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Structured prediction

Goal: predict y ∈ Y from x ∈ X

• Both X and Y may be complex structured spaces
(sequences, permutations, etc)

• Assumption 1: a function f W : X → Rd is available.
Converts x into θ = f W (x) (“potentials” or “features”)

• Assumption 2: y ∈ Y can be represented as a
d-dimensional binary vector, i.e., y ∈ {0, 1}d
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Maximum a-posteriori (MAP) inference

• The inner product 〈y ,θ〉 can be thought as the affinity
score between x ∈ X and y ∈ Y

• Find the highest-scoring y :

ŷ ∈ MAP(θ) := argmax
y∈Y

〈θ, y〉

Corresponds to finding the mode of posterior distribution
p(y |θ) ∝ exp〈y ,θ〉 (Gibbs distribution)

Combinatorial problem: |Y| potentially exponential in input size
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Marginal polytope and marginal inference
• conv(Y) := {Ep[Y ] : p ∈ 4|Y|} forms a convex polytope,

called the marginal polytope [Wainwright & Jordan ’08]

• Marginal inference consists in computing
marginals(θ) := Ep[Y ] ∈ conv(Y)

where p(y ; θ) ∝ exp〈θ, y〉 is the Gibbs distribution

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

SparseMAP: Differentiable Sparse Structured Inference
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Abstract
Structured prediction requires searching over a
combinatorial number of structures. To tackle
it, we introduce SPARSEMAP, a new method for
sparse structured inference, together with corre-
sponding loss functions. SPARSEMAP inference
is able to automatically select only a few global
structures: it is situated between MAP inference,
which picks a single structure, and marginal infer-
ence, which assigns probability mass to all struc-
tures, including implausible ones. Importantly,
SPARSEMAP can be computed using only calls
to a MAP oracle, hence it is applicable even to
problems where marginal inference is intractable,
such as linear assignment. Moreover, thanks to
the solution sparsity, gradient backpropagation is
efficient regardless of the structure. SPARSEMAP
thus enables us to augment deep neural networks
with generic and sparse structured hidden lay-
ers. Experiments in dependency parsing and nat-
ural language inference reveal competitive accu-
racy, improved interpretability, and the ability to
capture natural language ambiguities, which is
attractive for pipeline systems.

1. Introduction
Structured prediction involves the manipulation of dis-
crete, combinatorial structures such as trees, sequences, or
alignments (Bakır et al., 2007; Smith, 2011; Nowozin et al.,
2014). These structures arise naturally as desired outputs
of machine learning tasks and as intermediate representa-
tions in deep pipelines. The core challenge of structured
prediction, however, is the prohibitively large set of possible
structures. Inference over this space is generally difficult, of-
ten sidestepped by greedy search, factorization assumptions,
or continuous relaxations (Belanger & McCallum, 2016).

In this paper, we propose an appealing alternative: a new in-
ference strategy, dubbed SPARSEMAP, which encourages
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Figure 1. Left: in the unstructured case, softmax and sparsemax
can be interpreted as regularized, differentiable arg max approxi-
mations; softmax returns dense solutions while sparsemax favors
sparse ones. Right: in this work, we extend this view to structured
inference, which consists of optimizing over a polytope M, the
convex hull of all possible structures (depicted: the arborescence
polytope, whose vertices are trees). We introduce SPARSEMAP
as a structured extension of sparsemax: it is situated in between
MAP inference, which yields a single structure, and marginal
inference, which returns a dense combination of structures.

sparsity in the structured representations. Namely, we seek
solutions explicitly expressed as a combination of a small,
enumerable set of global structures. Our framework departs
from the two most common inference strategies in struc-
tured prediction: maximum a posteriori (MAP) inference,
which returns the highest-scoring structure, and marginal
inference, which yields a dense probability distribution over
structures. Neither of these strategies is fully satisfactory:
for latent structure models, marginal inference is appealing,
since it can represent uncertainty and, unlike MAP inference,
it is continuous and differentiable, hence amenable for use
in structured hidden layers in neural networks (Kim et al.,
2017). It has, however, several limitations. First, there are
useful problems for which MAP is tractable, but marginal in-
ference is not, e.g., linear assignment (Valiant, 1979; Taskar,
2004). Even when marginal inference is available, case-by-
case derivation of the backward pass is needed, sometimes
producing fairly complicated algorithms, e.g., second-order
expectation semirings (Li & Eisner, 2009). Finally, marginal
inference is dense: it assigns non-zero probabilities to all
structures and cannot completely rule out irrelevant ones.
This can be statistically and computationally wasteful, as
well as qualitatively harder to interpret.

In this work, we make the following contributions:
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Examples of structured inference
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One-of-k classification

Examples of binary representation of structures

structure M N

One-of-K (XOR)

west
east

north
south

����������

yn ys ye yw
north 1 0 0 0
south 0 1 0 0
east 0 0 1 0
west 0 0 0 1

���������� []
Sequence tagging

I like it

Verb
Noun

Pron

����������������������

yNNN yNNV yPVP
I=N 1 1 0
I=V 0 0 0
I=P 0 0 1

like=N 1 1 0
like=V 0 0 ... 1 ...
like=P 0 0 0
it=N 1 0 0
it=V 0 1 0
it=P 0 0 1

����������������������

���������������������������

yNNN yNNV yPVP
I,like=NN 1 1 0
I,like=NV 0 0 0
I,like=NP 0 0 0
I,like=VN 0 0 0
I,like=VV 0 0 ... 0 ...
I,like=VP 0 0 0
I,like=PN 0 0 0
I,like=PV 0 0 1
I,like=PP 0 0 0

like,it=NN 1 0 0
...

like,it=VP 0 0 1
...

���������������������������
Non-projective dependency parsing

I like it

����������������������

��I 1 0 0
like�I 0 1 1
it�I 0 0 0
��like 0 1 1
I�like 1 ... 0 0 ...
it�like 0 0 0
��it 0 0 0
I�it 0 1 0

like�it 1 0 1

����������������������
[]

Linear assignment
I like it

me
plait

cela ����������������������

y��� y��� y��� y��� y��� y���
I�cela 1 1 0 0 0 0
I�me 0 0 1 1 0 0

I�plait 0 0 0 0 1 1
like�cela 0 0 1 0 1 0
like�me 1 0 0 0 0 1

like�plait 0 1 0 1 0 0
it�cela 0 0 0 1 0 1
it�me 0 1 0 0 1 0

it�plait 1 0 1 0 0 0

����������������������

[]

Figure �.�: Illustration of useful structures, along with their matrix representation.

��
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Examples of binary representation of structures
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MAP: argmax
y∈Y

〈θ, y〉 = argmax
i∈[k]

θi

marginals: exp θ
/ k∑

i=1

θi (softmax)

Linear assignment

structure M N

One-of-K (XOR)

west
east

north
south

2666666664

yn ys ye yw
north 1 0 0 0
south 0 1 0 0
east 0 0 1 0
west 0 0 0 1

3777777775 []
Sequence tagging

I like it

Verb
Noun

Pron

2666666666666666666664

yNNN yNNV yPVP
I=N 1 1 0
I=V 0 0 0
I=P 0 0 1

like=N 1 1 0
like=V 0 0 ... 1 ...
like=P 0 0 0
it=N 1 0 0
it=V 0 1 0
it=P 0 0 1

3777777777777777777775

266666666666666666666666664

yNNN yNNV yPVP
I,like=NN 1 1 0
I,like=NV 0 0 0
I,like=NP 0 0 0
I,like=VN 0 0 0
I,like=VV 0 0 ... 0 ...
I,like=VP 0 0 0
I,like=PN 0 0 0
I,like=PV 0 0 1
I,like=PP 0 0 0

like,it=NN 1 0 0
...

like,it=VP 0 0 1
...

377777777777777777777777775
Non-projective dependency parsing

I like it

2666666666666666666664

?!I 1 0 0
like!I 0 1 1
it!I 0 0 0
?!like 0 1 1
I!like 1 ... 0 0 ...
it!like 0 0 0
?!it 0 0 0
I!it 0 1 0

like!it 1 0 1

3777777777777777777775
[]
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I like it
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[]

Figure �.�: Illustration of useful structures, along with their matrix representation.
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MAP: Hungarian algorithm
marginals: intractable [Valiant ’79; Taskar ’04]

Sequence prediction

structure M N

One-of-K (XOR)

west
east

north
south

2666666664

yn ys ye yw
north 1 0 0 0
south 0 1 0 0
east 0 0 1 0
west 0 0 0 1

3777777775 []
Sequence tagging

I like it

Verb
Noun

Pron

2666666666666666666664

yNNN yNNV yPVP
I=N 1 1 0
I=V 0 0 0
I=P 0 0 1

like=N 1 1 0
like=V 0 0 ... 1 ...
like=P 0 0 0
it=N 1 0 0
it=V 0 1 0
it=P 0 0 1

3777777777777777777775

266666666666666666666666664

yNNN yNNV yPVP
I,like=NN 1 1 0
I,like=NV 0 0 0
I,like=NP 0 0 0
I,like=VN 0 0 0
I,like=VV 0 0 ... 0 ...
I,like=VP 0 0 0
I,like=PN 0 0 0
I,like=PV 0 0 1
I,like=PP 0 0 0

like,it=NN 1 0 0
...

like,it=VP 0 0 1
...

377777777777777777777777775
Non-projective dependency parsing

I like it

2666666666666666666664

?!I 1 0 0
like!I 0 1 1
it!I 0 0 0
?!like 0 1 1
I!like 1 ... 0 0 ...
it!like 0 0 0
?!it 0 0 0
I!it 0 1 0

like!it 1 0 1

3777777777777777777775
[]

Linear assignment
I like it

me
plait

cela 2666666666666666666664

y��� y��� y��� y��� y��� y���
I�cela 1 1 0 0 0 0
I�me 0 0 1 1 0 0

I�plait 0 0 0 0 1 1
like�cela 0 0 1 0 1 0
like�me 1 0 0 0 0 1

like�plait 0 1 0 1 0 0
it�cela 0 0 0 1 0 1
it�me 0 1 0 0 1 0

it�plait 1 0 1 0 0 0

3777777777777777777775

[]

Figure �.�: Illustration of useful structures, along with their matrix representation.

��

MAP: Viterbi algorithm
marginals: forward-backward algorithm

Image credit: Vlad Niculae (PhD thesis, to appear)
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Dependency parsing

structure M N

One-of-K (XOR)

west
east

north
south

2666666664

yn ys ye yw
north 1 0 0 0
south 0 1 0 0
east 0 0 1 0
west 0 0 0 1

3777777775 []
Sequence tagging

I like it

Verb
Noun

Pron

2666666666666666666664

yNNN yNNV yPVP
I=N 1 1 0
I=V 0 0 0
I=P 0 0 1

like=N 1 1 0
like=V 0 0 ... 1 ...
like=P 0 0 0
it=N 1 0 0
it=V 0 1 0
it=P 0 0 1

3777777777777777777775

266666666666666666666666664

yNNN yNNV yPVP
I,like=NN 1 1 0
I,like=NV 0 0 0
I,like=NP 0 0 0
I,like=VN 0 0 0
I,like=VV 0 0 ... 0 ...
I,like=VP 0 0 0
I,like=PN 0 0 0
I,like=PV 0 0 1
I,like=PP 0 0 0

like,it=NN 1 0 0
...

like,it=VP 0 0 1
...

377777777777777777777777775
Non-projective dependency parsing

I like it

2666666666666666666664

?!I 1 0 0
like!I 0 1 1
it!I 0 0 0
?!like 0 1 1
I!like 1 ... 0 0 ...
it!like 0 0 0
?!it 0 0 0
I!it 0 1 0

like!it 1 0 1

3777777777777777777775
[]

Linear assignment
I like it

me
plait

cela 2666666666666666666664

y��� y��� y��� y��� y��� y���
I�cela 1 1 0 0 0 0
I�me 0 0 1 1 0 0

I�plait 0 0 0 0 1 1
like�cela 0 0 1 0 1 0
like�me 1 0 0 0 0 1

like�plait 0 1 0 1 0 0
it�cela 0 0 0 1 0 1
it�me 0 1 0 0 1 0

it�plait 1 0 1 0 0 0

3777777777777777777775

[]

Figure �.�: Illustration of useful structures, along with their matrix representation.
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MAP: maximal arborescence algorithms
marginals: Koo et al ’07, Smith & Smith ’07
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Differentiable Dynamic Programming for Structured Prediction and Attention

graphical models with a tree structure, and to approximate
inference in general graphical models, as unrolled loopy
belief propagation (Pearl, 1988) yields a dynamic program.

