
Fast differentiable  
sorting and ranking

Illustration Examples

March 12th, 2020

M.Blondel O. Teboul Q. Berthet J. Djolonga



Experimental results

Proposed method

Illustration Examples

Background



Experimental results

Proposed method

Illustration Examples

Background



DL as Differentiable Programming



Deep learning increasingly synonymous with differentiable programming

“People are now building a new kind of software 
by assembling networks of parameterized 

functional blocks (including loops and 
conditionals) and by training them from examples 
using some form of gradient-based optimization.”

Yann LeCun, 2018.

People are now building a new kind of software by assembling networks of

parameterized functional blocks and by training them from examples using

some form of gradient-based optimization.

An increasingly large number of people are de�ning the networks procedurally in a

data-dependent way (with loops and conditionals), allowing them to change

dynamically as a function of the input data fed to them.

Yann LeCun, 2018

DL as Differentiable Programming



Deep learning increasingly synonymous with differentiable programming

“People are now building a new kind of software 
by assembling networks of parameterized 

functional blocks (including loops and 
conditionals) and by training them from examples 
using some form of gradient-based optimization.”

Yann LeCun, 2018.

People are now building a new kind of software by assembling networks of

parameterized functional blocks and by training them from examples using

some form of gradient-based optimization.

An increasingly large number of people are de�ning the networks procedurally in a

data-dependent way (with loops and conditionals), allowing them to change

dynamically as a function of the input data fed to them.

Yann LeCun, 2018

Many computer programming operations remain poorly differentiable 

In this work, we focus on sorting and ranking.
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Ranking / Sorting
O(n log n)

k-NN 
(1) select neighbours  

(2) majority vote
Classifiers 

select top-k activations

Learning to rank 
NDCG loss and others

Rank-based statistics  
data viewed as ranks

Trimmed 
regression 
ignore large errors

Descriptive statistics  
Empirical distribution function 

quantile normalization

MoM 
estimators

Slide credit: Marco Cuturi

Sorting as subroutine in ML
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σ(θ) = (2,4,3,1)Argsort (decending)

Sort (descending) s(θ) ≜ θσ(θ) = (θ2, θ4, θ3, θ1)

θ1 θ4θ3 θ2

piecewise linear 

induces  
non-convexity
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Ranks r(θ) ≜ σ−1(θ) = (4,1,3,2)

θ1 θ4θ3 θ2

piecewise constant 

discontinuous

Ranking
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● Random perturbation technique to compute expected 
ranks in O(n3) time [Taylor et al., 2008]

Soft ranks : differentiable proxies to “hard” ranks

● Using pairwise comparisons in O(n2) time [Qin et al., 2010]

ri(θ) ≜ 1 + ∑
i≠j

1[θi < θj]

● Regularized optimal transport approach and Sinkhorn in  
O(T n2) time [Cuturi et al., 2019]

Related work on soft ranks

None of these works achieves O(n log n) complexity
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Our proposal

• Differentiable (soft) relaxations of s(θ) and r(θ)

• Two formulations: L2 and Entropy regularised

• “Convexification” effect

• Exact computation in O(n log n) time (forward pass)

• Exact multiplication with the Jacobian in O(n) time 

without unrolling (backward pass)
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Strategy outline

1. Express s(θ) and r(θ) as linear programs (LP) over convex polytopes

→ Turn algorithmic function into an optimization problem

2. Introduce regularization in the LP

→ Turn LP into a projection onto convex polytopes

3. Derive algorithm for computing the projection

→ Ideally, the projection shoud be computable in the same cost as the original function…

4. Derive algorithm for differentiating the projection

→ Could be challenging (argmin differentiation problem)
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Budget polytope. We now set Y = {y 2 2[k] : l  |y|  u}, the subsets of [k] of bounded size,
where we assume 0  l  u  k. This is useful in a multilabel setting with known lower bound
l 2 N and upper bound u 2 N on the number of labels per sample. Setting again '(y) =

P
|y|
i=1 eyi 2

{0, 1}k, MAP inference is equivalent to the integer linear program argmax'(y)2{0,1}kh✓,'(y)i s.t.
l  h'(y),1i  u. Let ⇡ be a permutation sorting ✓ in descending order. An optimal solution is

'(y)i =

(
1 if l > 0 and i 2 {⇡1, . . . ,⇡l},

1 else if i 2 {⇡1, . . . ,⇡u} and ✓i > 0,
0 else.

The marginal polytope is a generalization of budget polytope [2] and is now equal to M = {µ 2

[0, 1]k : l  hµ,1i  u}. The next proposition, proved in §C.2, shows how to project efficiently.

Proposition 3 Euclidean and KL projections on the budget polytope

• Let ⌫ be the projection of ✓ onto the unit cube (cf. “unit cube” paragraph).

• If l  h⌫,1i  u, then ⌫ is optimal.

• Otherwise, return the projection of ✓ onto {µ 2 [0, 1]k : hµ,1i = m}, where m = u if

h⌫,1i > u and m = l otherwise.

The total cost is O(k) in the Euclidean case and O(k log k) in the KL case (cf. §C.2 for details).

Birkhoff polytope. We view ranking as a structured prediction problem and let Y be the set of
permutations ⇡ of [k]. Setting '(⇡) 2 {0, 1}k⇥k as the permutation matrix associated with ⇡, MAP
inference becomes the linear assignment problem MAP(✓) = argmax⇡2Y

Pk
i=1 ✓i,⇡i and can be

computed exactly using the Hungarian algorithm [24]. The marginal polytope M becomes the
Birkhoff polytope [7], the set of doubly stochastic matrices

M = {P 2 Rk⇥k : P>1k = 1, P1k = 1, 0  P  1}.

Noticeably, marginal inference is known to be #P-complete [48, 45, §3.5], since it corresponds to
computing a matrix permanent. In contrast, the KL projection on the Birkhoff polytope can be
computed using the Sinkhorn algorithm [43, 15]. The Euclidean projection can be computed using
Dykstra’s algorithm [17] or dual approaches [10]. For both kinds of projections, the cost of obtaining
an ✏-approximate solution is O(k2/✏). To obtain cheaper projections, one can also consider [10, 33]
the set of row-stochastic matrices, a strict superset of the Birkhoff polytope
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Unit cube. For multilabel classification, we choose Y = 2[k], the powerset of [k]. Let us set
'(y) =

P
|y|
i=1 eyi 2 {0, 1}k, the label indicator vector of y (i.e., '(y)i = 1 if i 2 y and 0 otherwise).

MAP inference corresponds to predicting each label independently. More precisely, for each label
i 2 [k], if ✓i > 0 we predict i, otherwise we do not. The marginal polytope is now M = [0, 1]k, the
unit cube. Each vertex is in bijection with one possible subset of [k]. The Euclidean projection of ✓
onto M is equal to a coordinate-wise clipping of ✓, i.e., max(min(✓i, 1), 0) for all i 2 [k]. The KL
projection is equal to min(1, e✓i�1) for all i 2 [k]. More generally, whenever ' for the task at hand
uses a 0-1 encoding, we can use the unit cube as superset with computationally cheap projection.

Knapsack polytope. We now set Y = {y 2 2[k] : l  |y|  u}, the subsets of [k] of bounded size.
We assume 0  l  u  k. This is useful for multilabel classification with known lower bound
l 2 N and upper bound u 2 N on the number of labels per sample. Setting again '(y) =

P
|y|
i=1 eyi 2

{0, 1}k, MAP inference is equivalent to the integer linear program argmax'(y)2{0,1}kh✓,'(y)i s.t.
l  h'(y),1i  u. Let ⇡ be a permutation sorting ✓ in descending order. An optimal solution is

'(y)i =

(
1 if l > 0 and i 2 {⇡1, . . . ,⇡l},

1 else if i 2 {⇡1, . . . ,⇡u} and ✓i > 0,
0 else.

The marginal polytope is an instance of knapsack polytope [2]. It is equal to M = {µ 2 [0, 1]k : l 
hµ,1i  u} and is illustrated in Figure 2c with k = 3, l = 0 and u = 2 (i.e., we keep all elements of
2[3] except {1, 2, 3}). The next proposition, proved in §C.2, shows how to efficiently project on M.

