optzn. Thry. and Apps. 2, 209-219, (1.1)

180 BIRLIGGRAPHY

Myers, G. E., see Johnson and Myers (1967).
Naur, P. (ed.), 1963, Revised report on the algorithmic language ALGOL 60,
Comnr. ACM 6, 1-17. (1.1}

Nelder, J. A., and Mead, R., 1965, A simplex method for function minimization,
Comp. J. 7, 308-313, (7.1, 7.4)

Newman, D. I., 1965, Location of the maximum on unimodal surfaces, J, ACM
12, 395-398. (1.2, 5.3, 6.7)

Oettli, W., see Kiinzi and Oettli (1970).

Ortega, J. M., 1968, The Newton-Kantorovich theorem, Amer. Marh. Monthly
75, 658-660, (3.1)

Ortega, I. M., and Rheinboldt, W. C., 1970, Irerative solution of nonlinear equations
i several variables, Academic Press, New York. (3.1, 3.2, 3.6, 7.1)

Osborne, M. R., 1969, A note on Poweli’s method for calculating orthogonal vectors,
Austral. Comp. J. 1, 216. (7.5)

Osborne, M. R., see Kowalik and Osborne (1968), Kowalik, Osborne, and Ryan
(1969).

Osborne, M. R, and Ryan, D. M., 1970, 4x algorithm for nonlinear programming,
Report 35, Computer Centre, Australian National Univ., Canberra. (7.1)

Osborne, M. R., and Ryan, D, M., 1971, On penalty function methods for nonlinear
programming problems, J. Math. Anal. Apps., to appear. (7.h)

Ostrowski, A. M., 1966, Solution of equations and systems of equations, Academic
Pregs, New York (2nd edition). {1.2, 3.1, 3.2, 3.6, 3.7, 4.2, 5.1,7.1H

Ostrowski, A. M., 1967a, Contributions to the theory of the method of steepest
descent, Arch. Rational Mech. Anal. 26, 257-280. (7.1)

Ostrowski, A. M., 1967b, The round-off stability of iterations, Z. Angew. Math.
Mech. 47, T7-82. (5.2}

Overholt, K. J., 1965, An instability in the Fibonaceci and the golden section search
methods, BIT 5, 284, (5.3)

Overholt, K. J., 1967, Note on Algorithm 2, Algorithm 16 and Algorithm 17,
Comp. J. 9, 414. (5.3)

Palmer, J. R., 1969, An improved procedure for orthogonalising the search vectors
in Rosenbrock’s and Swann’s direct search optimization methods, Comp. J. 12,
69. (7.5}

Parlett, B. N., 1971, Analysis of algorithms for reflections in bisectors, SIAAM Review
13, 197-208. (7.4)

Pearson, J. D., 1969, Variable metric methods of minimization, Comp. J, 12, 171—
178. (7.1}

Pearson, J. D., see McCormick and Pearson {1969).

Peckham, G., 1970, A new method for minimizing a sum of squares without cal-
culating gradients, Comp. J. 13, 418-420. (7.1)

Peters, G., and Wilkinson, J. H., 1969, Eigenvalues of 4x = ABx with band sym-
metric 4 and B, Comp. J. 12, 398404, (1.2, 4.1, 4.2)

BIBLICGRAPHY 787

Pierre, D. A., 1969, Optimization theory with applications, Wiley, New York. (5.4

Pietrzykowski, T., 1969, An exact potential method for constrained maxima, SIAM
. Numer, Anal. 6, 229, (7.1)

ike, 2.. C., Hill, 1. I>., and James, F. D., 1967, Note on Algorithm 2, Fibonacci
Search and on Algorithm 7, MINIX, Comp. J, 9, 416, (5.2)

Pike, M. C,, and Pixner, 1., 1967, Algorithm 2, Fibonacci Search, Comp. Bulletin
8, 147. (5.3

Pike, M. C., see Bell and Pike (1966),
Pixner, I., see Pike and Pixner (1567).
Pizzo, J. T., see Jacoby, Kowalik, and Pizzo (1971).

