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Structured prediction

Goal: predict y € Y from x € X

e Both X’ and ) may be complex structured spaces
(sequences, permutations, etc)

 Assumption 1: a function fiy: X — R? is available.
Converts x into 8 = fy(x) (“potentials” or “features”)

e Assumption 2: y € )Y can be represented as a
d-dimensional binary vector, i.e., y € {0,1}7
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Maximum a-posteriori (MAP) inference

e The inner product (y, @) can be thought as the affinity
score between x € X and y € )V

* Find the highest-scoring y:

y € MAP(0) := argmax (0, y)
yey

Corresponds to finding the mode of posterior distribution
p(y|0) o exp(y, @) (Gibbs distribution)

Combinatorial problem: |)| potentially exponential in input size
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Marginal polytope and marginal inference

o conv(Y) == {E,[Y]: p € AP} forms a convex polytope,
called the marginal polytope [Wainwright & Jordan '08]

» Marginal inference consists in computing
marginals(@) = E,[Y] € conv(Y)

where p(y; 0) x exp(0, y) is the Gibbs distribution
j/\o
MAP &

argmax (1, 0,0)

Margin'.dl
*
O/ \O

o

A3 conv())



Examples of structured inference

One-of-k classification

(O north In Js Ve Ju
north | 1010 O MAP: argmax(0, y) = argmax0;
O south south | 01 0 0 yey k i€[k]
O east east |00 10 marginals: expB/ E 0; (softmax)
O west west [ 00 0 1 —1
Linear assignment Sequence prediction
T like it Y123 Y132 Y23 Va1 V32 Yoo I like it J’nlmu )'Nluv y:;p T o
et [1 1 0 (00 0 000 w e
QOO cela 015 0 11 0o 50O v ol IF O
e)e]e me lplit |0 0 0 0 1 1 000 pron e | T T 0
O OO/ phit  Jieewta [0 0 1 0 1 0 ey [ 00 .1
likeeme [ 1 0 0 0 0 1 likesp | O O 0
like-plait | 0 1 0 1 0 0 o (‘) ‘l’ g
ek |0 0 0 1 0 1 oo 0
it-me 01 0 0 10 likeit=vp | 0 O 1
itpit | 1 0 1 0 0 O -
MAP: Hungarian algorithm MAP: Viterbi algorithm
marginals: intractable [Valiant '79; Taskar '04] marginals: forward-backward algorithm

7 Image credit: Vlad Niculae (PhD thesis, to appear)



Examples of structured inference

Dependency parsing

*—l
like—1

I like it il

*—like
I-like o
it—like

*—it
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like—it

MAP: maximal arborescence algorithms
marginals: Koo et al '07, Smith & Smith '07
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Time-series alignment

MAP: dynamic time warping (DTW)
marginals: soft-DTW [CB’17]



Relation between loss and inference

n

min > L(6;;y;) 6= fw(x;)
=

e Structured SVM loss:
L(6;y) = max(6.y") — (0,y)
y'ey
Subgradient requires a call to MAP inference
» Conditional random field (CRF) loss:
L(B;y) =log > exp(0,y’) — (0,y)

y'ey

Gradient requires a call to marginal inference
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|ssues with MAP inference

o Can't deal with ambiguous ouputs

MAP inference returns only one output: the
highest-scoring one. For difficult cases, we may want to
know other likely outputs.

o Lack of differentiability

xeX = |fyl—50cR! 5 MAP| 5 yeYy — -

Can't use MAP as layer in a neural net pipeline
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Issues with marginal inference

» Every y gets non-zero probability since p(y;0) o exp (0, y)

How to assign exactly zero probability to irrelevant y?

e Intractable for some output spaces )

Can we make inference differentiable and at the same
time tractable for more output spaces?

We provide an answer based on convex duality
and smoothing / regularization!
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Prediction function as a linear program

View a combinatorial problem as continuous optimization

y(0) € argmax (0,y) = argmax (0,y)
yey y€econv(Y)

i.e., max of a linear form over a convex polytope

Note that when ) = {e;}¢ ;, conv()) = A?
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Regularized prediction functions e17ve1s

ya(0) € argmax (6, ) — Q(n)

peconv(y)

where (Q is a convex regularization function

ya(0) = p" = Ep[Y] € conv(Y)

for some, not necessarily unique, p € AV
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Relation with the convex conjugate

70(0) € argmax (6, 1) — (1)
pedom(Q)

 (0) = max (6, u)—Qu) = (8, 7a(6)) —ya(6))

pedom(9)
* ya(0) € 027(0) (from Danskin’s theorem)

O yq(0) =VQ*(0) if Q is strictly convex
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Benefit of regularization 1

Dealing with ambiguous predictions

Regularization moves yo(6) away from the vertices of the
marginal polytope: yqo(60) = convex combination of y €

v e
entropic regularization (marginals) quadratic regularization
16



Benefit of regularization 2

Smoothing effect

If Q is strongly convex then
e Q" is smooth (differentiable with Lipschitz continuous gradient)

* yo = VQ© is differentiable almost everywhere

XEX = fy|l—=0ecR = yq|— ...