Proposition 3 Efficient Euclidean and KL projections on M

• Let ⌫ be the projection of r ⇤(✓) onto the unit cube (cf. “unit cube” paragraph).

• If l  h⌫,1i  u, then ⌫ is optimal.

• Otherwise, return the projection of r ⇤(✓) onto {µ 2 [0, 1]k : hµ,1i = m}, where m = u

if h⌫,1i > u and m = l otherwise.

The total cost is O(k) in the Euclidean case and O(k log k) in the KL case (cf. §C.2 for details).

Birkhoff polytope. We view ranking as a structured prediction problem and let Y be the set of
permutations ⇡ of [k]. Setting '(⇡) 2 {0, 1}k⇥k as the permutation matrix associated with ⇡, MAP
inference becomes the linear assignment problem MAP(✓) = argmax⇡2Y

Pk
i=1 ✓i,⇡i and can be

computed exactly using the Hungarian algorithm [28]. The marginal polytope M becomes the
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0 else.

The marginal polytope is a generalization of budget polytope [2] and is now equal to M = {µ 2

[0, 1]k : l  hµ,1i  u}. The next proposition, proved in §C.2, shows how to project efficiently.
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computed exactly using the Hungarian algorithm [24]. The marginal polytope M becomes the
Birkhoff polytope [7], the set of doubly stochastic matrices

M = {P 2 Rk⇥k : P>1k = 1, P1k = 1, 0  P  1}.

Noticeably, marginal inference is known to be #P-complete [48, 45, §3.5], since it corresponds to
computing a matrix permanent. In contrast, the KL projection on the Birkhoff polytope can be
computed using the Sinkhorn algorithm [43, 15]. The Euclidean projection can be computed using
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an ✏-approximate solution is O(k2/✏). To obtain cheaper projections, one can also consider [10, 33]
the set of row-stochastic matrices, a strict superset of the Birkhoff polytope
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Unit cube. For multilabel classification, we choose Y = 2[k], the powerset of [k]. Let us set
'(y) =

P
|y|
i=1 eyi 2 {0, 1}k, the label indicator vector of y (i.e., '(y)i = 1 if i 2 y and 0 otherwise).

MAP inference corresponds to predicting each label independently. More precisely, for each label
i 2 [k], if ✓i > 0 we predict i, otherwise we do not. The marginal polytope is now M = [0, 1]k, the
unit cube. Each vertex is in bijection with one possible subset of [k]. The Euclidean projection of ✓
onto M is equal to a coordinate-wise clipping of ✓, i.e., max(min(✓i, 1), 0) for all i 2 [k]. The KL
projection is equal to min(1, e✓i�1) for all i 2 [k]. More generally, whenever ' for the task at hand
uses a 0-1 encoding, we can use the unit cube as superset with computationally cheap projection.

Knapsack polytope. We now set Y = {y 2 2[k] : l  |y|  u}, the subsets of [k] of bounded size.
We assume 0  l  u  k. This is useful for multilabel classification with known lower bound
l 2 N and upper bound u 2 N on the number of labels per sample. Setting again '(y) =

P
|y|
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{0, 1}k, MAP inference is equivalent to the integer linear program argmax'(y)2{0,1}kh✓,'(y)i s.t.
l  h'(y),1i  u. Let ⇡ be a permutation sorting ✓ in descending order. An optimal solution is

'(y)i =

(
1 if l > 0 and i 2 {⇡1, . . . ,⇡l},

1 else if i 2 {⇡1, . . . ,⇡u} and ✓i > 0,
0 else.

The marginal polytope is an instance of knapsack polytope [2]. It is equal to M = {µ 2 [0, 1]k : l 
hµ,1i  u} and is illustrated in Figure 2c with k = 3, l = 0 and u = 2 (i.e., we keep all elements of
2[3] except {1, 2, 3}). The next proposition, proved in §C.2, shows how to efficiently project on M.

Proposition 3 Efficient Euclidean and KL projections on M

• Let ⌫ be the projection of r ⇤(✓) onto the unit cube (cf. “unit cube” paragraph).

• If l  h⌫,1i  u, then ⌫ is optimal.

• Otherwise, return the projection of r ⇤(✓) onto {µ 2 [0, 1]k : hµ,1i = m}, where m = u
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Budget polytope. We now set Y = {y 2 2[k] : l  |y|  u}, the subsets of [k] of bounded size,
where we assume 0  l  u  k. This is useful in a multilabel setting with known lower bound
l 2 N and upper bound u 2 N on the number of labels per sample. Setting again '(y) =

P
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{0, 1}k, MAP inference is equivalent to the integer linear program argmax'(y)2{0,1}kh✓,'(y)i s.t.
l  h'(y),1i  u. Let ⇡ be a permutation sorting ✓ in descending order. An optimal solution is

'(y)i =

(
1 if l > 0 and i 2 {⇡1, . . . ,⇡l},

1 else if i 2 {⇡1, . . . ,⇡u} and ✓i > 0,
0 else.

The marginal polytope is a generalization of budget polytope [2] and is now equal to M = {µ 2

[0, 1]k : l  hµ,1i  u}. The next proposition, proved in §C.2, shows how to project efficiently.
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Birkhoff polytope. We view ranking as a structured prediction problem and let Y be the set of
permutations ⇡ of [k]. Setting '(⇡) 2 {0, 1}k⇥k as the permutation matrix associated with ⇡, MAP
inference becomes the linear assignment problem MAP(✓) = argmax⇡2Y

Pk
i=1 ✓i,⇡i and can be

computed exactly using the Hungarian algorithm [24]. The marginal polytope M becomes the
Birkhoff polytope [7], the set of doubly stochastic matrices

M = {P 2 Rk⇥k : P>1k = 1, P1k = 1, 0  P  1}.

Noticeably, marginal inference is known to be #P-complete [48, 45, §3.5], since it corresponds to
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computed using the Sinkhorn algorithm [43, 15]. The Euclidean projection can be computed using
Dykstra’s algorithm [17] or dual approaches [10]. For both kinds of projections, the cost of obtaining
an ✏-approximate solution is O(k2/✏). To obtain cheaper projections, one can also consider [10, 33]
the set of row-stochastic matrices, a strict superset of the Birkhoff polytope
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Unit cube. For multilabel classification, we choose Y = 2[k], the powerset of [k]. Let us set
'(y) =

P
|y|
i=1 eyi 2 {0, 1}k, the label indicator vector of y (i.e., '(y)i = 1 if i 2 y and 0 otherwise).

MAP inference corresponds to predicting each label independently. More precisely, for each label
i 2 [k], if ✓i > 0 we predict i, otherwise we do not. The marginal polytope is now M = [0, 1]k, the
unit cube. Each vertex is in bijection with one possible subset of [k]. The Euclidean projection of ✓
onto M is equal to a coordinate-wise clipping of ✓, i.e., max(min(✓i, 1), 0) for all i 2 [k]. The KL
projection is equal to min(1, e✓i�1) for all i 2 [k]. More generally, whenever ' for the task at hand
uses a 0-1 encoding, we can use the unit cube as superset with computationally cheap projection.

Knapsack polytope. We now set Y = {y 2 2[k] : l  |y|  u}, the subsets of [k] of bounded size.
We assume 0  l  u  k. This is useful for multilabel classification with known lower bound
l 2 N and upper bound u 2 N on the number of labels per sample. Setting again '(y) =

P
|y|
i=1 eyi 2

{0, 1}k, MAP inference is equivalent to the integer linear program argmax'(y)2{0,1}kh✓,'(y)i s.t.
l  h'(y),1i  u. Let ⇡ be a permutation sorting ✓ in descending order. An optimal solution is

'(y)i =

(
1 if l > 0 and i 2 {⇡1, . . . ,⇡l},

1 else if i 2 {⇡1, . . . ,⇡u} and ✓i > 0,
0 else.

The marginal polytope is an instance of knapsack polytope [2]. It is equal to M = {µ 2 [0, 1]k : l 
hµ,1i  u} and is illustrated in Figure 2c with k = 3, l = 0 and u = 2 (i.e., we keep all elements of
2[3] except {1, 2, 3}). The next proposition, proved in §C.2, shows how to efficiently project on M.