Powell, M. J. D,, 1962, An iterative method for finding stationary values of a func-
tion of several variables, Comp. J. 5, 147-151. (7.7, 7.9)

Powell, M. J. D, 1964, An efficient methed for finding the minimum of a function
of several variables without calculafing derivatives, Comp. J. 7, 155-162, (1.1,
1.2,54,7.1,73, 7.5, 7.6, 7.7, 7.8, 7.9

Powell, M. J. D)., 1965, A method of minimizing a sum of squares of non-linear
functions without calculating derivatives, Cemp. J. 7, 303-307. (7.1, 7.1

Powell, M. 7. D., 1966, Minimization of functions of several variables, in Walsh
(1966). (7.1)

Powell, M. J. D., 19684, On the calculation of orthogonal vectors, Comp. J. 11,
302-304. (7.5)

Powell, M. J. D., 1968b, 4 FORTRAN subroutine for solving systems of non-linear
equations, Report R-5947, AERE, Harwell, England. (7.1}

Powell, M. I, D., 1969a, A hybrid method Jfor nonlincar equations, Report TP 364,
AERE, Harwell, England. (7.1)

_v

Powell, M. I. D., 1969b, On the convergence of the variable metrie algorithm, Report
TP 382, AERE, Harwell, England. (7.1}

Powell, M. J. D., 1969¢, A theorem on rank one modifications to a matrix and its
inverse, Comp. J. 12, 288-290. (7.1

Powell, M. I.D., 1970a, A survey of numerical methods for unconstrained optimiza-
tion, SIAM Review 12, 79-97. (7.1

Powell, M, }. D, 1970b, 4 new algorithm for unconstrained optimization, Report
TP 393, AERE, Harwell, England. (7.1)

Powell, M. 1. D, 1970c, Rank one methods for unconstrained optimization, in
Abadie (1970). (7.1)

Powell, M. J. D., 1970d, 4 FORTRAN subroutine Sfor unconstrained minimization,
requiring first derivatives of the objective function, Report R-6469, AERTE,
Harwell, England. (7.1)

Powell, M. J. D., 1970e, Recent advances in unconstrained optimization, Report TP
430, AERE, Harwell, England. (7.1, 1.7}

Powell, M. J. D, see Fletcher and Powell (1963),

782 BIBLIOGRAPHY

Price, }. F., see Goldstein and Price (1967, 1971).
Quandt, R. E., see Goldfeld, Quandt, and Trotter (1968).
Rall, L. B. (ed.), 1965, Error in digital computation, Vol. 2, Wiley, New York.,

Rall, L. B., 1966, Convergence of the Newton process to multiple solutions, Numer,
Math. 9, 23-37. (7.1)

Rall, L. B., 1969, Computational solution of nonlinear operator equations, Wiley,
New York. (7.1)

Ralston, A., 1963, On differentiating error terms, Amer. Math. Monthly 70, 187-188.
(1.2, 2.1, 2.6)

Ralston, A., 1965, A first course in numerical analysis, McGraw-Hill, New York,
(1.2, 2.6}

Ralston, A., and Witf, H. 5. (eds.), 1960, Mathematical methods for digital computers,
Vol. 1, Wiley, New York. (7.1)

Ralston, A., and Wilf, H. S. (eds.), 1967, Mathematical methads for digital computers,
Vol. 2, Wiley, New York.

Ramsay, J. 0., 1970, A family of gradient methods for optimization, Comp. J. 13,
413-417. (7.1)
Reeves, C. M., see Fletcher and Reeves (1964).

Reinsch, C., see Golub and Reinsch {1970), Martin, Reinsch, and Wilkinson (1968),
Bowdler, Martin, Reinsch, and Wilkinson (1968).

Rhead, D. G., 1971, Some numerical experitnents on Zangwill’s method for uncon-
strained minimization, Working Paper 1CSI 319, Univ. of London. (7.3)

Rheinboldt, W. C., see Ortega and Rheinboidt (1970).

Rice, J. R., 1970, Minimization and techniques in nonlinear approximation, STAM
Studies in Numer. Anal. 2, 80-98. (7.1)

Richman, P. L., 1968, €-calculus, Report CS 103, Stanford Univ. (1.2, 5.3)

Rivlin, T. 1., 1970, Bounds on a polynomial, J. Res. NBS T4B, 47-54. (1.2, 6.1)

Robbins, H., 1952, Some aspects of the sequential design of experiments, Bull.
Amer. Math, Soc. 58, 527-536. (1.2)

Rosen, J. B., 1960, The gradient projection method for nonlinear programming.
Part 1: Linear constraints, J. SIAM §, 181. (7.1)

Rosen, J. B., 1961, The gradient projection method for nonlinear programming.
Part 2: Nonlinear constraints, J. STAM 9, 514, (7.1)

Rosen, J. B., and Suzuki, S., 1965, Construction of nonlinear programming test
problems, Camm. ACM 8, 113. (7.1)

Rosenbrock, H. H., 1960, An automatic method for finding the greatest or least
value of a function, Comp. J. 3, 175-184. (6.8, 7.5, 7.7, 7.9)

Roth, B., see Freudenstein and Roth {1963).

