Google DeepMind

Differentiable and Sparse Top-k:
a Convex Analysis Perspective

Mathieu Blondel

July 28th, ICML 2023

Michaél Sander Joan Puigcerver Josip Djolonga Gabriel Peyré Mathieu Blondel

Motivation for the research

® The top-k operator is increasingly used as a building block in neural
networks (top-k classification, mixtures of expert, weight pruning)

® However, it is a discontinuous operation, making it difficult to use in
end-to-end trainable networks

® A crucial property of the top-k is its sparsity but many existing
differentiable top-k relaxations are dense

® Smooth optimization is known to enjoy faster convergence rates

® However, sparsity is crucial in certain applications as a selection
mechanism: mixtures of experts, weight pruning

Related work

A large body of work on relaxations of sorting, ranking and top-Kk...

® Using unimodal row-stochastic matrices (Grover et al, 2019; Prillo and
Eisenschlos, 2020)

® Using optimal transport (Cuturi et al, 2019)
® Using the permutahedron (Blondel et al, 2020)
® Using perturbations (Berthet et al, 2020)

® Using sorting networks (Petersen et al, 2021)

Contributions

® A general top-k framework, including top-k in magnitude

@ Differentiable and sparse relaxations thanks to p-norm regularization

® Reduction to isotonic optimization, for computation and differentiation
® GPU/TPU-friendly algorithm based on Dykstra’s algorithm

® Applications to top-k classification, mixtures of experts, weight pruning

0 Google DeepMind

1 Top-k mask

Top-k mask operator

Bit-encoding of the top-k indices (“k-hot encoding”)

[topkmask(x)]; == {1’ f [rank@)]i =k e {0,1}"
0, otherwise.
x = (1.7,3.2,—-2.4)
toplmask(x) = (0, 1,0)
top2mask(x) = (1,1,0)
top3mask(x) = (1,1,1)

Discontinuous, piecewise constant with null derivatives

Top-k operator

Sparse vector containing the top-k values

topk(x) := x - topkmask(x) € R"

o= (1.7,3.2,-2.4)
topl(z) = (0.0, 3.2,0)
top2(z) = (1.7,3.2,0)
top3(z) = (1.7,3.2, —2.4)

Discontinuous, piecewise affine with constant derivatives

Regularized top-k mask: overview of the approach

® Rewrite top-k mask as a linear program solution

topkmask(xz) = y(x) := argmax(x, y)
yeC

® Add regularization R

topkmask, (z) = yr(z) = argmax(z, y) — R(y)
yel

® Use a reduction to isotonic optimization to easily compute and
differentiate topkmask ()

o Q_u (e} < N o
~ © o o o o
£((s)g)visewnido + ¢((s)g)isewxdoy

2

(3717_1 +37S) € R4
k

0(s)

Top-k mask as a linear program
® WithC ={y c R": y €[0,1]",y" 1=k}, we get

topkmask(xz) = y(x) = argmax(x, y)
yeC

® The vertices of C are all possible bit encodings of cardinality &

® Relation with the capped probability simplex
C/k = {y R ye[0,1/k" y 1= 1}

Relation with the permutahedron

® The convex hull of all permutations of w

P(w) == conv({(wgy, ..., Wy,): 0 € X})
(2,3,1)
(1,3,2)

(3,2, 1)

P((1,2,3))

(1,2,3) 0\

__#(3,1,2)

(2,1;3)

® Withw =1, :=(1,...,1,0,...,0), we get
HI:_/H,IC_/
e

Pw)=C={yeR": y €0, 1]”,yT1:k}

Top-k mask: value function and its conjugate

® Value function: support function of C

= max = topksum(x =
f() yec <$ y> p Zxo-l a:U?
where o = argsort(x) <= z,, > - - > 2., and &, = (T4, ..., Zq,)

® Conjugate: indicator function of C

0, ifyecC

F(y) = sup (@) — f(@) = de(y) = {OO g

xeR”

Regularized version
® The regularized version
topkmask(z) = yr(z) = y*
is defined using the dual solution

y* = argmax(z, y) — R(y)
yeC
= argmax(z,y) — f*(y) — R(y)
yeR™

® Equivalently, if we define the primal solution (infimal convolution)

u* = argmin R*(z — u) + f(u)
ucR"

then y* = VR*(z — u*)

Regularized version

topkmask(6(s))2 + topkmask(0(s))s

Riy) = Lyl = 150, Iy

Computing the regularized version
® Recall that the primal solution is
u* = argmin R*(z — u) + f(u)
ucR”
= argmin R*(x — u) + (Ur(y), Tt)
ucR™
where 7(u) = argsort(u)
® Reduction to isotonic optimization
u, = argmin R*(x, — v) + f(v)
V12 2Up
= argmin R*(x, —v) + (v, 1)
V12> >0
where o = argsort(x)
e Differentiation available in closed form (implicit diff not needed) given v*