Proposition 3 Efficient Euclidean and KL projections on M

• Let ⌫ be the projection of r ⇤(✓) onto the unit cube (cf. “unit cube” paragraph).

• If l  h⌫,1i  u, then ⌫ is optimal.

• Otherwise, return the projection of r ⇤(✓) onto {µ 2 [0, 1]k : hµ,1i = m}, where m = u

if h⌫,1i > u and m = l otherwise.

The total cost is O(k) in the Euclidean case and O(k log k) in the KL case (cf. §C.2 for details).

Birkhoff polytope. We view ranking as a structured prediction problem and let Y be the set of
permutations ⇡ of [k]. Setting '(⇡) 2 {0, 1}k⇥k as the permutation matrix associated with ⇡, MAP
inference becomes the linear assignment problem MAP(✓) = argmax⇡2Y

Pk
i=1 ✓i,⇡i and can be

computed exactly using the Hungarian algorithm [28]. The marginal polytope M becomes the
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Unit cube. For multilabel classification, we choose Y = 2[k], the powerset of [k]. Let us set
'(y) =

P
|y|
i=1 eyi 2 {0, 1}k, the label indicator vector of y (i.e., '(y)i = 1 if i 2 y and 0 otherwise).

MAP inference corresponds to predicting each label independently. More precisely, for each label
i 2 [k], if ✓i > 0 we predict i, otherwise we do not. The marginal polytope is now M = [0, 1]k, the
unit cube. Each vertex is in bijection with one possible subset of [k]. The Euclidean projection of ✓
onto M is equal to a coordinate-wise clipping of ✓, i.e., max(min(✓i, 1), 0) for all i 2 [k]. The KL
projection is equal to min(1, e✓i�1) for all i 2 [k]. More generally, whenever ' for the task at hand
uses a 0-1 encoding, we can use the unit cube as superset with computationally cheap projection.

Knapsack polytope. We now set Y = {y 2 2[k] : l  |y|  u}, the subsets of [k] of bounded size.
We assume 0  l  u  k. This is useful for multilabel classification with known lower bound
l 2 N and upper bound u 2 N on the number of labels per sample. Setting again '(y) =

P
|y|
i=1 eyi 2

{0, 1}k, MAP inference is equivalent to the integer linear program argmax'(y)2{0,1}kh✓,'(y)i s.t.
l  h'(y),1i  u. Let ⇡ be a permutation sorting ✓ in descending order. An optimal solution is

'(y)i =

(
1 if l > 0 and i 2 {⇡1, . . . ,⇡l},

1 else if i 2 {⇡1, . . . ,⇡u} and ✓i > 0,
0 else.

The marginal polytope is an instance of knapsack polytope [2]. It is equal to M = {µ 2 [0, 1]k : l 
hµ,1i  u} and is illustrated in Figure 2c with k = 3, l = 0 and u = 2 (i.e., we keep all elements of
2[3] except {1, 2, 3}). The next proposition, proved in §C.2, shows how to efficiently project on M.

Proposition 3 Efficient Euclidean and KL projections on M

• Let ⌫ be the projection of r ⇤(✓) onto the unit cube (cf. “unit cube” paragraph).

• If l  h⌫,1i  u, then ⌫ is optimal.

• Otherwise, return the projection of r ⇤(✓) onto {µ 2 [0, 1]k : hµ,1i = m}, where m = u

if h⌫,1i > u and m = l otherwise.

The total cost is O(k) in the Euclidean case and O(k log k) in the KL case (cf. §C.2 for details).

Birkhoff polytope. We view ranking as a structured prediction problem and let Y be the set of
permutations ⇡ of [k]. Setting '(⇡) 2 {0, 1}k⇥k as the permutation matrix associated with ⇡, MAP
inference becomes the linear assignment problem MAP(✓) = argmax⇡2Y

Pk
i=1 ✓i,⇡i and can be

computed exactly using the Hungarian algorithm [28]. The marginal polytope M becomes the
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Continuity and differentiabilityFast Differentiable Sorting and Ranking

Figure 3. Effect of the regularization parameter ". We take the vector ✓ := (0, 3, 1, 2), vary one of its coordinates ✓i and look at how
[s" (✓)]i and [r" (✓)]i change in response. For soft sorting with  = Q, the function is still piecewise linear, like sorting. However, by
increasing " we reduce the number of kinks, and the function eventually converges to a mean (Proposition 2). With  = E, the function
tends to be even smoother. For soft ranking with  = Q, the function is piecewise linear instead of piecewise constant for the “hard”
ranks. With  = E, the function again tends to be smoother though it may contain kinks.

For ranking, we choose (z,w) = (�✓,⇢) and therefore
define the  -regularized soft rank as

r" (✓) := P" (�✓,⇢) = P (�✓/",⇢). (6)

We illustrate the behavior of both of these soft operations
as we vary " in Figures 2 and 3. As for the hard versions,
the ascending-order soft sorting and ranking are obtained by
negating the input as �s" (�✓) and r" (�✓), respectively.

Properties. We can further characterize these approxima-
tions. Namely, as we now formalize, they are differentiable
a.e., and not only converge to the their “hard” counterparts,
but also satisfy some of their properties for all ".

Proposition 2. Properties of s" (✓) and r" (✓)

1. Differentiability. For all " > 0, s" (✓) and

r" (✓) are differentiable (a.e.) w.r.t. ✓.

2. Order preservation. Let s := s" (✓), r :=
r" (✓) and � := �(✓). For all ✓ 2 Rn

and

0 < " < 1, we have s1 � s2 � · · · � sn

and r�1  r�2  · · ·  r�n .
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where fQ(u) := mean(u), fE(u) := log fQ(u).

The last property describes the behavior as " ! 0 and
" ! 1. Together with the proof of Proposition 2, we
include in §B.3 a slightly stronger result. Namely, we derive
an explicit value of " below which our operators are exactly
equal to their hard counterpart, and a value of " above which
our operators can be computed in closed form.

Convexification effect. Proposition 2 shows that
[s" (✓)]i and [r" (✓)]i for all i 2 [n] converge to convex
functions of ✓ as " ! 1. This suggests that larger "

make the objective function increasingly easy to optimize
(at the cost of departing from “hard” sorting or ranking).
This behavior is also visible in Figure 3, where [s"Q(✓)]2
converges towards the mean fQ, depicted by a straight line.

On tuning " (or not). The parameter " > 0 controls the
trade-off between approximation of the original operator
and “smoothness”. When the model g(x) producing the
scores or “logits” ✓ to be sorted/ranked is a homogeneous
function, from (5) and (6), " can be absorbed into the model.
In our label ranking experiment, we find that indeed tuning
" is not necessary to achieve excellent accuracy. On the
other hand, for top-k classification, we find that applying a
logistic map to squash ✓ to [0, 1]n and tuning " is important,
confirming the empirical finding of Cuturi et al. (2019).

Relation to linear assignment formulation. When using
uniform weights on the inputs, the differentiable operators of
Cuturi et al. (2019) are based on viewing sorting and ranking
as linear assignment over the Birkhoff polytope B ⇢ Rn⇥n,
the convex hull of permutation matrices. To relate to their
method, note that using the change of variable y = P⇢ and
P(⇢) = B⇢, we can rewrite (4) as r(✓) = P (✓)⇢, where

P (✓) := argmax
P2B

hP⇢,�✓i.

Let D(a, b) 2 Rn⇥n be a distance matrix. Simple calcula-
tions show that if [D(a, b)]i,j :=

1
2 (ai � bj)2, then

P (✓) = argmin
P2B

hP , D(�✓,⇢)i.

Similarly, we can rewrite (3) as s(✓) = P (✓)>✓. To ob-
tain a differentiable operator, Cuturi et al. (2019) (see also
(Adams & Zemel, 2011)) propose to replace the permuta-
tion matrix P (✓) by a doubly stochastic matrix P"E(✓) :=
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ranks. With  = E, the function again tends to be smoother though it may contain kinks.
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In our label ranking experiment, we find that indeed tuning
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Relation to linear assignment formulation. When using
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Cuturi et al. (2019) are based on viewing sorting and ranking
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The last property describes the behavior as " ! 0 and
" ! 1. Together with the proof of Proposition 2, we
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confirming the empirical finding of Cuturi et al. (2019).