Ryan, D. M., see Osborne and Ryan (1970, 1971), Kowalik, Oshorne, and Ryan
(1969),

Sargent, R. W. H., see Murtagh and Sargent {1969, 1970).

Satterthwaite, E., see Bauer, Becker, and Graham (1968).

BIBLIQGRAPHY 183

Saunders, M., see Golub and Saunders (1969), Bartels, Golub, and Saunders
(1970).

Schréder, E., 1870, Uber unendlich viele Algorithmen zur Auflésung der Gleich-
ungen, Math. Ann. 2, 317-365. (3.1}

Schubert, L. K., 1970, Modification of a quasi-Newton method for nonlinear equa-
tions with a sparse Jacobian, Muth. Comp. 24, 27-30. (1.1}

Shah, B, V., Bughler, R.], and Kempthorae, O., 1964, Some algorithms for
minimizing a function of several variables, SIAM J. Appl. Marh. 12, 74-92.
(7.1

Shanno, D. F., 1970a, Parameter selection for modified Newton methods for func-
tion minimization, ST4M J. Numer, Anal. 7,366-372. (7.1)

Shanno, D. F., 1970b, An accelerated gradient projection method for linearly
constrained nonlinear estimation, ST4M J. Appl. Math. 18, 322-334, (7.1)

Shanno, D. F., and Kettler, P. C., 1963, Optimal conditioning of quasi-Newton
methods, Center for Math. Studies in Business and Economics Report 6937,
Univ. of Chicago. (7.1)

Smith, C. S., 1962, The automatic computation of maximum likelihood estimates,
NCB Sci. Dept. Report SC 846/MR/40. (7.1, 7.3)

Smith, L. B., see Golub and Smith (1967).

Sobel, 1., 1970, Camera motdels and machine perception, Stanford Artificial Intelli-
gence Report AIM-121. (7.7)

Sorensen, H. W., 1969, Comparison of some conjugate direction procedures for
function minimization, J. Franklin Institute 288, 421, (7.1)

Spang, H. A., 1962, A review of minimization techniques for nonfinear functions,
STAM Review 4, 343-365. (7.1)

Spiith, H., 1967, The damped Taylor series method for minimizing a sum of squares
and for solving systems of nonlinear equations, Comm., ACM 10, 726-728. (7.1)

Spendley, W,, Hext, G. R., and Himsworth, F. R., 1962, Sequential application of

simplex designs in optimization and evolutionary operation, Technomeirics 4,
441, (7.1)

Sprouli, R., see Swinehart and Sproull {1970).

Stewart, G. W., 1967, A modification of Davidon’s minimization method to accept
difference approximations of derivatives, J. ACM 14, 72-83. (1.1, 1.2, 7.1,
7.7, 17.8)

Stiefel, E. L., see Hestenes and Stiefel (1952).

Stoer, J., 1971, On the numerical solution of constrained least squares problems,
SIAM J. Numer. Anal. 8, 382-411. (7.0

Sugie, N., 1964, An extension of Fibonaccian searching to multidimensional cases,
TEEE Trans. Control AC-9, 105, (6.7

Suzuki, S., see Rosen and Suzuki {1963).

Swann, W. H., 1964, Report on the development of a new divect search method of
optimization, 1CI Ltd. Cent. Inst. Lab. Research Note 64/3. (1.2, 7.1, 7.5
Swann, W, H., see Box, Davies, and Swann (1969).

184 BIBLIOGRAPHY

Swinehart, D., and Sprouli, R., 1970, SA/L, Stanford Artificial Intelligence Project
Operating Note 57.1. (7.7)

Takahashi, I., 1965, A note on the conjugate gradient method, Information Pro-
cessing in Japan 5, 45-49. (7.1)

Thieleker, E. A., see Clark, Cody, Hillstrom, and Thieleker (1967).

Tornheim, L., 1964, Convergence of multipoint iterative methods, J. ACAM 11,
210-220. (3.2)

Traub, I F., 1964, Irerative methods for the solution of equations, Prentice-Hall,
Englewood Cliffs, New Jersey. (2.2, 3.1, 3.2, 4.5)

Traub, J. F., 1967, The solution of transcendental equations, in Ralston and Wilf
(1967). (3.1, 3.2}

Trotter, H. F., see Goldfeld, Quandt, and Trotter (1968).

Tzschach, H. G., see Kiinzi, Tzschach, and Zehnder (1968).

Vitale, P. A., see Flanagan, Vitale, and Mendelsohn (1969).

Vogl, T. P, see Lavi and Vogl (1966).