Pool Adjacent Violators (PAV)

n
argmin Z hi(v;)
V1= 2>up i=1

® Partitions the set [n] into disjoint sets (B, - - - Byy,), starting from m = n and
Bi = {i}

® Merges these sets until the isotonic condition is met

® Needs to be able to solve argmin, . Ziij h;() in constant time to get
O(n) total complexity
O p-norm regularization case: we need to find the root of a polynomial
(easy whenp =2orp=4/3)

Using Dykstra’s algorithm

® Key idea: alternate projections between C; and Cs

{veR": vy > >v,}={veR": vy >vy,v3>vg,... }N{v ER": vo > v3,04 > v5,...

}

® Huge speedup on TPU

—~~

Running time (secs

Cq

0.04 A

o

=

[SV]
1

©

o

S
1

—_— PAV
=== Dykstra
=== Hard

0

1000 2000 3000
Dimension n

Ca

0 Google DeepMind

2 Top-k in magnitude

Top-k in magnitude operator

Same as top-k operator but selects elements with largest absolute value

topkmag(x) := « - topkmask(|x|)

x=(1.7,3.2,-2.4)
toplmag(x) = (0.0,3.2,0)
top2mag(x) = (0,3.2, —2.4)
top3mag(x) = (1.7,3.2,-2.4)

Top-k in magnitude as a gradient

® We introduce a nonlinearity o(x) = (¢(z1), ..., ¢(xy))

fo(®) = fp(x)) = max(p(z),y)
yE

® With ¢(z) = 122 we have
V fo () = topkmag(x)
® With ¢(x) = z, we have

Vfo(x) = Vf(x) = topkmask(x)

Regularized version

topkmag(x) .= y* = VR*(z — u*)

where we defined the dual solution

y* = argmax(z,y) — f;(y) — R(y)
yER™

and the primal solution (inf-convolution)

u* = argmin R*(x — u) + f,(u)
'U,ER"

Conjugate
® For p(x) = x: indicator function of C
foly) = f(y) = de(y)

® For p(z) = 1z squared k-support norm

® For general ¢: minimum distance to C
*(y) = min D -
fgp(y) 2eC [(yvz)

where we defined the f-divergence

n

Dy(y,z) =Y zf(yi/=)

=1

Regularized version

Computing the regularized version

® Primal solution

u* = argmin R*(x — u) + f,(u)
ucR"

@ Reduction to isotonic optimization

u, = argmin R*(x, —v) + f,(v)
V1220 >0
= argmin R*(xz, —v) + f(¢(v))
V12> >vp >0

= argmin R*(x, —v) + (p(v), 1)
V1> >0n >0

where ¢ = argsort(|x|) and assuming ¢(x) = p(—x)

Nonconvex viewpoint: connection with the ¢, pseudo-norm

® \We have

fol@) = max(@.y) = Y o)

YES
where
p(x) = (¢(z1),...,¢(xn)) and Sy :={y € R": [lyllo <k}
® f>(y) is the convex envelope of

Yy 36 (y) + 05, (y)
i=1

With ¢(z) = 327, f}(y) is the squared k-support norm

0 Google DeepMind

3 Applications

Weight pruning (multilayer perceptron, MNIST)

= Hard top-k
—— Diff. top-k (p =4/3)
= Diff. top-k (p=2)

S
o == No top-k
g
l_ \
7
4
0 20 40 60 80 100 120

Training time (seconds)

W; < topkmag(W;),i € {2,3}
WgU(WQU(Wla + bl) + b2) + b3

Top-k classification (vision transformer, CIFAR 100)

9% - VT . . e S
S 95 9 - ; T v__‘..‘--V “““
'i; 90 % - ’:rf ' @ p=
|§- 85 % i ::.)(p — 4/3
V ¥ Cross-Entropy loss
80 % !) T T T T T T

KR(07t) = [maXyEC<07y> - R(y)] - <07t>
0: logits, t: target

9

Sparse Mixture of Vision Transformers

—— Hard top-k

0-389" _ Differentiable top-k

0.36

0.34

Precision-at-1

0.32 A1

0.30 1

0.28 T T
400000 450000 500000

Training steps

JFT-300M dataset (305 million images)

Sparsity-constrained OT.
Sparsity_constrained OT Liu, Puigcerver, Blondel.

ICLR, 2023.
n
. *
min (T,C) + g fo(t;)
Tel(a,b) -
Jj=1
Unregularized Entropy Squared 2-norm Sparsity constrained (ours)
regularized regularized k=2 k=1
6 -+ Source
4 © Target
2
0
-2
0 5
.-.. -
" ow
f.
]
- -
]
-
- .. "

Google DeepMind

Thank you!