3.2. Time-series alignment

We now demonstrate how to instantiate DP
⌦

to the compu-
tational graph of dynamic time warping (DTW) (Sakoe &
Chiba, 1978), whose goal is to seek the minimal cost align-
ment between two time-series. We call the resulting oper-
ator DTW

⌦

. Formally, let NA and NB be the lengths of
two time-series, A and B. Let ai and bj be the ith and jth

observations of A and B, respectively. Since edge weights
only depend on child nodes, it is convenient to rearrange
Y and ✓ as NA ⇥ NB matrices. Namely, we represent
an alignment Y as a NA ⇥ NB binary matrix, such that
yi,j = 1 if ai is aligned with bj , and 0 otherwise. Like-
wise, we represent ✓ as a NA ⇥ NB matrix. A classical
example is ✓i,j = d(ai, bj), for some differentiable dis-
crepancy measure d. We write Y the set of all monotonic
alignment matrices, such that the path that connects the
upper-left (1, 1) matrix entry to the lower-right (NA, NB)

one uses only #,!,& moves. The DAG associated with Y
is illustrated in Figure 3 with NA = 4 and NB = 3 below.

start

1,1

✓1,1

2,1

1,2

3,1

1,3

2,2

✓2,2
2,3

✓2,3

3,2

1,4

2,4

3,3

✓3,3

3,4

✓3,4

end

hY ,✓i = ✓
1,1 + ✓

2,2 + ✓
2,3 + ✓

3,3 + ✓
3,4

Figure 3. Computational graph of the DTW algorithm.

Again, the bold arrows indicate one possible path Y 2 Y
from start to end in the DAG, and correspond to one pos-
sible alignment. Using this representation, the cost of an
alignment (cumulated cost along the path) is conveniently
computed by hY ,✓i. The value DTW

⌦

(✓) can be used to
define a loss between alignments or between time-series.
Following Proposition 3, rDTW

⌦

(✓) = E 2 RNA⇥NB

can be understood as a soft alignment matrix. This matrix
is sparse when ⌦ = k · k2, as illustrated in Figure 1 (right).

Pseudo-code to compute DTW
⌦

(✓) as well as its gradi-
ent and its Hessian-vector products are provided in §B.3.
DTW�H(✓), which is known as soft-DTW, and the proba-
bility p✓,�H(Y |A,B) takes a Gibbs form, similar to §3.1,
as observed in (Cuturi et al., 2017). However, the case
⌦ = k · k2 and the computation of r2DTW

⌦

(✓)Z are new
and allow new applications.

4. Differentiable structured prediction
We now apply the proposed layers, DP

⌦

(✓) and rDP
⌦

(✓),
to structured prediction (Bakır et al., 2007), whose goal is
to predict a structured output Y 2 Y associated with a
structured input X 2 X . We define old and new structured
losses, and demonstrate them on two structured prediction
tasks: named entity recognition and time-series alignment.

4.1. Structured loss functions

Throughout this section, we assume that the potentials
✓ 2 ⇥ have already been computed using a function from
X to ⇥ and let C : Y⇥Y ! R

+

be a cost function between
the ground-truth output Ytrue and the predicted output Y .

Convex losses. Because C is typically non-convex, the
cost-augmented structured hinge loss (Tsochantaridis et al.,
2005) is often used instead for linear models

`C(Ytrue;✓) , max

Y 2Y
C(Ytrue,Y )+hY ,✓i�hYtrue,✓i. (7)

This is a convex upper-bound on C(Ytrue,Y
?
(✓)), where

Y ?
(✓) is defined in (4). To make the cost-augmented de-

coding tractable, it is usually assumed that C(Ytrue,Y ) is
linear in Y , i. e., it can be written as hCYtrue ,Y i for some
matrix CYtrue . We can then rewrite (7) using our notation as

`C(Ytrue;✓) = LP(✓ +CYtrue)� hYtrue,✓i.
However, this loss function is non-differentiable. We there-
fore propose to relax LP by substituting it with DP

⌦

:

`C,⌦(Ytrue;✓) , DP
⌦

(✓ +CYtrue)� hYtrue,✓i.

Losses in this class are convex, smooth, tractable for any
⌦, and by Proposition 2 property 2 a sensible approxima-
tion of `C . In addition, they only require to backpropagate
through DP

⌦

(✓) at training time. It is easy to check that
we recover the structured hinge loss with `C,0 (Tsochan-
taridis et al., 2005) and the CRF loss with `

0,�H (Lafferty
et al., 2001). The last one has been used on top of LSTMs
in several recent works (Lample et al., 2016; Ma & Hovy,
2016). Minimizing `

0,�H(✓) is equivalent to maximizing
the likelihood p✓,�H(Ytrue). However, minimizing `

0,k·k2

is not equivalent to maximizing p✓,k·k2
(Ytrue). In fact, the

former is convex while the latter is not.

Non-convex losses. A direct approach that uses the
output distribution p✓,⌦ consists in minimizing the riskP

y2Y p✓,�H(Y )C(Ytrue,Y ). As shown by Stoyanov &
Eisner (2012), this can be achieved by backpropagating
through the minimum risk decoder. However, the risk is
usually non-differentiable, piecewise constant (Smith &
Eisner, 2006) and several smoothing heuristics are neces-
sary to make the method work (Stoyanov & Eisner, 2012).
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graphical models with a tree structure, and to approximate
inference in general graphical models, as unrolled loopy
belief propagation (Pearl, 1988) yields a dynamic program.

3.2. Time-series alignment

We now demonstrate how to instantiate DP
⌦

to the compu-
tational graph of dynamic time warping (DTW) (Sakoe &
Chiba, 1978), whose goal is to seek the minimal cost align-
ment between two time-series. We call the resulting oper-
ator DTW

⌦

. Formally, let NA and NB be the lengths of
two time-series, A and B. Let ai and bj be the ith and jth

observations of A and B, respectively. Since edge weights
only depend on child nodes, it is convenient to rearrange
Y and ✓ as NA ⇥ NB matrices. Namely, we represent
an alignment Y as a NA ⇥ NB binary matrix, such that
yi,j = 1 if ai is aligned with bj , and 0 otherwise. Like-
wise, we represent ✓ as a NA ⇥ NB matrix. A classical
example is ✓i,j = d(ai, bj), for some differentiable dis-
crepancy measure d. We write Y the set of all monotonic
alignment matrices, such that the path that connects the
upper-left (1, 1) matrix entry to the lower-right (NA, NB)

one uses only #,!,& moves. The DAG associated with Y
is illustrated in Figure 3 with NA = 4 and NB = 3 below.
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Figure 3. Computational graph of the DTW algorithm.

Again, the bold arrows indicate one possible path Y 2 Y
from start to end in the DAG, and correspond to one pos-
sible alignment. Using this representation, the cost of an
alignment (cumulated cost along the path) is conveniently
computed by hY ,✓i. The value DTW

⌦

(✓) can be used to
define a loss between alignments or between time-series.
Following Proposition 3, rDTW

⌦

(✓) = E 2 RNA⇥NB

can be understood as a soft alignment matrix. This matrix
is sparse when ⌦ = k · k2, as illustrated in Figure 1 (right).

Pseudo-code to compute DTW
⌦

(✓) as well as its gradi-
ent and its Hessian-vector products are provided in §B.3.
DTW�H(✓), which is known as soft-DTW, and the proba-
bility p✓,�H(Y |A,B) takes a Gibbs form, similar to §3.1,
as observed in (Cuturi et al., 2017). However, the case
⌦ = k · k2 and the computation of r2DTW

⌦

(✓)Z are new
and allow new applications.

4. Differentiable structured prediction
We now apply the proposed layers, DP

⌦

(✓) and rDP
⌦

(✓),
to structured prediction (Bakır et al., 2007), whose goal is
to predict a structured output Y 2 Y associated with a
structured input X 2 X . We define old and new structured
losses, and demonstrate them on two structured prediction
tasks: named entity recognition and time-series alignment.

4.1. Structured loss functions

Throughout this section, we assume that the potentials
✓ 2 ⇥ have already been computed using a function from
X to ⇥ and let C : Y⇥Y ! R

+

be a cost function between
the ground-truth output Ytrue and the predicted output Y .

Convex losses. Because C is typically non-convex, the
cost-augmented structured hinge loss (Tsochantaridis et al.,
2005) is often used instead for linear models

`C(Ytrue;✓) , max

Y 2Y
C(Ytrue,Y )+hY ,✓i�hYtrue,✓i. (7)

This is a convex upper-bound on C(Ytrue,Y
?
(✓)), where

Y ?
(✓) is defined in (4). To make the cost-augmented de-

coding tractable, it is usually assumed that C(Ytrue,Y ) is
linear in Y , i. e., it can be written as hCYtrue ,Y i for some
matrix CYtrue . We can then rewrite (7) using our notation as

`C(Ytrue;✓) = LP(✓ +CYtrue)� hYtrue,✓i.
However, this loss function is non-differentiable. We there-
fore propose to relax LP by substituting it with DP

⌦

:

`C,⌦(Ytrue;✓) , DP
⌦

(✓ +CYtrue)� hYtrue,✓i.

Losses in this class are convex, smooth, tractable for any
⌦, and by Proposition 2 property 2 a sensible approxima-
tion of `C . In addition, they only require to backpropagate
through DP

⌦

(✓) at training time. It is easy to check that
we recover the structured hinge loss with `C,0 (Tsochan-
taridis et al., 2005) and the CRF loss with `

0,�H (Lafferty
et al., 2001). The last one has been used on top of LSTMs
in several recent works (Lample et al., 2016; Ma & Hovy,
2016). Minimizing `

0,�H(✓) is equivalent to maximizing
the likelihood p✓,�H(Ytrue). However, minimizing `

0,k·k2

is not equivalent to maximizing p✓,k·k2
(Ytrue). In fact, the

former is convex while the latter is not.

Non-convex losses. A direct approach that uses the
output distribution p✓,⌦ consists in minimizing the riskP

y2Y p✓,�H(Y )C(Ytrue,Y ). As shown by Stoyanov &
Eisner (2012), this can be achieved by backpropagating
through the minimum risk decoder. However, the risk is
usually non-differentiable, piecewise constant (Smith &
Eisner, 2006) and several smoothing heuristics are neces-
sary to make the method work (Stoyanov & Eisner, 2012).

1 0 0 0

0 1 0 0

0 0 1 1

MAP: dynamic time warping (DTW)
marginals: soft-DTW [CB’17]



Relation between loss and inference

min
W

n∑

i=1
L(θi ; y i) θi ≡ f W (x i)

• Structured SVM loss:
L(θ; y) = max

y ′∈Y
〈θ, y ′〉 − 〈θ, y〉

Subgradient requires a call to MAP inference

• Conditional random field (CRF) loss:
L(θ; y) = log

∑

y ′∈Y
exp〈θ, y ′〉 − 〈θ, y〉

Gradient requires a call to marginal inference
9



Issues with MAP inference

• Can’t deal with ambiguous ouputs

MAP inference returns only one output: the
highest-scoring one. For difficult cases, we may want to
know other likely outputs.

• Lack of differentiability

x ∈ X → fW → θ ∈ Rd → MAP → ŷ ∈ Y → · · ·

Can’t use MAP as layer in a neural net pipeline

10



Issues with marginal inference

• Every y gets non-zero probability since p(y ; θ) ∝ exp 〈θ, y〉

How to assign exactly zero probability to irrelevant y?

• Intractable for some output spaces Y

Can we make inference differentiable and at the same
time tractable for more output spaces?

We provide an answer based on convex duality
and smoothing / regularization!

