
July 28th, ICML 2023

Mathieu Blondel

Differentiable and Sparse Top-k:
a Convex Analysis Perspective

Motivation for the research

The top-k operator is increasingly used as a building block in neural
networks (top-k classification, mixtures of expert, weight pruning)

However, it is a discontinuous operation, making it difficult to use in
end-to-end trainable networks

A crucial property of the top-k is its sparsity but many existing
differentiable top-k relaxations are dense

Smooth optimization is known to enjoy faster convergence rates

However, sparsity is crucial in certain applications as a selection
mechanism: mixtures of experts, weight pruning

Related work

A large body of work on relaxations of sorting, ranking and top-k...

Using unimodal row-stochastic matrices (Grover et al, 2019; Prillo and
Eisenschlos, 2020)

Using optimal transport (Cuturi et al, 2019)

Using the permutahedron (Blondel et al, 2020)

Using perturbations (Berthet et al, 2020)

Using sorting networks (Petersen et al, 2021)

Contributions

A general top-k framework, including top-k in magnitude

Differentiable and sparse relaxations thanks to p-norm regularization

Reduction to isotonic optimization, for computation and differentiation

GPU/TPU-friendly algorithm based on Dykstra’s algorithm

Applications to top-k classification, mixtures of experts, weight pruning

Top-k mask1

Top-k mask operator

Bit-encoding of the top-k indices (“k-hot encoding”)

[topkmask(x)]i :=

{
1, if [rank(x)]i ≤ k

0, otherwise.
∈ {0, 1}n

x = (1.7, 3.2,−2.4)
top1mask(x) = (0, 1, 0)

top2mask(x) = (1, 1, 0)

top3mask(x) = (1, 1, 1)

Discontinuous, piecewise constant with null derivatives

Top-k operator

Sparse vector containing the top-k values

topk(x) := x · topkmask(x) ∈ Rn

x = (1.7, 3.2,−2.4)
top1(x) = (0.0, 3.2, 0)

top2(x) = (1.7, 3.2, 0)

top3(x) = (1.7, 3.2,−2.4)

Discontinuous, piecewise affine with constant derivatives

Regularized top-k mask: overview of the approach

Rewrite top-k mask as a linear program solution

topkmask(x) = y(x) := argmax
y∈C

〈x,y〉

Add regularization R

topkmaskR(x) = yR(x) := argmax
y∈C

〈x,y〉 −R(y)

Use a reduction to isotonic optimization to easily compute and
differentiate topkmaskR(x)

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Michael E. Sander
* 1

Joan Puigcerver
2

Josip Djolonga
2

Gabriel Peyré
1 3

Mathieu Blondel
2

Abstract

The top-k operator returns a sparse vector, where
the non-zero values correspond to the k largest
values of the input. Unfortunately, because it is a
discontinuous function, it is difficult to incorpo-
rate in neural networks trained end-to-end with
backpropagation. Recent works have considered
differentiable relaxations, based either on regu-
larization or perturbation techniques. However,
to date, no approach is fully differentiable and

sparse. In this paper, we propose new differen-
tiable and sparse top-k operators. We view the
top-k operator as a linear program over the per-
mutahedron, the convex hull of permutations. We
then introduce a p-norm regularization term to
smooth out the operator, and show that its com-
putation can be reduced to isotonic optimization.
Our framework is significantly more general than
the existing one and allows for example to express
top-k operators that select values in magnitude.
On the algorithmic side, in addition to pool adja-
cent violator (PAV) algorithms, we propose a new
GPU/TPU-friendly Dykstra algorithm to solve
isotonic optimization problems. We successfully
use our operators to prune weights in neural net-
works, to fine-tune vision transformers, and as a
router in sparse mixture of experts.

1. Introduction

Finding the top-k values and their corresponding indices in
a vector is a widely used building block in modern neural
networks. For instance, in sparse mixture of experts (MoEs)
(Shazeer et al., 2017; Fedus et al., 2022), a top-k router maps

*Work done during an internship at Google Re-
search, Brain team. 1Ecole Normale Supérieure 2Google
Research, Brain team 3CNRS. Correspondence to:
Michael E. Sander <michael.sander@ens.fr>, Joan
Puigcerver <jpuigcerver@google.com>, Josip Djolonga
<josipd@google.com>, Gabriel Peyré <gabriel.peyre@ens.fr>,
Mathieu Blondel <mblondel@google.com>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

each token to a selection of k experts (or each expert to a
selection of k tokens). In beam search for sequence decod-
ing (Wiseman & Rush, 2016), a beam of k possible output
sequences is maintained and updated at each decoding step.
For pruning neural networks, the top-k operator can be used
to sparsify a neural network, by removing weights with the
smallest magnitude (Han et al., 2015; Frankle & Carbin,
2018). Finally, top-k accuracy (e.g., top-3 or top-5) is fre-
quently used to evaluate the performance of neural networks
at inference time.

Figure 1. Illustration of our differentiable and sparse top-k

mask. For k = 2, we consider ✓(s) = (3, 1,�1 + s, s) 2 R4

and plot topkmask(✓(s))2+topkmask(✓(s))3 as a function of s.
We compare the hard version (no regularization) with our proposed
operator using p-norm regularization: p = 2 leads to differentiable
a.e. operator; p = 4/3, leads to a differentiable operator. Both
operators are sparse: they are exactly 0 for some values of s.