Relation to linear assignment formulation. When using
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Properties

sQ and rQ are 1-Lipchitz continuous and 

differentiable almost everywhere.
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an explicit value of " below which our operators are exactly
equal to their hard counterpart, and a value of " above which
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Relation to linear assignment formulation. When using
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tain a differentiable operator, Cuturi et al. (2019) (see also
(Adams & Zemel, 2011)) propose to replace the permuta-
tion matrix P (✓) by a doubly stochastic matrix P"E(✓) :=
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Figure 1. Illustration of the permutahedron P(⇢), whose ver-
tices are permutations of ⇢ = (3, 2, 1). In this example, the ranks
of ✓ = (2.9, 0.1, 1.2) are r(✓) = (1, 3, 2). In this case, our pro-
posed soft rank r"Q(✓) with " = 1 is exactly equal to r(✓). When
" ! 1, r"Q(✓) converges towards the centroid of the permuta-
hedron. The gray line indicates the regularization path of r"Q(✓)
between these two regimes, when varying ".

Differentiability a.e. of sorting. For s(✓), the fact that ✓
appears in the linear program constraints makes s(✓) piece-
wise linear and thus differentiable almost everywhere. When
�(✓) is unique at ✓, s(✓) = ✓�(✓) is differentiable at ✓ and
its Jacobian is the permutation matrix associated with �(✓).
When �(✓) is not unique, we can choose any matrix in
Clarke’s generalized Jacobian, i.e., any convex combination
of the permutation matrices associated with �(✓).

Lack of useful Jacobian of ranking. On the other hand,
for r(✓), since ✓ appears in the objective, a small pertur-
bation to ✓ may cause the solution of the linear program
to jump to another permutation of ⇢. This makes r(✓) a
discontinuous, piecewise constant function. This means that
r(✓) has null or undefined partial derivatives, preventing its
use within a neural network trained with backpropagation.

4. Differentiable sorting and ranking

As we have already motivated, our primary goal is the de-
sign of efficiently computable approximations to the sorting
and ranking operators, that would smoothen the numerous
kinks of the former, and provide useful derivatives for the
latter. We achieve this by introducing strongly convex reg-
ularization in our linear programming formulations. This
turns them into efficiently computable projection operators,
which are differentiable and amenable to formal analysis.

Projection onto the permutahedron. Let z,w 2 Rn

and consider the linear program argmaxµ2P(w)hµ, zi.
Clearly, we can express s(✓) by setting (z,w) = (⇢,✓) and
r(✓) by setting (z,w) = (�✓,⇢). Introducing quadratic
regularization Q(µ) := 1

2kµk
2 is considered by Martins &

Astudillo (2016) over the unit simplex and by Niculae et al.

Figure 2. Illustration of the soft sorting and ranking operators,
s" (✓) and r" (✓) for  = Q; the results with  = E are
similar. When " ! 0, they converge to their “hard” counterpart.
When " ! 1, they collapse into a constant, as proven in Prop.2.

(2018) over marginal polytopes. Similarly, adding Q to our
linear program over the permutahedron gives

PQ(z,w) := argmax
µ2P(w)

hz,µi�Q(µ) = argmin
µ2P(w)

1

2
kµ�zk2,

i.e., the Euclidean projection of z onto P(w). We also
consider entropic regularization E(µ) := hµ, logµ � 1i,
popularized in the optimal transport literature (Cuturi, 2013;
Peyré & Cuturi, 2017). Subtly, we define

PE(z,w) := log argmax
µ2P(ew)

hz,µi � E(µ)

= log argmin
µ2P(ew)

KL(µ, ez),

where KL(a, b) :=
P

i ai log
ai
bi

�
P

i ai +
P

i bi is the
Kullback-Leibler (KL) divergence between two positive
measures a 2 Rn

+ and b 2 Rn
+. PE(z,w) is therefore the

log KL projection of ez onto P(ew). The purpose of ew is
to ensure that µ always belongs to dom(E) = Rn

+ (since µ
is a convex combination of the permutations of ew) and that
of the logarithm is to map µ? back to Rn.

More generally, we can use any strongly convex regulariza-
tion  under mild conditions. For concreteness, we focus
our exposition in the main text on  2 {Q,E}. We state all
our propositions for these two cases and postpone a more
general treatment to the appendix.

Soft operators. We now build upon these projections to
define soft sorting and ranking operators. To control the
regularization strength, we introduce a parameter " > 0
which we multiply  by (equivalently, divide z by).

For sorting, we choose (z,w) = (⇢,✓) and therefore define
the  -regularized soft sort as

s" (✓) := P" (⇢,✓) = P (⇢/",✓). (5)
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" ! 1, r"Q(✓) converges towards the centroid of the permuta-
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Differentiability a.e. of sorting. For s(✓), the fact that ✓
appears in the linear program constraints makes s(✓) piece-
wise linear and thus differentiable almost everywhere. When
�(✓) is unique at ✓, s(✓) = ✓�(✓) is differentiable at ✓ and
its Jacobian is the permutation matrix associated with �(✓).
When �(✓) is not unique, we can choose any matrix in
Clarke’s generalized Jacobian, i.e., any convex combination
of the permutation matrices associated with �(✓).

Lack of useful Jacobian of ranking. On the other hand,
for r(✓), since ✓ appears in the objective, a small pertur-
bation to ✓ may cause the solution of the linear program
to jump to another permutation of ⇢. This makes r(✓) a
discontinuous, piecewise constant function. This means that
r(✓) has null or undefined partial derivatives, preventing its
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As we have already motivated, our primary goal is the de-
sign of efficiently computable approximations to the sorting
and ranking operators, that would smoothen the numerous
kinks of the former, and provide useful derivatives for the
latter. We achieve this by introducing strongly convex reg-
ularization in our linear programming formulations. This
turns them into efficiently computable projection operators,
which are differentiable and amenable to formal analysis.

Projection onto the permutahedron. Let z,w 2 Rn

and consider the linear program argmaxµ2P(w)hµ, zi.
Clearly, we can express s(✓) by setting (z,w) = (⇢,✓) and
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regularization Q(µ) := 1

2kµk
2 is considered by Martins &

Astudillo (2016) over the unit simplex and by Niculae et al.

Figure 2. Illustration of the soft sorting and ranking operators,
s" (✓) and r" (✓) for  = Q; the results with  = E are
similar. When " ! 0, they converge to their “hard” counterpart.
When " ! 1, they collapse into a constant, as proven in Prop.2.

(2018) over marginal polytopes. Similarly, adding Q to our
linear program over the permutahedron gives

PQ(z,w) := argmax
µ2P(w)

hz,µi�Q(µ) = argmin
µ2P(w)
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i.e., the Euclidean projection of z onto P(w). We also
consider entropic regularization E(µ) := hµ, logµ � 1i,
popularized in the optimal transport literature (Cuturi, 2013;
Peyré & Cuturi, 2017). Subtly, we define

PE(z,w) := log argmax
µ2P(ew)

hz,µi � E(µ)
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of the logarithm is to map µ? back to Rn.

More generally, we can use any strongly convex regulariza-
tion  under mild conditions. For concreteness, we focus
our exposition in the main text on  2 {Q,E}. We state all
our propositions for these two cases and postpone a more
general treatment to the appendix.

Soft operators. We now build upon these projections to
define soft sorting and ranking operators. To control the
regularization strength, we introduce a parameter " > 0
which we multiply  by (equivalently, divide z by).

