M.Blondel O.Teboul Q.Berthet J. Djolonga

March 12th, 2020 GO gle Research

Background

Proposed method
Experimental results

Background

Proposed method

Experimental results

DL as Differentiable Programming

DL as Differentiable Programming

Deep learning increasingly synonymous with differentiable programming

"People are now building a new kind of software
by assembling networks of parameterized
functional blocks (including loops and
conditionals) and by training them from examples

| using some form of gradient-based optimization.”
Yann LeCun, 2018

DL as Differentiable Programming

Deep learning increasingly synonymous with differentiable programming

"People are now building a new kind of software
by assembling networks of parameterized
functional blocks (including loops and
conditionals) and by training them from examples

| using some form of gradient-based optimization.”
Yann LeCun, 2018

Many computer programming operations remain poorly differentiable

In this work, we focus on sorting and ranking.

Sorting as subroutine in ML

NN Trimmed

(1) select neighbours regreSSiOn

(2) majority vote ignore large errors

Classitiers

select top-k activations

MoM
Ranking / S()I‘ting estimators
O(n log n)

Learning to rank

NDCG loss and oth iDti 1St1
oss and others Descriptive statistics

Empirical distribution function

Rank‘based stati StiCS quantile normalization

data viewed as ranks

Slide credit: Marco Cuturi

Sorting

0, 6, 6, 0,
—_ — — — —

Argsort (decending) 6((9) = (2,4,3,1)

Sorting

0, 6, 6, 0,
—_ — — — —

Argsort (decending) 6((9) = (2,4,3,1)

Sort (descending) S(H) = 95(9)

Sorting

0, 03 0, 0,
—— — — —

Argsort (decending) 6(6’) = (2,4,3,1)

Sort (descending) S(H) é 90(9) — (92, 64, (93, 91)

Sorting

0, 6, 6, 0,
—_ — — — —

Argsort (decending) 6((9) = (2,4,3,1)

Sort (descending) S(H) é 90(9) — (92, 64, (93, 91)

3
2 -
P
= / piecewise linear
1 -
induces
oL , , non-convexity
—5 0 5

Ranking
0, 0, 0, 6,

Ranks 7’((9) = 0_1(9)

Ranking
0, 0, 0, 6,

Ranks }"(Q) 2 0_1(9) — (4,1,3,2)

Ranking

0, 6, 6, 0,
—— — — —

Ranks I/’(@) 2 0_1(9) — (4,1,3,2)

4 -
3 discontinuous
D
= : :
2 - piecewise constant
1 -

Related work on soft ranks

Soft ranks : differentiable proxies to “hard"” ranks

Related work on soft ranks

Soft ranks : differentiable proxies to “hard"” ranks

e Random perturbation technique to compute expected
ranks in O(n3) time [Taylor et al., 2008]

Related work on soft ranks

Soft ranks : differentiable proxies to “hard"” ranks

e Random perturbation technique to compute expected
ranks in O(n3) time [Taylor et al., 2008]

e Using pairwise comparisons in O(n2) time [Qin et al., 2010]

() 21+) 1[0, < 0]
i7]

Related work on soft ranks

Soft ranks : differentiable proxies to “hard"” ranks

e Random perturbation technique to compute expected
ranks in O(n3) time [Taylor et al., 2008]

e Using pairwise comparisons in O(n2) time [Qin et al., 2010]

() 21+) 1[0, < 0]
7]
e Regularized optimal transport approach and Sinkhorn in
O(T n?) time [Cuturi et al., 2019]

Related work on soft ranks

Soft ranks : differentiable proxies to “hard"” ranks

e Random perturbation technique to compute expected
ranks in O(n3) time [Taylor et al., 2008]

e Using pairwise comparisons in O(n2) time [Qin et al., 2010]
() 21+) 1[0, < 0]
i7]
e Regularized optimal transport approach and Sinkhorn in

O(T n?) time [Cuturi et al., 2019]

None of these works achieves O(n log n) complexity

Proposed method

Our proposal

Our proposal

® Differentiable (soft) relaxations of s(8) and r(0)