11



Outline

• Background: structured prediction

• Regularized prediction functions

• A new family of loss functions

• Generalized entropies, sparsity and separation margins

• Applications and experimental results

12



Prediction function as a linear program

View a combinatorial problem as continuous optimization

ŷ(θ) ∈ argmax
y∈Y

〈θ, y〉 = argmax
y∈conv(Y)

〈θ, y〉

i.e., max of a linear form over a convex polytope

Note that when Y = {e i}d
i=1, conv(Y) = 4d

13



Regularized prediction functions [NB’17,MB’18]

ŷΩ(θ) ∈ argmax
µ∈conv(Y)

〈θ,µ〉 − Ω(µ)

where Ω is a convex regularization function

ŷΩ(θ) = µ? = Ep[Y ] ∈ conv(Y)

for some, not necessarily unique, p ∈ 4|Y|

14



Relation with the convex conjugate

ŷΩ(θ) ∈ argmax
µ∈dom(Ω)

〈θ,µ〉 − Ω(µ)

• Ω∗(θ) := max
µ∈dom(Ω)

〈θ,µ〉−Ω(µ) = 〈θ, ŷΩ(θ)〉−Ω(ŷΩ(θ))

• ŷΩ(θ) ∈ ∂Ω∗(θ) (from Danskin’s theorem)
◦ ŷΩ(θ) = ∇Ω∗(θ) if Ω is strictly convex

15



Benefit of regularization 1

Dealing with ambiguous predictions

Regularization moves ŷΩ(θ) away from the vertices of the
marginal polytope: ŷΩ(θ) = convex combination of y ∈ Y
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Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTW�H(✓) = �7.49

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA, Bi ,Pi,j ai,jbi,j . We write the (D � 1)-probability
simplex by 4D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {PY 2Y �Y Y : � 2 4|Y|} the convex hull
of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) ,

P
i qi log qi.

2. Smoothed max operators
Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD ! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq, xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq, xi � ⌦(q).

By Rademacher’s theorem,rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian ofrmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and
upper-bounded by U⌦,D on the simplex4D, then
max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:
max⌦(x + c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-
mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:
max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

PD
i=1 !(qi), for some function !. We

focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers
Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTWk·k2(✓) = 9.61

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA, Bi ,Pi,j ai,jbi,j . We write the (D � 1)-probability
simplex by 4D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {PY 2Y �Y Y : � 2 4|Y|} the convex hull
of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) ,

P
i qi log qi.

2. Smoothed max operators
Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD ! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq, xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq, xi � ⌦(q).

By Rademacher’s theorem,rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian ofrmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and
upper-bounded by U⌦,D on the simplex4D, then
max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:
max⌦(x + c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-
mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:
max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

PD
i=1 !(qi), for some function !. We

focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers
Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1. DTW⌦(✓) is an instantiation of the proposed smoothed
dynamic programming operator, DP⌦(✓), to the dynamic time
warping (DTW) computational graph. In this picture, ✓ is the
squared Euclidean distance matrix between the observations of
two time-series. The gradient rDTW⌦(✓) is equal to the ex-
pected alignment under a certain random walk characterized in
§2.3 and is a sound continuous relaxation to the hard DTW align-
ment between the two time-series (here depicted with a yellow
path). Unlike negentropy regularization (left), `22 regularization
leads to exactly sparse alignments (right). Our framework al-
lows to backpropagate through both DTW⌦(✓) and rDTW⌦(✓),
which makes it possible to learn the distance matrix ✓ end-to-end.

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y . We denote the elements of Y by yi,j and
its rows by yi. We denote the Frobenius inner product be-
tween A and B by hA, Bi ,Pi,j ai,jbi,j . We denote the
(D� 1)-probability simplex by4D , {� 2 RD

+ : k�k1 =

1}. We write conv(Y) , {PY 2Y �Y Y : � 2 4|Y|} the
convex hull of Y , [N ] the set {1, . . . , N} and supp(x) ,
{j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the
Shannon entropy by H(q) ,

P
i qi log qi.

We will release an optimized modular PyTorch implemen-
tation for reproduction and reuse.

1. Smoothed max operators
In this section, we introduce smoothed max operators (Nes-
terov, 2005; Beck & Teboulle, 2012; Niculae et al., 2017),
that will serve as a powerful and generic abstraction to de-
fine differentiable dynamic programs in §2. Formally, let
⌦ : RD ! R be a strongly convex regularizer and x 2 RD.
We define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq, xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. From the duality between strong
convexity and smoothness, max⌦ is smooth: differentiable
everywhere and with Lipschitz continuous gradient. Since
the argument that achieves the maximum in (1) is unique,
from Danskin’s theorem (1966), it is equal to the gradient:

rmax⌦(x) = argmax
q24D

hq, xi � ⌦(q).

The gradient is differentiable almost everywhere for any
strongly-convex ⌦ (everywhere for negentropy). Next, we
state properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and
upper-bounded by U⌦,D on the simplex4D, then
max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:
max⌦(x + c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-
mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:
max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

PD
i=1 !(qi), for some function !. We

focus in this paper on two specific regularizers ⌦: the ne-
gentropy �H and the squared `2 norm. For these choices,
all properties above are satisfied and we can derive closed-
form expressions for max⌦, its gradient and its Hessian —
see §B.1. When using negentropy, max⌦ becomes the log-
sum-exp. This operator satisfies associativity, which as we
shall see, makes it natural to use in dynamic programming.
With the squared `2 regularization, as observed by Martins
& Astudillo (2016), the gradient rmax⌦ is sparse. This
will prove useful to enforce sparsity in the models we study.

2. Differentiable DP layers
Dynamic programming (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

2.1. Dynamic programming on a DAG

Every problem solved by dynamic programming reduces to
finding the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §3.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTW�H(✓) = �7.49

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA, Bi ,Pi,j ai,jbi,j . We write the (D � 1)-probability
simplex by 4D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {PY 2Y �Y Y : � 2 4|Y|} the convex hull
of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) ,

P
i qi log qi.

2. Smoothed max operators
Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD ! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq, xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq, xi � ⌦(q).

By Rademacher’s theorem,rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian ofrmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and
upper-bounded by U⌦,D on the simplex4D, then
max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:
max⌦(x + c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-
mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:
max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

PD
i=1 !(qi), for some function !. We

focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers
Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider
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Figure 1. ToDo

tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTWk·k2(✓) = 9.61

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA, Bi ,Pi,j ai,jbi,j . We write the (D � 1)-probability
simplex by 4D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {PY 2Y �Y Y : � 2 4|Y|} the convex hull
of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) ,

P
i qi log qi.

2. Smoothed max operators
Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD ! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq, xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq, xi � ⌦(q).

By Rademacher’s theorem,rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian ofrmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and
upper-bounded by U⌦,D on the simplex4D, then
max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:
max⌦(x + c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-
mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:
max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

PD
i=1 !(qi), for some function !. We

focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers
Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1. DTW⌦(✓) is an instantiation of the proposed smoothed
dynamic programming operator, DP⌦(✓), to the dynamic time
warping (DTW) computational graph. In this picture, ✓ is the
squared Euclidean distance matrix between the observations of
two time-series. The gradient rDTW⌦(✓) is equal to the ex-
pected alignment under a certain random walk characterized in
§2.3 and is a sound continuous relaxation to the hard DTW align-
ment between the two time-series (here depicted with a yellow
path). Unlike negentropy regularization (left), `22 regularization
leads to exactly sparse alignments (right). Our framework al-
lows to backpropagate through both DTW⌦(✓) and rDTW⌦(✓),
which makes it possible to learn the distance matrix ✓ end-to-end.

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y . We denote the elements of Y by yi,j and
its rows by yi. We denote the Frobenius inner product be-
tween A and B by hA, Bi ,Pi,j ai,jbi,j . We denote the
(D� 1)-probability simplex by4D , {� 2 RD

+ : k�k1 =

1}. We write conv(Y) , {PY 2Y �Y Y : � 2 4|Y|} the
convex hull of Y , [N ] the set {1, . . . , N} and supp(x) ,
{j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the
Shannon entropy by H(q) ,

P
i qi log qi.

We will release an optimized modular PyTorch implemen-
tation for reproduction and reuse.

1. Smoothed max operators
In this section, we introduce smoothed max operators (Nes-
terov, 2005; Beck & Teboulle, 2012; Niculae et al., 2017),
that will serve as a powerful and generic abstraction to de-
fine differentiable dynamic programs in §2. Formally, let
⌦ : RD ! R be a strongly convex regularizer and x 2 RD.
We define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq, xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. From the duality between strong
convexity and smoothness, max⌦ is smooth: differentiable
everywhere and with Lipschitz continuous gradient. Since
the argument that achieves the maximum in (1) is unique,
from Danskin’s theorem (1966), it is equal to the gradient:

rmax⌦(x) = argmax
q24D

hq, xi � ⌦(q).

The gradient is differentiable almost everywhere for any
strongly-convex ⌦ (everywhere for negentropy). Next, we
state properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and
upper-bounded by U⌦,D on the simplex4D, then
max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:
max⌦(x + c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-
mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:
max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

PD
i=1 !(qi), for some function !. We

focus in this paper on two specific regularizers ⌦: the ne-
gentropy �H and the squared `2 norm. For these choices,
all properties above are satisfied and we can derive closed-
form expressions for max⌦, its gradient and its Hessian —
see §B.1. When using negentropy, max⌦ becomes the log-
sum-exp. This operator satisfies associativity, which as we
shall see, makes it natural to use in dynamic programming.
With the squared `2 regularization, as observed by Martins
& Astudillo (2016), the gradient rmax⌦ is sparse. This
will prove useful to enforce sparsity in the models we study.

2. Differentiable DP layers
Dynamic programming (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

2.1. Dynamic programming on a DAG

Every problem solved by dynamic programming reduces to
finding the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §3.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
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Benefit of regularization 2

Smoothing effect

If Ω is strongly convex then
• Ω∗ is smooth (differentiable with Lipschitz continuous gradient)

• ŷΩ = ∇Ω∗ is differentiable almost everywhere

x ∈ X → fW → θ ∈ Rd → ŷΩ → . . .

Differentiable pipeline, can be trained end-to-end using
backpropagation!
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Fenchel-Young losses

• Fenchel-Young loss generated by Ω [NMBC’17, BMN ’18]

LΩ(θ; y) := Ω∗(θ) + Ω(y)− 〈θ, y〉

where θ ∈ dom(Ω∗) = Rd and y ∈ Y ⊆ dom(Ω) is the ground-truth

• Grounded in the Fenchel-Young inequality

Ω∗(θ)+Ω(µ) ≥ 〈θ,µ〉 ∀θ ∈ dom(Ω∗),µ ∈ dom(Ω).
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Properties of Fenchel-Young losses

LΩ(θ; y) := Ω∗(θ) + Ω(y)− 〈θ, y〉

1. Non-negativity: LΩ(θ; y) ≥ 0

2. Zero loss: LΩ(θ; y) = 0⇔ ŷΩ(θ) = y

3. Convex and differentiable in θ

Properties stated for strictly convex Ω for notational simplicity.