For sorting, we choose (z,w) = (⇢,✓) and therefore define
the  -regularized soft sort as

s" (✓) := P" (⇢,✓) = P (⇢/",✓). (5)
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to jump to another permutation of ⇢. This makes r(✓) a
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of ✓ = (2.9, 0.1, 1.2) are r(✓) = (1, 3, 2). In this case, our pro-
posed soft rank r"Q(✓) with " = 1 is exactly equal to r(✓). When
" ! 1, r"Q(✓) converges towards the centroid of the permuta-
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Differentiability a.e. of sorting. For s(✓), the fact that ✓
appears in the linear program constraints makes s(✓) piece-
wise linear and thus differentiable almost everywhere. When
�(✓) is unique at ✓, s(✓) = ✓�(✓) is differentiable at ✓ and
its Jacobian is the permutation matrix associated with �(✓).
When �(✓) is not unique, we can choose any matrix in
Clarke’s generalized Jacobian, i.e., any convex combination
of the permutation matrices associated with �(✓).

Lack of useful Jacobian of ranking. On the other hand,
for r(✓), since ✓ appears in the objective, a small pertur-
bation to ✓ may cause the solution of the linear program
to jump to another permutation of ⇢. This makes r(✓) a
discontinuous, piecewise constant function. This means that
r(✓) has null or undefined partial derivatives, preventing its
use within a neural network trained with backpropagation.
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sign of efficiently computable approximations to the sorting
and ranking operators, that would smoothen the numerous
kinks of the former, and provide useful derivatives for the
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ularization in our linear programming formulations. This
turns them into efficiently computable projection operators,
which are differentiable and amenable to formal analysis.
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i.e., the Euclidean projection of z onto P(w). We also
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Soft operators. We now build upon these projections to
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regularization strength, we introduce a parameter " > 0
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Differentiability a.e. of sorting. For s(✓), the fact that ✓
appears in the linear program constraints makes s(✓) piece-
wise linear and thus differentiable almost everywhere. When
�(✓) is unique at ✓, s(✓) = ✓�(✓) is differentiable at ✓ and
its Jacobian is the permutation matrix associated with �(✓).
When �(✓) is not unique, we can choose any matrix in
Clarke’s generalized Jacobian, i.e., any convex combination
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Lack of useful Jacobian of ranking. On the other hand,
for r(✓), since ✓ appears in the objective, a small pertur-
bation to ✓ may cause the solution of the linear program
to jump to another permutation of ⇢. This makes r(✓) a
discontinuous, piecewise constant function. This means that
r(✓) has null or undefined partial derivatives, preventing its
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s" (✓) and r" (✓) for  = Q; the results with  = E are
similar. When " ! 0, they converge to their “hard” counterpart.
When " ! 1, they collapse into a constant, as proven in Prop.2.

(2018) over marginal polytopes. Similarly, adding Q to our
linear program over the permutahedron gives

PQ(z,w) := argmax
µ2P(w)

hz,µi�Q(µ) = argmin
µ2P(w)

1

2
kµ�zk2,

i.e., the Euclidean projection of z onto P(w). We also
consider entropic regularization E(µ) := hµ, logµ � 1i,
popularized in the optimal transport literature (Cuturi, 2013;
Peyré & Cuturi, 2017). Subtly, we define

PE(z,w) := log argmax
µ2P(ew)

hz,µi � E(µ)

= log argmin
µ2P(ew)

KL(µ, ez),

where KL(a, b) :=
P

i ai log
ai
bi

�
P

i ai +
P

i bi is the
Kullback-Leibler (KL) divergence between two positive
measures a 2 Rn

+ and b 2 Rn
+. PE(z,w) is therefore the

log KL projection of ez onto P(ew). The purpose of ew is
to ensure that µ always belongs to dom(E) = Rn

+ (since µ
is a convex combination of the permutations of ew) and that
of the logarithm is to map µ? back to Rn.

More generally, we can use any strongly convex regulariza-
tion  under mild conditions. For concreteness, we focus
our exposition in the main text on  2 {Q,E}. We state all
our propositions for these two cases and postpone a more
general treatment to the appendix.

Soft operators. We now build upon these projections to
define soft sorting and ranking operators. To control the
regularization strength, we introduce a parameter " > 0
which we multiply  by (equivalently, divide z by).

For sorting, we choose (z,w) = (⇢,✓) and therefore define
the  -regularized soft sort as

s" (✓) := P" (⇢,✓) = P (⇢/",✓). (5)

Properties

Converge to hard version when ε ≤ εmin

Collapse to a mean when ε → ∞
Order preserving (paths don’t cross)
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Figure 1. Illustration of the permutahedron P(⇢), whose ver-
tices are permutations of ⇢ = (3, 2, 1). In this example, the ranks
of ✓ = (2.9, 0.1, 1.2) are r(✓) = (1, 3, 2). In this case, our pro-
posed soft rank r"Q(✓) with " = 1 is exactly equal to r(✓). When
" ! 1, r"Q(✓) converges towards the centroid of the permuta-
hedron. The gray line indicates the regularization path of r"Q(✓)
between these two regimes, when varying ".

Differentiability a.e. of sorting. For s(✓), the fact that ✓
appears in the linear program constraints makes s(✓) piece-
wise linear and thus differentiable almost everywhere. When
�(✓) is unique at ✓, s(✓) = ✓�(✓) is differentiable at ✓ and
its Jacobian is the permutation matrix associated with �(✓).
When �(✓) is not unique, we can choose any matrix in
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hz,µi�Q(µ) = argmin
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i.e., the Euclidean projection of z onto P(w). We also
consider entropic regularization E(µ) := hµ, logµ � 1i,
popularized in the optimal transport literature (Cuturi, 2013;
Peyré & Cuturi, 2017). Subtly, we define

PE(z,w) := log argmax
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+. PE(z,w) is therefore the

log KL projection of ez onto P(ew). The purpose of ew is
to ensure that µ always belongs to dom(E) = Rn

+ (since µ
is a convex combination of the permutations of ew) and that
of the logarithm is to map µ? back to Rn.

More generally, we can use any strongly convex regulariza-
tion  under mild conditions. For concreteness, we focus
our exposition in the main text on  2 {Q,E}. We state all
our propositions for these two cases and postpone a more
general treatment to the appendix.

Soft operators. We now build upon these projections to
define soft sorting and ranking operators. To control the
regularization strength, we introduce a parameter " > 0
which we multiply  by (equivalently, divide z by).

For sorting, we choose (z,w) = (⇢,✓) and therefore define
the  -regularized soft sort as

s" (✓) := P" (⇢,✓) = P (⇢/",✓). (5)
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Proposition

Reduction to isotonic regression

Total time cost: O(n log n)

e.g. [Negrignho & Martins, 2014; Lim & Wright 2016]

PQ(z, w) = z − vQ(zσ(z), w)σ−1(z)

vQ(s, w) ≜ arg min
v1≥…≥vn

∥v − (s − w)∥2

primal dual  
relation

dual solution
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Step 3: Computation

Boils down to solving v⋆ = arg min
v1≥…≥vn

∥v − u∥2

[Best, 2000]

Pool Adjacent Violators (PAV): Finds a partition

by repeatedly splitting coordinates. The worst-case cost is O(n). 

ℬ1, …, ℬm

ℬ1 = {1,2}

ℬ2 = {3}

ℬ3 = {4,5,6}

v⋆
1 = v⋆

2 = mean(u1, u2)

v⋆
3 = mean(u3) = u3

v⋆
4 = v⋆

5 = v⋆
6 = mean(u4, u5, u6)

Ex:

n=6

u = s - w
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Step 4: Differentiation

Differentiate vQ(s, w) = arg min
v1≥…≥vn

∥v − (s − w)∥2 w.r.t. s and w

∂vQ(s, w)
∂s

=
B1 0 0
0 ⋱ 0
0 0 Bm

∈ ℝn×n

Proposition

Bj ≜ 1/ |ℬj | ∈ R|ℬj|×|ℬj|, j ∈ [m]

See also [Djolonga & Krause, 2017]
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Step 4: Differentiation

Differentiate PQ(z, w) w.r.t. z and w

∂PQ(z, w)
∂z

= JQ(zσ(z), w)σ−1(z)

Proposition

JQ(s, w) ≜ I −
∂vQ(s, w)

∂s

Multiplication with the Jacobian in O(n) time and space (see paper)
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Robust regression

min
w

1
n

n

∑
i=1

ℓi(w) ℓi(w) ≜
1
2

(yi − gw(xi))2

Least squares (LS)
ith loss

min
w

1
n − k

n

∑
i=k+1

ℓε
i (w) ℓε

i (w) ≜ [sεQ(ℓ(w))]i

Soft Least trimmed squares (SLTS)

ith “soft sorted” loss

ε → 0 SLTS → LTS ε → ∞ SLTS → LS



Robust regression

Evaluation: 10-fold CV 

Hyper-parameter selection: 5-fold CV



Top-k classification

ℓ : [n] × ℝn → ℝ+ Cuturi et al. [2019]

Ground  
truth

Predicted 
soft 

ranks



Top-k classification

Fast Differentiable Sorting and Ranking

Figure 4. Left, center: Accuracy comparison on CIFAR-10, CIFAR-100 (n = 10, n = 100). Right: Runtime comparison for one batch
computation with backpropagation disabled. OT and All-pairs go out-of-memory starting from n = 2000 and n = 3000, respectively.
With backpropagation enabled, the runtimes are similar but OT and All-pairs go out-of-memory at n = 1000 and n = 2500, respectively.