Our proposal

® Differentiable (soft) relaxations of s(8) and r(0)

® Two formulations: L2 and Entropy regularised

Our proposal

® Differentiable (soft) relaxations of s(8) and r(0)
® Two formulations: L2 and Entropy regularised

® "Convexification” effect

Our proposal

® Differentiable (soft) relaxations of s(8) and r(0)
® Two formulations: L2 and Entropy regularised
® “Convexification” effect

® Exact computation in O(n log n) time (forward pass)

Our proposal

® Differentiable (soft) relaxations of s(8) and r(0)

® Two formulations: L2 and Entropy regularised

® “Convexification” effect

® Exact computation in O(n log n) time (forward pass)
® Exact multiplication with the Jacobian in O(n) time

without unrolling (backward pass)

Strategy outline

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes

— Turn algorithmic function into an optimization problem

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes
— Turn algorithmic function into an optimization problem

2. Introduce regularization in the LP

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes
— Turn algorithmic function into an optimization problem
2. Introduce regularization in the LP

— Turn LP into a projection onto convex polytopes

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes
— Turn algorithmic function into an optimization problem
2. Introduce regularization in the LP

— Turn LP into a projection onto convex polytopes

3. Derive algorithm for computing the projection

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes
— Turn algorithmic function into an optimization problem
2. Introduce regularization in the LP

— Turn LP into a projection onto convex polytopes

3. Derive algorithm for computing the projection

— |deally, the projection shoud be computable in the same cost as the original function...

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes
— Turn algorithmic function into an optimization problem

2. Introduce regularization in the LP

— Turn LP into a projection onto convex polytopes

3. Derive algorithm for computing the projection

— |deally, the projection shoud be computable in the same cost as the original function...

4. Derive algorithm for differentiating the projection

Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes
— Turn algorithmic function into an optimization problem
2. Introduce regularization in the LP

— Turn LP into a projection onto convex polytopes

3. Derive algorithm for computing the projection

— |deally, the projection shoud be computable in the same cost as the original function...
4. Derive algorithm for differentiating the projection

— Could be challenging (argmin differentiation problem)

Strategy outline

Cuturi et al. [2019] This work

1.

LP

Strategy outline

Cuturi et al. [2019] This work
Birkhoft polytope Permutahedron
E E 1 (2,3,1)
¢((1,3,2)) ¢((2,3,1)) ‘o
(1, 3, 2) °
(3,2,1)
¢((3,2,1)) °

«p((l,@,sn B C RN P CR"

(1,2,3) @

E] Ej ®(3,1,2)
©((2,1,3)) ©((3,1,2)) (2’:’3) /

1. LP

2. Regularization

Strategy outline

Cuturi et al. [2019] This work
Birkhoft polytope Permutahedron
2((1,3,2) ((2,3,1)) (231
® o (1,3, 2) °
(3,2,1)
90((37271)) []
\ n
e/ op C RAXR P CR
(1,2,3) @
®(3,1,2)
»((2,1,3)) @ ¢ »((3,1,2)) (2,:, 3)

Entropy L2 or Entropy

Strategy outline

Cuturi et al. [2019] This work
1. LP Birkhoff polytope Permutahedron
p((1,3,2)) ©((2,3,1) ot
[@ (1,3,2) o
(3,2,1)
v((3,2,1)) ®
‘ n
c2n g = RIX Y, P CR
(1,2,3) @
0(3,1,2\)
©((2,1,3)) @ e ~((3,1,2)) (2’:’ 3) /
2. Regularization Entropy L2 or Entropy

Pool Adjacent

| - inkh
3. Computation Sinkhorn Violators (PAV)

Strategy outline

Cuturi et al. [2019] This work
1. LP Birkhoff polytope Permutahedron
p((1,3,2)) ©((2,3,1) ot
[@ (1,3,2) o
(3,2,1)
@((3,2,1)) ®

c2n g = RIX Y, P cC R
(1,2,3) @

®(3,1,2)
©((2,1,3)) @ é »((3,1,2)) (2’:,3)

2. Regularization Entropy L2 or Entropy
. Pool Adjacent
: tati Sinkh
3. Computation inknorn Violators (PAV)
Backprop through Differentiate