However, the top-k operator is a discontinuous piecewise
affine function with derivatives either undefined or constant
(the related top-k mask operator, which returns a binary
encoding of the indices corresponding to the top-k values,
has null derivatives). This makes it hard to use in a neu-
ral network trained with gradient backpropagation. Recent
works have considered differentiable relaxations, based ei-
ther on regularization or perturbation techniques (see §2
for a review). However, to date, no approach is differen-
tiable everywhere and sparse. Sparsity is crucial in neural
networks that require conditional computation. This is for
instance the case in sparse mixture of experts, where the
top-k operator is used to “route” tokens to selected experts.

1

ar
X

iv
:2

30
2.

01
42

5v
3

 [c
s.L

G
]

4
Ju

n
20

23

θ(s) = (3, 1,−1 + s, s) ∈ R4

k = 2

Top-k mask as a linear program

With C = {y ∈ Rn : y ∈ [0, 1]n,y⊤1 = k}, we get

topkmask(x) = y(x) = argmax
y∈C

〈x,y〉

The vertices of C are all possible bit encodings of cardinality k

Relation with the capped probability simplex

C/k =
{
y ∈ Rn : y ∈ [0, 1/k]n,y⊤1 = 1

}
Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Proposition 1. (Linear maximization oracles)

If w1 � · · · � wn (if not, sort w), then

f(x,w) =
nX

i=1

wix[i] and y(x,w) = wrank(x).

LP formulations. Let us denote the reversing permutation
by ⇢ := (n, n � 1, . . . , 1). Blondel et al. (2020b) showed
that the sort and rank operators can be formulated as linear
programs (LP) over the permutahedron:

sort(x) = y(⇢,x) = argmax
y2P (x)

h⇢,yi

rank(x) = y(�x,⇢) = argmax
y2P (⇢)

h�x,yi.

In the latter expression, the minus sign is due to the fact
that we use the convention that smaller rank indicates higher
value (i.e., the maximum value has rank 1).

Although not mentioned by Blondel et al. (2020b), it is also
easy to express the top-k mask operator as an LP

topkmask(x) = y(x,1k) = argmax
y2P (1k)

hx,yi, (2)

where 1k := (1, ..., 1| {z }
k

, 0, . . . , 0| {z }
n�k

). For this choice of w, the

permutahedron enjoys a particularly simple expression

P (1k) = {y 2 Rn : hy,1i = k,y 2 [0, 1]n}

and P (1k/k) is known as the capped simplex (Warmuth &
Kuzmin, 2008; Blondel et al., 2020a). This is illustrated in
Figure 2. To obtain relaxed operators, Blondel et al. (2020b)
proposed to introduce regularization in (1) (see “recovering
the previous framework” in the next section) and used a
reduction to isotonic optimization.

4. Proposed generalized framework

In this section, we generalize the framework of Blondel
et al. (2020b) by adding an optional nonlinearity '(x). In
addition to the operators covered by the previous framework,
this allows us to directly express the top-k in magnitude
operator, which was not possible before. We also support p-
norm regularization, which allows to express differentiable
and sparse operators when 1 < p < 2.

Introducing a mapping '. Consider a mapping '(x) :=
(�(x1), . . . ,�(xn)). Given x 2 Rn and w 2 Rn, we define

f'(x,w) := f('(x),w)

y'(x,w) := r1f'(x,w).

When '(x) = x (identity mapping), we clearly recover
the existing framework, i.e., f'(x,w) = f(x,w) and
y'(x,w) = y(x,w).

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(1
2

, 1
2

, 0)

(1
2

, 0, 1
2

)

(0, 1
2

, 1
2

)

Figure 2. The permutahedron P (w) is a polytope whose vertices
are permutations of w. Depending, on the choice of w, it can
express several known polytopes. When w = (1, 0, 0), P (w) is
the probability simplex (light beige), which corresponds to the top-
1 setting. When w = (12 ,

1
2 , 0), P (w) is the capped probability

simplex (blue), which corresponds to the top-k setting (here, with
k = 2). When w = (23 ,

1
3 , 0), P (w) is an hexagon, which

corresponds to the partial ranking setting (gray).

When '(x) 6= x, our framework starts to differ from the
previous one, since ' affects differentiation. By the chain
rule and Danskin’s theorem (1966), we get

y'(x,w) := r1f'(x,w)

= @'(x)>y('(x),w)

= (�0(x1), . . . ,�
0(xn)) � y('(x),w),

(3)

where @'(x) 2 Rn⇥n denotes the Jacobian of '(x) and
y(x,w) is given by Proposition 1.

Top-k in magnitude. As we emphasized, one advantage
of our proposed generalization is that we can express the
top-k in magnitude operator. Indeed, with �(x) = 1

2x
2, we

can see from (2) and (3) that we have for all x 2 Rn

topkmag(x) = y'(x,1k) = r1f'(x,1k). (4)

Obviously, for all x 2 Rn
+, we also have topkmag(x) =

topk(x). Top-k in magnitude is useful for pruning weights
with small magnitude in a neural network, as we demon-
strate in our experiments in §6.