There are interesting differences between the two forms of
regularization. For quadratic regularization, the Jacobian
only depends on the partition B1, . . . ,Bm (not on s) and
the blocks have constant value. For entropic regularization,
the Jacobian does depend on s and the blocks are constant
column by column. Both formulations are averaging the
incoming gradients, one uniformly and the other weighted.

Differentiating the projections. We now combine Propo-
sition 3 with Lemma 2 to characterize the Jacobians of the
projections onto the permutahedron and show how to multi-
ply arbitrary vectors with them in linear time.

Proposition 4. Jacobian of the projections

Let P (z,w) be defined in Proposition 3. Then,

@P (z,w)

@z
= J (z�(z),w)��1(z),

where J⇡ is the matrix obtained by permuting the rows

and columns of J according to ⇡, and where

J (s,w) := I � @v (s,w)

@s
.

Again, the Jacobian w.r.t. w is entirely symmetric. Unlike
the Jacobian of isotonic optimization, the Jacobian of the
projection is not block diagonal, as we need to permute its
rows and columns. We can nonetheless multiply with it in
linear time by using the simple identity (J⇡)z = (Jz⇡�1)⇡ ,
which allows us to reuse the O(n) multiplication with the
Jacobian of isotonic optimization.

Differentiating s" and r" . With the Jacobian of
P (z,w) w.r.t. z and w at hand, differentiating s" and
r" boils down to a mere application of the chain rule to (5)
and (6). To summarize, we can multiply with the Jacobians
of our soft operators in O(n) time and space.

6. Experiments

We present in this section our empirical findings. We will
release in the near future JAX, PyTorch and Tensorflow im-
plementations of our soft operators building upon a highly-
optimized C++ implementation of the PAV algorithm.

6.1. Top-k classification loss function

Experimental setup. To demonstrate the effectiveness of
our proposed soft rank operators as a drop-in replacement
for exisiting ones, we reproduce the top-k classification
experiment of Cuturi et al. (2019). The authors propose a
loss for top-k classification between a ground truth class
y 2 [n] and a vector of soft ranks r 2 Rn, which is higher
if the predicted soft ranks correctly place y in the top-k
elements. We compare the following soft operators

• OT (Cuturi et al., 2019): The O(Tn2) optimal transport
formulation discussed in §4.

• All-pairs (Qin et al., 2010): noting that [r(✓)]i is equiva-
lent to

Pn
j=1 [✓i > ✓j ] + 1, one can obtain soft ranks in

O(n2) by replacing the indicator function with a sigmoid.

• Proposed: our O(n log n) soft ranks rQ and rE . Al-
though not used in this experiment, for top-k ranking, the
complexity can be reduced to O(n log k) by computing
P using the algorithm of Lim & Wright (2016).

We use the CIFAR-10 and CIFAR-100 datasets, with n =
10 and n = 100 classes, respectively. Following Cuturi
et al. (2019), we use a vanilla CNN (4 Conv2D with 2 max-
pooling layers, ReLU activation, 2 fully connected layers
with batch norm on each), the ADAM optimizer (Kingma &
Ba, 2014) with a constant step size of 10�4, and set k = 1.
Similarly to Cuturi et al. (2019), we found that squashing
the scores ✓ to [0, 1]n with a logistic map was beneficial.

Results. Our empirical results, averaged over 12 runs, are
shown in Figure 4 (left, center). On both CIFAR-10 and
CIFAR-100, our soft rank formulations achieve comparable
accuracy to the OT formulation, though significantly faster,

ℓ : [n] × ℝn → ℝ+ Cuturi et al. [2019]

Ground  
truth

Predicted 
soft 

ranks
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Figure 4. Left, center: Accuracy comparison on CIFAR-10, CIFAR-100 (n = 10, n = 100). Right: Runtime comparison for one batch
computation with backpropagation disabled. OT and All-pairs go out-of-memory starting from n = 2000 and n = 3000, respectively.
With backpropagation enabled, the runtimes are similar but OT and All-pairs go out-of-memory at n = 1000 and n = 2500, respectively.

There are interesting differences between the two forms of
regularization. For quadratic regularization, the Jacobian
only depends on the partition B1, . . . ,Bm (not on s) and
the blocks have constant value. For entropic regularization,
the Jacobian does depend on s and the blocks are constant
column by column. Both formulations are averaging the
incoming gradients, one uniformly and the other weighted.

Differentiating the projections. We now combine Propo-
sition 3 with Lemma 2 to characterize the Jacobians of the
projections onto the permutahedron and show how to multi-
ply arbitrary vectors with them in linear time.

Proposition 4. Jacobian of the projections

Let P (z,w) be defined in Proposition 3. Then,

@P (z,w)

@z
= J (z�(z),w)��1(z),

where J⇡ is the matrix obtained by permuting the rows

and columns of J according to ⇡, and where

J (s,w) := I � @v (s,w)

@s
.

Again, the Jacobian w.r.t. w is entirely symmetric. Unlike
the Jacobian of isotonic optimization, the Jacobian of the
projection is not block diagonal, as we need to permute its
rows and columns. We can nonetheless multiply with it in
linear time by using the simple identity (J⇡)z = (Jz⇡�1)⇡ ,
which allows us to reuse the O(n) multiplication with the
Jacobian of isotonic optimization.

Differentiating s" and r" . With the Jacobian of
P (z,w) w.r.t. z and w at hand, differentiating s" and
r" boils down to a mere application of the chain rule to (5)
and (6). To summarize, we can multiply with the Jacobians
of our soft operators in O(n) time and space.

6. Experiments

We present in this section our empirical findings. We will
release in the near future JAX, PyTorch and Tensorflow im-
plementations of our soft operators building upon a highly-
optimized C++ implementation of the PAV algorithm.

6.1. Top-k classification loss function

Experimental setup. To demonstrate the effectiveness of
our proposed soft rank operators as a drop-in replacement
for exisiting ones, we reproduce the top-k classification
experiment of Cuturi et al. (2019). The authors propose a
loss for top-k classification between a ground truth class
y 2 [n] and a vector of soft ranks r 2 Rn, which is higher
if the predicted soft ranks correctly place y in the top-k
elements. We compare the following soft operators

• OT (Cuturi et al., 2019): The O(Tn2) optimal transport
formulation discussed in §4.

• All-pairs (Qin et al., 2010): noting that [r(✓)]i is equiva-
lent to

Pn
j=1 [✓i > ✓j ] + 1, one can obtain soft ranks in

O(n2) by replacing the indicator function with a sigmoid.

• Proposed: our O(n log n) soft ranks rQ and rE . Al-
though not used in this experiment, for top-k ranking, the
complexity can be reduced to O(n log k) by computing
P using the algorithm of Lim & Wright (2016).

We use the CIFAR-10 and CIFAR-100 datasets, with n =
10 and n = 100 classes, respectively. Following Cuturi
et al. (2019), we use a vanilla CNN (4 Conv2D with 2 max-
pooling layers, ReLU activation, 2 fully connected layers
with batch norm on each), the ADAM optimizer (Kingma &
Ba, 2014) with a constant step size of 10�4, and set k = 1.
Similarly to Cuturi et al. (2019), we found that squashing
the scores ✓ to [0, 1]n with a logistic map was beneficial.