4. Differentiation Sinkhorn iterates PAV solution

Permutahedron

P(w) = conv(iw : oc € 2}) C I

(2,3,1)
®

(1,3, 2)

(3,2, 1)

P(p) C R"

(1,2,3) @

®(3,1,2)

(2,1, 3)

P = (n,n—1,...,1)

Step 1: linear programming formulations

Step 1: linear programming formulations

Proposition

s(0) = arg max (y,p)
yEP(0)

P 2 (n,n—1,...,1)

Step 1: linear programming formulations

Proposition

s(0) = arg max (y,p)
yEP(0)

r(0) = arg max (y,—0)
YEZ(p)

P 2 (n,n—1,...,1)

Proof of the first claim

P, > pP,_1>...> 1= 0(0) = argmax(O_,p)

=

Proof of the first claim

P, > pP,_1>...> 1= 0(0) = argmax(O_,p)

=

s(0) = 6,

Proof of the first claim

P, > pP,_1>...> 1= 0(0) = argmax(O_,p)

=

s(0) = 6,

= arg max (6_,p)
0. : ceX

Proof of the first claim

P, > pP,_1>...> 1= 0(0) = argmax(O_,p)

=

s(0) = 6,

= arg max (6_,p)
0. : ceX

= arg max (y, p)
yEZ(6)

Proof of the first claim

P, > pP,_1>...> 1= 0(0) = argmax(O_,p)

=

s(0) = 6,

= arg max (6_,p)
0. : ceX

= arg max (y, p)
yEZ(6)

= arg max (y,p)
yES(0)

Step 2: introducing regularization

Step 2: introducing regularization

Quadratic regularization Q(y) 2 EH)’HZ

Py(z, w) £ arg max (y,z)
YEP (W)

Step 2: introducing regularization

Quadratic regularization Q(y) 2 EH)’HZ

Py(z,w) = arg max (y,z) = arg min ||y —z]|?
yEP(W) YESP (W)

Step 2: introducing regularization

Quadratic regularization Q(y) 2 EH}?HZ

Py(z,w) 2 arg max (y,z) = arg min ||y — z]||?
YEP (W) YEP(W)
Definition

SgQ(H) é PgQ(pa 9) — PQ(p/ga 9)

Step 2: introducing regularization

Quadratic regularization Q(y) 2 EH}?HZ

Py(z,w) 2 arg max (y,z) = arg min ||y — z]||?
YEP (W) YEP(W)
Definition

SgQ(H) é PgQ(pa 9) — PQ(p/ga 9)

roo(0) £ Po(—0,p) = Py(—0l¢, p)

Continuity and differentiability

Soft sort (Q)

— = ()
e=1
N2 o g=10 [
e ://
@ Y7
Uul__—-—l
N 7
V4
V4
V4
0 £ -
-5 0 5

Continuity and differentiability

Soft sort (Q)

— =)
e=1
| === =10 [/ 7/
| B 4
(7
_:-J
V4
V4
V4
V4
1 l 1
-5 0
6,

Soft rank (Q)

\

\

\

. N\
\
_—EO\

1\

——52

I_\

\
N -

-3 3 6

9

Continuity and differentiability

Soft sort (Q) Soft rank (Q)

4 I m m m
e=1 \
N2 oo =10 [=3 \
9 '// D \
O 'y O _
" 1- -// <2 - £=0 }\
/ e=1 L\
/ _
-—— =) \
0 1/ , 1 — -\.-
—3 0 5 3 0 3 6
92 61
Properties

sq and rqg are 1-Lipchitz continuous and

differentiable almost everywhere.

Effect of regularization strength €

Soft sorting Soft ranking
8, - 107

RN WP OO Jd 00 O O

10 10 102 102 107! 100

Effect of regularization strength €

Soft sorting Soft ranking
8, - 107

RN WP OO Jd 00 O O

10 10 102 102 107! 100
3 &

Properties

Converge to hard version when € < €, ..

Effect of regularization strength €

Soft sorting Soft ranking

RN WP OO Jd 00 O O

10 10 102 102 107! 100
3 &

Properties

Converge to hard version when € < €, ..

