Convex Factorization Machines

Mathieu Blondel

Joint work with A. Fujino and N. Ueda

NTT Communication Science Laboratories Kyoto, Japan

2015/9/14

Problem setting

• This talk is concerned with the traditional **supervised learning** setting

From training set

$$
\mathbf{x}_1,\ldots,\mathbf{x}_n\in\mathbb{R}^d\quad\text{and}\quad\mathbf{y}_1,\ldots,\mathbf{y}_n\in\mathbb{R}
$$

we want to learn a prediction function

$$
\hat{\mathsf{y}}\colon \mathbb{R}^d \to \mathbb{R}
$$

• We want $\hat{y}(x)$ to take into account **second-order interaction features**

Second-order interaction features

- **Second-order interaction features** have a significant effect on the response in many regression problems
- For instance, interactions of multiple genes can play an important role in the expression of certain phenotypes
- Classical approach: **polynomial regression**

Polynomial regression

• Polynomial regression uses one parameter per interaction feature

$$
\hat{y}(\boldsymbol{x}) := w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + \sum_{j=1}^d \sum_{j'=j}^d z_{jj'} x_j x_{j'}
$$

- Drawbacks:
	- Quadratic number of parameters to estimate
	- \circ $z_{ii'}$ is zero if interaction never occurred in the training set (likely if **x** is high-dimensional and sparse)

- Proposed by S. Rendle (ICDM 2010)
- Efficient way to model **feature interactions** in **high-dimensional** spaces
- Contains several factorization models as special case
- Popular in the recsys community
- Open-source implementation: www.libfm.org

• Use a **factorized** matrix for **interaction feature** weights

$$
\hat{y}(\mathbf{x}) := w_0 + \mathbf{w}^{\mathrm{T}} \mathbf{x} + \sum_{j=1}^d \sum_{j'=j+1}^d (\mathbf{V} \mathbf{V}^{\mathrm{T}})_{jj'} x_j x_{j'}
$$
\n
$$
w_0 \in \mathbb{R}, \quad \mathbf{w} \in \mathbb{R}^d, \quad \mathbf{V} \in \mathbb{R}^{d \times k} \quad k \ll d
$$

- Advantages over polynomial regression
	- $\circ~$ Number of parameters to estimate is now $\mathit{O}(d k)$ instead of $\mathit{O}(d^2)$
	- \circ Prediction cost is now $O(n_z(\boldsymbol{x})k)$ instead of $O(n_z(\boldsymbol{x})^2)$
	- $\,\circ\,$ $(\bm V \bm V^{\rm T})_{jj'}$ can be non-zero even if $x_j x_{j'}$ never occurred in training set 6 / 30

• Objective function

$$
\min_{w_0 \in \mathbb{R}, \mathbf{w} \in \mathbb{R}^d, \mathbf{V} \in \mathbb{R}^{d \times k}} \frac{1}{2} \sum_{i=1}^n \left(y_i - \hat{y}(\mathbf{x}_i) \right)^2 + \frac{\alpha}{2} ||\mathbf{w}||^2 + \frac{\beta}{2} ||\mathbf{V}||^2_F
$$

• Typically solved by SGD or coordinate descent

• Important detail: prediction function of FMs ignores diagonal elements x_1^2 x_1^2, \ldots, x_d^2 σ_d^2 since $j' > j$

$$
\hat{y}(\boldsymbol{x}) := w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + \sum_{j=1}^d \sum_{j'=j+1}^d (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}})_{jj'} x_j x_{j'}
$$

• Can we use diagonal elements instead?

$$
\hat{y}(\boldsymbol{x}) \coloneqq w_0 + \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} + \sum_{j=1}^d \sum_{j'=j}^d (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}})_{jj'} x_j x_{j'}
$$

• New (non-)convexity results w.r.t. $\boldsymbol{V} \in \mathbb{R}^{d \times k}$

 \Rightarrow Ignore diag case is easier to solve than use diag case

 \Rightarrow Element-wise coordinate descent is a good method in the ignore diag case

Convex Factorization Machines

- We propose a **convex formulation** of FMs
- Benefits of convexity
	- **Global solution** can be found ⇒ insensitive to initialization
	- One less hyper-parameter to decide (no rank hyper-parameter)
	- Convex, whether we use diagonal elements or not

Prediction function

• We rewrite the prediction function as

$$
\hat{y}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + \sum_{j=1}^{d} \sum_{j'=1}^{d} z_{jj'} x_j x_{j'}
$$
\n
$$
= \mathbf{w}^{\mathrm{T}} \mathbf{x} + \mathbf{x}^{\mathrm{T}} \mathbf{Z} \mathbf{x}
$$
\n
$$
= \mathbf{w}^{\mathrm{T}} \mathbf{x} + \langle \mathbf{Z}, \mathbf{x} \mathbf{x}^{\mathrm{T}} \rangle
$$