20



Learning with Fenchel-Young losses

Primal: min
W

n∑

i=1
LΩ(θi ; y i) + G(W ) s.t. θi ≡ f W (x i)

Gradients: ∇θLΩ(θ; y) = ŷΩ(θ)− y (“residual vector”)

If f W (x) = W x then

Dual: max
β
−D(β) s.t. βi ∈ dom(Ω) ∀i ∈ [n]

D(β) :=
∑

i
Ω(βi)− Ω(y i) + G∗




n∑

i=1
(y i − βi)x>i



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Relation with Bregman divergences
• Bregman divergence generated by strictly convex Ω

BΩ(y ||µ) := Ω(y)− Ω(µ)− 〈∇Ω(µ), y − µ〉

• Using θ = ∇Ω(µ) we get

BΩ(y ||µ) = LΩ(θ; y)

Proof uses that if Ω is a l.s.c. proper convex function, then

Ω∗(θ) + Ω(µ) = 〈θ,µ〉 ⇔ µ = ∇Ω∗(θ)⇔ θ = ∇Ω(µ)
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Relation with Bregman divergences

• Bregman divergences are defined in primal space

BΩ : dom(Ω)× dom(Ω)→ R+

• Fenchel-Young losses are defined in “mixed space”

LΩ : dom(Ω∗)× Y ⊆ dom(Ω)→ R+

BΩ(y ||ŷΩ(θ)) = BΩ(y ||∇Ω∗(θ)) not necessarily convex!
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Tsallis α-entropies [Tsallis ’88]

Choose dom(Ω) = 4|Y| and Ω = −Ht
α

Ht
α(p) :=

|Y|∑

j=1
hα(pj) with hα(t) := t − tα

α(α− 1)

A parametric family of separable entropies
Ht
α([t, 1− t])

Tsallis –-entropies [Tsallis ’88]

Ht
–(p) :=

|Y|ÿ

j=1
h–(pj) with h–(t) := t ≠ t–

–(– ≠ 1)

A parametric family of separable entropiesA wealth of new loss and prediction functions [BMN ’18]
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Delta distribution, perceptron loss
Ω(p) = −Ht

∞(p) = 0

ŷΩ(θ) ∈ argmax
y∈{e i}

〈θ, y〉 LΩ(θ; e j) = max
i∈[k]

θi − θj
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LΩ([s, 0]; e2) = (−HT
α)∗([s, 0])

α =∞ (argmax)
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SparseMAP: Differentiable Sparse Structured Inference

Anonymous Authors1

Abstract
Structured prediction requires searching over a
combinatorial number of structures. To tackle
it, we introduce SPARSEMAP, a new method for
sparse structured inference, together with corre-
sponding loss functions. SPARSEMAP inference
is able to automatically select only a few global
structures: it is situated between MAP inference,
which picks a single structure, and marginal infer-
ence, which assigns probability mass to all struc-
tures, including implausible ones. Importantly,
SPARSEMAP can be computed using only calls
to a MAP oracle, hence it is applicable even to
problems where marginal inference is intractable,
such as linear assignment. Moreover, thanks to
the solution sparsity, gradient backpropagation is
efficient regardless of the structure. SPARSEMAP
thus enables us to augment deep neural networks
with generic and sparse structured hidden lay-
ers. Experiments in dependency parsing and nat-
ural language inference reveal competitive accu-
racy, improved interpretability, and the ability to
capture natural language ambiguities, which is
attractive for pipeline systems.

1. Introduction
Structured prediction involves the manipulation of dis-
crete, combinatorial structures such as trees, sequences, or
alignments (Bakır et al., 2007; Smith, 2011; Nowozin et al.,
2014). These structures arise naturally as desired outputs
of machine learning tasks and as intermediate representa-
tions in deep pipelines. The core challenge of structured
prediction, however, is the prohibitively large set of possible
structures. Inference over this space is generally difficult, of-
ten sidestepped by greedy search, factorization assumptions,
or continuous relaxations (Belanger & McCallum, 2016).

In this paper, we propose an appealing alternative: a new in-
ference strategy, dubbed SPARSEMAP, which encourages

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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Figure 1. Left: in the unstructured case, softmax and sparsemax
can be interpreted as regularized, differentiable arg max approxi-
mations; softmax returns dense solutions while sparsemax favors
sparse ones. Right: in this work, we extend this view to structured
inference, which consists of optimizing over a polytope M, the
convex hull of all possible structures (depicted: the arborescence
polytope, whose vertices are trees). We introduce SPARSEMAP
as a structured extension of sparsemax: it is situated in between
MAP inference, which yields a single structure, and marginal
inference, which returns a dense combination of structures.

sparsity in the structured representations. Namely, we seek
solutions explicitly expressed as a combination of a small,
enumerable set of global structures. Our framework departs
from the two most common inference strategies in struc-
tured prediction: maximum a posteriori (MAP) inference,
which returns the highest-scoring structure, and marginal
inference, which yields a dense probability distribution over
structures. Neither of these strategies is fully satisfactory:
for latent structure models, marginal inference is appealing,
since it can represent uncertainty and, unlike MAP inference,
it is continuous and differentiable, hence amenable for use
in structured hidden layers in neural networks (Kim et al.,
2017). It has, however, several limitations. First, there are
useful problems for which MAP is tractable, but marginal in-
ference is not, e.g., linear assignment (Valiant, 1979; Taskar,
2004). Even when marginal inference is available, case-by-
case derivation of the backward pass is needed, sometimes
producing fairly complicated algorithms, e.g., second-order
expectation semirings (Li & Eisner, 2009). Finally, marginal
inference is dense: it assigns non-zero probabilities to all
structures and cannot completely rule out irrelevant ones.
This can be statistically and computationally wasteful, as
well as qualitatively harder to interpret.

In this work, we make the following contributions:

“delta” distribution perceptron loss



Softmax distribution, logistic loss

Ω(p) = −Ht
1(p) =

∑

i
pi log pi

ŷΩ(θ) = exp θ
∑k

i=1 exp θi
LΩ(θ; e j) = log

∑

i∈[k]
exp θi − θj
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SparseMAP: Differentiable Sparse Structured Inference
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Abstract
Structured prediction requires searching over a
combinatorial number of structures. To tackle
it, we introduce SPARSEMAP, a new method for
sparse structured inference, together with corre-
sponding loss functions. SPARSEMAP inference
is able to automatically select only a few global
structures: it is situated between MAP inference,
which picks a single structure, and marginal infer-
ence, which assigns probability mass to all struc-
tures, including implausible ones. Importantly,
SPARSEMAP can be computed using only calls
to a MAP oracle, hence it is applicable even to
problems where marginal inference is intractable,
such as linear assignment. Moreover, thanks to
the solution sparsity, gradient backpropagation is
efficient regardless of the structure. SPARSEMAP
thus enables us to augment deep neural networks
with generic and sparse structured hidden lay-
ers. Experiments in dependency parsing and nat-
ural language inference reveal competitive accu-
racy, improved interpretability, and the ability to
capture natural language ambiguities, which is
attractive for pipeline systems.

1. Introduction
Structured prediction involves the manipulation of dis-
crete, combinatorial structures such as trees, sequences, or
alignments (Bakır et al., 2007; Smith, 2011; Nowozin et al.,
2014). These structures arise naturally as desired outputs
of machine learning tasks and as intermediate representa-
tions in deep pipelines. The core challenge of structured
prediction, however, is the prohibitively large set of possible
structures. Inference over this space is generally difficult, of-
ten sidestepped by greedy search, factorization assumptions,
or continuous relaxations (Belanger & McCallum, 2016).

In this paper, we propose an appealing alternative: a new in-
ference strategy, dubbed SPARSEMAP, which encourages
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Figure 1. Left: in the unstructured case, softmax and sparsemax
can be interpreted as regularized, differentiable arg max approxi-
mations; softmax returns dense solutions while sparsemax favors
sparse ones. Right: in this work, we extend this view to structured
inference, which consists of optimizing over a polytope M, the
convex hull of all possible structures (depicted: the arborescence
polytope, whose vertices are trees). We introduce SPARSEMAP
as a structured extension of sparsemax: it is situated in between
MAP inference, which yields a single structure, and marginal
inference, which returns a dense combination of structures.

sparsity in the structured representations. Namely, we seek
solutions explicitly expressed as a combination of a small,
enumerable set of global structures. Our framework departs
from the two most common inference strategies in struc-
tured prediction: maximum a posteriori (MAP) inference,
which returns the highest-scoring structure, and marginal
inference, which yields a dense probability distribution over
structures. Neither of these strategies is fully satisfactory:
for latent structure models, marginal inference is appealing,
since it can represent uncertainty and, unlike MAP inference,
it is continuous and differentiable, hence amenable for use
in structured hidden layers in neural networks (Kim et al.,
2017). It has, however, several limitations. First, there are
useful problems for which MAP is tractable, but marginal in-
ference is not, e.g., linear assignment (Valiant, 1979; Taskar,
2004). Even when marginal inference is available, case-by-
case derivation of the backward pass is needed, sometimes
producing fairly complicated algorithms, e.g., second-order
expectation semirings (Li & Eisner, 2009). Finally, marginal
inference is dense: it assigns non-zero probabilities to all
structures and cannot completely rule out irrelevant ones.
This can be statistically and computationally wasteful, as
well as qualitatively harder to interpret.

In this work, we make the following contributions:
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sparsemax distribution, loss [Martins & Astudillo ’16]

Ω(p) = −Ht
2(p) = 1

2
∑

i
pi(pi − 1) = 1

2‖p‖
2 − 1

2

ŷΩ(θ) = argmin
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Abstract

Structured prediction requires searching over a
combinatorial number of structures. To tackle
it, we introduce SPARSEMAP, a new method for
sparse structured inference, together with corre-
sponding loss functions. SPARSEMAP inference
is able to automatically select only a few global
structures: it is situated between MAP inference,
which picks a single structure, and marginal infer-
ence, which assigns probability mass to all struc-
tures, including implausible ones. Importantly,
SPARSEMAP can be computed using only calls
to a MAP oracle, hence it is applicable even to
problems where marginal inference is intractable,
such as linear assignment. Moreover, thanks to
the solution sparsity, gradient backpropagation is
efficient regardless of the structure. SPARSEMAP
thus enables us to augment deep neural networks
with generic and sparse structured hidden lay-
ers. Experiments in dependency parsing and nat-
ural language inference reveal competitive accu-
racy, improved interpretability, and the ability to
capture natural language ambiguities, which is
attractive for pipeline systems.

1. Introduction
Structured prediction involves the manipulation of dis-
crete, combinatorial structures such as trees, sequences, or
alignments (Bakır et al., 2007; Smith, 2011; Nowozin et al.,
2014). These structures arise naturally as desired outputs
of machine learning tasks and as intermediate representa-
tions in deep pipelines. The core challenge of structured
prediction, however, is the prohibitively large set of possible
structures. Inference over this space is generally difficult, of-
ten sidestepped by greedy search, factorization assumptions,
or continuous relaxations (Belanger & McCallum, 2016).

In this paper, we propose an appealing alternative: a new in-
ference strategy, dubbed SPARSEMAP, which encourages

�
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softmax
(.5, .3, .2)

sparsemax
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MAP

?

Marginal
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SPARSEMAP
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Figure 1. Left: in the unstructured case, softmax and sparsemax
can be interpreted as regularized, differentiable arg max approxi-
mations; softmax returns dense solutions while sparsemax favors
sparse ones. Right: in this work, we extend this view to structured
inference, which consists of optimizing over a polytope M, the
convex hull of all possible structures (depicted: the arborescence
polytope, whose vertices are trees). We introduce SPARSEMAP
as a structured extension of sparsemax: it is situated in between
MAP inference, which yields a single structure, and marginal
inference, which returns a dense combination of structures.

sparsity in the structured representations. Namely, we seek
solutions explicitly expressed as a combination of a small,
enumerable set of global structures. Our framework departs
from the two most common inference strategies in struc-
tured prediction: maximum a posteriori (MAP) inference,
which returns the highest-scoring structure, and marginal
inference, which yields a dense probability distribution over
structures. Neither of these strategies is fully satisfactory:
for latent structure models, marginal inference is appealing,
since it can represent uncertainty and, unlike MAP inference,
it is continuous and differentiable, hence amenable for use
in structured hidden layers in neural networks (Kim et al.,
2017). It has, however, several limitations. First, there are
useful problems for which MAP is tractable, but marginal in-
ference is not, e.g., linear assignment (Valiant, 1979; Taskar,
2004). Even when marginal inference is available, case-by-
case derivation of the backward pass is needed, sometimes
producing fairly complicated algorithms, e.g., second-order
expectation semirings (Li & Eisner, 2009). Finally, marginal
inference is dense: it assigns non-zero probabilities to all
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CRFs and structured sparsemax
Choose dom(Ω) = conv(Y)
• Conditional Random Fields: maximum entropy principle

−Ω(µ) = max
p∈4|Y|

Hs(p) s.t. Ep[Y ] = µ

Then ŷΩ(θ) = ∇Ω∗(θ) = marginals(θ); tractable for some Y

• Structured sparsemax: minimum norm

Ω(µ) = min
p∈4|Y|

‖p‖2 s.t. Ep[Y ] = µ

Computing ŷΩ(θ) =: sparsemax-mean(θ) likely intractable for structured Y
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sparseMAP: mean space regularization [NMBC ’18]

ŷΩ(θ) = argmax
µ∈conv(Y)⊆Rd

〈θ,µ〉 − ‖µ‖2

• ŷΩ can be computed using the conditional gradient
algorithm (a.k.a. Frank-Wolfe)

• Main ingredient is the linear (min|max)imization oracle

argmax
y∈Y

〈θ, y〉 = MAP(θ)

• FW returns both µ? and one possible p s.t. Ep[Y ] = µ?
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SparseMAP: Differentiable Sparse Structured Inference

Anonymous Authors1

Abstract
Structured prediction requires searching over a
combinatorial number of structures. To tackle
it, we introduce SPARSEMAP, a new method for
sparse structured inference, together with corre-
sponding loss functions. SPARSEMAP inference
is able to automatically select only a few global
structures: it is situated between MAP inference,
which picks a single structure, and marginal infer-
ence, which assigns probability mass to all struc-
tures, including implausible ones. Importantly,
SPARSEMAP can be computed using only calls
to a MAP oracle, hence it is applicable even to
problems where marginal inference is intractable,
such as linear assignment. Moreover, thanks to
the solution sparsity, gradient backpropagation is
efficient regardless of the structure. SPARSEMAP
thus enables us to augment deep neural networks
with generic and sparse structured hidden lay-
ers. Experiments in dependency parsing and nat-
ural language inference reveal competitive accu-
racy, improved interpretability, and the ability to
capture natural language ambiguities, which is
attractive for pipeline systems.

