
Soft-DTW:
A Differentiable
Loss Function for

Time Series

Marco Cuturi Mathieu Blondel

In proceedings of ICML’17

From: Plume App

From: Plume App

Ground truth
(reality)

From: Plume App

How wrong
was this

prediction?

This depends
on the loss

function used
to train the
algorithm.Ground truth

(reality)

How wrong
was this

prediction?

This depends
on the loss

function used
to train the
algorithm.Ground truth

(reality)

• In this talk we propose to use the celebrated
Dynamic Time Warping discrepancy as a loss.

• Loss functions should be differentiable. We show
that an appropriate smoothing , soft-DTW, helps

• We apply this to several problems:
• Computation of barycenters,
• Clustering of time series,
• Learning with structured (time series) output

0. The DTW Geometry

1. Soft-DTW

2. Soft-DTW as a Loss Function

Dynamic Time Warping [Sakoe&Chiba’78]

5

A discrepancy function between
two time series of observations  
supported on a metric space.

(⌦, �)

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

6

Pairwise Distance Matrix

Z

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

x1

7

Z

y1 y2 y3 y4 y5 y6 y7

x1

x2

x3

x4

x5

Pairwise Distance Matrix

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

�ij = �(xi, yj)

8

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Pairwise Distance Matrix

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

9

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

10

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

Start

10

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

Start

10

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

Start

11

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

12

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

12

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

12

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

12

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

12

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

12

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

12

Alignment Path

Z

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

End

Start
x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

13

Path Cost

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

�11

�22

�32 �33 �34

�45 �46

�56 �57

Cost = �11 +�22 +�32 +�33 +�34 +�46 +�56 +�57

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

x1

Z

Cost = �11 +�22 +�33 +�34 +�46 +�57

13

Path Cost

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

�11

�22

�33 �34

�45 �46

�56 �57

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

x1

Z

Cost = �11 +�22 +�33 +�34 +�46 +�57

Cost = �11 +�22 + �33 +�34 +�46 +�56 +�57

13

Path Cost

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

�11

�22

�33 �34

�45 �46

�57

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

x1

Z

Cost = �11 +�22 +�33 +�34 +�46 +�57

Cost = �11 +�22 + �33 +�34 +�46 + �57

14

Path Cost

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

14

Path Cost

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

1

1

0 0 0 0 0

0 0

0 0 0 0 0

0 0 0 0

0

0 0 0 0 0

0 11

1

1

1

0 0

0 0

0

= A

14

Path Cost

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

1

1

0 0 0 0 0

0 0

0 0 0 0 0

0 0 0 0

0

0 0 0 0 0

0 11

1

1

1

0 0

0 0

0

Cost = hA,� i, A 2 {0, 1}n⇥m

= A

�46

15

Minimum Cost Alignment Matrix?

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

Start

End

�46

15

Minimum Cost Alignment Matrix?

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

Start

End

Set of all valid path matrices: A(n,m) ⇢ {0, 1}n⇥m

�46

16

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

Start

End

Set of all valid path matrices: A(n,m) ⇢ {0, 1}n⇥m

Dynamic Time Warping [Sakoe&Chiba’78]

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

17

Set of all valid path matrices: A(n,m) ⇢ {0, 1}n⇥m

Number of valid paths

#A(n,m) = Delannoy(n� 1,m� 1)

Size of A(n,m) is exponential in n,m.

n=m=3 13  
n=m=5 321
n=m=10 1462563

…

�46

18

Best Path: Bellman Recursion

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

�46

18

Best Path: Bellman Recursion

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

r?3,5

r?3,5 = min
A2A(3,5)

hA, [�ij]i3,j5 i

�46

18

Best Path: Bellman Recursion

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

r?3,5

r?4,4

�46

18

Best Path: Bellman Recursion

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

r?3,5

r?4,4

r?3,4

�46

18

Best Path: Bellman Recursion

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

r?3,5

r?4,4

r?3,4
r?4,5

�46

18

Best Path: Bellman Recursion

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

x1

x2

x3

x4

x5

y1 y2 y3 y4 y5 y6 y7

Z

r?3,5

r?4,4

r?3,4

r?4,5 = min(r?3,5, r
?
4,4, r

?
3,4) +�4,5

r?4,5
�45

�46

19

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

Z

r1,1

∞ ∞ ∞ ∞ ∞ ∞∞

∞

∞

∞

∞

∞

r1,1 = �11 r0,j = ri,0 = 0

Best Path: Bellman Recursion

∞

0

r0,0 = 0

�46

20

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

Z

r1,1

Best Path: Bellman Recursion

ri,j = min(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

∞ ∞ ∞ ∞ ∞ ∞∞

∞

∞

∞

∞

∞

0

�46

20

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

Z

r1,1 r1,2

r2,1

r3,1

r2,2

r1,3

r4,1

r3,2

r2,3

r1,4

r5,1

r4,2

r3,3

r2,4

r1,5

�51

�42

�33

�24

�15

Best Path: Bellman Recursion

ri,j = min(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

∞ ∞ ∞ ∞ ∞ ∞∞

∞

∞

∞

∞

∞

0

�46

20

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57

Z

r1,1 r1,2

r2,1

r3,1

r2,2

r1,3

r4,1

r3,2

r2,3

r1,4

r5,6

r4,7

r5,7

r4,6

r5,5

r3,7

r5,1

r4,2

r3,3

r2,4

r1,5

r5,2

r4,3

r3,4

r1,6

r2,5

r5,3

r4,4

r3,5

r2,6

r1,7

r5,4

r4,5

r3,6

r2,7

dtw0(X,Y) = rn,m

�51

�42

�33

�24

�15

Best Path: Bellman Recursion
∞ ∞ ∞ ∞ ∞ ∞∞

∞

∞

∞

∞

∞

0

21

1

1

0 0 0 0

00 0

0 0 0 0 0

0 0 0 0

0

0 0 0 0 0

0

1

1

1

1

1

0 0

0 0

0

A?

