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Problem setting

o This talk is concerned with the traditional supervised
learning setting

From training set
x1,....,xp €R? and y1,...,y,€R
we want to learn a prediction function
o E@d
y: — R

* We want y(x) to take into account second-order
interaction features
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Second-order interaction features

e Second-order interaction features have a significant
effect on the response in many regression problems

» For instance, interactions of multiple genes can play an
important role in the expression of certain phenotypes

o Classical approach: polynomial regression
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Polynomial regression

¢ Polynomial regression uses one parameter per interaction
feature

d d
o . T
y(x) = wo +wix 43> Zixpxg
Jj=1j'=j
e Drawbacks:
o Quadratic number of parameters to estimate

o zj is zero if interaction never occurred in the training set (likely
if x is high-dimensional and sparse)
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Factorization machines

Proposed by S. Rendle (ICDM 2010)

Efficient way to model feature interactions in
high-dimensional spaces

Contains several factorization models as special case

Popular in the recsys community

» Open-source implementation: www.libfm.org
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Factorization machines

e Use a factorized matrix for interaction feature
weights

d d
Jx)=wo+wx+Y > (VV)xx
J=1j'=j+1
weR, weR?Y VeR™ k«d

» Advantages over polynomial regression

o Number of parameters to estimate is now O(dk) instead of O(d?)
o Prediction cost is now O(n,(x)k) instead of O(n,(x)?)

o (VVT); can be non-zero even if x;x; never occurred in training

set
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Factorization machines

* Objective function

) 1 n 2 o 5
min 5;( y(xl)) +§HW||2‘|‘§||V||/2E

woER, weRY V eRdxk

o Typically solved by SGD or coordinate descent
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Factorization machines

e Important detail: prediction function of FMs ignores
diagonal elements x12, e ,xs since j' > j

d d
Jx)=wo+wix+Y Y (VVH)xx
j=1j'=j+1

o Can we use diagonal elements instead?

d d
P(x) = wo +w'x + Z:l > (VV)xixp
Jj=1j'=j
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Factorization machines

o New (non-)convexity results w.r.t. V € R¥**

\ use diag \ ignore diag
non-convex | hon-convex
non-convex |  convex

Full matrix
Element-wise

= Ignore diag case is easier to solve than use diag case

= Element-wise coordinate descent is a good method in
the ignore diag case

9/30



Convex Factorization Machines

e We propose a convex formulation of FMs

» Benefits of convexity

o Global solution can be found = insensitive to initialization
o One less hyper-parameter to decide (no rank hyper-parameter)

o Convex, whether we use diagonal elements or not
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Prediction function

We rewrite the prediction function as

d

d
Jx) = wix+ 3 3 zpxxp
j=1j=1

—w'x+x"Zx

=w'x+ (Z,xx")

Z is a d X d symmetric matrix

zjy is the weight of x;x; for predicting y

Bias term omitted for simplicity
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Quadratic forms

o x'Zx = (Z,xx") is called a quadratic form

Z1

Zd1

Z1d

Zdd

Z

X1

xT

Xd

2

. X1Xd

XdX1

X4

x X7

¢ Advantage: we can enforce Z to be low-rank
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Eigendecomposition

e Any real symmetric matrix Z can be decomposed as a

sum of rank-one matrices

d
Z=% \spspy = P diag(A)P"

T
P1

Zn1 Z1d

Zd1 . Zdd

13/ 30

Ps



Eigendecomposition

e Low-rank matrix = sum of a small number of rank-one

matrices
k T
Z =) Ap,p; where k =rank(Z) < d
s=1
(assuming Ay, ..., Ay are sorted in decreasing order)
pl pt
I I
=N\ o+ A +

Zd1 Zdd
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Nuclear norm (a.k.a trace norm)

e To promote low-rank solutions, we use the nuclear
norm

d
o Nuclear norm of a symmetric matrix Z = >_ \.p.p!l
s=1

1Z]l. = Tr(VZZ) = [|Allx
= nuclear norm = /; norm of eigenvalues

e sparse A = low-rank Z
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Sparse vs. low-rank