1. Introduction
Structured prediction involves the manipulation of dis-
crete, combinatorial structures such as trees, sequences, or
alignments (Bakır et al., 2007; Smith, 2011; Nowozin et al.,
2014). These structures arise naturally as desired outputs
of machine learning tasks and as intermediate representa-
tions in deep pipelines. The core challenge of structured
prediction, however, is the prohibitively large set of possible
structures. Inference over this space is generally difficult, of-
ten sidestepped by greedy search, factorization assumptions,
or continuous relaxations (Belanger & McCallum, 2016).

In this paper, we propose an appealing alternative: a new in-
ference strategy, dubbed SPARSEMAP, which encourages

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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argmax (1, 0, 0)
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(.5, .3, .2)

conv(Y)

MAP

?

Marginal
?

SPARSEMAP
?

Figure 1. Left: in the unstructured case, softmax and sparsemax
can be interpreted as regularized, differentiable arg max approxi-
mations; softmax returns dense solutions while sparsemax favors
sparse ones. Right: in this work, we extend this view to structured
inference, which consists of optimizing over a polytope M, the
convex hull of all possible structures (depicted: the arborescence
polytope, whose vertices are trees). We introduce SPARSEMAP
as a structured extension of sparsemax: it is situated in between
MAP inference, which yields a single structure, and marginal
inference, which returns a dense combination of structures.

sparsity in the structured representations. Namely, we seek
solutions explicitly expressed as a combination of a small,
enumerable set of global structures. Our framework departs
from the two most common inference strategies in struc-
tured prediction: maximum a posteriori (MAP) inference,
which returns the highest-scoring structure, and marginal
inference, which yields a dense probability distribution over
structures. Neither of these strategies is fully satisfactory:
for latent structure models, marginal inference is appealing,
since it can represent uncertainty and, unlike MAP inference,
it is continuous and differentiable, hence amenable for use
in structured hidden layers in neural networks (Kim et al.,
2017). It has, however, several limitations. First, there are
useful problems for which MAP is tractable, but marginal in-
ference is not, e.g., linear assignment (Valiant, 1979; Taskar,
2004). Even when marginal inference is available, case-by-
case derivation of the backward pass is needed, sometimes
producing fairly complicated algorithms, e.g., second-order
expectation semirings (Li & Eisner, 2009). Finally, marginal
inference is dense: it assigns non-zero probabilities to all
structures and cannot completely rule out irrelevant ones.
This can be statistically and computationally wasteful, as
well as qualitatively harder to interpret.

In this work, we make the following contributions:



Smoothed dynamic programming [CB’ 17, MB ’18]

• When Y can be represented as a DAG, MAP inference can be
computed by dynamic programming

• Key idea: Smooth the max/min operator within Bellman’s recursion

• Entropic regul: marginals(θ) = ∇DPΩ(θ) ∈ conv(Y)

• Quadratic regul: sparsemax-mean(θ) ≈ ∇DPΩ(θ) ∈ conv(Y)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Differentiable Dynamic Programming for Structured Prediction and Attention

graphical models with a tree structure, and to approximate
inference in general graphical models, as unrolled loopy
belief propagation (Pearl, 1988) yields a dynamic program.

3.2. Time-series alignment

We now demonstrate how to instantiate DP⌦ to the compu-
tational graph of dynamic time warping (DTW) (Sakoe &
Chiba, 1978), whose goal is to seek the minimal cost align-
ment between two time-series. We call the resulting oper-
ator DTW⌦. Formally, let NA and NB be the lengths of
two time-series, A and B. Let ai and bj be the ith and jth

observations of A and B, respectively. Since edge weights
only depend on child nodes, it is convenient to rearrange
Y and ✓ as NA ⇥ NB matrices. Namely, we represent
an alignment Y as a NA ⇥ NB binary matrix, such that
yi,j = 1 if ai is aligned with bj , and 0 otherwise. Like-
wise, we represent ✓ as a NA ⇥ NB matrix. A classical
example is ✓i,j = d(ai, bj), for some differentiable dis-
crepancy measure d. We write Y the set of all monotonic
alignment matrices, such that the path that connects the
upper-left (1, 1) matrix entry to the lower-right (NA, NB)
one uses only #,!,&moves. The DAG associated with Y
is illustrated in Figure 3 with NA = 4 and NB = 3 below.

start

1,1

✓1,1

2,1

1,2

3,1

1,3

2,2
✓2,2

2,3
✓2,3

3,2

1,4

2,4

3,3

✓3,3

3,4
✓3,4

end

hY ,✓i = ✓1,1 + ✓2,2 + ✓2,3 + ✓3,3 + ✓3,4

Figure 3. Computational graph of the DTW algorithm.

Again, the bold arrows indicate one possible path Y 2 Y
from start to end in the DAG, and correspond to one pos-
sible alignment. Using this representation, the cost of an
alignment (cumulated cost along the path) is conveniently
computed by hY ,✓i. The value DTW⌦(✓) can be used to
define a loss between alignments or between time-series.
Following Proposition 3, rDTW⌦(✓) = E 2 RNA⇥NB

can be understood as a soft alignment matrix. This matrix
is sparse when ⌦ = k · k2, as illustrated in Figure 1 (right).

Pseudo-code to compute DTW⌦(✓) as well as its gradi-
ent and its Hessian-vector products are provided in §B.3.
DTW�H(✓), which is known as soft-DTW, and the proba-
bility p✓,�H(Y |A, B) takes a Gibbs form, similar to §3.1,
as observed in (Cuturi et al., 2017). However, the case
⌦ = k · k2 and the computation ofr2DTW⌦(✓)Z are new
and allow new applications.

4. Differentiable structured prediction
We now apply the proposed layers, DP⌦(✓) andrDP⌦(✓),
to structured prediction (Bakır et al., 2007), whose goal is
to predict a structured output Y 2 Y associated with a
structured input X 2 X . We define old and new structured
losses, and demonstrate them on two structured prediction
tasks: named entity recognition and time-series alignment.

4.1. Structured loss functions

Throughout this section, we assume that the potentials
✓ 2 ⇥ have already been computed using a function from
X to ⇥ and let C : Y⇥Y ! R+ be a cost function between
the ground-truth output Ytrue and the predicted output Y .

Convex losses. Because C is typically non-convex, the
cost-augmented structured hinge loss (Tsochantaridis et al.,
2005) is often used instead for linear models

`C(Ytrue;✓) , max
Y 2Y

C(Ytrue, Y )+hY ,✓i�hYtrue,✓i. (7)

This is a convex upper-bound on C(Ytrue, Y
?(✓)), where

Y ?(✓) is defined in (4). To make the cost-augmented de-
coding tractable, it is usually assumed that C(Ytrue, Y ) is
linear in Y , i. e., it can be written as hCYtrue , Y i for some
matrix CYtrue . We can then rewrite (7) using our notation as

`C(Ytrue;✓) = LP(✓ + CYtrue)� hYtrue,✓i.

However, this loss function is non-differentiable. We there-
fore propose to relax LP by substituting it with DP⌦:

`C,⌦(Ytrue;✓) , DP⌦(✓ + CYtrue)� hYtrue,✓i.

Losses in this class are convex, smooth, tractable for any
⌦, and by Proposition 2 property 2 a sensible approxima-
tion of `C . In addition, they only require to backpropagate
through DP⌦(✓) at training time. It is easy to check that
we recover the structured hinge loss with `C,0 (Tsochan-
taridis et al., 2005) and the CRF loss with `0,�H (Lafferty
et al., 2001). The last one has been used on top of LSTMs
in several recent works (Lample et al., 2016; Ma & Hovy,
2016). Minimizing `0,�H(✓) is equivalent to maximizing
the likelihood p✓,�H(Ytrue). However, minimizing `0,k·k2

is not equivalent to maximizing p✓,k·k2(Ytrue). In fact, the
former is convex while the latter is not.

Non-convex losses. A direct approach that uses the
output distribution p✓,⌦ consists in minimizing the riskP

y2Y p✓,�H(Y )C(Ytrue, Y ). As shown by Stoyanov &
Eisner (2012), this can be achieved by backpropagating
through the minimum risk decoder. However, the risk is
usually non-differentiable, piecewise constant (Smith &
Eisner, 2006) and several smoothing heuristics are neces-
sary to make the method work (Stoyanov & Eisner, 2012).

• initialize v at edge cases

• for all (i , j) in topological order:
vi,j = θi,j + softminΩ{vi−1,j , vi,j−1, vi−1,j−1}

• Output: DPΩ(θ) := vm,n(θ) (convex in θ!)

30



Backpropagating through ŷΩ

x ∈ X → fW → θ ∈ Rd → ŷΩ → . . .

• Since ŷΩ = ∇Ω∗, backpropagating through ŷΩ requires
multipications with the Hessian: ∇2Ω∗(θ)z for some z

• Can be computed from the CG/FW solution by solving a
linear system derived from the KKT conditions [NMBC ’18]

• Another way is to backpropagate through the directional
derivative at θ along z [Pearlmutter ’94, MB ’18]

∇2DPΩ(θ)z = ∇〈∇DPΩ(θ), z〉
31



Summary of losses recovered

Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms 3

Table 1: Examples of Fenchel-Young losses. For multi-class classification, we assume Y = {ei}d
i=1 and the

ground-truth is y = ek, where ei denotes a standard basis (“one-hot”) vector. For structured classification, we
assume that elements of Y are d-dimensional binary vectors with d⌧ |Y|, and we denote by M := conv(Y) =
{Ep[Y ] : p 2 4|Y|} the corresponding marginal polytope [55]. We denote by HS(p) := �Pi pi log pi the
Shannon entropy of a distribution p 2 4|Y|.

dom(⌦) ⌦(µ) by⌦(✓) L⌦(✓; y)

Squared loss R|Y| 1
2kµk2 ✓ 1

2ky � ✓k2
Perceptron loss 4|Y| 0 argmax(✓) maxi ✓i � ✓k

Logistic loss 4|Y| �HS(µ) softmax(✓) log
P

i exp ✓i � ✓k

Sparsemax loss 4|Y| 1
2kµk2 sparsemax(✓) 1

2ky � ✓k2 � 1
2kby⌦(✓)� ✓k2

Struct. perceptron conv(Y) 0 MAP(✓) maxy0 h✓, y0i � h✓, yi
CRF conv(Y) min

Ep[Y ]=µ
�HS(p) marginals(✓) log

P
y0 exp h✓, y0i � h✓, yi

Struct. sparsemax conv(Y) min
Ep[Y ]=µ

kpk2 intractable* intractable*

SparseMAP conv(Y) 1
2kµk2 sparseMAP(✓) 1

2ky � ✓k2 � 1
2kby⌦(✓)� ✓k2

Cost-sensitive losses. Fenchel-Young losses also include the hinge loss of support vector machines. Indeed,
from any classification loss L⌦, we can construct a cost-sensitive version of it as follows. Define  (µ; y) :=

⌦(µ) � hcy, µi, where cy 2 R|Y|
+ is a fixed cost vector that depends on the groundtruth y; for example

cy = 1 � y corresponds to the 0/1 cost. Then, L is a cost-sensitive version of L⌦, which can be written as
L (·;y)(✓; y) = L⌦(✓ + cy; y) = ⌦⇤(✓ + cy) +⌦(y)� h✓ + cy, yi. This construction recovers the multi-class
hinge loss ([17]; ⌦ = 0), the softmax-margin loss ([26]; ⌦ = �HS), and the cost-augmented sparsemax ([49, Eq.
(13)], [42]; ⌦ = 1

2k · k2).