Differentiable pipeline, can be trained end-to-end using
backpropagation!
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Fenchel-Young losses

» Fenchel-Young loss generated by 2 [NMBC'17, BMN 18]

La(6;y) = Q°(0) + Q(y) — (6,y)

where 8 € dom(Q*) = R and y € I C dom(Q) is the ground-truth

* Grounded in the Fenchel-Young inequality

Q' (0)+Q(p) > (0, 1) VO € dom(Q"), p € dom(Q).
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Properties of Fenchel-Young losses

La(6;y) = Q°(0) + Q(y) — (6,y)

1. Non-negativity: Lo(0;y) >0
2. Zero loss: Lo(0;y) =0 yo(0) =y

3. Convex and differentiable in 6

Properties stated for strictly convex €2 for notational simplicity.
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Learning with Fenchel-Young losses

Primal: min Y La(6;y;) + G(W) s.t. 6; = Fy(x))
i=1

Gradients: Vgla(0;y) = yq(0) — y (“residual vector”)
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Learning with Fenchel-Young losses

Primal: min Y La(6;y;) + G(W) s.t. 6; = Fy(x))
i=1

Gradients: Vgla(0;y) = yq(0) — y (“residual vector”)

If Fw(x) = Wx then

Dual: mﬂax—D(ﬁ) s.t. B; € dom(Q2) Vi € [n]

D(3) = X9(8) ~ ) + 6 (£, B!
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Relation with Bregman divergences

» Bregman divergence generated by strictly convex €2

Ba(yllp) = Qy) — Q(u) — (VQ(u), y — )

e Using 8 = VQ(p) we get

Ba(ylln) = La(6; y)

Proof uses that if Q is a l.s.c. proper convex function, then

Q'(0) + Q) = (6, 1) < = VQ'(0) < 6 = VQ(u)
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Relation with Bregman divergences

» Bregman divergences are defined in primal space

Bo: dom(£2) x dom(£2) — R

» Fenchel-Young losses are defined in “mixed space”

Lo: dom(Q2*) x Y C dom(Q2) — R,

Ba(y!||ya(0)) = Ba(y||VQ*(8)) not necessarily convex!
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Tsallis a-entropies [Tsaliis 'sg]

Choose dom(Q) = AP and Q = —H?

Halp) = 2. halpy) - with — ha(t) = T3

A parametric family of separable entropies

Ha([t, 1 — ¢])

0.6

0.44

0.24

001 7 ; :
24 t




Delta distribution, perceptron loss

argmax
(1,0,0)

Q(p) = —H(p) =0

A
“delta” distribution perceptron loss
yq(0) € argmax(0, y) Lo(0; e;) = max6; — 0,
ye{er} i€[k]
Ha(f 1~ ) i[5, 0))1 = V(=HE)*"([s,0))1 L[5, 0] e2) = (=H1)*([5,0)
y I e .
0.5
0.5 1
PR S P P
0.00 0.25 0.50 0.7: 1.00 -2 0 2 -3 -2 -1 0 1 2
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Softmax distribution, logistic loss

negative Shannon entropy

argmax
(1,0,0)

Q(p)

Hi(p) = >_ pilog pi

softmax

exp 6

B S expl;

0.5

0.0

HA((t 1 - 1)

logistic loss

La(0;ej) =log Y expb; — 0,

i€[k]

La([s,0); €2) = (=HT)*([s,0])

—— a = 1(softmax)
o o= oo (argmax)
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sparsemax distribution, 0SS Martins & Astudilio ‘16

negative Gini index [Gini 1912]

Qp) = ~H3(p) = 2 X pilpi — 1) = 5 ol -

1
2

argmax

projection onto the simplex / sparsemax 1.0.0,

Sparsemax

JA/Q(G) = argmin Hp — 0”2 (6..4.0)
peAk

Ha([t,1-4)) Lof[s,0]; e2) = (=H3)"([s, 0])

—— a =1 (softmax)
0.5

——— a = 2 (sparsemax)
= oo (argmax)

0.0
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CRFs and structured sparsemax

Choose dom(€2) = conv()))

¢ Conditional Random Fields: maximum entropy principle

_ S _
—Q(p) = max H(p) st. Ep[Y]=p

Then yo(0) = VQ*(0) = marginals(8); tractable for some )
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CRFs and structured sparsemax