Introducing regularization. We now explain how to
make our generalized operator differentiable. We introduce
convex regularization R : Rn ! R in the dual space:

f
⇤
',R(y,w) := f

⇤
'(y,w) +R(y),

where f⇤
' is the conjugate of f' in the first argument. Going

back to the primal space, we obtain a new relaxed operator.
A proof is given in Appendix A.2.

4

Relation with the permutahedron

The convex hull of all permutations of w

P (w) := conv({(wσ1 , . . . , wσn) : σ ∈ Σ})

(3, 2, 1)

(3, 1, 2)

(2, 1, 3)

(1, 2, 3)

(1, 3, 2)

(2, 3, 1)

P ((1, 2, 3))

With w = 1k := (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
n−k

), we get

P (w) = C = {y ∈ Rn : y ∈ [0, 1]n,y⊤1 = k}

Top-k mask: value function and its conjugate

Value function: support function of C

f(x) := max
y∈C
〈x,y〉 = topksum(x) :=

k∑
i=1

xσi = 〈xσ, 1k〉

where σ = argsort(x)⇐⇒ xσ1 ≥ · · · ≥ xσn and xσ := (xσ1 , . . . , xσn)

Conjugate: indicator function of C

f∗(y) := sup
x∈Rn

〈x,y〉 − f(x) = δC(y) :=

{
0, if y ∈ C
∞, if y 6∈ C

Regularized version

The regularized version

topkmaskR(x) = yR(x) := y⋆

is defined using the dual solution

y⋆ = argmax
y∈C

〈x,y〉 −R(y)

= argmax
y∈Rn

〈x,y〉 − f∗(y)−R(y)

Equivalently, if we define the primal solution (infimal convolution)

u⋆ = argmin
u∈Rn

R∗(x− u) + f(u)

then y⋆ = ∇R∗(x− u⋆)

Regularized version

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Sparse MoEs. Finally, we demonstrate the applicability
of our proposed smooth top-k operators on a large-scale
classification task using vision sparse mixture of experts (V-
MoE) (Riquelme et al., 2021). Vision transformers (ViTs)
are made of a succession of self-attention layers and MLP
layers. The idea of V-MoEs is to replace MLPs in ViTs
by a sparsely-gated mixture of MLPs called experts. This
way, only some of the experts are activated by a given patch
token. At the heart of the token-expert assignment lies
a routing mechanism which performs a top-k operation
on gate values. We focus on the MoE with expert choice
routing framework (Zhou et al., 2022), where each expert is
assigned to k tokens. We train a S/32 variant of the V-MoE
model, with 32⇥ 32 patches on the JFT-300M dataset (Sun
et al., 2017), a dataset with more than 305 million images.
Our model has 32 experts, each assigned to k = 28 tokens
selected among n = 400 at each MoE layer. We compare
the validation accuracy when using the baseline (hard top-k)
with our relaxed operator. We use p = 2 and Dykstra’s
projection algorithm, as we found it was the fastest method
on TPU. We used the training procedure proposed by Zhou
et al. (2022) to obtain a fair comparison with the baseline.
Due to the large size of the JFT-300M dataset (305 million
images), we performed one run, as in Liu et al. (2022). We
find that our approach improves validation performance.
Results are displayed in Figure 7.

Figure 7. Precision-

at-1 on the JFT-300M
dataset when using a
hard top-k (baseline,
in blue) or a differ-
entiable a.e. one (in
red) in a sparse MoE
with a ViT-S/32. We
zoom in on the last
training steps, where
our proposed method
outperforms the
baseline. The runtime
is 10 hours for the
baseline and 15 for
the differentiable
a.e. top-k (gradient
calculation is the
bottleneck here).

7. Discussion

Advantage of the non-linearity. As an alternative to per-
forming a relaxed top-k operator in magnitude of x, one
can perform a differentiable top-k mask on |x|, and then
multiply the output by x. This alternative would also lead
to a differentiable top-k operator in magnitude. However,
our operator has more principled behavior at the limit cases.
For instance, as � ! 1, it is easy to see that the relaxed

top-k mask converges to the vector (k/n)⇥1n. Therefore, a
rescaling by n/k is needed to obtain the identity as � ! 1,
in contrast to our top-k in magnitude. From a theoretical
point of view, the introduction of a non-linearity allows us
to draw connections with the k-support norm. It also has a
bi-conjugate interpretation, which we believe has an interest
by itself.

Sensitivity to the choice of p. The subproblem needed
within PAV enjoys a closed form only for specific choices
of p. This is why we focused on p = 2 and p = 4

3 in
our experiments. However, we stress out that the proposed
methods work for any choice of p. As an example, we
provide the same illustration as for Figure 1 in Figure 8.

0 1 2 3 4 5
s

0.00

0.25

0.50

0.75

1.00

to
p
km

as
k(

µ(
s)

) 2
+

to
p
km

as
k(

µ(
s)

) 3

Hard

DiÆerentiable

Smooth

0 1 2 3 4 5
s

0.00

0.25

0.50

0.75

1.00

to
p
km

as
k(

µ(
s)

) 2
+

to
p
km

as
k(

µ(
s)

) 3

Hard

DiÆerentiable

Smooth

Figure 8. Illustration of our differentiable and sparse top-k

mask. Same setup as for Figure 1, with more values for p.