Relation to Bregman divergences. All the losses in Table 2 can be extended to work over Y = dom(⌦). For
example, in the case of the logistic loss, where ⌦(y) = �HS(y), allowing y 2 4|Y| instead of y 2 {ei}d

i=1
yields the cross-entropy loss, L⌦(✓; y) = KL(yk softmax(✓)). More generally, there is a relation between
Fenchel-Young losses and Bregman divergences. Recall that the Bregman divergence [11] generated by a strictly
convex and differentiable ⌦ is

B⌦(y||µ) := ⌦(y)� ⌦(µ)� hr⌦(µ), y � µi. (3)

In other words, this is the difference at y between ⌦ and its linearization around µ. Letting ✓ = r⌦(µ) (i.e.,
(✓, µ) is a dual pair), we have ⌦⇤(✓) = h✓, µi � ⌦(µ). Substituting in (3), we get B⌦(y||µ) = L⌦(✓; y). In
other words, Fenchel-Young losses can be viewed as a “mixed-form Bregman divergence” [1, Theorem 1.1] where
the argument µ in (3) is replaced by its dual point ✓.

3 Categorical distribution induced by Fenchel-Young losses

In the previous section, we presented Fenchel-Young losses in a broad setting. We now restrict to classification
and show that Fenchel-Young losses induce a probability distribution over classes.

3.1 Generalized entropies and probability spaces

We first restrict to the case Y = {ei}d
i=1. In this case, we have (✓, µ) = (s, p), where s 2 R|Y| is a vector of

prediction scores and p 2 4|Y| a vector of probabilities (this is not the case in structured prediction, as will
become clear in §3.2). We further assume that ⌦(p) = �H(p), where H is a generalized entropy [29]. We say
that H is a generalized entropy if dom(H) = 4|Y| and H is concave. Using a general concave function H(p) to
measure the “uncertainty” in a distribution p 2 4|Y| dates back to at least [21]. The corresponding Fenchel-Young
loss is then L�H(s; y).

Assumptions: We will occasionally make the following assumptions about H.

* Can be approximated by smoothed dynamic programming [MB ’18]
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• Background: structured prediction

• Regularized prediction functions

• A new family of loss functions

• Generalized entropies, sparsity and separation margins

• Applications and experimental results

33



Generalized entropies [DeGroot ’62, Grunwald & Dawid ’04]

Use a concave function H(p) to measure the “uncertainty” in p ∈ 4|Y|
A wealth of new loss and prediction functions [BMN ’18]
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Tsallis: Ht
α(p) := 1

α(α− 1)

|Y|∑

j=1
pj − pαj

q-Norm: Hn
q(p) := 1− ‖p‖q

Squared q-Norm: Hsq
q (p) := 1

2(1−‖p‖2
q)

Rényi: Hr
β(p) := 1

1− β log
|Y|∑

j=1
pβj .
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A wealth of new loss and prediction functions [BMN ’18]
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Properties of generalized entropies
• Assumption 1: H(p) = 0 if p ∈ {e i}

• Assumption 2: H is strictly concave over dom(Ω) = 4|Y|

• Assumption 3: H(Pp) for any permutation matrix P

⇓
• Non-negativity: H(p) ≥ 0

• Maximum: argmax
p∈4|Y|

H(p) = 1
|Y|

• Order-preservingness: If p = ŷΩ(s) = ∇(−H)∗(s) then

si > sj ⇒ pi ≥ pj
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Condition for sparse prediction function
When is ŷΩ = ∇(−H)∗ sparse?

Under assumptions 1 to 3:

∀p ∈ 4|Y| : ∂(−H)(p) 6= ∅⇔ ∇(−H)∗(R|Y|) = 4|Y|

i.e., ∇(−H)∗ covers the full simplex

Functions whose gradient “explode” at the boundary (e.g., Shannon
entropy) are called “essentially smooth”. For those functions, ∇(−H)∗

maps only to the relative interior of 4|Y|.
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Separation margin of a loss
A loss L(s; y) over R|Y| × {e i}|Y|i=1, where y = ek is the
ground truth, has a separation margin m > 0 if

sk ≥ m + max
j 6=k

sj ⇒ L(s; y) = 0

We denote the smallest such m by margin(L).

Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins, and Algorithms 5

s
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2

� �
Tsallis entropy H↵

↵ = 1 (softmax)
↵ = 1.5

↵ = 2 (sparsemax)
↵ = 3

↵ = 1 (argmax)

Figure 1: Tsallis and norm entropies (left) along with their prediction functions (middle) and Fenchel-Young
losses (right) for the binary case, where p = (t, 1 � t) 2 42 and s = (s, 0) 2 R2. Except for softmax, which
never exactly reaches 0, all mappings shown on the center lead to sparse outputs.

functions for ↵ = 1, 2,1 are respectively softmax, sparsemax, and argmax. Tsallis entropies can be seen as a
continuous parametric family subsuming these important cases.

Other entropy families. An interesting class of non-separable entropies are entropies generated by a q-norm,
defined as HN

q (p) := 1 � kpkq; we call them norm entropies. Since norms are convex, these entropies satisfy
assumptions A.1–A.3 for q � 1. They differ from Tsallis entropies in that the norm is not raised to q: a subtle but
important difference. We illustrate H, r(�H)⇤, and L�H for Tsallis and norm entropies in Figure 1. The limit
case q ! 1 is particularly interesting: in this case, we obtain HN

1 = 1� kpk1, recovering the Berger-Parker
dominance index [7], widely used in ecology to measure species diversity. Other interesting entropies include the
squared-norm entropies [41] and Rényi entropies [44]; cf. Appendix A for more details.

3.2 Structured prediction and mean spaces

We now extend this probabilistic perspective to the structured prediction setting, where Y is a set of structured
objects. In this setting, probability distributions and means no longer coincide, i.e., E

p

[Y ] 6= p, and they live in
different spaces. We assume that ⌦ can be written in the form

H(p) = �⌦(E
p

[Y ]) for all p 2 4|Y|. (5)

That is, dom(⌦) = conv(Y) ✓ Rd. In particular, this is the case when using a generalized maximum entropy
principle [29, 24]: for all µ 2 conv(Y) we define �⌦(µ) = sup

p24|Y| H(p) s.t. E
p

[Y ] = µ.

As with exponential families [3], we can alternatively characterize a distribution induced by L
⌦

with its mean. Let
s

✓

2 R|Y| be a vector of predictions scores, with elements defined by s
✓

(y)

:

= hy,✓i 8y 2 Y . Assuming that ⌦
is of the form (5), we have the simple but far-reaching identity

(�H)⇤(s
✓

) = sup

p24|Y|
hp, s

✓

i+ H(p) = sup

µ2conv(Y)

hµ,✓i � ⌦(µ) = ⌦

⇤
(✓),

✓ 2 Rd
µ 2 conv(Y)

r⌦

r⌦

⇤

s 2 R|Y|

s·

p 2 4|Y|

r(�H)

r(�H)

⇤

E·[Y ]

where we used hp, s
✓

i = hE
p

[Y ],✓i. This identity connects the conjugates (�H)⇤

in probability space 4|Y| and ⌦

⇤ in mean space conv(Y) ✓ Rd. This is useful in
structured prediction, since ⌦⇤

(✓) just involves a d-dimensional optimization problem
instead of a |Y|-dimensional one for (�H)

⇤. The optimal distribution p

? is related
to µ

? by µ

?
=

P
y2Y p?(y)y and, from Carathéodory’s theorem, the support of p?

contains at most d ⌧ |Y| elements. If ⌦⇤ is twice-differentiable, its gradient and
Hessian equal the first and second moments under p?:

E
p

?
[Y ] = r⌦

⇤
(✓) =

b
y

⌦

(✓) 2 conv(Y) and cov
p

?
[Y ] = r2

⌦

⇤
(✓).

As indicated in Table 2, b
y

⌦

(✓) recovers MAP, marginals and sparseMAP for suitable choices of ⌦. In the
sparseMAP case [42], the mean b

y

⌦

(✓) along with the distribution p

? can be computed using conditional gradient

margin m
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Condition for separation margin and value

L−H(s; ek) has a separation margin m
m

mek ∈ ∂(−H)(ek)
Tight link between margins and sparse prediction functions!

For twice differentiale H:
margin(L−H) = ∇jH(ek)−∇kH(ek).

For separable entropies H =
∑

j
h(pj):

margin(L−H) = h′(0)− h′(1)
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Outline

• Background: structured prediction

• Regularized prediction functions

• A new family of loss functions

• Generalized entropies, sparsity and separation margins

• Applications and experimental results

40



Named Entity Recognition [MB ’18]

• Identify blocks of words corresponding to names, locations, etc
• Pipeline

sentence x ∈ X → bi-LSTM → θ ∈ Rd → LΩ → R+

sentence x ∈ X → bi-LSTM → θ ∈ Rd → ŷΩ → ∆(·, ·) → R+

• Results on CoNLL 2013 shared task:Di↵erentiable Dynamic Programming for Structured Prediction and Attention 25
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Figure 6: Test predictions from the entropy and `22 regularized named entity recognition (NER) models.
Red dots indicate ground truth. When using `22 regularization, model predictions are sparse (grey borders
indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.
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Figure 6: Test predictions from the entropy and `22 regularized named entity recognition (NER) models.
Red dots indicate ground truth. When using `22 regularization, model predictions are sparse (grey borders
indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.
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Table 1: F1 score comparison on CoNLL03 NER datasets.

⌦ Loss English Spanish German Dutch

Negentropy Surrogate 90.80 86.68 77.35 87.56
Relaxed 90.47 86.20 77.56 87.37

`22 Surrogate 90.86 85.51 76.01 86.58
Relaxed 89.49 84.07 76.91 85.90

(Lample et al., 2016) 90.96 85.75 78.76 81.74

5.2 Named entity recognition

Let X = (x1, · · · , xT ) be an input sentence, where each word xt is represented by a vector in RD, computed
using a neural recurrent architecture trained end-to-end. We wish to tag each word with named entities,
i.e., identify blocks of words that correspond to names, locations, dates, etc. We use the specialized operator
Vit⌦ described in §4.1. In our experiments, we define the elements of the potential tensor ✓(X) 2 RT⇥S⇥S

when t > 1 by
✓(X)t,i,j , w>

i xt + bi + ti,j

and ✓(X)1,i,j , w>
i xt + bi, where (wi, bi) 2 RD ⇥ R is the linear classifier associated with tag i and

T 2 RS⇥S is a transition matrix. We learn W , b and T along with the network producing X, and compare
two losses:

Surrogate convex loss: `0,⌦(Ytrue;✓),

Relaxed loss: �(Ytrue,rDP⌦(✓)),

where �(Ytrue, Y ) is the squared `2 distance when ⌦ = k · k22 and the Kullback-Leibler divergence when
⌦ = �H, applied row-wise to the marginalization of Ytrue and Y .

Experiments. We measure the performance of the di↵erent losses and regularizations on the four lan-
guages of the CoNLL 2003 (Tjong Kim Sang & De Meulder, 2003) dataset. Following Lample et al.
(2016), who use the `0,�H loss, we use a character LSTM and pretrained embeddings computed using
FastText (Joulin et al., 2016) on Wikipedia. Those are fed to a word bidirectional LSTM to obtain X.
Architecture details are provided in §C.1. Results are reported in Table 1, along with (Lample et al., 2016)
results with di↵erent pretrained embeddings. With proper parameter selections, all losses perform within
1% F1-score of each other, although entropy-regularized losses perform slightly better on 3/4 languages.
However, the `22-regularized losses yield sparse predictions, whereas entropy regularization always yields
dense probability vectors. Qualitatively, this allows to identify ambiguous predictions more easily — this is
illustrated in §C.1 with additional figures.