Results. Our empirical results, averaged over 12 runs, are
shown in Figure 4 (left, center). On both CIFAR-10 and
CIFAR-100, our soft rank formulations achieve comparable
accuracy to the OT formulation, though significantly faster,
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Figure 4. Left, center: Accuracy comparison on CIFAR-10, CIFAR-100 (n = 10, n = 100). Right: Runtime comparison for one batch
computation with backpropagation disabled. OT and All-pairs go out-of-memory starting from n = 2000 and n = 3000, respectively.
With backpropagation enabled, the runtimes are similar but OT and All-pairs go out-of-memory at n = 1000 and n = 2500, respectively.

There are interesting differences between the two forms of
regularization. For quadratic regularization, the Jacobian
only depends on the partition B1, . . . ,Bm (not on s) and
the blocks have constant value. For entropic regularization,
the Jacobian does depend on s and the blocks are constant
column by column. Both formulations are averaging the
incoming gradients, one uniformly and the other weighted.

Differentiating the projections. We now combine Propo-
sition 3 with Lemma 2 to characterize the Jacobians of the
projections onto the permutahedron and show how to multi-
ply arbitrary vectors with them in linear time.

Proposition 4. Jacobian of the projections

Let P (z,w) be defined in Proposition 3. Then,

@P (z,w)

@z
= J (z�(z),w)��1(z),

where J⇡ is the matrix obtained by permuting the rows

and columns of J according to ⇡, and where

J (s,w) := I � @v (s,w)

@s
.

Again, the Jacobian w.r.t. w is entirely symmetric. Unlike
the Jacobian of isotonic optimization, the Jacobian of the
projection is not block diagonal, as we need to permute its
rows and columns. We can nonetheless multiply with it in
linear time by using the simple identity (J⇡)z = (Jz⇡�1)⇡ ,
which allows us to reuse the O(n) multiplication with the
Jacobian of isotonic optimization.

Differentiating s" and r" . With the Jacobian of
P (z,w) w.r.t. z and w at hand, differentiating s" and
r" boils down to a mere application of the chain rule to (5)
and (6). To summarize, we can multiply with the Jacobians
of our soft operators in O(n) time and space.

6. Experiments

We present in this section our empirical findings. We will
release in the near future JAX, PyTorch and Tensorflow im-
plementations of our soft operators building upon a highly-
optimized C++ implementation of the PAV algorithm.

6.1. Top-k classification loss function

Experimental setup. To demonstrate the effectiveness of
our proposed soft rank operators as a drop-in replacement
for exisiting ones, we reproduce the top-k classification
experiment of Cuturi et al. (2019). The authors propose a
loss for top-k classification between a ground truth class
y 2 [n] and a vector of soft ranks r 2 Rn, which is higher
if the predicted soft ranks correctly place y in the top-k
elements. We compare the following soft operators

• OT (Cuturi et al., 2019): The O(Tn2) optimal transport
formulation discussed in §4.

• All-pairs (Qin et al., 2010): noting that [r(✓)]i is equiva-
lent to

Pn
j=1 [✓i > ✓j ] + 1, one can obtain soft ranks in

O(n2) by replacing the indicator function with a sigmoid.

• Proposed: our O(n log n) soft ranks rQ and rE . Al-
though not used in this experiment, for top-k ranking, the
complexity can be reduced to O(n log k) by computing
P using the algorithm of Lim & Wright (2016).

We use the CIFAR-10 and CIFAR-100 datasets, with n =
10 and n = 100 classes, respectively. Following Cuturi
et al. (2019), we use a vanilla CNN (4 Conv2D with 2 max-
pooling layers, ReLU activation, 2 fully connected layers
with batch norm on each), the ADAM optimizer (Kingma &
Ba, 2014) with a constant step size of 10�4, and set k = 1.
Similarly to Cuturi et al. (2019), we found that squashing
the scores ✓ to [0, 1]n with a logistic map was beneficial.

Results. Our empirical results, averaged over 12 runs, are
shown in Figure 4 (left, center). On both CIFAR-10 and
CIFAR-100, our soft rank formulations achieve comparable
accuracy to the OT formulation, though significantly faster,
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Figure 4. Left, center: Accuracy comparison on CIFAR-10, CIFAR-100 (n = 10, n = 100). Right: Runtime comparison for one batch
computation with backpropagation disabled. OT and All-pairs go out-of-memory starting from n = 2000 and n = 3000, respectively.
With backpropagation enabled, the runtimes are similar but OT and All-pairs go out-of-memory at n = 1000 and n = 2500, respectively.

There are interesting differences between the two forms of
regularization. For quadratic regularization, the Jacobian
only depends on the partition B1, . . . ,Bm (not on s) and
the blocks have constant value. For entropic regularization,
the Jacobian does depend on s and the blocks are constant
column by column. Both formulations are averaging the
incoming gradients, one uniformly and the other weighted.

Differentiating the projections. We now combine Propo-
sition 3 with Lemma 2 to characterize the Jacobians of the
projections onto the permutahedron and show how to multi-
ply arbitrary vectors with them in linear time.

Proposition 4. Jacobian of the projections

Let P (z,w) be defined in Proposition 3. Then,

@P (z,w)

@z
= J (z�(z),w)��1(z),

where J⇡ is the matrix obtained by permuting the rows

and columns of J according to ⇡, and where

J (s,w) := I � @v (s,w)

@s
.

Again, the Jacobian w.r.t. w is entirely symmetric. Unlike
the Jacobian of isotonic optimization, the Jacobian of the
projection is not block diagonal, as we need to permute its
rows and columns. We can nonetheless multiply with it in
linear time by using the simple identity (J⇡)z = (Jz⇡�1)⇡ ,
which allows us to reuse the O(n) multiplication with the
Jacobian of isotonic optimization.

Differentiating s" and r" . With the Jacobian of
P (z,w) w.r.t. z and w at hand, differentiating s" and
r" boils down to a mere application of the chain rule to (5)
and (6). To summarize, we can multiply with the Jacobians
of our soft operators in O(n) time and space.

6. Experiments

We present in this section our empirical findings. We will
release in the near future JAX, PyTorch and Tensorflow im-
plementations of our soft operators building upon a highly-
optimized C++ implementation of the PAV algorithm.

6.1. Top-k classification loss function

Experimental setup. To demonstrate the effectiveness of
our proposed soft rank operators as a drop-in replacement
for exisiting ones, we reproduce the top-k classification
experiment of Cuturi et al. (2019). The authors propose a
loss for top-k classification between a ground truth class
y 2 [n] and a vector of soft ranks r 2 Rn, which is higher
if the predicted soft ranks correctly place y in the top-k
elements. We compare the following soft operators

• OT (Cuturi et al., 2019): The O(Tn2) optimal transport
formulation discussed in §4.

• All-pairs (Qin et al., 2010): noting that [r(✓)]i is equiva-
lent to

Pn
j=1 [✓i > ✓j ] + 1, one can obtain soft ranks in

O(n2) by replacing the indicator function with a sigmoid.

• Proposed: our O(n log n) soft ranks rQ and rE . Al-
though not used in this experiment, for top-k ranking, the
complexity can be reduced to O(n log k) by computing
P using the algorithm of Lim & Wright (2016).

We use the CIFAR-10 and CIFAR-100 datasets, with n =
10 and n = 100 classes, respectively. Following Cuturi
et al. (2019), we use a vanilla CNN (4 Conv2D with 2 max-
pooling layers, ReLU activation, 2 fully connected layers
with batch norm on each), the ADAM optimizer (Kingma &
Ba, 2014) with a constant step size of 10�4, and set k = 1.
Similarly to Cuturi et al. (2019), we found that squashing
the scores ✓ to [0, 1]n with a logistic map was beneficial.