8. Conclusion

In this work, we proposed a generalized framework to ob-
tain fast, differentiable (or differentiable a.e.) and sparse
top-k and top-k masks operators, including operators that
select values in magnitude. Thanks to a reduction to iso-
tonic optimization, we showed that these operators can be
computed using either the Pool Adjacent Violators (PAV)
algorithm or Dykstra’s projection algorithm, the latter being
faster on TPU hardware. We successfully demonstrated the
usefulness of our operators for weight pruning, top-k losses
and as routers in vision sparse mixture of experts.

Acknowledgments. We thank Vincent Roulet and Joelle
Barral for comments on a draft of this paper. We thank
Felipe Llinares-López for helpful feedbacks regarding the
experiments, as well as Fabian Pedregosa for fruitful mathe-
matical discussions. We also thank the anonymous review-
ers for their feedback.

9

R(y) = 1
p‖y‖

p
p =

1
p

∑n
i=1 |yi|p

Computing the regularized version

Recall that the primal solution is

u⋆ = argmin
u∈Rn

R∗(x− u) + f(u)

= argmin
u∈Rn

R∗(x− u) + 〈uπ(u), 1k〉

where π(u) = argsort(u)
Reduction to isotonic optimization

u⋆
σ = argmin

v1≥···≥vn

R∗(xσ − v) + f(v)

= argmin
v1≥···≥vn

R∗(xσ − v) + 〈v, 1k〉

where σ = argsort(x)
Differentiation available in closed form (implicit diff not needed) given v⋆

Pool Adjacent Violators (PAV)

argmin
v1≥···≥vn

n∑
i=1

hi(vi)

Partitions the set [n] into disjoint sets (B1, · · ·Bm), starting fromm = n and
Bi = {i}

Merges these sets until the isotonic condition is met

Needs to be able to solve argminγ∈R
∑

i∈Bj
hi(γ) in constant time to get

O(n) total complexity
p-norm regularization case: we need to find the root of a polynomial
(easy when p = 2 or p = 4/3)

Using Dykstra’s algorithm

Key idea: alternate projections between C1 and C2

{v ∈ Rn : v1 ≥ · · · ≥ vn} = {v ∈ Rn : v1 ≥ v2, v3 ≥ v4, . . . }︸ ︷︷ ︸
C1

∩{v ∈ Rn : v2 ≥ v3, v4 ≥ v5, . . . }︸ ︷︷ ︸
C2

Huge speedup on TPU

0 1000 2000 3000

Dimension n

0.00

0.02

0.04

R
u

n
n

in
g

ti
m

e
(s

ec
s.

)
PAV

Dykstra

Hard

Top-k in magnitude2

Top-k in magnitude operator

Same as top-k operator but selects elements with largest absolute value

topkmag(x) := x · topkmask(|x|)

x = (1.7, 3.2,−2.4)
top1mag(x) = (0.0, 3.2, 0)

top2mag(x) = (0, 3.2,−2.4)
top3mag(x) = (1.7, 3.2,−2.4)

Top-k in magnitude as a gradient

We introduce a nonlinearity φ(x) = (ϕ(x1), . . . , ϕ(xn))

fφ(x) := f(φ(x)) = max
y∈C
〈φ(x),y〉

With ϕ(x) = 1
2x

2, we have

∇fφ(x) = topkmag(x)

With ϕ(x) = x, we have

∇fφ(x) = ∇f(x) = topkmask(x)

Regularized version

topkmagR(x) := y⋆ = ∇R∗(x− u⋆)

where we defined the dual solution

y⋆ := argmax
y∈Rn

〈x,y〉 − f∗
φ(y)−R(y)

and the primal solution (inf-convolution)

u⋆ = argmin
u∈Rn

R∗(x− u) + fφ(u)

Conjugate

For φ(x) = x: indicator function of C

f∗
φ(y) = f∗(y) = δC(y)

For φ(x) = 1
2x

2: squared k-support norm

f∗
φ(y) =

1

2
min
z∈C

n∑
i=1

y2i
zi

For general φ: minimum distance to C

f∗
φ(y) = min

z∈C
Dϕ∗(y, z)

where we defined the f-divergence

Df (y, z) :=

n∑
i=1

zif(yi/zi)

Regularized version

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Figure 3. Example of our relaxed top-k operators. We take �(x) = 1
2x

2 and k = 2. For an input x = (x1, x2, 1
2 , 1), we plot

y',R(x, 1k)1 + y',R(x, 1k)2 for R = 0 (left), R = �
2 kxk

2
2 (center) and R = �

p kxk
p
p with p = 4

3 (right). We take � = 0.3. While no
regularization leads to a discontinuous mapping, the 2-norm regularization leads to continuity and a.e. differentiability, and the 4

3 -norm
regularization provides a continuously differentiable mapping. We emphasize that, although in the left plot the graph looks connected, it is
actually a discontinuous function. Note that our relaxed operators are sparse as they are exactly 0 in the center.

rR
⇤(x � u?). We first recall the case '(x) = x, which

was already proved in existing works (Lim & Wright, 2016;
Blondel et al., 2020b).