Optimal Path

dtw0(X,Y) = rn,m = hA?,� i

∞ ∞ ∞ ∞ ∞ ∞∞

∞

∞

∞

∞

∞

0

Computational cost: O(nm)

0. The DTW Geometry

1. Soft-DTW

2. Soft-DTW as a Loss Function

23

DTW as a Loss: Differentiability?

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

dtw0(X,Y) = rn,m = hA?,� i

23

DTW as a Loss: Differentiability?

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

dtw0(X + dX,Y) = rn,m+?

24

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

dtw0(X + dX,Y) = hA?,�X+dXY i

DTW as a Loss: Differentiability?

25

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

DTW as a Loss: Differentiability?

dtw0(X + dX,Y) 6= hA?,�X+dXY i

25

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

y6

y7

DTW as a Loss: Differentiability?

dtw0(X + dX,Y) 6= hA?,�X+dXY i

dtw0 has a  

discontinuous

gradient!

26

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

• dtw0 is piecewise linear w.r.t �

• if �ij = �(xi,yj) = kxi � yjk2, dtw0

is piecewise quadratic w.r.t. X.

DTW as a Loss: Differentiability?

26

0 0.2 0.4 0.6 0.8 1−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x

γ = 0

27

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

DTW as a Loss: Differentiability?

@�XY
@X

⇣ ⌘T
rX dtw0(X,Y) = r� min

A(n,m)
h·,�XY i

27

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

DTW as a Loss: Differentiability?

@�XY
@X

⇣ ⌘T
rX dtw0(X,Y) = r� min

A(n,m)
h·,�XY i

Jacobian matrix of Δ w.r.t. X

27

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

DTW as a Loss: Differentiability?

@�XY
@X

⇣ ⌘T
rX dtw0(X,Y) = r� min

A(n,m)
h·,�XY i

= A?

iff optimal solution
is unique

Jacobian matrix of Δ w.r.t. X

27

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

DTW as a Loss: Differentiability?

@�XY
@X

⇣ ⌘T
rX dtw0(X,Y) = r� min

A(n,m)
h·,�XY i

= A?

iff optimal solution
is unique

When A⋆ is not unique, dtw0 has a discontinuous gradient!

Jacobian matrix of Δ w.r.t. X

28

Our proposal: smoothing the min

Problem: non-di↵erentiability of min

operator over finite family of values.

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

28

Our proposal: smoothing the min

Problem: non-di↵erentiability of min

operator over finite family of values.

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

min

�
(u1, . . . , un) =

(
minin ui, � = 0,

�� log
Pn

i=1 e
�ui/� , � > 0.

Fix: smoothed min operator

29

Example softmin of quadratic functions

0 0.2 0.4 0.6 0.8 1−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x

γ = 0

f(x) = min�
i=1,...,s

aix
2 + bix+ ci

29

Example softmin of quadratic functions

0 0.2 0.4 0.6 0.8 1−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x

γ = 0

0 0.2 0.4 0.6 0.8 1−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

x

γ = 0

γ = .01

γ = .05

γ = .1

f(x) = min�
i=1,...,s

aix
2 + bix+ ci

30

Soft-DTW

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

30

Soft-DTW

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

Fix: Replace min by min� , � > 0

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

30

Soft-DTW

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

Fix: Replace min by min� , � > 0

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

dtw�(X,Y) = �� log

X

A2A(n,m)

e�
hA,�XY i

�

31

Relation to Global Alignment kernels

dtw�(X,Y) = �� log

X

A2A(n,m)

e�
hA,�XY i

�kGA := CVBM’07

A positive semi-definite kernel between time series

31

Relation to Global Alignment kernels

dtw�(X,Y) = �� log

X

A2A(n,m)

e�
hA,�XY i

�kGA := CVBM’07

A positive semi-definite kernel between time series

dtw�(X,Y) = �� log

X

A2A(n,m)

e�
hA,�XY i

�kGA

Computing soft-DTW is equivalent to computing kGA in log domain

32

Recursive Computation

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

ri,j = min(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

32

Recursive Computation

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

ri,j = min(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

ri,j = min�(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

32

Recursive Computation

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

ri,j = min(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

ri,j = min�(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

Simply replace min operator!

32

Recursive Computation

dtw0(X,Y) = min
A2A(n,m)

hA,�XY i

ri,j = min(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

ri,j = min�(ri�1,j�1 , ri�1,j , ri,j�1) +�i,j

Stable: recursion in log domain!Simply replace min operator!

33

Differentiation

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

rX dtw�(X,Y) =

✓
@�(X,Y)

@X

◆T

E� [A]A?
0

33

Differentiation

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

rX dtw�(X,Y) =

✓
@�(X,Y)

@X

◆T

E� [A]

33

Differentiation

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

rX dtw�(X,Y) =

✓
@�(X,Y)

@X

◆T

E� [A]

Expectation of Path

under Gibbs

distributionE� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�

33

Differentiation

dtw�(X,Y) = min�
A2A(n,m)

hA,�XY i

rX dtw�(X,Y) =

✓
@�(X,Y)

@X

◆T

E� [A]

Expectation of Path

under Gibbs

distributionE� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�

rX dtw�(X,Y) =

✓
@�(X,Y)

@X

◆T

E� [A]
rX dtw�(X,Y) =

✓
@�(X,Y)

@X

◆T

E� [A]

34

Computing the expectation Eγ[A]

E� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�

Naive computation  
is intractable

34

Computing the expectation Eγ[A]

E� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�

E� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�kGA
=

kGA is the  
normalization constant  

(a.k.a. partition function)!

Naive computation  
is intractable

34

Computing the expectation Eγ[A]

E� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�

E� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�kGA
=

kGA is the  
normalization constant  

(a.k.a. partition function)!

= ∇Δ -γ log kGA
Eγ[A] is the gradient  
of the log partition

Naive computation  
is intractable

34

Computing the expectation Eγ[A]

E� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�

E� [A] :=

P
A2A(n,m)

Ae�
hA,�XY i

�

P
A2A(n,m)

e�
hA,�XY i

�kGA
=

kGA is the  
normalization constant  

(a.k.a. partition function)!