Collapse to a mean when & — o0

Effect of regularization strength €

Soft sorting Soft ranking
10-
9_
8_
7_
6_
5_
4 -
3_
2_
T T — T — T 1-.| r ———T T ——— T
100 101 102 102 10~ 10°
£ £

Properties

Converge to hard version when € < €, ..

Collapse to a mean when & — o0

Order preserving (paths don’t cross)

Regularization path

(2,3, 1)
rq(0) e
(1,3, 2)
r2q(0) (3,2, 1)
3Q (9) °
r100Q (0)
(1,2,3) @
®(3,1,2)
(2 : 3) v,

(2.9,0.1,1.2)

Collapse to a mean(p)1 when € = ©0

Step 3: Computation

Step 3: Computation

Reduction to isotonic regression

Proposition
PQ(Za W) — < — VQ(ZO-(Z)a W)g—l(z)

Vvo(s, w) Zarg min ||v— (s —w)||?
ViZ...2V,

Total time cost: O(n log n)

e.g. [Negrignho & Martins, 2014; Lim & Wright 2016]

Step 3: Computation

Reduction to isotonic regression

Proposition

PQ(Za W) = VQ(ZO-(Z)a W)g—l(z)

é arg min |[v — (s — w)||?
ViZ...2V,

dual solution Total time cost: O(n log n)

e.g. [Negrignho & Martins, 2014; Lim & Wright 2016]

Step 3: Computation

Reduction to isotonic regression
primal dual

relation
Proposition

PQ(Za W) —< — VQ(ZO-(Z)a W)g—l(z)
é arg min |[v — (s — w)||?
Vi=...2V,

dual solution Total time cost: O(n log n)

e.g. [Negrignho & Martins, 2014; Lim & Wright 2016]

Step 3: Computation

Boils down to solving v* = arg min ||v — u”2 Uu=s-w
ViZ...2V,

IBest, 2000}

Step 3: Computation

Boils down to solving v* = arg min ||v — u”2 Uu=s-w
ViZ...2V,

Pool Adjacent Violators (PAV): Finds a partition 1, ..., B

m

by repeatedly splitting coordinates. The worst-case cost is O(n).

IBest, 2000}

Step 3: Computation

Boils down to solving v* = arg min ||v — u”2 Uu=s-w
ViZ...2V,

Pool Adjacent Violators (PAV): Finds a partition 1, ..., B

m

by repeatedly splitting coordinates. The worst-case cost is O(n).

Ex: B, = {12} vi© = v = mean(uy, u,)
n=6
%B, = {3} v = mean(uz) = u;

By = {456} v =vI=v" = mean(uy, us, ug)

IBest, 2000}

Step 4: Differentiation

See also [Djolonga & Krause, 2017]

Step 4: Differentiation

Differentiate vpy(s,w) = arg min ||v — (s — w)||? w.rt. s and w
ViZ...2V,

See also [Djolonga & Krause, 2017]

Step 4: Differentiation

Differentiate vpy(s,w) = arg min ||v — (s — w)||? w.rt. s and w
ViZ...2V,

Proposition
Vs, w) B, 0 0
> 0 0 B,

B, £1/|%;| € RF™FL - je[m]

See also [Djolonga & Krause, 2017]

Step 4: Differentiation

Differentiate PQ(Z, W) w.r.t. zand w

Step 4: Differentiation

Differentiate PQ(Z, W) w.r.t. zand w

Proposition
0z — JQ(ZG(Z)’ W)a—l(z)
ov,(S, W)
Q ’
Jo(s,w) = [—
o(S; W) Y

Multiplication with the Jacobian in O(n) time and space (see paper)

Experimental results

Robust regression

Robust regression

Least squares (LS)
ith oss

1 « 1
in — Z' . £(w) 2 =(y, — NG
mv:n i & Z(w) (W) z(yz 8(X;))

Robust regression

Least squares (LS)
ith loss

1 al 2
min — lzzl cw) Ciw)= > Vi — 8u(X)

Soft Least trimmed squares (SLTS)