Proposition 5. (Reduction, '(x) = x case)

Suppose that R(y) =
Pn

i=1 r(yi). Let � be the per-

mutation sorting x, s := x� and

v? = argmin
v1�···�vn

R
⇤(s� v) + f(v,w).

Then u?
from Proposition 2 is given by u? = v?

��1 .

The set {v 2 Rn : v1 � · · · � vn} is called the monotone
cone. Next, we show that a similar result is possible when
�(x) and r

⇤ are both even functions (sign-invariant) and
increasing on R+.

Proposition 6. (Reduction, '(x) = '(�x) case)

Suppose that R(y) =
Pn

i=1 r(yi) and '(x) =
(�(x1), . . . ,�(xn)). Assume � and r

⇤
are both even

functions (sign-invariant) and increasing on R+. Let

� be the permutation sorting |x|, s := |x|� and

v? = argmin
v1�···�vn�0

R
⇤(s� v) + f'(v,w).

Then, u?
(Proposition 2) is equal to sign(x) � v?

��1 .

See Appendix A.6 for a proof. Less general results are
proved in (Zeng & Figueiredo, 2014; Eriksson et al., 2015)
for specific cases of � and R. The set {v 2 Rn : v1 �
· · · � vn � 0} is called the non-negative monotone cone.
In practice, the additional non-negativity constraint is easy
to handle: we can solve the isotonic optimization problem
without it and truncate the solution if it is not non-negative
(Németh & Németh, 2012).

Pool adjacent violator (PAV) algorithms. Under the con-
ditions of Proposition 6, assuming v and w are both sorted,
we have from Proposition 1 that

f(v,w) =
nX

i=1

wivi, f'(v,w) =
nX

i=1

wi�(vi).

We then get that the problems in Proposition 5 and 6 are
coordinate-wise separable:

v? = argmin
v1�···�vn

nX

i=1

hi(vi), (5)

for hi(vi) = r
⇤(si � vi) + wi�(vi). Such problems can

be solved in O(n) time using the pool adjacent violator
(PAV) algorithm (Best et al., 2000). This algorithm works
by partitioning the set [n] into disjoint sets (B1, · · ·Bm),
starting from m = n and Bi = {i}, and by merging these
sets until the isotonic condition is met. A pseudo-code is
available for completness in Appendix B.2. At its core, PAV
simply needs a routine to solve the “pooling” subproblem

�
?
B = argmin

�2R

X

i2B

hi(�) (6)

for any B ✓ [n]. Once the optimal partition (B1, · · ·Bm)
is identified, we have that

v? = (�?
B1

, . . . , �
?
B1| {z }

|B1|

, · · · , �?
Bm

, . . . , �
?
Bm| {z }

|Bm|

) 2 Rn
.

Because Proposition 5 and 6 require to obtain the sorting
permutation � beforehand, the total time complexity for our
operators is O(n log n).

Example. Suppose �(x) = 1
2x

2 and R = �
2 k.k

2
2, where

� > 0. Since R
⇤ = 1

2�k.k
2, this gives hi(vi) =

1
2 (wiv

2
i +

6

Hard p = 2 p = 4/3

Computing the regularized version

Primal solution

u⋆ = argmin
u∈Rn

R∗(x− u) + fφ(u)

Reduction to isotonic optimization

u⋆
σ = argmin

v1≥···≥vn≥0
R∗(xσ − v) + fφ(v)

= argmin
v1≥···≥vn≥0

R∗(xσ − v) + f(φ(v))

= argmin
v1≥···≥vn≥0

R∗(xσ − v) + 〈φ(v), 1k〉

where σ = argsort(|x|) and assuming φ(x) = φ(−x)

Nonconvex viewpoint: connection with the ℓ0 pseudo-norm

We have

fφ(x) = max
y∈Sk

〈x,y〉 −
n∑

i=1

ϕ(yi)

where

φ(x) = (ϕ(x1), . . . , ϕ(xn)) and Sk := {y ∈ Rn : ‖y‖0 ≤ k}

f∗
φ(y) is the convex envelope of

y 7→
n∑

i=1

ϕ∗(yi) + δSk
(y)

With ϕ(x) = 1
2x

2, f∗
φ(y) is the squared k-support norm

Applications3

Weight pruning (multilayer perceptron, MNIST)

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Figure 4. Runtime

comparison for
computing our relaxed
top-k on a TPU using
PAV, Dykstra, as
a function of the
dimension n. For each
n, we set k = dn/10e.
We also compare
with the hard top-k
computation.

6. Experiments

We now demonstrate the applicability of our top-k opera-
tors through experiments. Our JAX (Bradbury et al., 2018)
implementation is available at the following URL. See Ap-
pendix C for additional experimental details.