= ∇Δ -γ log kGA
Eγ[A] is the gradient  
of the log partition

Classical result  

of exponential

families

Naive computation  
is intractable

35

Computing the expectation Eγ[A]

Eγ[A] = ∇Δ -γ log kGA

To summarize, we want to compute:

35

Computing the expectation Eγ[A]

Eγ[A] = ∇Δ -γ log kGA

To summarize, we want to compute:

= ∇Δ dtwγ

35

Computing the expectation Eγ[A]

Eγ[A] = ∇Δ -γ log kGA

To summarize, we want to compute:

Eγ[A] can be computed by backpropagation in  
the same O(nm) cost as dtwγ

= ∇Δ dtwγ

35

Computing the expectation Eγ[A]

Eγ[A] = ∇Δ -γ log kGA

To summarize, we want to compute:

Eγ[A] can be computed by backpropagation in  
the same O(nm) cost as dtwγ

We derive a backward recursion without resorting to autodiff

Faster and more numerically stable

= ∇Δ dtwγ

36

Forward Pass

ri�1,j�1 ri�1,j ri�1,j+1

ri,j�1 ri,j ri,j+1

ri+1,j�1 ri+1,j ri+1,j+1

�i,j

�i+1,j

�i,j+1

�i+1,j+1

Bellman’s recursion has the following
computational graph

37

Backward Pass

ei,j

ei+1,j ei+1,j+1

ei,j+1

37

e
1
� (ri+1,j+1�ri,j��i+1,j+1)

e
1
� (ri+1,j�ri,j��i+1,j)

e
1
� (ri,j+1�ri,j��i,j+1)

with a few simplifications, the backward
pass boils down to the following updates

�46

38

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57
Z

0 0 0 0 0 00

0

0

0

0

0

Backward Recursion

1

e5,7

�46

39

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57
Z

0 0 0 0 0 00

0

0

0

0

0

Backward Recursion

1

e5,7e5,6e5,5e5,4e5,3

e4,4 e4,5 e4,6 e4,7

e3,5 e3,6 e3,7

e2,6 e2,7

e1,7

�46

40

�11 �12 �13 �14 �15 �16 �17

�21 �22 �23 �24 �25 �26 �27

�31 �32 �33 �34 �35 �36 �37

�41 �42 �43 �44 �45 �46 �47

�51 �52 �53 �54 �55 �56 �57
Z

0 0 0 0 0 00

0

0

0

0

0

Backward Recursion

1

e5,7e5,6e5,5e5,4e5,3

e4,4 e4,5 e4,6 e4,7

e3,5 e3,6 e3,7

e2,6 e2,7

e1,7e1,1 e1,2 e1,3 e1,4 e1,5 e1,6

e2,1 e2,2 e2,3 e2,4 e2,5

e3,1 e3,2 e3,3 e3,4

e4,1 e4,2 e4,3

e5,1 e5,2

Eγ[A] = [e]ij

41

Backward Recursion
a = e

1
� (ri+1,j�ri,j��i+1,j)

b = e
1
� (ri,j+1�ri,j��i,j+1)

c = e
1
� (ri+1,j+1�ri,j��i+1,j+1)

ei,j = ei+1,j · a+ ei,j+1 · b+ ei+1,j+1 · c

rX dtw�(X,Y) =

✓
@�(X,Y)

@X

◆T

E

0. The DTW Geometry

1. Soft-DTW

2. Soft-DTW as a Loss Function

43

Interpolation Between 2 Time Series

min
X

[�dtw�(X,Y1) + (1� �)dtw�(X,Y2)]

44

sDTW Barycenter

Soft-DTW: a Differentiable Loss Function for Time-Series

B. Barycenters obtained with random initialization

(a) CBF

(b) Herring

(c) Medical Images

(d) Synthetic Control

(e) Wave Gesture Library Y

min
X

X

j=1

�j

mj
dtw�(X,Yj)

[DBA] Petitjean et al., A global averaging method for dynamic time warping,
with applications to clustering. Pattern Recognition, 44 (3):678–693, 2011.

Soft-DTW: a Differentiable Loss Function for Time-Series

pute predictions on new time series, the DTW discrep-
ancy must be computed with all training time series, lead-
ing to high computational cost. Both of these drawbacks
can be addressed by the nearest centroid classifier (Hastie
et al., 2001, p.670), (Tibshirani et al., 2002). This method
chooses the class whose barycenter (centroid) is closest
to the time series to classify. Although very simple, this
method was shown to be competitive with k-NN, while re-
quiring much lower computational cost at prediction time
(Petitjean et al., 2014). Soft-DTW can naturally be used
in a nearest centroid classifier, in order to compute the
barycenter of each class at train time, and to compute the
discrepancy between barycenters and time series, at predic-
tion time.

3.4. Multistep-ahead prediction

Soft-DTW is ideally suited as a loss function for any task
that requires time series outputs. As an example of such a
task, we consider the problem of, given the first 1, . . . , t
observations of a time series, predicting the remaining
(t + 1), . . . , n observations. Let xt,t0

2 Rp⇥(t0�t+1) be
the submatrix of x 2 Rp⇥n of all columns with indices be-
tween t and t

0, where 1  t < t

0
< n. Learning to predict

the segment of a time series can be cast as the problem

min

✓2⇥

NX

i=1

dtw�

⇣
f✓(x

1,t
i),x

t+1,n
i

⌘
,

where {f✓} is a set of parameterized function that take
as input a time series and outputs a time series. Natural
choices would be multi-layer perceptrons or recurrent neu-
ral networks (RNN), which have been historically trained
with a Euclidean loss (Parlos et al., 2000, Eq.5).

4. Experimental results
Throughout this section, we use the UCR (University
of California, Riverside) time series classification archive
(Chen et al., 2015). We use a subset containing 79 datasets
encompassing a wide variety of fields (astronomy, geology,
medical imaging) and lengths. Datasets include class infor-
mation (up to 60 classes) for each time series and are split
into train and test sets. Due to the large number of datasets
in the UCR archive, we choose to report only a summary
of our results in the main manuscript. Detailed results are
included in the appendices for interested readers.