5.3 Supervised audio-to-score transcription

We use our framework to perform supervised audio-to-score alignment on the Bach 10 dataset (Duan &
Pardo, 2011). The dataset consists of 10 music pieces with audio tracks, MIDI transcriptions, and annotated
alignments between them. We transform the audio tracks into a sequence of audio frames using a feature
extractor (see §C.2) to obtain a sequence A 2 RNA⇥D, while the associated score sequence is represented by
B 2 RNB⇥K (each row bj is a one-hot vector corresponding to one key bj). Each pair (A, B) is associated
to an alignment Ytrue 2 RNA⇥NB . As described in §4.2, we need to define a discrepancy matrix ✓ 2 RNA⇥NB

between the elements of the two sequences. We set the cost between an audio frame and a key to be the
log-likelihood of this key given a multinomial linear classifier. For all i 2 [NA], we define

li , � log(softmax(W>ai + c)) 2 RK , (8)

and 8 j 2 [NB ], ✓i,j , li,bj ,

41

↑
y



Machine Translation with Attention [MB ’18]

• Translate source language into target language

• RNN pipeline: decoding step for outputting the next word
encoding x → scoring → θ → ŷΩ → attention weights

• `2
2 reg achieves similar accuracy with more interpretable maps
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Figure 4: Attention maps obtained with structured attention. Although both regularizations led to the
same translation (y-axis) in this example, attention is sparse and more interpretable with `22.

Backpropagating through rVit⌦(✓) can be carried out using our approach outlined in §3.4. This approach
is not only more general, but also simpler and more robust to underflow problems than backpropagating
through the forward-backward algorithm as done in (Kim et al., 2017).

Experiments. We demonstrate structured attention layers with an LSTM encoder and decoder to perform
French to English translation using data from a 1 million sentence subset of the WMT14 FR-EN challenge.
We illustrate an example of attenion map obtained with negentropy and `22 regularizations in Figure 4. Non-
zero elements are underlined with borders: `22-regularized attention maps are sparse and more interpretable
— this provides a structured alternative to sparsemax attention (Martins & Astudillo, 2016). Results
were all within 0.8 point of BLEU score on the newstest2014 dataset. For French to English, standard
softmax attention obtained 27.96, while entropy and `22 regularized attention obtained 27.96 and 27.19 —
introducing structure and sparsity therefore provides enhanced interpretability with comparable peformance.
We provide model details, full results and further visualizations in §C.3.

7 Conclusion

We proposed a theoretical framework for turning a broad class of dynamic programs into convex, di↵eren-
tiable and tractable operators, using the novel point of view of smoothed max operators. Our work sheds
a new light on how to transform dynamic programs that predict hard assignments (e.g., the maximum
a-posteriori estimator in a probabilistic graphical model or an alignment matrix between two time-series)
into continuous and probabilistic ones. We provided a new argument in favor of negentropy regularization
by showing that it is the only one to preserve associativity of the smoothed max operator. We showed
that di↵erent regularizations induce di↵erent distributions over outputs and that `22 regularization has other
benefits, in terms of sparsity of the expected outputs. Generally speaking, performing inference in a graph-
ical model and backpropagating through it reduces to computing the first and second-order derivatives of a
relaxed maximum-likelihood estimation — leveraging this observation yields elegant and e�cient algorithms
that are readily usable in deep learning frameworks, with various promising applications.

Acknowledgements
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Thoth and Inria Parietal for lending him the computational resources necessary to run the experiments. He
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Table 3: Detokenized BLEU score on newstest2014 data using regularized and unregularized attention.

Attention model WMT14 1M fr!en WMT14 en!fr

Softmax 27.96 28.08
Entropy regularization 27.96 27.98
`22 reg. 27.21 27.28

C.3 Structured and sparse attention (section §6)

We use OpenNMT-py library3 to fit our structured attention model. Model architecture and optimization
details are as follow:

• We use a bidirectional LSTM encoder and decoder, with 500 units in each direction and a depth of 2
layers .

• The decoder is fed with the input representation as in Luong et al. (2015).
• SGD training with s = 1 learning rate, decaying from epoch 8 to epoch 15 with rate 0.65, batch size

of size 256.
• Training sentence of lengths superior to 50 are ignored, and translated sentence are forced to a length

inferior to 100.
• The temperature parameter is set to � = 2 for entropy, and � = 10 for `22. Performance is not a↵ected

much by this parameter, provided that it is not set too low in the `22 case — with a too small �, Vit⌦
reduces to unregularized MAP estimation and rVit⌦ has zero derivatives.

We use a 1-million sentence subject of WMT14 English-to-French corpus, available at http://nmt-benchmark.net/.
We use Moses tokenizer and do not perform any post-processing, before computing BLEU score on detok-
enized sentences (multi bleu.perl script).

Implementation. We implemeted a batch version of the rVit⌦ layer on GPU, using the PyTorch tensor
API. Model with negentropy-regularized attention mechanism runs 1/2 as fast as the softmax attention
mechanism (approximately 7500 tokens/s vs 15000 tokens/s on a single Nvidia Titan X Pascal). With `22
regularization, it is only 1/3 as fast: approximately 5000 tokens/s. Although this remains reasonable, it
could certainly be optimized by rewriting kernels using lower-level languages (e.g., using ATen API from
PyTorch.)

Further results. Table 3 provides BLEU scores for both translation directions on the 1 million sentence
subset of WMT14 we used. We observe that the introduction of structure and sparsity does not hinder
the general performance of the model. We provide several examples of attention maps in Figure 8, that
illustrate the sparsity patterns `22 regularization uncovers.

3http://opennmt.net/
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Natural Language Inference [NMBC ’18]

• Infer whether two sentence agree, contradict, are neutral

• Pipeline:
premise

hypothesis bi-LSTM
P

H
θi,j =<hi,pj> ŷΩ

soft alignment  
produced by sparseMAP
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• Results on the SNLI and multi-SNLI dataset
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Figure 5. Latent alignments on an example from the SNLI validation set, correctly predicted as neutral by all compared models. The
premise is on the y-axis, the hypothesis on the x-axis. Top: columns sum to 1; bottom: rows sum to 1. The matching alignment mechanism
yields a symmetrical alignment, and is thus shown only once. Softmax yields a dense alignment (nonzero weights are marked with a
border). The structures selected by sequential alignment are overlayed as paths; the selected matchings are displayed in the top right.
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, extending the range

if the best model is at either end. The results in Table 2 show
that structured alignments are competitive with softmax in
terms of accuracy, but are orders of magnitude sparser. This
sparsity allows them to produce global alignment structures
that are interpretable, as illustrated in Figure 5.

Interestingly, we observe computational advantages of spar-
sity. Despite the overhead of GPU memory copying, both
training and validation in our latent structure models take
roughly the same time as with softmax and become faster as
the models grow more certain. For the sake of comparison,
Kim et al. (2017) report a 5⇥ slow-down in their structured
attention networks, where they use marginal inference.

6. Related Work
Structured attention networks. Structured hidden layers
were proposed in the works of Kim et al. (2017) and Liu
& Lapata (2017), who take advantage of the tractability of
marginal inference in certain structured models and derive
specialized backward passes. In contrast, our approach is
more general and easier to use: with SPARSEMAP, the for-
ward pass only requires MAP inference, and the backward
pass is efficiently computed based on the forward pass re-
sults. Moreover, unlike marginal inference, SPARSEMAP
yields sparse solutions, which is an appealing property sta-
tistically, computationally, and visually.

K-best inference. As it returns a small set of structures,
SPARSEMAP brings to mind K-best inference, often used
in pipeline NLP systems for increasing recall and handling
uncertainty (Yang & Cardie, 2013). K-best inference can
be solved in tree-structured factor graphs (Yanover & Weiss,
2004) and in certain types of structures via specialized al-
gorithms (Camerini et al., 1980; Chegireddy & Hamacher,
1987), as well as approximated in general (Fromer & Glober-
son, 2009), in time proportional to K calls to MAP infer-
ence, although (unlike SPARSEMAP) not in terms of MAP
inference. The appeal of SPARSEMAP is that the support
size adapts dynamically to each instance, rather than being
fixed a priori. Furthermore, SPARSEMAP yields a sparse
probability distribution, while K-best does not reveal the
posterior gap between structures.

Regularized inference. Ravikumar et al. (2010), Meshi
et al. (2015), and Martins et al. (2015) proposed `2 perturba-
tions and penalties in various related ways, with the goal of
solving LP-MAP approximate inference in graphical mod-
els. In contrast, the goal of our work is sparse structured
prediction, which is not considered in the aforementioned
work. Nevertheless, some of the formulations in their work
share properties with SPARSEMAP; exploring the connec-
tions further is an interesting avenue for future work.

Accuracy scores and percentage of non-aligned pairsTable 1. Unlabeled attachment accuracy scores for dependency
parsing, using a bi-LSTM model (Kiperwasser & Goldberg, 2016).
SPARSEMAP and its margin version, m-SPARSEMAP, produce
the best parser on 4/5 datasets. For context, we include the scores
of the CoNLL 2017 UDPipe baseline, which is trained under the
same conditions (Straka & Straková, 2017).

Loss en zh vi ro ja

Structured SVM 87.02 81.94 69.42 87.58 96.24
CRF 86.74 83.18 69.10 87.13 96.09

SPARSEMAP 86.90 84.03 69.71 87.35 96.04
m-SPARSEMAP 87.34 82.63 70.87 87.63 96.03

UDPipe baseline 87.68 82.14 69.63 87.36 95.94

Proposition 2 Consider a convex ⌦ and a structured model
defined by the matrix A 2 Rk⇥D. Denote the inference
objective f⌦(y) := ⌘>Ay � ⌦(y), and a solution y? :=
arg max

y2�D

f⌦(y). Then, the following properties hold:

1. `⌦,A(⌘, y) � 0, with equality when f⌦(y) = f⌦(y?);

2. `⌦,A(⌘, y) is convex, @`⌦,A(⌘, y) 3 A(y? � y);

3. `t⌦,A(⌘, y) = t`⌦(⌘/t, y) for any t 2 R, t > 0.

Proof is given in Appendix C. Property 1 suggests that
minimizing `⌦,A pushes models toward the objective value
of the true label. Property 2 shows how to compute sub-
gradients of `⌦,A provided access to the inference output
[u?; v?] = Ay? 2 Rk. Combined with our efficient proce-
dure described in Section 3.2, it makes the SPARSEMAP
losses promising for structured prediction. Property 3 sug-
gests that the strength of the penalty ⌦ can be adjusted by
simply scaling ⌘. Finally, we remark that for a strongly-
convex ⌦, `⌦,A can be seen as a smoothed perceptron
loss; other smoothed losses have been explored by Shalev-
Shwartz & Zhang (2016).

5. Experimental results
In this section, we experimentally validate SPARSEMAP on
two natural language processing applications, illustrating
the two main use cases presented: structured output pre-
diction with the SPARSEMAP loss (§5.1) and structured
hidden layers (§5.2). All models are implemented using the
dynet library v2.0.2 (Neubig et al., 2017).

5.1. Dependency parsing with the SPARSEMAP loss

We evaluate the SPARSEMAP losses against the commonly
used CRF and structured SVM losses. The task we focus on
is non-projective dependency parsing: a structured output
task consisting of predicting the directed tree of grammat-
ical dependencies between words in a sentence (Jurafsky
& Martin, 2018, Chapter 14). We use annotated Universal
Dependency data (Nivre et al., 2016), as used in the CoNLL

Table 2. Test accuracy scores for natural language inference with
structured and unstructured variants of ESIM. In parentheses: the
percentage of pairs of words with nonzero alignment scores.