Yoigt, R. G., 1971, Orders of convergence for jterative procedures, SIAM J. Numer.
Anal. 8, 222-243. (3.2, 7.1)

Wall, 2., 1956, The order of an iteration formula, Marh, Comp. 10, 167168, 3.2

Walsh, I, (ed.), 1966, Numerical analysis: an introduction, Academic Press, New
York.

Wells, M., 1965, Algorithm 251, Function minimization, Comm. ACM 8, 169-170,
(7.1}

van Wijngaarden, A., Zonneveld, J. A., and Dijkstra, E. W., 1963, Programs
AP200 and AP230 de seric AP200, in Dekker {1963). (1.2, 4.1

Wilde, D. J., 1964, Optimum secking methods, Prentice-Hall, Englewood Cliffs,
New Jersey. (1.2,4.5,5.3,5.7, 7.1, 7.5

Wilde, D. J., and Beightler, C. 5., 1967, Foundations of optimization, Prentice-Hail,
Englewood Cliffs, New Jersey. (7.1}

Wilde, D. J., see Avriel and Wilde (1966).

Wilf, H. 8., see Ralston and Wilf (1960, 1967).

Wilkinson, J. H., 1963, Rounding errors in algebraic processes, HMSO, London.
(42,6.3,7.2)

Wilkinsom, J. H., 1965a, The algcbraic eigenvalue problem, Oxford Univ. Press,
Oxford. (7.2, 7.4)

Wilkinson, J. H., 1965b, Error analysis of transformations based on the use of
matrices of the form I-2ww in Rail (1965). (7.4)

Wilkinson, I. H., 1967, Twe algorithms based on successive linear interpolation,
Report CS 60, Computer Sci. Dept., Stanford Univ. (1.2, 4.1,4.2)

Wilkinson, J. H., 1968, Global convergence of the QR algorithm, in Proceedings of
IFIPS Congress (Edinburgh, 1968). (7.4)

Wilkinson, T. H., see Peters and Wilkinson (1969}, Golub and Wilkinson (19663,
Martin, Reinsch, and Witkinson (1968), Bowdler, Martin, Reinsch, and Wilkin-
son {1968},

BIBLIOGRAPHY 185

Winfield, D. H., 1967, Function minimization without derivatives by a sequence of
quadratic programming problems, Report 537, Engineering & Applied Physics
Division, Harvard Univ, (7.1)

Winograd, $., and Wolfe, P, 1971, Optimal iterative processes, Report RC3511,
IBM T. J. Watson Research Lab., Yorktown Heights, New York. (4.5)

Wirth, N., and Hoare, C., 1966, A contribution to the development of ALGOL,
Comm. ACM 9, 413-431. (1.1,44, 5.6, 6.6, 7.9

Witzgall, C., 1969, Fibonacei search with arbitrary first evalugtion, Report D -82—
0916, Boeing Scientific Research Labs., Seattle, Washington. (1.2, 5.3, 5.4)

Wolfe, P., 1959, The secant method for simultaneous non-linear equations, Cowmmn,
ACM 2, 1213 (7.1)

Wolfe, P., 1963, Methods of nonlinear programming, in Recent advances in nonlinear
programming, edited by R. 1. Graves and P. Wolfe, McGraw-Hill, New York.
(7.1)

Wolfe, P., 1969, Convergence conditions for ascent methods, S/AM Review 11,
226-235. (1.1)

Wolfe, P., 1971, Convergence conditions for ascent methods IF: some corrections,
STAM Review 13, 185-188. (7.1)

Wolfe, P., sce Crowder and Wolfe (1971), Winograd and Wolfe (1971),

Zadeh, L. A, (ed.), 1969, Computing methods in optimization problems, Vol. 2
Academic Press, New York. (7.1)

Zangwill, W. 1., 1967a, Minimizing a function without calculating derivatives,
Comp. J. 10, 293-296, (7.1, 7.3)

Zangwill, W, 1., 1967b, Nonlinear programming via penalty functions, Memy, Sei.
13, 344-358. (7.1}

Zangwill, W. 1., 1969a, Nonlinear programming. a unified approach, Prentice-Hall,
Englewood Cliffs, New Jersey. (7.1)

Zangwill, W. L, 1969b, Convergence conditions for nonlinear programming
algorithms, Mgmr. Sei. 16, 1. (7.1)

Zehnder, C. A, see Kiinzi, Tzschach, and Zehnder (1968).

Zeleznik, F. J., 1968, Quasi-Newton methods for nonlinear equations, J. 4ACAM
15, 265-271. (7.1)

Zonneveld, J. A, see van Wijngaarden, Zonneveld, and Dijkstra (1963).