Choose dom(2) = conv())

o Conditional Random Fields: maximum entropy principle

—Q(p) = max H(p) s.t. Ep[Y] =
peNYI

Then yo(0) = VQ*(0) = marginals(8); tractable for some )

» Structured sparsemax: minimum norm

u) = min p|* sit. EplY] = 1

Computing yo(0) =: sparsemax-mean(0) likely intractable for structured Y
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sparseMAP: mean space regularization [NMBC '18]

ya(0) = argmax (0, ) — ||pl

peconv(Y)CR

* yq can be computed using the conditional gradient
algorithm (a.k.a. Frank-Wolfe)

» Main ingredient is the linear (min|max)imization oracle

argmax (6,y) = MAP(0)
yey

e FW returns both p* and one possible p s.t. E,[Y] = p*
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Smoothed dynamic programming [CB’ 17, MB '18]

When ) can be represented as a DAG, MAP inference can be
computed by dynamic programming

Key idea: Smooth the max/min operator within Bellman's recursion

Entropic regul: marginals(@) = VDPq(0) € conv())

Quadratic regul: sparsemax-mean(8) ~ VDPq(8) € conv())

%”\\\/\\/ ® nitialize v at edge cases

,,,,,,,,,

& \;\‘12/ @ ® for all (i,j) in topological order:
N o - .
@ ) vi,j = 0ij + softming{vi1j, vij-1, vi-1,j-1}

Loss
D@ € "_) ® Output: DPq(0) == vm,n(0) (convex in 6')

(Y,0) =011+ 022+ 023+ 033+ 054




Backpropagating through yq

xeX —

fw

—~ 0 cR!—

~

Ya

* Since yo = VQ*, backpropagating through yq requires
multipications with the Hessian: V?Q*(8)z for some z

» Can be computed from the CG/FW solution by solving a
linear system derived from the KKT conditions [NMBC '18]

* Another way is to backpropagate through the directional
derivative at 6 along z [Pearlmutter '94, MB '18]

V?DPgo(0)z = V(VDPq(0), z)
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Summary of losses recovered

dom(2)  Q(p) ya(0) La(6;y)
Squared loss RIYI %Hp”z 0 %Hy—0H2
Perceptron loss A1 0 argmax(0) max; 0; — 0y
Logistic loss AP —H () softmax(8) log ", exp6; — 6y,
Sparsemax loss AV | pe]? sparsemax(8) 3|y — 0> — [|7a(0) — 6]
Struct. perceptron conv()) 0 MAP(0) max, (6,y") — (0,y)
CRF conv(Y) . r[r;/i]n . —H%(p) marginals(9)  log_, exp(0,y') — (6,y)
Struct. sparsemax conv()) . r[r;)]n |p||>  intractable” intractable”

SparseMAP conv(Y) | e ? sparseMAP(0)  1[ly — 0> — [|ga(6) — 6]

* Can be approximated by smoothed dynamic programming [MB '18]
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Generahzed entrOpIeS [DeGroot '62, Grunwald & Dawid '04]

Use a concave function H(p) to measure the “uncertainty” in p € A

34

Entropy H([t. 1~ £])

A
Tsallis: H (p) = ——— S p; — p©
sallis a(p) Oé(OC . 1) Jzzlpj p_,

g-Norm: Hy(p) == 1 — ]l

1
Squared g-Norm: H}*(p) == 5(1—||p||§)

V|

L 1
Rényi: Hi(p) = log > pjﬂ.
1- B j=1




———————————
A wealth of new loss and prediction functions [BMN '18]

Entropy H([t,1— 1]) Predictive distribution V(—H)*([s, 0]); Loss L_u([s.0]: e2) = (—H)*([s.0])
100 - 20 Tsallis entropy HY,
0.6 (softmax)
15 5
(sparsemax)
0.4
1.0
02 05
0.0 0.0
209" Norm entropy H}
0.6 g =1 Gargmax)
15 015
04 o
02 05
0.0 0.0 g
s
201" squared Norm entropy Hye
0.6 15 q=1 (rargmax)
— 5
4 (sparsemax)
0.4 10
02 05
0.0 0.0
s
2.0 Renyi entropy H}
0.6 1 (softmax)
15
04
1.0
02 05
0.0 0.0
-3 -2 -1 0 1 2
t s S
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Properties of generalized entropies

® Assumption 1: H(p) =0if p € {e;}
® Assumption 2: H is strictly concave over dom(Q) = AP

® Assumption 3: H(Pp) for any permutation matrix P

4

® Non-negativity: H(p) >0

1
® Maximum: argmax H(p) = —
peAD’\ |y|

® Order-preservingness: If p =yq(s) = V(—H)*(s) then

S > s = pi > pj

36



Condition for sparse prediction function

When is yo = V(—H)" sparse?