7 ith “soft sorted” loss

1
min Z Ciw) LE(w) £ [5,0((W)];

Robust regression

Least squares (LS)
ith loss

1 al 2
min — lzzl cw) Ciw)= > Vi — 8u(X)

Soft Least trimmed squares (SLTS)

7 ith “soft sorted” loss

1
min Z Ciw) LE(w) £ [5,0((W)];

e—>0 SLTS - LTS

Robust regression

Least squares (LS)
ith loss

1 al 2
min — lzzl cw) Ciw)= > Vi — 8u(X)

Soft Least trimmed squares (SLTS)

7 ith “soft sorted” loss

1
min Z Ciw) LE(w) £ [5,0((W)];

e—>0 SLIS > LTS ¢&— o0 SLTS — LS

0.700
0.675

0.650+
L 0.625-
o

& 0.600+
o 0.575-
0.550+
0.5254

0.500

Robust regression

Housing

Trimmed, sp
— Trimmed, s
- —- Ridge
—— Huber

~

0.1 0.2 0.3 0.4 0.5

Percentage of outliers

1.00

Bodyfat

0.951
0.90+
0.851
0.80+
0.751
0.70+
0.651

0.60

0.1 0.2 0.3 0.4 05

Percentage of outliers

Evaluation: 10-fold CV

0.58

0.57

0.561

0.551

0.54;

0.53

cadata

—_—
/_ _____
L
~
~

S

0.1 0.2 0.3 0.4 0.5
Percentage of outliers

Hyper-parameter selection: 5-fold CV

Top-k classification

£ [n] X R" — R_I_ Cuturi et al. [2019]

Ground Predicted
truth soft
ranks

Top-k classification

£ [n]xXR" - R,

Ground Predicted
truth soft
ranks

0.84 CIFAR-10
0.831
>
(©)
© 0.82]
)
(@]
O
©
$0.81
()}
|_
— e (log-KL)
0.801 g | | —— Cross-entropy
—— All-pairs
0.795 100 200 300 400 500 600

Epochs

Cuturi et al. [2019]

Test accuracy

Top-k classification

f: [n] X Rl’l —> R_l_ Cuturi et al. [2019]

Ground Predicted

truth soft
ranks
0.84 CIFAR-10 T ! | | CI 0
0.83
o
0.82- c
>
©)
©)
©
0.81] I
o
—— rg (log-KL)
0.801 | | | —— Cross-entropy
— All-pairs |
0.795 100 500 300 200 500 600 0 100 200 300 400 500 600

Epochs Epochs

Speed benchmark

Runtime comparison for one iteration (batch size: 128)

100

OoT

ro (L)

re (log-KL)
Cross-entropy
All-pairs

0 1000 2000 3000 4000 5000
Dimensions n

Label ranking experiment

1.0

Al
li= EHyi_f(xi)Hz Vi € &

Spearman's rank, correlation

kY
¥ 0.8-

JxX) s

< 0.6-

O
o (x))EM_ °®roll) |
0\ £0.2- o o rp(log-KL) | [
0.0

00 02 0.4 06 0.8 1.0

Without soft ranks f{x) = g(x)

Comparison on 21 datasets, 5-fold CV

Summary

Summary

® \\Ve proposed sorting and ranking relaxations with
O(n log n) computation and O(n) differentiation

Summary

® \\Ve proposed sorting and ranking relaxations with
O(n log n) computation and O(n) differentiation

® Key technigues: projections onto the permutahedron and
reduction to isotonic optimization

Summary

® \\Ve proposed sorting and ranking relaxations with
O(n log n) computation and O(n) differentiation

® Key technigues: projections onto the permutahedron and
reduction to isotonic optimization

® Applications to least trimmed squares, top-k classification
and label ranking

Summary

® \\Ve proposed sorting and ranking relaxations with
O(n log n) computation and O(n) differentiation

® Key technigues: projections onto the permutahedron and
reduction to isotonic optimization

® Applications to least trimmed squares, top-k classification
and label ranking

Preprint: Fast Differentiable Sorting and Ranking [arXiv:2002.08871]

Code: coming soon!

