Convex Factorization Machines

Mathieu Blondel

Joint work with A. Fujino and N. Ueda

NTT Communication Science Laboratories Kyoto, Japan

2015/9/14

Problem setting

This talk is concerned with the traditional supervised learning setting

From training set

$$oldsymbol{x}_1,\ldots,oldsymbol{x}_n\in\mathbb{R}^d$$
 and $oldsymbol{y}_1,\ldots,oldsymbol{y}_n\in\mathbb{R}$

we want to learn a prediction function

$$\hat{y} \colon \mathbb{R}^d \to \mathbb{R}$$

We want ŷ(x) to take into account second-order interaction features

2 / 30

Second-order interaction features

- **Second-order interaction features** have a significant effect on the response in many regression problems
- For instance, interactions of multiple genes can play an important role in the expression of certain phenotypes
- Classical approach: polynomial regression

Polynomial regression

 Polynomial regression uses one parameter per interaction feature

$$\hat{y}(\boldsymbol{x}) \coloneqq w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + \sum_{j=1}^d \sum_{j'=j}^d z_{jj'} x_j x_{j'}$$

- Drawbacks:
 - Quadratic number of parameters to estimate
 - $z_{jj'}$ is zero if interaction never occurred in the training set (likely if **x** is high-dimensional and sparse)

- Proposed by S. Rendle (ICDM 2010)
- Efficient way to model feature interactions in high-dimensional spaces
- Contains several factorization models as special case
- Popular in the recsys community
- Open-source implementation: www.libfm.org

Use a factorized matrix for interaction feature weights

$$\hat{y}(\boldsymbol{x}) \coloneqq w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + \sum_{j=1}^d \sum_{j'=j+1}^d (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}})_{jj'} x_j x_{j'}$$

 $w_0 \in \mathbb{R}, \quad \boldsymbol{w} \in \mathbb{R}^d, \quad \boldsymbol{V} \in \mathbb{R}^{d imes k} \quad k \ll d$

- Advantages over polynomial regression
 - Number of parameters to estimate is now O(dk) instead of $O(d^2)$
 - Prediction cost is now $O(n_z(\mathbf{x})k)$ instead of $O(n_z(\mathbf{x})^2)$
 - $(\boldsymbol{V}\boldsymbol{V}^{\mathrm{T}})_{jj'}$ can be non-zero even if $x_j x_{j'}$ never occurred in training set

Objective function

$$\min_{\boldsymbol{w}_0 \in \mathbb{R}, \boldsymbol{w} \in \mathbb{R}^d, \boldsymbol{V} \in \mathbb{R}^{d \times k}} \frac{1}{2} \sum_{i=1}^n \left(y_i - \hat{y}(\boldsymbol{x}_i) \right)^2 + \frac{\alpha}{2} \|\boldsymbol{w}\|^2 + \frac{\beta}{2} \|\boldsymbol{V}\|_F^2$$

Typically solved by SGD or coordinate descent

 Important detail: prediction function of FMs ignores diagonal elements x₁²,..., x_d² since j' > j

$$\hat{y}(\boldsymbol{x}) \coloneqq w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + \sum_{j=1}^d \sum_{j'=j+1}^d (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}})_{jj'} x_j x_{j'}$$

Can we use diagonal elements instead?

$$\hat{y}(\boldsymbol{x}) \coloneqq w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + \sum_{j=1}^d \sum_{j'=j}^d (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}})_{jj'} x_j x_{j'}$$

• New (non-)convexity results w.r.t. $oldsymbol{V} \in \mathbb{R}^{d imes k}$

	use diag	ignore diag
Full matrix	non-convex	non-convex
Element-wise	non-convex	convex

 \Rightarrow Ignore diag case is easier to solve than use diag case

 \Rightarrow Element-wise coordinate descent is a good method in the ignore diag case

Convex Factorization Machines

- We propose a convex formulation of FMs
- Benefits of convexity
 - **Global solution** can be found \Rightarrow insensitive to initialization
 - One less hyper-parameter to decide (no rank hyper-parameter)
 - Convex, whether we use diagonal elements or not

Prediction function

We rewrite the prediction function as

$$\hat{y}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + \sum_{j=1}^{d} \sum_{j'=1}^{d} z_{jj'} x_j x_{j'}$$

= $\mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{x}^{\mathrm{T}}\mathbf{Z}\mathbf{x}$
= $\mathbf{w}^{\mathrm{T}}\mathbf{x} + \langle \mathbf{Z}, \mathbf{x}\mathbf{x}^{\mathrm{T}} \rangle$

- Z is a d × d symmetric matrix
- $z_{jj'}$ is the weight of $x_j x_{j'}$ for predicting y
- Bias term omitted for simplicity ^{11/30}

Quadratic forms

• $\mathbf{x}^{\mathrm{T}} \mathbf{Z} \mathbf{x} = \langle \mathbf{Z}, \mathbf{x} \mathbf{x}^{\mathrm{T}} \rangle$ is called a quadratic form