4.1. Averaging experiments

In this section, we compare the soft-DTW barycenter ap-
proach presented in §3.1 to DBA (Petitjean et al., 2011)
and a simple batch subgradient method.

Experimental setup. For each dataset, we choose a class
at random, pick 10 time series in that class and compute

Table 1. Percentage of the datasets on which the proposed soft-
DTW barycenter is achieving lower DTW loss (Equation (4) with
� = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA
� = 1 40.51% 3.80%
� = 0.1 93.67% 46.83%
� = 0.01 100% 79.75%
� = 0.001 97.47% 89.87%

Comparison with subgradient method
� = 1 96.20% 35.44%
� = 0.1 97.47% 72.15%
� = 0.01 97.47% 92.41%
� = 0.001 97.47% 97.47%

their barycenter. For quantitative results below, we repeat
this procedure 10 times and report the averaged results. For
each method, we set the maximum number of iterations
to 100. To minimize the proposed soft-DTW barycenter
objective, Eq. (4), we use L-BFGS.

Qualitative results. We first visualize the barycenters ob-
tained by soft-DTW when � = 1 and � = 0.01, by DBA
and by the subgradient method. Figure 5 shows barycen-
ters obtained using random initialization on the ECG200
dataset. More results with both random and Euclidean
mean initialization are given in Appendix B and C.

We observe that both DBA or soft-DTW with low smooth-
ing parameter � yield barycenters that are spurious. On
the other hand, a descent on the soft-DTW loss with suf-
ficiently high � converges to a reasonable solution. For
example, as indicated in Figure 5 with DTW or soft-DTW
(� = 0.01), the small kink around x = 15 is not repre-
sentative of any of the time series in the dataset. However,
with soft-DTW (� = 1), the barycenter closely matches the
time series. This suggests that DTW or soft-DTW with too
low � can get stuck in bad local minima.

When using Euclidean mean initialization (only possible if
time series have the same length), DTW or soft-DTW with
low � often yield barycenters that better match the shape of
the time series. However, they tend to overfit: they absorb
the idiosyncrasies of the data. In contrast, soft-DTW is able
to learn barycenters that are much smoother.

Quantitative results. Table 1 summarizes the percentage
of datasets on which the proposed soft-DTW barycenter
achieves lower DTW loss when varying the smoothing pa-
rameter �. The actual loss values achieved by different
methods are indicated in Appendix G and Appendix H.

As � decreases, soft-DTW achieves a lower DTW loss than
other methods on almost all datasets. This confirms our

45

sDTW Barycenter

min
X

X

j=1

�j

mj
dtw�(X,Yj)

Soft-DTW: a Differentiable Loss Function for Time-Series

pute predictions on new time series, the DTW discrep-
ancy must be computed with all training time series, lead-
ing to high computational cost. Both of these drawbacks
can be addressed by the nearest centroid classifier (Hastie
et al., 2001, p.670), (Tibshirani et al., 2002). This method
chooses the class whose barycenter (centroid) is closest
to the time series to classify. Although very simple, this
method was shown to be competitive with k-NN, while re-
quiring much lower computational cost at prediction time
(Petitjean et al., 2014). Soft-DTW can naturally be used
in a nearest centroid classifier, in order to compute the
barycenter of each class at train time, and to compute the
discrepancy between barycenters and time series, at predic-
tion time.

3.4. Multistep-ahead prediction

Soft-DTW is ideally suited as a loss function for any task
that requires time series outputs. As an example of such a
task, we consider the problem of, given the first 1, . . . , t
observations of a time series, predicting the remaining
(t + 1), . . . , n observations. Let xt,t0

2 Rp⇥(t0�t+1) be
the submatrix of x 2 Rp⇥n of all columns with indices be-
tween t and t

0, where 1  t < t

0
< n. Learning to predict

the segment of a time series can be cast as the problem

min

✓2⇥

NX

i=1

dtw�

⇣
f✓(x

1,t
i),x

t+1,n
i

⌘
,

where {f✓} is a set of parameterized function that take
as input a time series and outputs a time series. Natural
choices would be multi-layer perceptrons or recurrent neu-
ral networks (RNN), which have been historically trained
with a Euclidean loss (Parlos et al., 2000, Eq.5).

4. Experimental results
Throughout this section, we use the UCR (University
of California, Riverside) time series classification archive
(Chen et al., 2015). We use a subset containing 79 datasets
encompassing a wide variety of fields (astronomy, geology,
medical imaging) and lengths. Datasets include class infor-
mation (up to 60 classes) for each time series and are split
into train and test sets. Due to the large number of datasets
in the UCR archive, we choose to report only a summary
of our results in the main manuscript. Detailed results are
included in the appendices for interested readers.

4.1. Averaging experiments

In this section, we compare the soft-DTW barycenter ap-
proach presented in §3.1 to DBA (Petitjean et al., 2011)
and a simple batch subgradient method.

Experimental setup. For each dataset, we choose a class
at random, pick 10 time series in that class and compute

Table 1. Percentage of the datasets on which the proposed soft-
DTW barycenter is achieving lower DTW loss (Equation (4) with
� = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA
� = 1 40.51% 3.80%
� = 0.1 93.67% 46.83%
� = 0.01 100% 79.75%
� = 0.001 97.47% 89.87%

Comparison with subgradient method
� = 1 96.20% 35.44%
� = 0.1 97.47% 72.15%
� = 0.01 97.47% 92.41%
� = 0.001 97.47% 97.47%

their barycenter. For quantitative results below, we repeat
this procedure 10 times and report the averaged results. For
each method, we set the maximum number of iterations
to 100. To minimize the proposed soft-DTW barycenter
objective, Eq. (4), we use L-BFGS.

Qualitative results. We first visualize the barycenters ob-
tained by soft-DTW when � = 1 and � = 0.01, by DBA
and by the subgradient method. Figure 5 shows barycen-
ters obtained using random initialization on the ECG200
dataset. More results with both random and Euclidean
mean initialization are given in Appendix B and C.