Zoutendiik, G., 1960, Methods of feasible directions, Elsevier, Amsterdam and New
York. (7.1)

Zoutendijk, G., 1966, Nonlinear programming: a numerical survey, SI4M J.
Control 4, 194-210. (7.1)

5

APPENDIX

This Appendix contains FORTRAN translations of the ALGOL 60
pracedures zero, localmin, and glomin given in Sections 4.6, 5.8, and 6.10.
The FORTRAN subroutines follow the ALGOL procedures as closely as -
possible, and have been tested with a FORTRAN H compiler on an
IBM 360/91 computer.

187

188

10

20

30

40

50

60

70
80

90

190

110

123
130

140G

APPENDIX

A FORTRAN TRANSLATION OF THE ALGOL PROCEDURE ZERD.

SEE PROCEDURE ZERO, SECTION 4.6y FOR CUOMMENTS ETC.
REAL FUNCTION ZERO (A, By MACHEP, T, F}

REAL ArByMACHEP yT4F 3 SA+SBsC oD EsFALFBFC.TOL MiPyQyR+5S
SA = A

SB = B
FA = F(SA)

FB = F(SB)

C = SA

FC o= Fa

E = 58 - SA

D =E

[F EABS{FCY.GE.ABS{FB)) 60 TO 30
54 = 5B

s8 = ¢

C o= 5A

FA = FB

B o= FC

FC = FA

TOL = 2.0%MACHEP®ABSISB) + T
M = D.5%(C - 381

IF ({ABS{MI.LE.TOL) .OR. (FR.LEQ.C.O)) GO TG 140
IF ({ABSIE).GE.TOL} JANDL{ABSIFA) .G ABS(FB)I) GO TD &0
E=M

D=E

GG TO 100

S = FB/FA

IF (SAWNE.CY GO TO 50

P o= 2,0%MxS

Q= 1.0~ 5

G0 TO 80

= FAJFC

= FB/FC

= S*(2.0%ME06{Q - R) — (SB - SAFE{R - 1.0}
= {0 - 1.0VR(R — 1,0)%(5 - 1.0)

F {P.LELO.O) GO TG 7O

= -0

T0 8O

-p

= E

=D

F ({2.0%P.GEL3.0%M¥Q-ABS(TOL*Q) } LOR. (P.GELABS(D.5%5%Q1)) GO TO 90
= P/0

o TO 100

= M

E

SA = SB

FA = FB

IF {ABS(D}.LE.TOL} GO TG 110

SE = SB + D

60 TO 130

IF (M.LE.0.0) GO 70 120

S8 = SB + TOL

ommﬂmmmngn—oﬂx‘o
h

[}

GO TO 130
$8 = 5B — TOL
FB = F{581

IF {{FB.GT.U.01,ANDL(FCLGTL0.0F) GO TO 10
IF (IFB.LE.O.0Y.ANDWIFCLLELGLO)) GO TO 10

GO TC 20
IERG = 5B
RETURN
END

A FORTRAN TRANSLATION OF THE ALGOL PROCEDURE LOCALMIN.

SEE PROCEDURE LOCALMIN, SECTION 5.8, FOR COMMENTS ETC.

REAL FUNCTIGN LOCALM (Ay By EPSy Ty F,s X1}

REAL AsBsEPS TyFypXaSAsSBrDsErMyPaQeRyTOL T2 UV oWsFUsFVyFWeFEX

10

20

40

50

a0

70
80
G0

100

110

120

130
140

150

160G

APPENDIX 789

SA = A

SB = 8

X = SA # 0,3B1966%{58 - SA}
W o= X

V= W

E = 0,0

FX = F{X)

FW = FX

FV = FW

M = 0.5%(SA + SB)

TOL = EPS*ABS(X] + T

T2 = 2.0%70L

LF [ABSUX-M).LE.T2-0.5%(SA-5A1) GO 70 190
R = 0.0

2 =R

P =9

[f (ABS{E}.LE.TOL) GO TO 40

Ro= {X ~ Wi%[FX - FY)

0= (% - VI={FX ~ FW)

P o= {X — VI®*Q - (X - WI*R

G = 2.0%(Q ~ R)