Under assumptions 1 to 3:

vp € AP 9(—H)(p) # @ & V(~H) Rl = AV

i.e., V(—H)" covers the full simplex

Functions whose gradient “explode” at the boundary (e.g., Shannon

entropy) are called “essentially smooth”. For those functions, V(—H)
maps only to the relative interior of AP,

37



Separation margin of a loss

A loss L(s;y) over Rl x {e,-}',-i'l, where y = ey is the
ground truth, has a separation margin m > 0 if

> H ) =
sk_m—i—r};?kxsj = L(s;y)=0

We denote the smallest such m by margin(L).

24 Tsallis entropy H,,
— « = 1 (softmax)
== a=15

1{ = a= 2 (sparsemax)
= a=3

—=

38



Condition for separation margin and value

L_n(s; ex) has a separation margin m

0

mey € 8(—H)(ek)

Tight link between margins and sparse prediction functions!

For twice differentiale H:
margin(L_n) = V;H(ex) — ViH(ex).
For separable entropies H =)~ h(p;):
J

margin(L_y) = H(0) — H'(1)
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Named Entity Recognition vs '1g]

® Identify blocks of words corresponding to names, locations, etc

® Pipeline

sentencexe)(—>—>t9€]Rd—>—>]RJr

sentence x € X — |bi-LSTM | — 8 ¢ RY —

e Results on CoNLL 2013 shared task:

Yo

_)

— R+

A(-, )
/l\
y

Entrop,

stoc

E8e

£I8¢

8k

€06

2]

s Q Loss English  Spanish  German Dutch
i

g Negentropy ~ Surrogate 90.80 86.68 77.35 87.56
5t L2 regularization Relaxed 90.47 86.20 77.56 87.37
- o

§§§é fal Z% Surrogate 90.86 85.51 76.01 86.58
1Ok !H - Relaxed 89.49 84.07 76.91 85.90
s s T

EIEEEE A A (Lample et al., 2016) 90.96 85.75 78.76  81.74
mgﬁ

hg

] x o
O S IDINONS ¢ 8
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Machine Translation with Attention us '1g]

® Translate source language into target language

®* RNN pipeline: decoding step for outputting the next word

encoding x — — 60—

RNN decoder state z

~

Ya

— attention weights

e (3 reg achieves similar accuracy with more interpretable maps

Structured attention — L2

lHJH ]
B

Structured attention — entropy

In

. my
opinion

there L
are

two
levels

Attention model WMT14 IM fr—en  WMT14 en—fr

o
response
from

the

French
Govemment

Softmax 27.96 28.08
Entropy regularization 27.96 27.98
03 reg. 27.21 27.28

]

T
A BTG
P

R *;&&zﬁ%e«%w&,ﬁ »
< & &
&
&

\

03
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Natural Language Inference [nvBc 11g]

® Infer whether two sentence agree, contradict, are neutral

® Pipeline:
: —-P ! agree
remise —» N - .
X ) bi-LSTM N B =<hi,pj>—'—' %\t/figﬂ?g —| classifier |— contradict
hypothesis— —SH neutral

soft alignment
produced by sparseMAP

® Results on the SNLI and multi-SNLI dataset

o

a
gentleman
overlooking
" A d t f non-aligned pai
neighborhood CCuracy scores and percentage or non-aligned pairs
situation ==

closely

a ESIM variant MultiNLI SNLI

gentleman
o\%clhmking softmax  76.05 (100%)  86.52 (100%)
"cmhhm)m: sequential  75.54 (13%) 86.62 (19%)

matching  76.13 (8%) 86.05 (15%)

situation
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Dependency parsing [NMBC ‘18]

® Predict the directed tree of grammatical dependencies between
words in a sentence

® Pipeline: y
+

sentencex626—>—>6’€]Rd—>—>]RJr

¢ Results on Universal Dependency data (CoNLL 2017 shared task)

Loss en zh vi ro ja
Structured SVM  87.02  81.94  69.42  87.58  96.24
[ \ m CRF 86.74 83.18 69.10 87.13 96.09
¥ \¥ \Y/ N SPARSEMAP 8690 84.03 69.71 8735 96.04
= the broccoli looks browned around the edges m-SPARSEMAP 87.34 8263 70.87 87.63 96.03
UDPipe baseline  87.68 82.14 69.63 8736 95.94
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Conclusion

* Regularization / smoothing allows to deal with
ambiguous outputs and brings differentiability

* FY losses allow to learn such regularized prediction
functions and unify a wealth of existing losses

 Link between sparsity of yo = VQ*, sparsity of dual
variables and margin of Lo

» FY losses support arbitrary dom(£2), allowing a wide
variety of (unexplored) applications
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