0 20 40 60 80 100 120

Training time (seconds)

4

7

T
es

t
er

ro
r

Hard top-k

DiÆ. top-k (p = 4/3)

DiÆ. top-k (p = 2)

No top-k

Figure 5. Test error with respect to training time when training an
MLP on MNIST. We compare the baseline (grey) with the case
where 90% of the weights are set to 0 by magnitude pruning, using
a differentiable a.e. (red), fully differentiable (green) or a hard
top-k (blue).
Weight pruning in neural networks. We experimentally
validate the advantage of using a smoothed top-k for weight
pruning in neural networks. We use a multilayer perceptron
(MLP) with 2 hidden layers and with ReLU activation. The
width of the layers are respectively 784, 32, 32 followed by
a linear classification head of width 10. More precisely, our
model takes as input an image a 2 R784 and outputs

x = W3�(W2�(W1a+ b1) + b2) + b3 (logits),

where W1 2 R32⇥784, b1 2 R32, W2 2 R32⇥32, b2 2 R32,
W1 2 R10⇥32, b3 2 R10 and � is a ReLU. In order
to perform weight pruning we parametrize each Wi as
Wi = topkmagR(W

0
i) and learn W

0
i instead of learning

Wi directly. The output is then fed into a cross-entropy
loss. We compare the performance of the model when ap-
plying a hard vs differentiable top-k operator to keep only
10% of the coefficients. For the differentiable top-k, we
use a regularization R(y) = �

p kyk
p with p 2 { 4

3 , 2} and
� = 10�4

. We find out that the model trained with the
differentiable top-k trains significantly faster than the one
trained with the hard top-k. We also verify that our relaxed

top-k maintains the 10% rate of non-zero weights. Results
on MNIST are displayed in Figure 5. We also compare with
an entropy-regularized approximation of the top-k operator
using the framework proposed in Cuturi et al. (2019) and
adapted in Petersen et al. (2022). To guarantee the sparsity
of the weights, we use the ”straight-through” trick: the hard
top-k is run on the forward pass but we use the gradient of
the relaxed top-k in the backward pass. This method leads
to a test error of 5.9%, which is comparable to the results
obtained with our differentiable operators.

Smooth top-k loss. To train a neural network on a clas-
sification task, one typically minimizes the cross-entropy
loss, whereas the performance of the network is evaluated
using a top-k test accuracy. There is therefore a mismatch
between the loss used at train time and the metric used at
evaluation time. Cuturi et al. (2019) proposed to replace
the cross-entropy loss with a differentiable top-k loss. In
the same spirit, we propose to finetune a ViT-B/16 (Dosovit-
skiy et al., 2020) pretrained on the ImageNet21k dataset on
CIFAR 100 (Krizhevsky et al., 2009) using a smooth and
sparse top-k loss instead of the cross-entropy loss. We use a
Fenchel-Young loss (Blondel et al., 2020a). It takes as input
the vector a and parameters ✓ of a neural network g✓:

x = g✓(a) (logits)
`(x, t) = f',R(x,1k)� hx, ti,

where f',R(x,1k) is given by Proposition 2 and t is a one-
hot encoding of the class of a. We set �(x) = x as we
want a top-k mask. We consider p norm regularizations for
R, where p = 2 or p = 4/3. We take k = 3. We use the
exact same training procedure as described in Dosovitskiy
et al. (2020) and use the corresponding pretrained ViT model
B/16, and train our model for 100 steps. Results are reported
in Figure 6. We find that the ViT finetuned with the smooth
top-3 loss outperforms the one finetuned with the cross-
entropy loss in terms of top-k error, for various k.

Figure 6. Validation top-k accuracy when fine-tuning a ViT-B/16
on CIFAR 100 using either the cross-entropy loss or our smooth
top-3 loss for training. We have the following running times
obtained with a TPUv3-8. Baseline: 9.5 sec/step, p = 2: 9.7
sec/step and p = 4/3: 10 sec/step.

8

Wi ← topkmag(Wi), i ∈ {2, 3}
W3σ(W2σ(W1a+ b1) + b2) + b3

Top-k classification (vision transformer, CIFAR 100)

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Figure 4. Runtime

comparison for
computing our relaxed
top-k on a TPU using
PAV, Dykstra, as
a function of the
dimension n. For each
n, we set k = dn/10e.
We also compare
with the hard top-k
computation.

6. Experiments

We now demonstrate the applicability of our top-k opera-
tors through experiments. Our JAX (Bradbury et al., 2018)
implementation is available at the following URL. See Ap-
pendix C for additional experimental details.

Figure 5. Test error with respect to training time when training an
MLP on MNIST. We compare the baseline (grey) with the case
where 90% of the weights are set to 0 by magnitude pruning, using
a differentiable a.e. (red), fully differentiable (green) or a hard
top-k (blue).
Weight pruning in neural networks. We experimentally
validate the advantage of using a smoothed top-k for weight
pruning in neural networks. We use a multilayer perceptron
(MLP) with 2 hidden layers and with ReLU activation. The
width of the layers are respectively 784, 32, 32 followed by
a linear classification head of width 10. More precisely, our
model takes as input an image a 2 R784 and outputs

x = W3�(W2�(W1a+ b1) + b2) + b3 (logits),

where W1 2 R32⇥784, b1 2 R32, W2 2 R32⇥32, b2 2 R32,
W1 2 R10⇥32, b3 2 R10 and � is a ReLU. In order
to perform weight pruning we parametrize each Wi as
Wi = topkmagR(W

0
i) and learn W

0
i instead of learning

Wi directly. The output is then fed into a cross-entropy
loss. We compare the performance of the model when ap-
plying a hard vs differentiable top-k operator to keep only
10% of the coefficients. For the differentiable top-k, we
use a regularization R(y) = �

p kyk
p with p 2 { 4

3 , 2} and
� = 10�4

. We find out that the model trained with the
differentiable top-k trains significantly faster than the one
trained with the hard top-k. We also verify that our relaxed

top-k maintains the 10% rate of non-zero weights. Results
on MNIST are displayed in Figure 5. We also compare with
an entropy-regularized approximation of the top-k operator
using the framework proposed in Cuturi et al. (2019) and
adapted in Petersen et al. (2022). To guarantee the sparsity
of the weights, we use the ”straight-through” trick: the hard
top-k is run on the forward pass but we use the gradient of
the relaxed top-k in the backward pass. This method leads
to a test error of 5.9%, which is comparable to the results
obtained with our differentiable operators.