{1 norm nuclear norm
Definition |wl|1 | Z]]« = || A\|Ix
Surrogate of lwl|o rank(Z)
Effect sparse low-rank
d d
Decomposition | w =) w;e; Z=> \p.np!
j=1 s=1

Atoms
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Objective function

Proposed objective:

ze(y,,y(xo) + S w2+ 8)1zI.

weRd ZeRdXd i—1

where ? is a twice-differentiable convex loss function

e Jointly convex in w and Z

The larger 3, the smaller rank(Z)

Optimal Z is always symmetric
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Algorithm outline

e Two-block coordinate descent

1. Minimize w.r.t. w
2. Minimize w.r.t. Z
3. Repeat until convergence

4. Return w* and Z* = P diag()\)P?

e Converges to a global solution
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Minimizing w.r.t. Z

Standard nuclear norm penalized objective

,min L(Z) + 5] Z]|.

where L is twice-differentiable convex

Proximal methods and ADMM do not scale well

State-of-the-art: greedy coordinate descent

Can exploit symmetry to derive more efficient solver
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Algorithm outline

° P<—[] )\%[] (equivalent to Z + 0)

* Repeat until convergence

1. Find p which most violates KKT conditions
2. Find optimal A (closed form solution for squared loss)
3. P+ [Pp] A< [A)] (equivalentto Z < Z + \pp")

4. Periodically: refit objective restricted to current subspace

o Return Z* = Pdiag(\)P?'
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Refitting

o Given the current iterate Z = P diag(\)P™

e Diagonal refitting

min L(P diag(\)P") + B||A||x
AERK

o Fully-corrective refitting

. T
Jmin, L(PAP?) + B||All.

since ||PAP™||, = ||A|. when P is an orthogonal matrix
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Quadratic kernel interpretation

e We can rewrite the prediction function as

y(x) = whx +(Z, xx")
k
= wix+ (X Aopsp, xx')

s=1

k
=w'x+ 3 A(p;x)°

s=1

o (pIx)? is the homogeneous quadratic kernel between p,
and x
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Quadratic kernel interpretation

o Compare

k
J(x) =w'x+ Zl As(ps x)
s=
with a kernelized regression model

§(x) = gnla,-/{(x,-, x)

* By learning a low-rank Z, we are indirectly learning basis
vectors py, ..., p, and their weights \{, ... A4
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Experiments



Synthetic data

o Generate X using x; ~ N(0,1)
 Generate w using w; ~ N (0, 1)
o Generate P using p;s ~ N(0,1)

e Generate A
o s ~ N(0,1) if not PSD

o A ~U(0,1) if PSD

e Generate y
oy = whx; + (Pdiag(A)PT, x;x]) + € if use diag

oy =w'x; + (Pdiag(A\)P", x;x] — diag(x;)?) + ¢ if ignore diag
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Synthetic experiment

250-
|
|

200- W=
|
|

150-

Test RMSE

o

Convex FM (use diag)
Convex FM (ignore diag)
Original FM

Ridge

Kernel ridge

100- -
m Ll hy ml

PSD

PSD not PSD not PSD

use diag ignore diag use diag ignore diag
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Application to collaborative filtering

o If user u € {1,..., U} gave 3 stars to movie
ie{l,...,1}, we can set
u U+i
~~ ~~ T
x:=10,...,0,1,0,...,0,0,...,0, 1,0,...,0]
U /
y =3

Number of training pairs (x;, y;) is number of ratings

Number of featuresis d = U + /

Then factorization machines are equivalent to matrix
factorization
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Solver comparison
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Comparison with original FMs

Convex FMs | Convex FMs | Original FMs
(use diag) | (ignore diag)
ML 100k 0.93 0.93 0.93
ML Im 0.87 0.85 0.86
ML 10m 0.84 0.82 0.81
Last.fm 2.21 2.05 2.13

Test RMSE with hyper-parameters tuned by 3-fold CV
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Conclusion

» Factorization machines are useful for leveraging feature
interactions even with high-dimensional sparse data

» We proposed a convex formulation of factorization
machines

» Although they are especially popular in the recsys
community, we emphasize that factorization machines
are general-purpose

e In particular, more applications using biological data
would be welcome
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