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Deep learning increasingly synonymous with differentiable programming

"People are now building a new kind of software
by assembling networks of parameterized
functional blocks (including loops and
conditionals) and by training them from examples

| using some form of gradient-based optimization.”
Yann LeCun, 2018

Many computer programming operations remain poorly differentiable

In this work, we focus on sorting and ranking.



Sorting as subroutine in ML

NN Trimmed

(1) select neighbours regreSSiOn

(2) majority vote ignore large errors

Classitiers

select top-k activations

MoM
Ranking / S()I‘ting estimators
O(n log n)

Learning to rank

NDCG loss and oth iDti 1St1
oss and others Descriptive statistics

Empirical distribution function

Rank‘based stati StiCS quantile normalization

data viewed as ranks

Slide credit: Marco Cuturi
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Related work on soft ranks

Soft ranks : differentiable proxies to “hard"” ranks

e Random perturbation technique to compute expected
ranks in O(n3) time [Taylor et al., 2008]

e Using pairwise comparisons in O(n2) time [Qin et al., 2010]
() 21+ ) 1[0, < 0]
i7]
e Regularized optimal transport approach and Sinkhorn in

O(T n?) time [Cuturi et al., 2019]

None of these works achieves O(n log n) complexity
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Our proposal

® Differentiable (soft) relaxations of s(8) and r(0)

® Two formulations: L2 and Entropy regularised

® “Convexification” effect

® Exact computation in O(n log n) time (forward pass)
® Exact multiplication with the Jacobian in O(n) time

without unrolling (backward pass)
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Strategy outline

1. Express s(0) and r(0) as linear programs (LP) over convex polytopes
— Turn algorithmic function into an optimization problem
2. Introduce regularization in the LP

— Turn LP into a projection onto convex polytopes

3. Derive algorithm for computing the projection

— |deally, the projection shoud be computable in the same cost as the original function...
4. Derive algorithm for differentiating the projection

— Could be challenging (argmin differentiation problem)
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Cuturi et al. [2019] This work
1. LP Birkhoff polytope Permutahedron
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Backprop through Differentiate

4. Differentiation Sinkhorn iterates PAV solution



Permutahedron
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Step 2: introducing regularization

Quadratic regularization Q(y) 2 EH}?HZ

Py(z,w) 2 arg max (y,z) = arg min ||y — z]||?
YEP (W) YEP(W)
Definition

SgQ(H) é PgQ(pa 9) — PQ(p/ga 9)

roo(0) £ Po(—0,p) = Py(—0l¢, p)
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Continuity and differentiability

Soft sort (Q) Soft rank (Q)

4 I m m m
e=1 \
N2 oo =10 [ =3 \
9 '// D \
O 'y O _
" 1- -// <2 - £=0 }\
/ e=1 L\
/ _
-—— = ) \
0 1/ , 1 — -\.-
—3 0 5 3 0 3 6
92 61
Properties

sq and rqg are 1-Lipchitz continuous and

differentiable almost everywhere.
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Effect of regularization strength €

Soft sorting Soft ranking
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Properties

Converge to hard version when € < €, ..

Collapse to a mean when & — o0

Order preserving (paths don’t cross)



Regularization path
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primal dual

relation
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dual solution Total time cost: O(n log n)
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Step 3: Computation

Boils down to solving v* = arg min ||v — u”2 Uu=s-w
ViZ...2V,

Pool Adjacent Violators (PAV): Finds a partition 1, ..., B

m

by repeatedly splitting coordinates. The worst-case cost is O(n).

Ex: B, = {12} vi© = v = mean(uy, u,)
n=6
%B, = {3} v = mean(uz) = u;

By = {456} v =vI=v" = mean(uy, us, ug)

IBest, 2000}
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Differentiate vpy(s,w) = arg min ||v — (s — w)||? w.rt. s and w
ViZ...2V,

Proposition
Vs, w) B, 0 0
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See also [Djolonga & Krause, 2017]



Step 4: Differentiation

Differentiate PQ(Z, W) w.r.t. zand w



Step 4: Differentiation

Differentiate PQ(Z, W) w.r.t. zand w

Proposition
0z — JQ(ZG(Z)’ W)a—l(z)
ov,(S, W)
Q ’
Jo(s,w) = [ —
o(S; W) Y

Multiplication with the Jacobian in O(n) time and space (see paper)
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Robust regression

Least squares (LS)
ith loss

1 al 2
min — lzzl cw)  Ciw)= > Vi — 8u(X)

Soft Least trimmed squares (SLTS)

7 ith “soft sorted” loss

1
min Z Ciw)  LE(w) £ [5,0((W)];

e—>0 SLIS > LTS ¢&— o0 SLTS — LS
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Test accuracy

Top-k classification

f: [n] X Rl’l —> R_l_ Cuturi et al. [2019]
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Speed benchmark

Runtime comparison for one iteration (batch size: 128)
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Label ranking experiment
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Summary

® \\Ve proposed sorting and ranking relaxations with
O(n log n) computation and O(n) differentiation

® Key technigues: projections onto the permutahedron and
reduction to isotonic optimization

® Applications to least trimmed squares, top-k classification
and label ranking

Preprint: Fast Differentiable Sorting and Ranking [arXiv:2002.08871]

Code: coming soon!