We observe that both DBA or soft-DTW with low smooth-
ing parameter � yield barycenters that are spurious. On
the other hand, a descent on the soft-DTW loss with suf-
ficiently high � converges to a reasonable solution. For
example, as indicated in Figure 5 with DTW or soft-DTW
(� = 0.01), the small kink around x = 15 is not repre-
sentative of any of the time series in the dataset. However,
with soft-DTW (� = 1), the barycenter closely matches the
time series. This suggests that DTW or soft-DTW with too
low � can get stuck in bad local minima.

When using Euclidean mean initialization (only possible if
time series have the same length), DTW or soft-DTW with
low � often yield barycenters that better match the shape of
the time series. However, they tend to overfit: they absorb
the idiosyncrasies of the data. In contrast, soft-DTW is able
to learn barycenters that are much smoother.

Quantitative results. Table 1 summarizes the percentage
of datasets on which the proposed soft-DTW barycenter
achieves lower DTW loss when varying the smoothing pa-
rameter �. The actual loss values achieved by different
methods are indicated in Appendix G and Appendix H.

As � decreases, soft-DTW achieves a lower DTW loss than
other methods on almost all datasets. This confirms our

45

sDTW Barycenter

min
X

X

j=1

�j

mj
dtw�(X,Yj)

Evaluation performed 

using dtw0

% of datasets 
where soft-dtw is 

winning

46

sDTW Clustering
Soft-DTW: a Differentiable Loss Function for Time-Series

Figure 5. Comparison between our proposed soft barycenter and
the barycenter obtained by DBA and the subgradient method,
on the ECG200 dataset. When DTW is insufficiently smoothed,
barycenters often get stuck in a bad local minimum that does not
correctly match the time series.

example, as indicated in Figure 5 with DTW or soft-DTW
(� = 0.01), the small kink around x = 15 is not repre-
sentative of any of the time series in the dataset. However,
with soft-DTW (� = 1), the barycenter closely matches the
time series. This suggests that DTW or soft-DTW with too
low � can get stuck in bad local minima.

When using Euclidean mean initialization (only possible if
time series have the same length), DTW or soft-DTW with
low � often yield barycenters that better match the shape of
the time series. However, they tend to overfit: they absorb
the idiosyncrasies of the data. In contrast, soft-DTW is able
to learn barycenters that are much smoother.

Quantitative results. Table 1 summarizes the percentage
of datasets on which the proposed soft-DTW barycenter
achieves lower DTW loss when varying the smoothing pa-
rameter �. The actual loss values achieved by different
methods are indicated in Appendix G and Appendix H.

As � decreases, soft-DTW achieves a lower DTW loss than
other methods on almost all datasets. This confirms our
claim that the smoothness of soft-DTW leads to an objec-
tive that is better behaved and more amenable to optimiza-
tion by gradient-descent methods.

4.3. k-means clustering experiments

We consider in this section the same computational tools
used in §4.2 above, but use them to cluster time series.

Experimental setup. For all datasets, the number of clus-
ters k is equal to the number of classes available in the
dataset. Lloyd’s algorithm alternates between a centering

(a) Soft-DTW (� = 1) (b) DBA

Figure 6. Clusters obtained on the CBF dataset when plugging our
proposed soft barycenter and that of DBA in Lloyd’s algorithm.
DBA absorbs the idiosyncrasies of the data, while soft-DTW can
learn much smoother barycenters.

step (barycenter computation) and an assignment step. We
set the maximum number of outer iterations to 30 and the
maximum number of inner (barycenter) iterations to 100,
as before. Again, for soft-DTW, we use L-BFGS.

Qualitative results. Figure 6 shows the clusters obtained
when runing Lloyd’s algorithm on the CBF dataset with
soft-DTW (� = 1) and DBA, in the case of random initial-
ization. More results are included in Appendix E. Clearly,
DTW absorbs the tiny details in the data, while soft-DTW
is able to learn much smoother barycenters.

Quantitative results. Table 2 summarizes the percentage
of datasets on which soft-DTW barycenter achieves lower
k-means loss under DTW, i.e. Eq. (5) with � = 0. The
actual loss values achieved by all methods are indicated in
Appendix I and Appendix J. The results confirm the same
trend as for the barycenter experiments. Namely, as � de-
creases, soft-DTW is able to achieve lower loss than other
methods on a large proportion of the datasets. Note that
we have not run experiments with smaller values of � than
0.001, since dtw

0.001 is very close to dtw

0

in practice.

4.4. Time-series classification experiments

In this section, we investigate whether the smoothing in
soft-DTW can act as a useful regularization and improve
classification accuracy in the nearest centroid classifier.

Soft-DTW: a Differentiable Loss Function for Time-Series

Figure 5. Comparison between our proposed soft barycenter and
the barycenter obtained by DBA and the subgradient method,
on the ECG200 dataset. When DTW is insufficiently smoothed,
barycenters often get stuck in a bad local minimum that does not
correctly match the time series.

example, as indicated in Figure 5 with DTW or soft-DTW
(� = 0.01), the small kink around x = 15 is not repre-
sentative of any of the time series in the dataset. However,
with soft-DTW (� = 1), the barycenter closely matches the
time series. This suggests that DTW or soft-DTW with too
low � can get stuck in bad local minima.

When using Euclidean mean initialization (only possible if
time series have the same length), DTW or soft-DTW with
low � often yield barycenters that better match the shape of
the time series. However, they tend to overfit: they absorb
the idiosyncrasies of the data. In contrast, soft-DTW is able
to learn barycenters that are much smoother.

Quantitative results. Table 1 summarizes the percentage
of datasets on which the proposed soft-DTW barycenter
achieves lower DTW loss when varying the smoothing pa-
rameter �. The actual loss values achieved by different
methods are indicated in Appendix G and Appendix H.

As � decreases, soft-DTW achieves a lower DTW loss than
other methods on almost all datasets. This confirms our
claim that the smoothness of soft-DTW leads to an objec-
tive that is better behaved and more amenable to optimiza-
tion by gradient-descent methods.