Smooth top-k loss. To train a neural network on a clas-
sification task, one typically minimizes the cross-entropy
loss, whereas the performance of the network is evaluated
using a top-k test accuracy. There is therefore a mismatch
between the loss used at train time and the metric used at
evaluation time. Cuturi et al. (2019) proposed to replace
the cross-entropy loss with a differentiable top-k loss. In
the same spirit, we propose to finetune a ViT-B/16 (Dosovit-
skiy et al., 2020) pretrained on the ImageNet21k dataset on
CIFAR 100 (Krizhevsky et al., 2009) using a smooth and
sparse top-k loss instead of the cross-entropy loss. We use a
Fenchel-Young loss (Blondel et al., 2020a). It takes as input
the vector a and parameters ✓ of a neural network g✓:

x = g✓(a) (logits)
`(x, t) = f',R(x,1k)� hx, ti,

where f',R(x,1k) is given by Proposition 2 and t is a one-
hot encoding of the class of a. We set �(x) = x as we
want a top-k mask. We consider p norm regularizations for
R, where p = 2 or p = 4/3. We take k = 3. We use the
exact same training procedure as described in Dosovitskiy
et al. (2020) and use the corresponding pretrained ViT model
B/16, and train our model for 100 steps. Results are reported
in Figure 6. We find that the ViT finetuned with the smooth
top-3 loss outperforms the one finetuned with the cross-
entropy loss in terms of top-k error, for various k.

1 2 3 4 5 6 7 8 9
k

80 %

85 %

90 %

95 %

99 %
T
op

-k
ac

cu
ra

cy

p = 2

p = 4/3

Cross-Entropy loss

Figure 6. Validation top-k accuracy when fine-tuning a ViT-B/16
on CIFAR 100 using either the cross-entropy loss or our smooth
top-3 loss for training. We have the following running times
obtained with a TPUv3-8. Baseline: 9.5 sec/step, p = 2: 9.7
sec/step and p = 4/3: 10 sec/step.

8

ℓR(θ, t) := [maxy∈C〈θ,y〉 −R(y)]− 〈θ, t〉
θ: logits, t: target

Sparse Mixture of Vision Transformers

Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective

Sparse MoEs. Finally, we demonstrate the applicability
of our proposed smooth top-k operators on a large-scale
classification task using vision sparse mixture of experts (V-
MoE) (Riquelme et al., 2021). Vision transformers (ViTs)
are made of a succession of self-attention layers and MLP
layers. The idea of V-MoEs is to replace MLPs in ViTs
by a sparsely-gated mixture of MLPs called experts. This
way, only some of the experts are activated by a given patch
token. At the heart of the token-expert assignment lies
a routing mechanism which performs a top-k operation
on gate values. We focus on the MoE with expert choice
routing framework (Zhou et al., 2022), where each expert is
assigned to k tokens. We train a S/32 variant of the V-MoE
model, with 32⇥ 32 patches on the JFT-300M dataset (Sun
et al., 2017), a dataset with more than 305 million images.
Our model has 32 experts, each assigned to k = 28 tokens
selected among n = 400 at each MoE layer. We compare
the validation accuracy when using the baseline (hard top-k)
with our relaxed operator. We use p = 2 and Dykstra’s
projection algorithm, as we found it was the fastest method
on TPU. We used the training procedure proposed by Zhou
et al. (2022) to obtain a fair comparison with the baseline.
Due to the large size of the JFT-300M dataset (305 million
images), we performed one run, as in Liu et al. (2022). We
find that our approach improves validation performance.
Results are displayed in Figure 7.

Figure 7. Precision-

at-1 on the JFT-300M
dataset when using a
hard top-k (baseline,
in blue) or a differ-
entiable a.e. one (in
red) in a sparse MoE
with a ViT-S/32. We
zoom in on the last
training steps, where
our proposed method
outperforms the
baseline. The runtime
is 10 hours for the
baseline and 15 for
the differentiable
a.e. top-k (gradient
calculation is the
bottleneck here).

7. Discussion

Advantage of the non-linearity. As an alternative to per-
forming a relaxed top-k operator in magnitude of x, one
can perform a differentiable top-k mask on |x|, and then
multiply the output by x. This alternative would also lead
to a differentiable top-k operator in magnitude. However,
our operator has more principled behavior at the limit cases.
For instance, as � ! 1, it is easy to see that the relaxed

top-k mask converges to the vector (k/n)⇥1n. Therefore, a
rescaling by n/k is needed to obtain the identity as � ! 1,
in contrast to our top-k in magnitude. From a theoretical
point of view, the introduction of a non-linearity allows us
to draw connections with the k-support norm. It also has a
bi-conjugate interpretation, which we believe has an interest
by itself.