IF {Q.LE€.0.0) GO TO 20

p o= wp

60 TO 30

0 = -0

R = E

E =0

[F {ABS(P).GE.ABSIO.5%0%RI} GO TO 60
IF {(PLLE,Q%(SA-X1) DR, (P.GE.Q*(SH-X))} GD O &0
0 = p/Q

U=X+0D

IF €(U-SA.GE,T21.AND.(SB-ULGE.T21} 6O TO 90
IF [X.GE.M) GO TO 50

D = TOL

GG TO 90

D= -TOL

G0 T3 90

IF (X.GE.M} GO TO 70

E =SB - X

60 TO a0

E o= SA - X

D = 0.381966%E

IF (ABS{DI.LT.TOL) GO TO 100
U=¥%+o0D

GO TO 120

IF (D.LE,0.0) GO TO 110

U= x + T0L

GO 10 izo
U= X - T0OL
FU = F{U}

IF (FULGT.FX) GO TO 150
IF (U.GE.X) 50O TO 130

5B = %

GO TO 40
SA = X
Vo= W

FV = Fi

W = X

FW = FX

X = U

X = FU
GG TO 10
[F (U.GE.X} GO 7O 160
54 = U

GO TG 170
5B = u

190

170

180

190

ic
20

30

40

50

APPENDIX

IF {{FU.GT.FH}.AND.{W.NE.X)} GO TO 180
V=¥

FV = FW

W=u

FW = Fu

GG TO 10

IF {iFULGT.FYILAND. (VANELX) LAND.IV.NELW)) GO TO 10
v=uU

FV = FU

G4 T3 10

LOCALM = FX

RETUAN

END

A FORTRAN TRANSLATEON OF THE ALGOL PROGCEDURE GLOMIN.

SEE PROCEDURE GLOMIN, SECYION 6410+ FOR COMMENTS ETC.

REAL FUNCTION GLOMIN (A, By Cy M, MACHEPs E, Fs Fy XI

REAL A¢B4CeMyMACHEP 4E3T4F 4 X,45C

REAL AC+A21A3+D0,DL,D2+HeMZ 3P 4Q+QSyRySeY,¥Y0,Y14Y2 »¥3:¥By204,71,12
INTEGER K

AO = B

X = A0

A2 = A

Y0 = F{B)
YB = YO
¥2 = F{A)
Y = ¥2

[F {(Y0.GE.Y} GO TO 10
¥ = Y0
GG TO 20
X = A

IF ((H LE.Q0)eOR.{A.GELBI} SO TO 140

M2 % 0.5%{1.0 + 16.0%MACHEP}*M

SC =¢C

IF {[SC.LEA}.ORW(SC.GELB}) SC = 0.5%(A + B)
¥l = FISC)

K =13

D0 = A2 - 5C

H = 0.B818:818

IF {Y1.GE.Y) GO TO 30

X = 5¢C

¥ =¥

Dl = AZ — AO

02 = SC -~ AO

2 = B — AZ

I0 = ¥2 - ¥1

Il = ¥2 ~ ¥3

R = DI1*D1*I0 — DO*DO*7]
P =R

Q5 = 2.C0%¥(DO*IL — D1%7Q}
Q = QS5

1IF U{K.GT.100000) AND.(Y.LT.Y2)]) GO TO 5C

IF (Qe{R*(¥YB-Y2VI+Z2%QR({Y2Y}+T)}, GELZ2%M2%RE(I2*Q-R}) GO TO 50
A3 = A2 + R/

¥3 = F{A3}

1f {¥3.GE.Y) GU TO 50

X = A3

¥ = ¥3

ASSUME THAY 1611%K DOES NOT OVERFLOW.
K = MDD {l6li*K, 1048576)

Q= 1.0

R = (B ~ A k0.00001*FLOAT{K)

[F (R.LT.Z2) GO TO 40

= M2:D0*01%D2

= SQRT {{{Y¥Y2 - Y} + Ti/M2}

0.5%{1.0 + H}

H¥{P + Z.O%R%5}

R + 0.5%Q%S

OV I y»e
L}

&0
70

80
a0

100
110

120

130

140G

APPENDIX

Ro= —0.5%(00 ¢ (Z0 + 2,01%E)/(DO*M2Y)
IF {(R<GESANDLIDDO.GEL0.00) GO ¥O 60
R o= A2 ¢ 5§

GO YO 70

R = 42 + R

IF (P*Q.LE.D0.0) GO TD 89

A3 = A2 + P/

GO TQ 99

A3 = R

IF {A3.LT.R) A3 = R

IF [A3.LY¥.8) GO FO 1G0

A3 = B

Y3 = ¥YB

GO ¥ t10

¥3 = FLA3)

[F (¥3.GE.Y) GO TO 120
X = A3

Y = ¥3

DO = A3 — AZ

{F {A3.LE.R) GO TG 130

Po= 2.0%0¥2 — ¥3)/7(M%00)