4.3. k-means clustering experiments

We consider in this section the same computational tools
used in §4.2 above, but use them to cluster time series.

Experimental setup. For all datasets, the number of clus-
ters k is equal to the number of classes available in the
dataset. Lloyd’s algorithm alternates between a centering

(a) Soft-DTW (� = 1) (b) DBA

Figure 6. Clusters obtained on the CBF dataset when plugging our
proposed soft barycenter and that of DBA in Lloyd’s algorithm.
DBA absorbs the idiosyncrasies of the data, while soft-DTW can
learn much smoother barycenters.

step (barycenter computation) and an assignment step. We
set the maximum number of outer iterations to 30 and the
maximum number of inner (barycenter) iterations to 100,
as before. Again, for soft-DTW, we use L-BFGS.

Qualitative results. Figure 6 shows the clusters obtained
when runing Lloyd’s algorithm on the CBF dataset with
soft-DTW (� = 1) and DBA, in the case of random initial-
ization. More results are included in Appendix E. Clearly,
DTW absorbs the tiny details in the data, while soft-DTW
is able to learn much smoother barycenters.

Quantitative results. Table 2 summarizes the percentage
of datasets on which soft-DTW barycenter achieves lower
k-means loss under DTW, i.e. Eq. (5) with � = 0. The
actual loss values achieved by all methods are indicated in
Appendix I and Appendix J. The results confirm the same
trend as for the barycenter experiments. Namely, as � de-
creases, soft-DTW is able to achieve lower loss than other
methods on a large proportion of the datasets. Note that
we have not run experiments with smaller values of � than
0.001, since dtw

0.001 is very close to dtw

0

in practice.

4.4. Time-series classification experiments

In this section, we investigate whether the smoothing in
soft-DTW can act as a useful regularization and improve
classification accuracy in the nearest centroid classifier.

Soft-DTW: a Differentiable Loss Function for Time-Series

Figure 5. Comparison between our proposed soft barycenter and
the barycenter obtained by DBA and the subgradient method,
on the ECG200 dataset. When DTW is insufficiently smoothed,
barycenters often get stuck in a bad local minimum that does not
correctly match the time series.

example, as indicated in Figure 5 with DTW or soft-DTW
(� = 0.01), the small kink around x = 15 is not repre-
sentative of any of the time series in the dataset. However,
with soft-DTW (� = 1), the barycenter closely matches the
time series. This suggests that DTW or soft-DTW with too
low � can get stuck in bad local minima.

When using Euclidean mean initialization (only possible if
time series have the same length), DTW or soft-DTW with
low � often yield barycenters that better match the shape of
the time series. However, they tend to overfit: they absorb
the idiosyncrasies of the data. In contrast, soft-DTW is able
to learn barycenters that are much smoother.

Quantitative results. Table 1 summarizes the percentage
of datasets on which the proposed soft-DTW barycenter
achieves lower DTW loss when varying the smoothing pa-
rameter �. The actual loss values achieved by different
methods are indicated in Appendix G and Appendix H.

As � decreases, soft-DTW achieves a lower DTW loss than
other methods on almost all datasets. This confirms our
claim that the smoothness of soft-DTW leads to an objec-
tive that is better behaved and more amenable to optimiza-
tion by gradient-descent methods.

4.3. k-means clustering experiments

We consider in this section the same computational tools
used in §4.2 above, but use them to cluster time series.

Experimental setup. For all datasets, the number of clus-
ters k is equal to the number of classes available in the
dataset. Lloyd’s algorithm alternates between a centering

(a) Soft-DTW (� = 1) (b) DBA

Figure 6. Clusters obtained on the CBF dataset when plugging our
proposed soft barycenter and that of DBA in Lloyd’s algorithm.
DBA absorbs the idiosyncrasies of the data, while soft-DTW can
learn much smoother barycenters.

step (barycenter computation) and an assignment step. We
set the maximum number of outer iterations to 30 and the
maximum number of inner (barycenter) iterations to 100,
as before. Again, for soft-DTW, we use L-BFGS.

Qualitative results. Figure 6 shows the clusters obtained
when runing Lloyd’s algorithm on the CBF dataset with
soft-DTW (� = 1) and DBA, in the case of random initial-
ization. More results are included in Appendix E. Clearly,
DTW absorbs the tiny details in the data, while soft-DTW
is able to learn much smoother barycenters.

Quantitative results. Table 2 summarizes the percentage
of datasets on which soft-DTW barycenter achieves lower
k-means loss under DTW, i.e. Eq. (5) with � = 0. The
actual loss values achieved by all methods are indicated in
Appendix I and Appendix J. The results confirm the same
trend as for the barycenter experiments. Namely, as � de-
creases, soft-DTW is able to achieve lower loss than other
methods on a large proportion of the datasets. Note that
we have not run experiments with smaller values of � than
0.001, since dtw

0.001 is very close to dtw

0

in practice.

4.4. Time-series classification experiments

In this section, we investigate whether the smoothing in
soft-DTW can act as a useful regularization and improve
classification accuracy in the nearest centroid classifier.

min
X1,...,Xk

NX

j=1

min
i=1,...,k

dtw�(Xi,Yj)

47

sDTW Clustering

min
X1,...,Xk

NX

j=1

min
i=1,...,k

dtw�(Xi,Yj)
Soft-DTW: a Differentiable Loss Function for Time-Series

Table 2. Percentage of the datasets on which the proposed soft-
DTW based k-means is achieving lower DTW loss (Equation (5)
with � = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA
� = 1 15.78% 29.31%
� = 0.1 24.56% 24.13%
� = 0.01 59.64% 55.17%
� = 0.001 77.19% 68.97%

Comparison with subgradient method
� = 1 42.10% 46.44%
� = 0.1 57.89% 50%
� = 0.01 76.43% 65.52%
� = 0.001 96.49% 84.48%

Figure 7. Each point above the diagonal represents a dataset
where using our soft-DTW barycenter rather than that of DBA
improves the accuracy of the nearest nearest centroid classifier.
This is the case for 75% of the datasets in the UCR archive.

hidden layer and sigmoid activation. We also experimented
with linear models and recurrent neural networks (RNNs)
but they did not improve over a simple MLP.