- Z is a $d \times d$ **symmetric** matrix
- $z_{jj'}$ is the weight of $x_j x_{j'}$ for predicting y
- Bias term omitted for simplicity

Quadratic forms

\bullet $\mathbf{x}^{\mathrm{T}}\mathbf{Z}\mathbf{x} = \langle \mathbf{Z}, \mathbf{x}\mathbf{x}^{\mathrm{T}} \rangle$ is called a **quadratic form**

 x^T

• Advantage: we can enforce **Z** to be **low-rank**

Eigendecomposition

• Any real symmetric matrix **Z** can be decomposed as a sum of rank-one matrices

$$
\boldsymbol{Z} = \sum_{s=1}^d \lambda_s \boldsymbol{p}_s \boldsymbol{p}_s^{\mathrm{T}} = \boldsymbol{P} \operatorname{diag}(\lambda) \boldsymbol{P}^{\mathrm{T}}
$$

Eigendecomposition

• **Low-rank matrix** $=$ sum of a small number of rank-one matrices

$$
\boldsymbol{Z} = \sum_{s=1}^k \lambda_s \boldsymbol{p}_s \boldsymbol{p}_s^{\mathrm{T}}
$$
 where $k = \text{rank}(\boldsymbol{Z}) \ll d$

(assuming $\lambda_1, \ldots, \lambda_d$ are sorted in decreasing order)

Nuclear norm (a.k.a trace norm)

- To promote low-rank solutions, we use the **nuclear norm**
- \bullet Nuclear norm of a symmetric matrix $\boldsymbol{Z} = \sum \limits$ d $_{s=1}$ λ_s $\boldsymbol{p}_s \boldsymbol{p}_s^{\rm T}$ s

$$
\|\boldsymbol{Z}\|_* = \mathsf{Tr}(\sqrt{\boldsymbol{Z}\boldsymbol{Z}}) = \|\lambda\|_1
$$

 \Rightarrow nuclear norm $= \ell_1$ norm of eigenvalues

• sparse *λ* ⇒ low-rank **Z**

Sparse vs. low-rank

Objective function

• Proposed objective:

$$
\min_{\mathbf{w}\in\mathbb{R}^d,\mathbf{Z}\in\mathbb{R}^{d\times d}}\ \sum_{i=1}^n\ell\Big(\mathsf{y}_i,\hat{\mathsf{y}}(\mathsf{x}_i)\Big)+\frac{\alpha}{2}\|\mathsf{w}\|^2+\beta\|\mathsf{Z}\|_*
$$

where ℓ is a twice-differentiable convex loss function

- **Jointly** convex in **w** and **Z**
- The larger *β*, the smaller rank(**Z**)
- Optimal **Z** is always symmetric

Algorithm outline

- Two-block coordinate descent
	- 1. Minimize w.r.t. **w**
	- 2. Minimize w.r.t. **Z**
	- 3. Repeat until convergence
	- 4 . Return \boldsymbol{w}^* and $\boldsymbol{Z}^* = \boldsymbol{P} \, \text{diag}(\lambda) \boldsymbol{P}^{\mathrm{T}}$

• Converges to a global solution

Minimizing w.r.t. **Z**

• Standard nuclear norm penalized objective

$$
\min_{\mathbf{Z}\in\mathbb{R}^{d\times d}} L(\mathbf{Z}) + \beta \|\mathbf{Z}\|_{*}
$$

where \overline{L} is twice-differentiable convex

- Proximal methods and ADMM do not scale well
- State-of-the-art: **greedy coordinate descent**
- Can exploit symmetry to derive more efficient solver

Algorithm outline

- $P \leftarrow \begin{bmatrix} \end{bmatrix}$ $\lambda \leftarrow \begin{bmatrix} \end{bmatrix}$ (equivalent to $Z \leftarrow 0$)
- Repeat until convergence
	- 1. Find **p** which most violates KKT conditions
	- 2. Find optimal *λ* (closed form solution for squared loss)
	- $\mathcal{B}.\,\,\, \boldsymbol{P} \leftarrow \left[\boldsymbol{P} \,\,\boldsymbol{p}\right] \quad \lambda \leftarrow \left[\lambda \,\,\lambda\right] \quad \text{(equivalent to }\,\, \boldsymbol{Z} \leftarrow \boldsymbol{Z} + \lambda \boldsymbol{p} \boldsymbol{p}^{\mathrm{T}} \text{)}$
	- 4. Periodically: refit objective restricted to current subspace
- \bullet Return $\boldsymbol{Z}^* = \boldsymbol{P} \, \text{diag}(\lambda) \boldsymbol{P}^{\text{T}}$