ESIM variant MultiNLI SNLI

softmax 76.05 (100%) 86.52 (100%)
sequential 75.54 (13%) 86.62 (19%)
matching 76.13 (8%) 86.05 (15%)

2017 shared task (Zeman et al., 2017). To isolate the effect
of the loss, we use the provided gold tokenization and part-
of-speech tags. We follow closely the bidirectional LSTM
arc-factored parser of Kiperwasser & Goldberg (2016), us-
ing the same model configuration; the only exception is
not using externally pretrained embeddings. Parameters
are trained using Adam (Kingma & Ba, 2015), tuning the
learning rate on the grid {.5, 1, 2, 4, 8} ⇥ 10�3, expanded
by a factor of 2 if the best model is at either end.

We experiment with 5 languages, diverse both in terms of
family and in terms of the amount of training data (ranging
from 1,400 sentences for Vietnamese to 12,525 for English).
Test set results (Table 1) indicate that the SPARSEMAP
losses outperform the SVM and CRF losses on 4 out of the
5 languages considered. This suggests that SPARSEMAP is
a good middle ground between MAP-based and marginal-
based losses in terms of smoothness and gradient sparsity.

Moreover, as illustrated in Figure 4, the SPARSEMAP loss
encourages sparse predictions: models converge towards
sparser solutions as they train, yielding very few ambiguous
arcs. When confident, SPARSEMAP can predict a single
tree. Otherwise, the small set of candidate parses returned
can be easily visualized, often indicating genuine linguistic
ambiguities, as exemplified in Figure 3. This property of
SPARSEMAP is valuable in pipeline systems, e.g., when
the output of a dependency parser is the input to a down-
stream application: error propagation is diminished in cases
where the highest-scoring tree is incorrect (which is the case
for the sentences in Figure 3). Unlike K-best heuristics,
SPARSEMAP dynamically adjusts its output sparsity, which
is desirable on realistic data where most instances are easy.

5.2. Latent structured alignment
for natural language inference

In this section, we demonstrate SPARSEMAP for inferring
latent structure in large-scale deep neural networks. We
focus on the task of natural language inference, defined as
the classification problem of deciding, given two sentences
(a premise and a hypothesis), whether the premise entails
the hypothesis, contradicts it, or is neutral with respect to it.

We consider novel structured variants of the state-of-the-art
ESIM model (Chen et al., 2017). Given a premise p of
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• Predict the directed tree of grammatical dependencies between
words in a sentence

• Pipeline:

sentence x ∈ X → bi-LSTM → θ ∈ Rd → LΩ → R+

• Results on Universal Dependency data (CoNLL 2017 shared task)
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Figure 3. Example of ambiguous parses from the UD English validation set. SPARSEMAP selects a small number of candidate parses
(left: three, right: two), differing from each other in a small number of ambiguous dependency arcs. In both cases, the desired gold parse
is among the selected trees (depicted by the arcs above the sentence), but it is not the highest-scoring one.
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Figure 4. Distribution of the tree sparsity (top) and arc sparsity (bottom) of SPARSEMAP solutions during training on the Chinese dataset.
Shown are respectively the number of trees and the average number of parents per word with non-zero probability.

length m and a hypothesis h of length n, ESIM:

1. Encodes p and h independently through an LSTM;

2. Aligns each pi to h and vice-versa by applying
softmax row-wise and column-wise on the alignment
log-potentials M 2 Rm⇥n;

3. Augments each pi with the corresponding aligned
weighted average of the hypothesis, and vice-versa;

4. Processes the augmented p and h through another LSTM,
pools the result, then makes a prediction.

We consider the following structured replacements for the
independent row-wise and column-wise softmaxes (step 2):

Sequential alignment. We model the alignment of p to
h as a sequence tagging instance of length m, with n pos-
sible tags corresponding to the n words of the hypothesis.
Through transition scores, we enable the model to capture
continuity and monotonicity of alignments: we parametrize
transitioning from word t1 to t2 by binning the distance
t2 � t1 into 5 groups, {�2 or less,�1, 0, 1, 2 or more}.
We similarly parametrize the initial alignment using bins
{1, 2 or more} and the final alignment as {�2 or less,�1},
allowing the model to express whether an alignment starts

at the beginning or ends on the final word of h; formally

⌘F (i, t1, t2) :=

8
><
>:

wbin(t2�t1) 0 < i < n,

wstart
bin(t2)

i = 0,

wend
bin(t1)

i = n.

We align p to h applying the same method in the other direc-
tion, with different transition scores w. Overall, sequential
alignment requires learning 18 additional scalar parameters.

Matching alignment. We now seek a symmetrical align-
ment in both directions simultaneously. To this end, we cast
the alignment problem as finding a maximal weight bipar-
tite matching. We recall from §2.2 that a solution can be
found via the Hungarian algorithm (in contrast to marginal
inference, which is #P-complete). When n = m, maximal
matchings can be represented as permutation matrices, and
when n 6= m some words remain unaligned. SPARSEMAP
returns a weighted average of a few maximal matchings.
This method requires no additional learned parameters.

We evaluate the two models alongside the softmax baseline
on the SNLI (Bowman et al., 2015) and MultiNLI (Williams
et al., 2017) datasets.3 All models are trained by SGD,
with 0.9⇥ learning rate decay at epochs when the validation
accuracy is not the best seen. We tune the learning rate on

3We split the MultiNLI matched validation set into equal vali-
dation and test sets; for SNLI we use the provided split.

Table 1. Unlabeled attachment accuracy scores for dependency
parsing, using a bi-LSTM model (Kiperwasser & Goldberg, 2016).
SPARSEMAP and its margin version, m-SPARSEMAP, produce
the best parser on 4/5 datasets. For context, we include the scores
of the CoNLL 2017 UDPipe baseline, which is trained under the
same conditions (Straka & Straková, 2017).

Loss en zh vi ro ja

Structured SVM 87.02 81.94 69.42 87.58 96.24
CRF 86.74 83.18 69.10 87.13 96.09

SPARSEMAP 86.90 84.03 69.71 87.35 96.04
m-SPARSEMAP 87.34 82.63 70.87 87.63 96.03

UDPipe baseline 87.68 82.14 69.63 87.36 95.94

Proposition 2 Consider a convex ⌦ and a structured model
defined by the matrix A 2 Rk⇥D. Denote the inference
objective f⌦(y) := ⌘>Ay � ⌦(y), and a solution y? :=
arg max

y2�D

f⌦(y). Then, the following properties hold:

1. `⌦,A(⌘, y) � 0, with equality when f⌦(y) = f⌦(y?);

2. `⌦,A(⌘, y) is convex, @`⌦,A(⌘, y) 3 A(y? � y);

3. `t⌦,A(⌘, y) = t`⌦(⌘/t, y) for any t 2 R, t > 0.

Proof is given in Appendix C. Property 1 suggests that
minimizing `⌦,A pushes models toward the objective value
of the true label. Property 2 shows how to compute sub-
gradients of `⌦,A provided access to the inference output
[u?; v?] = Ay? 2 Rk. Combined with our efficient proce-
dure described in Section 3.2, it makes the SPARSEMAP
losses promising for structured prediction. Property 3 sug-
gests that the strength of the penalty ⌦ can be adjusted by
simply scaling ⌘. Finally, we remark that for a strongly-
convex ⌦, `⌦,A can be seen as a smoothed perceptron
loss; other smoothed losses have been explored by Shalev-
Shwartz & Zhang (2016).

5. Experimental results
In this section, we experimentally validate SPARSEMAP on
two natural language processing applications, illustrating
the two main use cases presented: structured output pre-
diction with the SPARSEMAP loss (§5.1) and structured
hidden layers (§5.2). All models are implemented using the
dynet library v2.0.2 (Neubig et al., 2017).

5.1. Dependency parsing with the SPARSEMAP loss

We evaluate the SPARSEMAP losses against the commonly
used CRF and structured SVM losses. The task we focus on
is non-projective dependency parsing: a structured output
task consisting of predicting the directed tree of grammat-
ical dependencies between words in a sentence (Jurafsky
& Martin, 2018, Chapter 14). We use annotated Universal
Dependency data (Nivre et al., 2016), as used in the CoNLL

Table 2. Test accuracy scores for natural language inference with
structured and unstructured variants of ESIM. In parentheses: the
percentage of pairs of words with nonzero alignment scores.

ESIM variant MultiNLI SNLI

softmax 76.05 (100%) 86.52 (100%)
sequential 75.54 (13%) 86.62 (19%)
matching 76.13 (8%) 86.05 (15%)

2017 shared task (Zeman et al., 2017). To isolate the effect
of the loss, we use the provided gold tokenization and part-
of-speech tags. We follow closely the bidirectional LSTM
arc-factored parser of Kiperwasser & Goldberg (2016), us-
ing the same model configuration; the only exception is
not using externally pretrained embeddings. Parameters
are trained using Adam (Kingma & Ba, 2015), tuning the
learning rate on the grid {.5, 1, 2, 4, 8} ⇥ 10�3, expanded
by a factor of 2 if the best model is at either end.

We experiment with 5 languages, diverse both in terms of
family and in terms of the amount of training data (ranging
from 1,400 sentences for Vietnamese to 12,525 for English).
Test set results (Table 1) indicate that the SPARSEMAP
losses outperform the SVM and CRF losses on 4 out of the
5 languages considered. This suggests that SPARSEMAP is
a good middle ground between MAP-based and marginal-
based losses in terms of smoothness and gradient sparsity.

Moreover, as illustrated in Figure 4, the SPARSEMAP loss
encourages sparse predictions: models converge towards
sparser solutions as they train, yielding very few ambiguous
arcs. When confident, SPARSEMAP can predict a single
tree. Otherwise, the small set of candidate parses returned
can be easily visualized, often indicating genuine linguistic
ambiguities, as exemplified in Figure 3. This property of
SPARSEMAP is valuable in pipeline systems, e.g., when
the output of a dependency parser is the input to a down-
stream application: error propagation is diminished in cases
where the highest-scoring tree is incorrect (which is the case
for the sentences in Figure 3). Unlike K-best heuristics,
SPARSEMAP dynamically adjusts its output sparsity, which
is desirable on realistic data where most instances are easy.

5.2. Latent structured alignment
for natural language inference

In this section, we demonstrate SPARSEMAP for inferring
latent structure in large-scale deep neural networks. We
focus on the task of natural language inference, defined as
the classification problem of deciding, given two sentences
(a premise and a hypothesis), whether the premise entails
the hypothesis, contradicts it, or is neutral with respect to it.

We consider novel structured variants of the state-of-the-art
ESIM model (Chen et al., 2017). Given a premise p of
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Conclusion

• Regularization / smoothing allows to deal with
ambiguous outputs and brings differentiability

• FY losses allow to learn such regularized prediction
functions and unify a wealth of existing losses

• Link between sparsity of ŷΩ = ∇Ω∗, sparsity of dual
variables and margin of LΩ

• FY losses support arbitrary dom(Ω), allowing a wide
variety of (unexplored) applications

45



References
• Blondel et al. Learning Classifiers with Fenchel-Young Losses: Generalized Entropies, Margins,

and Algorithms. arXiv preprint, 2018.

• Cuturi & Blondel. Soft-DTW: a differentiable loss function for time-series. ICML, 2017.

• DeGroot. Uncertainty, information, and sequential experiments. The Annals of Mathematical
Statistics, 1962.

• Grunwald & Dawid. Game theory, maximum entropy, minimum discrepancy and robust
Bayesian decision theory. Annals of Statistics, 2004.

• Koo et al. Structured prediction models via the matrix-tree theorem. EMNLP, 2007.

• Martins & Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label
classification. ICML, 2016.

• Mensch & Blondel. Differentiable Dynamic Programming for Structured Prediction and
Attention. ICML, 2018.

• Niculae & Blondel. A regularized framework for sparse and structured neural attention. NIPS,
2017.

46



References

• Niculae et al. SparseMAP: Differentiable Sparse Structured Inference. ICML 2018.

• Pearlmutter. Fast exact multiplication by the Hessian. Neural computation, 1994.

• Smith & Smith. Probabilistic models of nonprojective dependency trees. EMNLP, 2007

• Taskar et al. Max-Margin Markov Networks, NIPS 2003.

• Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of Statistical Physics,
1988.

• Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 1979.

• Wainwright & Jordan. Graphical models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 2008.

47