Implementation details. Deep learning frameworks such
as Theano, TensorFlow and Chainer allow the user to spec-
ify a custom backward pass for their function. Implement-
ing such a backward pass, rather than resorting to automatic
differentiation (autodiff), is particularly important in the
case of soft-DTW: First, the autodiff in these frameworks
is designed for vectorized operations, whereas the dynamic
program used by the forward pass of Algorithm 2 is inher-
ently element-wise; Second, as we explained in §2.2, our
backward pass is able to re-use log-sum-exp computations
from the forward pass, leading to both lower computational
cost and better numerical stability. We implemented a cus-
tom backward pass in Chainer, which can then be used to
plug soft-DTW as a loss function in any network architec-
ture. To estimate the MLP’s parameters, we used Chainer’s
implementation of Adam (Kingma & Ba, 2014).

Qualitative results. Visualizations of the predictions ob-
tained under Euclidean and soft-DTW losses are given in
Figure 1, as well as in Appendix F. We find that for sim-

Table 3. Averaged rank obtained by a multi-layer perceptron
(MLP) under Euclidean and soft-DTW losses. Euclidean initial-
ization means that we initialize the MLP trained with soft-DTW
loss by the solution of the MLP trained with Euclidean loss.

Training loss Random
initialization

Euclidean
initialization

When evaluating with DTW loss
Euclidean 3.46 4.21
soft-DTW (� = 1) 3.55 3.96
soft-DTW (� = 0.1) 3.33 3.42
soft-DTW (� = 0.01) 2.79 2.12
soft-DTW (� = 0.001) 1.87 1.29
When evaluating with Euclidean loss
Euclidean 1.05 1.70
soft-DTW (� = 1) 2.41 2.99
soft-DTW (� = 0.1) 3.42 3.38
soft-DTW (� = 0.01) 4.13 3.64
soft-DTW (� = 0.001) 3.99 3.29

ple one-dimensional time series, an MLP works very well,
showing its ability to capture patterns in the training set.
Although the predictions under Euclidean and soft-DTW
losses often agree with each other, they can sometimes be
visibly different. Predictions under soft-DTW loss can con-
fidently predict abrupt and sharp changes since those have
a low DTW cost as long as such a sharp change is present,
under a small time shift, in the ground truth.

Quantitative results. A comparison summary of our
MLP under Euclidean and soft-DTW losses over the UCR
archive is given in Table 3. Detailed results are given in
the appendix. Unsurprisingly, we achieve lower DTW loss
when training with the soft-DTW loss, and lower Euclidean
loss when training with the Euclidean loss. Because DTW
is robust to several useful invariances, a small error in the
soft-DTW sense could be a more judicious choice than an
error in an Euclidean sense for many applications.

5. Conclusion
We propose in this paper to turn the popular DTW discrep-
ancy between time series into a full-fledged loss function
between ground truth time series and outputs from a learn-
ing machine. We have shown experimentally that, on the
existing problem of computing barycenters and clusters for
time series data, our computational approach is superior to
existing baselines. We have shown promising results on the
problem of multistep-ahead time series prediction, which
could prove extremely useful in settings where a user’s ac-
tual loss function for time series is closer to the robust per-
spective given by DTW, than to the local parsing of the
Euclidean distance.

Acknowledgements. MC gratefully acnowledges the
support of a chaire de l’IDEX Paris Saclay.

48

sDTW Prediction Loss

Soft-DTW: a Differentiable Loss Function for Time-Series

Marco Cuturi 1 Mathieu Blondel 2

Abstract
We propose in this paper a differentiable learning
loss between time series, building upon the cel-
ebrated dynamic time warping (DTW) discrep-
ancy. Unlike the Euclidean distance, DTW can
compare time series of variable size and is ro-
bust to shifts or dilatations across the time di-
mension. To compute DTW, one typically solves
a minimal-cost alignment problem between two
time series using dynamic programming. Our
work takes advantage of a smoothed formula-
tion of DTW, called soft-DTW, that computes the
soft-minimum of all alignment costs. We show
in this paper that soft-DTW is a differentiable
loss function, and that both its value and gradi-
ent can be computed with quadratic time/space
complexity (DTW has quadratic time but linear
space complexity). We show that this regular-
ization is particularly well suited to average and
cluster time series under the DTW geometry, a
task for which our proposal significantly outper-
forms existing baselines (Petitjean et al., 2011).
Next, we propose to tune the parameters of a ma-
chine that outputs time series by minimizing its
fit with ground-truth labels in a soft-DTW sense.

1. Introduction
The goal of supervised learning is to learn a mapping that
links an input to an output objects, using examples of such
pairs. This task is noticeably more difficult when the out-
put objects have a structure, i.e. when they are not vec-
tors (Bakir et al., 2007). We study here the case where each
output object is a time series, namely a family of observa-
tions indexed by time. While it is tempting to treat time
as yet another feature, and handle time series of vectors
as the concatenation of all these vectors, several practical

1CREST, ENSAE, Université Paris-Saclay, France 2NTT
Communication Science Laboratories, Seika-cho, Kyoto, Japan.
Correspondence to: Marco Cuturi <marco.cuturi@ensae.fr>,
Mathieu Blondel <mathieu@mblondel.org>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

Input Output

Figure 1. Given the first part of a time series, we trained two
multi-layer perceptron (MLP) to predict the entire second part.
Using the ShapesAll dataset, we used a Euclidean loss for the first
MLP and the soft-DTW loss proposed in this paper for the second
one. We display above the prediction obtained for a given test
instance with either of these two MLPs in addition to the ground
truth. Oftentimes, we observe that the soft-DTW loss enables us
to better predict sharp changes. More time series predictions are
given in Appendix F.

issues arise when taking this simplistic approach: Time-
indexed phenomena can often be stretched in some areas
along the time axis (a word uttered in a slightly slower pace
than usual) with no impact on their characteristics; varying
sampling conditions may mean they have different lengths;
time series may not synchronized.