хT

Advantage: we can enforce Z to be low-rank

Eigendecomposition

 Any real symmetric matrix Z can be decomposed as a sum of rank-one matrices

$$Z = \sum_{s=1}^{d} \lambda_{s} \boldsymbol{\rho}_{s} \boldsymbol{\rho}_{s}^{\mathrm{T}} = \boldsymbol{P} \operatorname{diag}(\lambda) \boldsymbol{P}^{\mathrm{T}}$$

$$\stackrel{\mathbf{p}_{1}^{\mathrm{T}}}{\overset{\mathbf{p}_{2}^{\mathrm{T}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}{\overset{\mathbf{p}_{3}^{\mathrm{T}}}}}}}}}}}}}}}$$

Eigendecomposition

 Low-rank matrix = sum of a small number of rank-one matrices

$$\boldsymbol{Z} = \sum_{s=1}^{k} \lambda_s \boldsymbol{p}_s \boldsymbol{p}_s^{\mathrm{T}}$$
 where $k = \operatorname{rank}(\boldsymbol{Z}) \ll \boldsymbol{d}$

(assuming $\lambda_1, \ldots, \lambda_d$ are sorted in decreasing order)

Nuclear norm (a.k.a trace norm)

- To promote low-rank solutions, we use the nuclear norm
- Nuclear norm of a symmetric matrix $\boldsymbol{Z} = \sum_{s=1}^{d} \lambda_s \boldsymbol{p}_s \boldsymbol{p}_s^{\mathrm{T}}$

$$\|\boldsymbol{Z}\|_* = \mathsf{Tr}(\sqrt{\boldsymbol{Z}\boldsymbol{Z}}) = \|\lambda\|_1$$

 \Rightarrow nuclear norm = ℓ_1 norm of eigenvalues

• sparse $\lambda \Rightarrow$ low-rank Z

15 / 30

Sparse vs. low-rank

	ℓ_1 norm	nuclear norm	
Definition	$\ \boldsymbol{w}\ _1$	$\ oldsymbol{Z}\ _* = \ oldsymbol{\lambda}\ _1$	
Surrogate of	w ₀	rank(Z)	
Effect	sparse	low-rank	
Decomposition	$oldsymbol{w} = \sum_{j=1}^d w_j oldsymbol{e}_j$	$oldsymbol{Z} = \sum_{s=1}^d \lambda_s oldsymbol{ ho}_s oldsymbol{ ho}_s^{\mathrm{T}}$	
Atoms	e _j (standard basis)	$\boldsymbol{p}_{s}\boldsymbol{p}_{s}^{\mathrm{T}}$ (rank-one matrix)	

Objective function

Proposed objective:

$$\min_{\boldsymbol{w}\in\mathbb{R}^{d},\boldsymbol{Z}\in\mathbb{R}^{d\times d}} \sum_{i=1}^{n} \ell(\boldsymbol{y}_{i}, \hat{\boldsymbol{y}}(\boldsymbol{x}_{i})) + \frac{\alpha}{2} \|\boldsymbol{w}\|^{2} + \beta \|\boldsymbol{Z}\|_{*}$$

where ℓ is a twice-differentiable convex loss function

- Jointly convex in w and Z
- The larger β , the smaller rank(**Z**)
- Optimal Z is always symmetric

17 / 30

Algorithm outline

- Two-block coordinate descent
 - 1. Minimize w.r.t. w
 - 2. Minimize w.r.t. Z
 - 3. Repeat until convergence
 - 4. Return \boldsymbol{w}^* and $\boldsymbol{Z}^* = \boldsymbol{P} \operatorname{diag}(\lambda) \boldsymbol{P}^{\mathrm{T}}$

Converges to a global solution

18 / 30

Minimizing w.r.t. Z

• Standard nuclear norm penalized objective

$$\min_{\boldsymbol{Z} \in \mathbb{R}^{d \times d}} L(\boldsymbol{Z}) + \beta \|\boldsymbol{Z}\|_*$$

where L is twice-differentiable convex

- Proximal methods and ADMM do not scale well
- State-of-the-art: greedy coordinate descent
- Can exploit symmetry to derive more efficient solver

Algorithm outline

- $m{P} \leftarrow [\]$ $\lambda \leftarrow [\]$ (equivalent to $m{Z} \leftarrow m{0})$
- Repeat until convergence
 - 1. Find p which most violates KKT conditions
 - 2. Find optimal λ (closed form solution for squared loss)
 - 3. $\boldsymbol{P} \leftarrow [\boldsymbol{P} \ \boldsymbol{p}] \quad \boldsymbol{\lambda} \leftarrow [\boldsymbol{\lambda} \ \boldsymbol{\lambda}] \quad (\text{equivalent to } \boldsymbol{Z} \leftarrow \boldsymbol{Z} + \boldsymbol{\lambda} \boldsymbol{p} \boldsymbol{p}^{\mathrm{T}})$
 - 4. Periodically: refit objective restricted to current subspace
- Return $\pmb{Z}^* = \pmb{P} \operatorname{diag}(\lambda) \pmb{P}^{\mathrm{T}}$