Refitting

- \bullet Given the current iterate $\boldsymbol{Z} = \boldsymbol{P} \, \text{diag}(\lambda) \boldsymbol{P}^\text{T}$
- Diagonal refitting

$$
\min_{\lambda \in \mathbb{R}^k} \ L(P \operatorname{diag}(\lambda) \boldsymbol{P}^{\mathrm{T}}) + \beta \|\lambda\|_1
$$

• Fully-corrective refitting

$$
\min_{\mathbf{A}\in\mathbb{R}^{k\times k}}\,\mathsf{L}(\mathbf{P}\mathbf{A}\mathbf{P}^{\mathrm{T}})+\beta\|\mathbf{A}\|_{*}
$$

since $\|\boldsymbol{P}\boldsymbol{A}\boldsymbol{P}^\mathrm{T}\|_* = \|\boldsymbol{A}\|_*$ when \boldsymbol{P} is an orthogonal matrix

Quadratic kernel interpretation

• We can rewrite the prediction function as

$$
\hat{y}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + \langle \mathbf{Z}, \mathbf{x} \mathbf{x}^{\mathrm{T}} \rangle
$$

= $\mathbf{w}^{\mathrm{T}} \mathbf{x} + \langle \sum_{s=1}^{k} \lambda_{s} \mathbf{p}_{s} \mathbf{p}_{s}^{\mathrm{T}}, \mathbf{x} \mathbf{x}^{\mathrm{T}} \rangle$
= $\mathbf{w}^{\mathrm{T}} \mathbf{x} + \sum_{s=1}^{k} \lambda_{s} (\mathbf{p}_{s}^{\mathrm{T}} \mathbf{x})^{2}$

 $\bm{p}_s \bm{(p}_s^{\mathrm{T}} \bm{x})^2$ is the homogeneous quadratic kernel between \bm{p}_s and **x**

Quadratic kernel interpretation

• Compare

$$
\hat{y}(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \mathbf{x} + \sum_{s=1}^{k} \lambda_{s} (\mathbf{p}_{s}^{\mathrm{T}} \mathbf{x})^{2}
$$

with a kernelized regression model

$$
\hat{y}(\mathbf{x}) = \sum_{i=1}^n a_i \kappa(\mathbf{x}_i, \mathbf{x})
$$

• By learning a low-rank **Z**, we are indirectly learning basis $\bm{\nu}$ ectors $\bm{p}_1, \dots, \bm{p}_k$ and their weights $\lambda_1, \dots, \lambda_k$

Experiments

Synthetic data

- Generate **X** using $x_{ii} \sim \mathcal{N}(0, 1)$
- Generate **w** using $w_i \sim \mathcal{N}(0, 1)$
- Generate P using $p_{is} \sim \mathcal{N}(0, 1)$
- Generate *λ*
	- *λ*^s ∼ N (0*,* 1) if not PSD
	- *λ*^s ∼ U(0*,* 1) if PSD
- Generate **y**

◦ yⁱ = **w** T **x**ⁱ + h**P** diag(*λ*)**P** T *,* **x**i**x** T i i + if use diag

$$
\circ \underset{25 / 30}{\mathbf{y}_i} = \mathbf{w}^{\mathrm{T}} \mathbf{x}_i + \langle \mathbf{P} \text{diag}(\boldsymbol{\lambda}) \mathbf{P}^{\mathrm{T}}, \mathbf{x}_i \mathbf{x}_i^{\mathrm{T}} - \text{diag}(\mathbf{x}_i)^2 \rangle + \epsilon \text{ if ignore diag}
$$

Synthetic experiment

Application to collaborative filtering

• If user $u \in \{1, \ldots, U\}$ gave 3 stars to movie $i \in \{1, \ldots, l\}$, we can set

- \bullet Number of training pairs (\boldsymbol{x}_i, y_i) is number of ratings
- Number of features is $d = U + I$
- Then factorization machines are **equivalent** to matrix factorization 27 / 30

Solver comparison

Movielens 100k $\alpha = 10^{-9}$, $\beta = 10$

Comparison with original FMs

Test RMSE with hyper-parameters tuned by 3-fold CV

Conclusion

- Factorization machines are useful for leveraging **feature interactions** even with **high-dimensional sparse** data
- We proposed a **convex formulation** of factorization machines
- Although they are especially popular in the recsys community, we emphasize that factorization machines are **general-purpose**
- In particular, more applications using **biological** data would be welcome