The DTW paradigm. Generative models for time series
are usually built having the invariances above in mind:
Such properties are typically handled through latent vari-
ables and/or Markovian assumptions (Lütkepohl, 2005,
Part I,§18). A simpler approach, motivated by geometry,
lies in the direct definition of a discrepancy between time
series that encodes these invariances, such as the Dynamic
Time Warping (DTW) score (Sakoe & Chiba, 1971; 1978).
DTW computes the best possible alignment between two
time series (the optimal alignment itself can also be of in-
terest, see e.g. Garreau et al. 2014) of respective length n

and m by computing first the n ⇥ m pairwise distance ma-
trix between these points to solve then a dynamic program
(DP) using Bellman’s recursion with a quadratic (nm) cost.

The DTW geometry. Because it encodes efficiently a use-
ful class of invariances, DTW has often been used in a dis-
criminative framework (with a k-NN or SVM classifier) to
predict a real or a class label output, and engineered to run

min
✓

NX

i=1

1

mi
dtw�(f✓(xi),Yi)

x Y

49

sDTW Prediction Loss

Soft-DTW: a Differentiable Loss Function for Time-Series

Table 2. Percentage of the datasets on which the proposed soft-
DTW based k-means is achieving lower DTW loss (Equation (5)
with � = 0) than competing methods.

Random
initialization

Euclidean mean
initialization

Comparison with DBA
� = 1 15.78% 29.31%
� = 0.1 24.56% 24.13%
� = 0.01 59.64% 55.17%
� = 0.001 77.19% 68.97%

Comparison with subgradient method
� = 1 42.10% 46.44%
� = 0.1 57.89% 50%
� = 0.01 76.43% 65.52%
� = 0.001 96.49% 84.48%

Figure 7. Each point above the diagonal represents a dataset
where using our soft-DTW barycenter rather than that of DBA
improves the accuracy of the nearest nearest centroid classifier.
This is the case for 75% of the datasets in the UCR archive.

hidden layer and sigmoid activation. We also experimented
with linear models and recurrent neural networks (RNNs)
but they did not improve over a simple MLP.

Implementation details. Deep learning frameworks such
as Theano, TensorFlow and Chainer allow the user to spec-
ify a custom backward pass for their function. Implement-
ing such a backward pass, rather than resorting to automatic
differentiation (autodiff), is particularly important in the
case of soft-DTW: First, the autodiff in these frameworks
is designed for vectorized operations, whereas the dynamic
program used by the forward pass of Algorithm 2 is inher-
ently element-wise; Second, as we explained in §2.2, our
backward pass is able to re-use log-sum-exp computations
from the forward pass, leading to both lower computational
cost and better numerical stability. We implemented a cus-
tom backward pass in Chainer, which can then be used to
plug soft-DTW as a loss function in any network architec-
ture. To estimate the MLP’s parameters, we used Chainer’s
implementation of Adam (Kingma & Ba, 2014).

Qualitative results. Visualizations of the predictions ob-
tained under Euclidean and soft-DTW losses are given in
Figure 1, as well as in Appendix F. We find that for sim-

Table 3. Averaged rank obtained by a multi-layer perceptron
(MLP) under Euclidean and soft-DTW losses. Euclidean initial-
ization means that we initialize the MLP trained with soft-DTW
loss by the solution of the MLP trained with Euclidean loss.

Training loss Random
initialization

Euclidean
initialization

When evaluating with DTW loss
Euclidean 3.46 4.21
soft-DTW (� = 1) 3.55 3.96
soft-DTW (� = 0.1) 3.33 3.42
soft-DTW (� = 0.01) 2.79 2.12
soft-DTW (� = 0.001) 1.87 1.29
When evaluating with Euclidean loss
Euclidean 1.05 1.70
soft-DTW (� = 1) 2.41 2.99
soft-DTW (� = 0.1) 3.42 3.38
soft-DTW (� = 0.01) 4.13 3.64
soft-DTW (� = 0.001) 3.99 3.29

ple one-dimensional time series, an MLP works very well,
showing its ability to capture patterns in the training set.
Although the predictions under Euclidean and soft-DTW
losses often agree with each other, they can sometimes be
visibly different. Predictions under soft-DTW loss can con-
fidently predict abrupt and sharp changes since those have
a low DTW cost as long as such a sharp change is present,
under a small time shift, in the ground truth.

Quantitative results. A comparison summary of our
MLP under Euclidean and soft-DTW losses over the UCR
archive is given in Table 3. Detailed results are given in
the appendix. Unsurprisingly, we achieve lower DTW loss
when training with the soft-DTW loss, and lower Euclidean
loss when training with the Euclidean loss. Because DTW
is robust to several useful invariances, a small error in the
soft-DTW sense could be a more judicious choice than an
error in an Euclidean sense for many applications.

5. Conclusion
We propose in this paper to turn the popular DTW discrep-
ancy between time series into a full-fledged loss function
between ground truth time series and outputs from a learn-
ing machine. We have shown experimentally that, on the
existing problem of computing barycenters and clusters for
time series data, our computational approach is superior to
existing baselines. We have shown promising results on the
problem of multistep-ahead time series prediction, which
could prove extremely useful in settings where a user’s ac-
tual loss function for time series is closer to the robust per-
spective given by DTW, than to the local parsing of the
Euclidean distance.

Acknowledgements. MC gratefully acnowledges the
support of a chaire de l’IDEX Paris Saclay.

min
✓

NX

i=1

1

mi
dtw�(f✓(xi),Yi)

averaged rank

(dtw0)

50

Summary

• Dynamic Time Warping is a natural and flexible
discrepancy to compare time series, yet it is non-
differentiable

• Soft-DTW is a differentiable approximation, with
better convexity properties

• Using soft-DTW typically results in better minima,
even when measured with the original DTW

• Python code available on
https://github.com/mblondel/soft-dtw