Results. Our empirical results, averaged over 12 runs, are
shown in Figure 4 (left, center). On both CIFAR-10 and
CIFAR-100, our soft rank formulations achieve comparable
accuracy to the OT formulation, though significantly faster,
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Figure 4. Left, center: Accuracy comparison on CIFAR-10, CIFAR-100 (n = 10, n = 100). Right: Runtime comparison for one batch
computation with backpropagation disabled. OT and All-pairs go out-of-memory starting from n = 2000 and n = 3000, respectively.
With backpropagation enabled, the runtimes are similar but OT and All-pairs go out-of-memory at n = 1000 and n = 2500, respectively.

There are interesting differences between the two forms of
regularization. For quadratic regularization, the Jacobian
only depends on the partition B1, . . . ,Bm (not on s) and
the blocks have constant value. For entropic regularization,
the Jacobian does depend on s and the blocks are constant
column by column. Both formulations are averaging the
incoming gradients, one uniformly and the other weighted.

Differentiating the projections. We now combine Propo-
sition 3 with Lemma 2 to characterize the Jacobians of the
projections onto the permutahedron and show how to multi-
ply arbitrary vectors with them in linear time.

Proposition 4. Jacobian of the projections

Let P (z,w) be defined in Proposition 3. Then,

@P (z,w)

@z
= J (z�(z),w)��1(z),

where J⇡ is the matrix obtained by permuting the rows

and columns of J according to ⇡, and where

J (s,w) := I � @v (s,w)

@s
.

Again, the Jacobian w.r.t. w is entirely symmetric. Unlike
the Jacobian of isotonic optimization, the Jacobian of the
projection is not block diagonal, as we need to permute its
rows and columns. We can nonetheless multiply with it in
linear time by using the simple identity (J⇡)z = (Jz⇡�1)⇡ ,
which allows us to reuse the O(n) multiplication with the
Jacobian of isotonic optimization.

Differentiating s" and r" . With the Jacobian of
P (z,w) w.r.t. z and w at hand, differentiating s" and
r" boils down to a mere application of the chain rule to (5)
and (6). To summarize, we can multiply with the Jacobians
of our soft operators in O(n) time and space.

6. Experiments

We present in this section our empirical findings. We will
release in the near future JAX, PyTorch and Tensorflow im-
plementations of our soft operators building upon a highly-
optimized C++ implementation of the PAV algorithm.
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lent to

Pn
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O(n2) by replacing the indicator function with a sigmoid.

• Proposed: our O(n log n) soft ranks rQ and rE . Al-
though not used in this experiment, for top-k ranking, the
complexity can be reduced to O(n log k) by computing
P using the algorithm of Lim & Wright (2016).

We use the CIFAR-10 and CIFAR-100 datasets, with n =
10 and n = 100 classes, respectively. Following Cuturi
et al. (2019), we use a vanilla CNN (4 Conv2D with 2 max-
pooling layers, ReLU activation, 2 fully connected layers
with batch norm on each), the ADAM optimizer (Kingma &
Ba, 2014) with a constant step size of 10�4, and set k = 1.
Similarly to Cuturi et al. (2019), we found that squashing
the scores ✓ to [0, 1]n with a logistic map was beneficial.

Results. Our empirical results, averaged over 12 runs, are
shown in Figure 4 (left, center). On both CIFAR-10 and
CIFAR-100, our soft rank formulations achieve comparable
accuracy to the OT formulation, though significantly faster,
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as we elaborate below. Confirming the results of Cuturi
et al. (2019), we found that the soft top-k loss slightly out-
performs the classical cross-entropy (logistic) loss for these
two datasets. However, we did not find that the All-pairs
formulation could outperform the cross-entropy loss.

The training times for 600 epochs on CIFAR-100 were 29
hours (OT), 21 hours (rQ), 23 hours (rE) and 16 hours (All-
pairs). Training times on CIFAR-10 were similar. While
our soft operators are several hours faster than OT, they are
slower than All-pairs, despite its O(n2) complexity. This is
due the fact that, with n = 100, All-pairs is very efficient
on GPUs, while our PAV implementation runs on CPU.

6.2. Runtime comparison: effect of input dimension

To measure the impact of the dimensionality n on the run-
time of each method, we designed the following experiment.

Experimental setup. We generate score vectors ✓ 2 Rn

randomly according to N (0, 1), for n ranging from 100 up
to 5000. For fair comparison with GPU implementations
(OT, All-pairs, Cross-entropy), we create a batch of 128 such
vectors and we compare the time to compute soft ranking
operators on this batch. We run this experiment on top of
TensorFlow (Abadi et al., 2016) on a six core Intel Xeon
W-2135 with 64 GBs of RAM and a GeForce GTX 1080 Ti.

Results. Run times for one batch computation with back-
propagation disabled are shown in Figure 4 (Right). While
their runtime is reasonable in small dimension, OT and All-
pairs scale quadratically with respect to the dimensionality
n (note the log scale on the y-axis). Although slower than a
softmax, our formulations scale well, with the dimension-
ality n having negligible impact on the runtime. OT and
All-pairs go out-of-memory starting from n = 2000 and
n = 3000, respectively. With backpropagation enabled,
they go out-of-memory at n = 1000 and n = 2500, due
to the need for recording the computational graph. This
shows that the lack of memory available on GPUs is prob-
lematic for these methods. In contrast, our approaches only
require O(n) memory and comes with the theoretical Jaco-
bian (they do not rely on differentiating through iterates).
They therefore suffer from no such issues.

6.3. Label ranking via soft Spearman’s rank

correlation coefficient

We now consider the label ranking setting where supervision
is given as full rankings (e.g., 2 � 1 � 3 � 4) rather than
as label relevance scores. The goal is therefore to learn to
predict permutations, i.e., a function fw : X ! ⌃. A clas-
sical metric between ranks is Spearman’s rank correlation
coefficient, defined as the Pearson correlation coefficient
between the ranks. Maximizing this coefficient is equiva-
lent to minimizing the squared loss between ranks. A naive

Figure 5. Label ranking accuracy with and without soft rank
layer. Each point above the line represents a dataset where our soft
rank layer improves Spearman’s rank correlation coefficient.

idea would be therefore to use as loss 1
2kr � r(✓)k2, where

✓ = gw(x). This is unfortunately a discontinuous function
of ✓. We therefore propose to rather use 1

2kr � r (✓)k2,
hence the name differentiable Spearman’s rank correlation
coefficient. At test time, we replace r with r, which is
justified by the order-preservation property (Proposition 2).

Experimental setup. We consider the 21 datasets from
(Hüllermeier et al., 2008; Cheng et al., 2009), which has
both semi-synthetic data obtained from classification prob-
lems, and real biological measurements. Following (Korba
et al., 2018), we average over two 10-fold validation runs,
in each of which we train on 90% and evaluate on 10% of
the data. Within each repetition, we run an internal 5-fold
cross-validation to grid-search for the best parameters. We
consider linear models of the form gw(x) = hw,xi+ w0,
and for ablation study we drop the soft ranking layer r .

Results. Due to the large number of datasets, we choose
to present a summary of the results in Figure 5. We postpone
detailed results to the appendix (Table 1). Out of 21 datasets,
introducing a soft rank layer with  = Q works better on
15 datasets, similarly on 4 and worse on 2 datasets. We can
thus conclude that even for such simple model, introducing
our layer is beneficial, and even achieving state of the art
results on some of the datasets (full details in the appendix).

6.4. Robust regression via soft least trimmed squares

We explore in this section the application of our soft sorting
operator s" to robust regression. Let x1, . . . ,xn 2 X ✓
Rd and y1, . . . , yn 2 Y ✓ R be a training set of input-
output pairs. Our goal is to learn a model gw : Rd ! R that
predicts outputs from inputs, where w are model parameters.
We focus on gw(x) := hw,xi for simplicity. We further
assume that a certain proportion of examples are outliers
including some label noise, which makes the task of robustly
estimating gw particularly challenging.

The classical ridge regression can be cast as

min
w

1

n

nX

i=1

`i(w) +
1

2"
kwk2, (9)

Comparison on 21 datasets, 5-fold CV

ℓi ≜
1
2

∥yi − f(xi)∥2

f(x)
=

rQ(g(x))

f(x) = g(x)

yi ∈ Σ
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