Refitting

- Given the current iterate $\pmb{Z}=\pmb{P}\,{\sf diag}(\lambda)\pmb{P}^{
 m T}$
- Diagonal refitting

$$\min_{\lambda \in \mathbb{R}^k} \ L({m P} \operatorname{diag}(\lambda) {m P}^{\operatorname{T}}) + eta \| \lambda \|_1$$

Fully-corrective refitting

$$\min_{\mathbf{A}\in\mathbb{R}^{k\times k}} L(\mathbf{PAP}^{\mathrm{T}}) + \beta \|\mathbf{A}\|_{*}$$

since $\|\boldsymbol{P}\boldsymbol{A}\boldsymbol{P}^{\mathrm{T}}\|_{*} = \|\boldsymbol{A}\|_{*}$ when \boldsymbol{P} is an orthogonal matrix

Quadratic kernel interpretation

• We can rewrite the prediction function as

$$\hat{y}(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + \langle \boldsymbol{Z}, \boldsymbol{x}\boldsymbol{x}^{\mathrm{T}} \rangle$$

$$= \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + \langle \sum_{s=1}^{k} \lambda_{s} \boldsymbol{p}_{s} \boldsymbol{p}_{s}^{\mathrm{T}}, \boldsymbol{x}\boldsymbol{x}^{\mathrm{T}} \rangle$$

$$= \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + \sum_{s=1}^{k} \lambda_{s} (\boldsymbol{p}_{s}^{\mathrm{T}}\boldsymbol{x})^{2}$$

(**p**^T_s**x**)² is the homogeneous quadratic kernel between **p**_s and **x**

Quadratic kernel interpretation

• Compare

$$\hat{y}(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + \sum_{s=1}^{k} \lambda_{s} (\boldsymbol{p}_{s}^{\mathrm{T}}\boldsymbol{x})^{2}$$

with a kernelized regression model

$$\hat{y}(\boldsymbol{x}) = \sum_{i=1}^{n} a_i \kappa(\boldsymbol{x}_i, \boldsymbol{x})$$

By learning a low-rank Z, we are indirectly learning basis vectors p₁,..., p_k and their weights λ₁,..., λ_k

Experiments

Synthetic data

- Generate $oldsymbol{X}$ using $x_{ij} \sim \mathcal{N}(0,1)$
- Generate $oldsymbol{w}$ using $w_j \sim \mathcal{N}(0,1)$
- Generate $oldsymbol{P}$ using $p_{js} \sim \mathcal{N}(0,1)$
- Generate $oldsymbol{\lambda}$
 - \circ $\lambda_{s} \sim \mathcal{N}(0,1)$ if not PSD
 - \circ $\lambda_{s} \sim \mathcal{U}(0,1)$ if PSD
- Generate **y**

$$\circ \ y_i = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + \langle \boldsymbol{P} \operatorname{diag}(\boldsymbol{\lambda}) \boldsymbol{P}^{\mathrm{T}}, \boldsymbol{x}_i \boldsymbol{x}_i^{\mathrm{T}} \rangle + \epsilon \text{ if use diag}$$

$$\sum_{25 / 30} y_i = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + \langle \boldsymbol{P} \operatorname{diag}(\boldsymbol{\lambda}) \boldsymbol{P}^{\mathrm{T}}, \boldsymbol{x}_i \boldsymbol{x}_i^{\mathrm{T}} - \operatorname{diag}(\boldsymbol{x}_i)^2 \rangle + \epsilon \text{ if ignore diag}$$

Synthetic experiment

Application to collaborative filtering

• If user $u \in \{1, \dots, U\}$ gave 3 stars to movie $i \in \{1, \dots, I\}$, we can set

- Number of training pairs (x_i, y_i) is number of ratings
- Number of features is d = U + I
- Then factorization machines are equivalent to matrix factorization

Solver comparison

Movielens 100k $\alpha = 10^{-9}$, $\beta = 10$

Comparison with original FMs

	Convex FMs	Convex FMs	Original FMs
	(use diag)	(ignore diag)	
ML 100k	0.93	0.93	0.93
ML 1m	0.87	0.85	0.86
ML 10m	0.84	0.82	0.81
Last.fm	2.21	2.05	2.13

Test RMSE with hyper-parameters tuned by 3-fold CV

Conclusion

- Factorization machines are useful for leveraging feature interactions even with high-dimensional sparse data
- We proposed a convex formulation of factorization machines
- Although they are especially popular in the recsys community, we emphasize that factorization machines are general-purpose
- In particular, more applications using biological data would be welcome