Sensitivity to the choice of p. The subproblem needed
within PAV enjoys a closed form only for specific choices
of p. This is why we focused on p = 2 and p = 4

3 in
our experiments. However, we stress out that the proposed
methods work for any choice of p. As an example, we
provide the same illustration as for Figure 1 in Figure 8.

Figure 8. Illustration of our differentiable and sparse top-k

mask. Same setup as for Figure 1, with more values for p.

8. Conclusion

In this work, we proposed a generalized framework to ob-
tain fast, differentiable (or differentiable a.e.) and sparse
top-k and top-k masks operators, including operators that
select values in magnitude. Thanks to a reduction to iso-
tonic optimization, we showed that these operators can be
computed using either the Pool Adjacent Violators (PAV)
algorithm or Dykstra’s projection algorithm, the latter being
faster on TPU hardware. We successfully demonstrated the
usefulness of our operators for weight pruning, top-k losses
and as routers in vision sparse mixture of experts.

Acknowledgments. We thank Vincent Roulet and Joelle
Barral for comments on a draft of this paper. We thank
Felipe Llinares-López for helpful feedbacks regarding the
experiments, as well as Fabian Pedregosa for fruitful mathe-
matical discussions. We also thank the anonymous review-
ers for their feedback.

9

JFT-300M dataset (305 million images)

Sparsity-constrained OT

min
T∈U(a,b)

〈T,C〉+
n∑

j=1

f∗
φ(tj)

Published as a conference paper at ICLR 2023

0 5
−2

0

2

4

6 Source
Target

Unregularized Entropy
regularized k=2 k=1

Squared 2-norm
 regularized

Sparsity constrained (ours)

Figure 1: OT formulation comparison (m = n = 20 points), with squared Euclidean distance cost,
and with uniform source and target distributions. The unregularized OT plan is maximally sparse and
contains at most m+n�1 nonzero elements. On the contrary, with entropy-regularized OT, plans are
always fully dense, meaning that all points are fractionally matched with one another (nonzeros of a
transportation plan are indicated by small squares). Squared 2-norm (quadratically) regularized OT
preserves sparsity but the number of nonzero elements cannot be directly controlled. Our proposed
sparsity-constrained OT allows us to set a maximum number of nonzeros k per column. It recovers
unregularized OT in the limit case k = 1 (Proposition 4) and quadratically-regularized OT when k

is large enough. It can be computed using solvers such as LBFGS or ADAM.

In this paper, we propose a new approach for OT with explicit cardinality constraints on the columns
of the transportation plan. Our work is motivated by an application to sparse mixtures of experts,
in which we want each token (e.g. a word or an image patch) to be matched with at most k experts
(e.g., multilayer perceptrons). This is critical for computational performance reasons, since the
cost of processing a token is proportional to the number of experts that have been selected for it.
Despite the nonconvexity of cardinality constraints, we show that the corresponding dual and semi-
dual problems are tractable and can be solved with first-order gradient methods. Our method can
be thought as a middle ground between unregularized OT (recovered when k is small enough) and
quadratically-regularized OT (recovered when k is large enough). We empirically show that the dual
and semi-dual are increasingly smooth as k increases, giving rise to a trade-off between convergence
speed and sparsity. The rest of the paper is organized as follows.

• We review related work in §2 and existing work on OT with convex regularization in §3.
• We propose in §4 a framework for OT with nonconvex regularization, based on the dual and semi-

dual formulations. We study the weak duality and the primal interpretation of these formulations.
• We apply our framework in §5 to OT with cardinality constraints. We show that the dual and semi-

dual formulations are tractable and that smoothness of the objective increases as k increases. We
show that our approach is equivalent to using squared k-support norm regularization in the primal.

• We validate our framework in §6 and in Appendix A through a variety of experiments.

Notation and convex analysis tools. Given a matrix T 2 Rm⇥n, we denote its columns by tj 2
Rm for j 2 [n]. We denote the non-negative orthant by Rm

+ and the non-positive orthant by Rm
� . We

denote the probability simplex by 4m := {p 2 Rm
+ : hp,1i = 1}. We will also use b4m to denote

the set {t 2 Rm
+ : ht,1i = b}. The convex conjugate of a function f : Rm ! R [{1} is defined

by f
⇤(s) := supt2dom(f)hs, ti � f(t). It is well-known that f⇤ is convex (even if f is not). If the

solution is unique, then its gradient is rf
⇤(s) = argmaxt2dom(f)hs, ti � f(t). If the solution is

not unique, then we obtain a subgradient. We denote the indicator function of a set C by �C , i.e.,
�C(t) = 0 if t 2 C and �C(t) = 1 otherwise. We denote the Euclidean projection onto the set C by
projC(s) = argmint2C ks � tk22. The projection is unique when C is convex, while it may not be
when C is nonconvex. We use [·]+ to denote the non-negative part, evaluated element-wise. Given a
vector s 2 Rm, we use s[i] to denote its i-th largest value, i.e., s[1] � · · · � s[m].

2

Sparsity-constrained OT.

Liu, Puigcerver, Blondel.

ICLR, 2023.

Thank you!