PE {ABSIPH.GE.(L.0+9,0%MACHEP)*D0) GO TO 130

IE {0.5%M25{D0%DO+P*P) (L EL(Y2-YI+{Y3~¥)42,0%T} GO TO 130
A3 = 0.5%{A2 + A3

H = 0.9%H
GO T 90
IF {A3.GE.B) GO TO 140
AQ = 5C

SC = A2

A2 = A3

Y0 = Y1

Yi = Y2

Y2 = ¥3

GO TO 3¢
GLOMIN = ¥
RETURN

END

187

INDEX

ALGOL 60, 3, 58-60, 79-80, 132~15
ALGOL W, 3, 54, 76, 103, 110, 137,
155-67
Algorithm, optimal, 6, 47, 78, 100-103
parailel, 57, 78-79, 124
Analyticity of f, 29
Asymptotic constant, 21-22, 32, 34

Barrier function, 117

Base, 51, 92

Beale’s function, 138, 140

Bo. 27, 29, 32, 34-35, 41, 46, 50
Ba,w» 26-28

B, 40-42, 46

Bisection, 1, 2, 6, 47, 49, 50, 53-57
Box’s function, 138, 141

C1 function, 2, 46, 47

Cancellation, repeated, 35

Cauchy’s method, 117-19

Chebyquad function, 138, 142, 145-47,
151-54

Condition number, 123, 131, 137, 138, 143

Confluent divided difference, 10

Conjugate directions, 124-28

Conjugate pradient method, 138, 119, 128

Constrained minimization, 117

Convergence, acceleration, 6, 29, 40-42,
50-51

linear, 22, 24, 49, 72, 119, 141

193

Convergence, order, 21-22, 28-46, 54, 57,
76, 79
quadratic, 8, 119, 124, 127, 143
rate, 5, 97-100
strictly superlinear, 22, 26-29
sublinear, 22, 50
superlinear, 2, 22, 24, 26, 53-34, 76, 119,
155
to a minimum, 75, 96-97, 155
lo a zero, 22, 53
Convex function, 6, 47, 155
Cox’s algorithm, 51, 56-57
Critical section, 93
Cube function, 138, 140

Daviden-Fletcher-Powell method, 118,
119

Davies, Swanmn and Campey method, 119,
143, 148-54

Dekker’s algorithm, 6, 48-50, 55-57, 72

é-monotonicity, 69

d-unimodality, 7, 64, 68-71, 73

Descent property, 120

Difference, divided, 4, 5, 9-11, 13-135, 45

Difference equation, 29, 31

Difference, finite, 62, 118§

Discarding criterion, 127, 135, 136, 154

Discontinuous function, 47, 63-65

Distinet points, assumption, 10, 20

Butch algorithm, 6, 48

184 INDEX

Efficiency of algorithm, 103-5

Flementary functions, 112

Elliptic difference operators, 84, 106

Elliptic equations, 81

e-calculus, 7, 68

Error, derivative, 4, 9, 1518
recurrence relation for, 29, 30, 43

Examples, numerical, 43-45, 5456, 76-78,

103-5, H10--11, 137-54
Exponent, extended, 52-53
Extrapolation aleng valley, 134

61-80

Factorial, fractional, 11
Fibonacci search, 68, 71, 72, 76-78
File scarching, 57
Fletcher-Reeves method, 118, 119, 128
Floating-point arithmetic, 51-53, 63-65, 68,
71, 74, 76, 92-97, 123
overflow, 51-53, 55, 59, 156
underfiow, 48, 50, 59, 156
FORTRAN, 3, 8, 187-9]
FORTRAN H, 187

vgr 27, 32-37
Favr 26-27
Giobal minimum, 2, 3, 7, 8, 61, 81-116
Glomin, function, 190

precedure, 112
Gllomin2d, procedure, 114
Golden section search, 2, 6-7, 68, 71, 72,

76-78

Goldstein-Price methed, 119
Greenstadt’s method, §
Guard digits, 92, 95

Helix function, 138, 140, 144, 149
Hessian matrix, 8, 119, 122, 124, 129-30
Hilbert function, 137, 138, 143

Hilbert matrix, 137, 143

Householder’s reduction 130-31
Houscholder transformation, 130

IBM 360 computer, 3, 45, 48, 54, 76, 92,
103, 110, 134, 137, 187
Infinite domain, 112
Inflexion point, finding, 5, 20, 43
Interpolating pelynomial, 10-20
Interpolation, Hermite, 10, 20
inverse quadratic, 6, 50-51, 54
Lagrange, 4, 10-13, 15-20
linear, 1, 2, 6, 20, 34, 49, 50, 72, 74
parabolic, 2, 6, 20, 34, 87-89, 134, 136
successive, 5, 19, 20, 34
Inverse iteration, 131

IR/ X900 0., 00, 10

Jackson’s theorem, 36
Jarratt’s method, 5, 20, 45, 62

LC", 10
Least squares, 12122, 137
Lehmer-Schur test, 27
Level set, 120
Linear constraints, 117
convergence, 22, 24, 49, 72, 119, 141
dependence, 125-28
interpolation, 1, 2, 6, 20, 34, 49, 50, 72,
74
search, 61, 136, 139
Lipschitz condition, 4, 9-12, 15, 28, 34, 35
Lip e, 10
Local minimum, 2, 3, 6-8, 61-80, 116
Localm, function, 189
Localmin, procedure, 79

Machine precision, 51, 92

Maximum principle, 84, 106

Minimization, constrained, 117
derivative methods, 117-18
non-derivative methods, 118-19
sums of squares, 121-22, 141
unconstrained, 116-67

Mirimurm, constrained, 117
global, 2, 7, 61, 73, 81-116
focal, 61-80, 11667
one variable, 6180, 81105, 11114
several variables, 107-12, 116-67
uncanstrained, 116-67

Modulus of continuity, 10, 14, 30, 35-36, 82

Monotonic sequence, 24, 26, 50

Newton’s identities, 11
Newton’s method, 20, 63
Non-linear constraints, 117
Non-random search, §9

One-dimensional search, 61, 136, 139
Order, exact, 29-39
strong, 21, 32, 34
weak, 21, 28, 35, 41, 54, 76
Order of convergence, 21-22, 28-46, 54, 57,
76,79
QOrthogonality, 128, 131
Ostrowski’s Theorem 12.1, 31
Overflow, floating-point, 51-33, 55, 59, 156

Parallel algorithm, 57, 78-79, 124
Parameter fitting, 121-22, 137
PDP 10 computer, 137

Penalty function, 117

Powell's criterion, 8, 127, 135, 154
function, 138, 140-41
method, 3, 8, [19, 124-27, 13236, 148
55
Praxis, procedure, 155-67
Principal axes or vectors, 8, 128-31
Projection methads, 117
Pseudo-random search, 89, 113

QR algorithm, 130-31
Quadratic convergence, 8, 119, 124, 127
133-34, 136, 143, 154

1

Radix, 51, 92

Ralston’s theorem, 4. 9-10, 15

Random search, 89, 113

Random step, 133, 136

Recurrence relation, 29-30, 38

Relative machine precision, 51, 92

Restduals, use of, 121-22

Resolution ridge, 132-33

Restarting, 128

Fro 43

Fry 43

Rolle’s theorem, 13, 29

Rosenbrock’s function, 111, [38-40, 144
148

method, 119

Rounding errors, 1-3, 7, 45, 51-53, 63-065,

68, 71, 74, 76, 92-97, 123, 137

Ll

SAIL, 137

Scaling, 124, 131-32, 139

Searching ordered file, 57

Singular function, 138, 141, 145, 150

INDEX 195

Singular valuc decomposition, 8, 130
Smith's method, 124

Square root, error in, 92

Stability, 120

Steepest descent, 11719

Stewart’s method, 3, 8, 118-19, 148-55
Stopping criterion, 49, 74, 136-3§
Strict d-monotonicity, 69

Symbolic computation, 112

Systems of equations, 121-22

Taylor's theorem, 4, 9, 11--14, 122
Toeplitz lemma, 31

Tolerance, 51, 73, §1-84, 92 {12, 114, 136
Tridiag function, 138, 14243

Turning point, finding, 5, 34, 4346, 62

Unconstrained minimization, 116-67

Underflow, floating-point, 5i-53, 55, 59,
156

Unimodal function, 7, 65-7]

Variable metric methed, 118, 119

Watson’s function, 138, 142
w(f;8), 10
Wood's function, 138, 141-42

Zangwil’s method, 127
Zero, division by, 51
finding, 1-2, 6, 34, 43-46, F7-60, 62, 121
function, 188
muitiple, 24, 49-350
procedure, 58
Zero of fre=13 5, 19-46
Zere2, procedure, 59

rpb011 20/04/10 3:30 PM

Errata for Algerithms for Minimization without Derivatives
(Prentice-Hall edition)

o Page 80, line I1,"p < g x (a - x)" should be "p > g x (a - x)".

The corresponding Fortran code on page 189 is correct. Thanks to Jason M. Lenthe for finding this
error.

® Page 163, immediately before the line reading
: COMMENT: TRANSPOSE V FOR MINFIT;
insert the following:

FOR J := 1 UNTIL N DO V(LJ) := SL*V(1,]) END END;

