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Problem setting

• This talk is concerned with the traditional supervised
learning setting

From training set

x1, . . . , xn ∈ Rd and y1, . . . , yn ∈ R

we want to learn a prediction function

ŷ : Rd → R

• We want ŷ(x) to take into account second-order
interaction features
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Second-order interaction features

• Second-order interaction features have a significant
effect on the response in many regression problems

• For instance, interactions of multiple genes can play an
important role in the expression of certain phenotypes

• Classical approach: polynomial regression
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Polynomial regression

• Polynomial regression uses one parameter per interaction
feature

ŷ(x) := w0 + wTx +
d∑

j=1

d∑
j ′=j

zjj ′xjxj ′

• Drawbacks:
◦ Quadratic number of parameters to estimate

◦ zjj′ is zero if interaction never occurred in the training set (likely
if x is high-dimensional and sparse)
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Factorization machines

• Proposed by S. Rendle (ICDM 2010)

• Efficient way to model feature interactions in
high-dimensional spaces

• Contains several factorization models as special case

• Popular in the recsys community

• Open-source implementation: www.libfm.org
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Factorization machines
• Use a factorized matrix for interaction feature

weights

ŷ(x) := w0 + wTx +
d∑

j=1

d∑
j ′=j+1

(V V T)jj ′xjxj ′

w0 ∈ R, w ∈ Rd , V ∈ Rd×k k � d
• Advantages over polynomial regression
◦ Number of parameters to estimate is now O(dk) instead of O(d2)

◦ Prediction cost is now O(nz(x)k) instead of O(nz(x)2)

◦ (V V T)jj′ can be non-zero even if xjxj′ never occurred in training
set
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Factorization machines

• Objective function

min
w0∈R,w∈Rd ,V∈Rd×k

1
2

n∑
i=1

(
yi− ŷ(x i)

)2
+α

2 ‖w ||
2 +β

2‖V‖
2
F

• Typically solved by SGD or coordinate descent
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Factorization machines

• Important detail: prediction function of FMs ignores
diagonal elements x 2

1 , . . . , x 2
d since j ′ > j

ŷ(x) := w0 + wTx +
d∑

j=1

d∑
j ′=j+1

(V V T)jj ′xjxj ′

• Can we use diagonal elements instead?

ŷ(x) := w0 + wTx +
d∑

j=1

d∑
j ′=j

(V V T)jj ′xjxj ′
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Factorization machines

• New (non-)convexity results w.r.t. V ∈ Rd×k

use diag ignore diag
Full matrix non-convex non-convex

Element-wise non-convex convex

⇒ Ignore diag case is easier to solve than use diag case

⇒ Element-wise coordinate descent is a good method in
the ignore diag case
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Convex Factorization Machines

• We propose a convex formulation of FMs
• Benefits of convexity
◦ Global solution can be found ⇒ insensitive to initialization

◦ One less hyper-parameter to decide (no rank hyper-parameter)

◦ Convex, whether we use diagonal elements or not
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Prediction function

• We rewrite the prediction function as

ŷ(x) = wTx +
d∑

j=1

d∑
j ′=1

zjj ′xjxj ′

= wTx + xTZx
= wTx + 〈Z , xxT〉

• Z is a d × d symmetric matrix

• zjj ′ is the weight of xjxj ′ for predicting y

• Bias term omitted for simplicity
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Quadratic forms

• xTZx = 〈Z , xxT〉 is called a quadratic form

Z

,

x1

xd

x1 x1xd

xdx1

...

...

2

xd
2

...

x1 xd

⟩⟨

x

xT

x xT

z11 z1d...

...

...

zd1 zdd

• Advantage: we can enforce Z to be low-rank
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Eigendecomposition

• Any real symmetric matrix Z can be decomposed as a
sum of rank-one matrices

Z =
d∑

s=1
λspspT

s = P diag(λ)PT

= λ1 + ... + λs + ...

p1 ps

ps
Tp1

T

Z

z11 z1d...

...

...

zd1 zdd
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Eigendecomposition
• Low-rank matrix = sum of a small number of rank-one

matrices

Z =
k∑

s=1
λspspT

s where k = rank(Z)� d

(assuming λ1, . . . , λd are sorted in decreasing order)

= λ1 + ... + λs + ...

p1 ps

ps
Tp1

T

Z

z11 z1d...

...

...

zd1 zdd
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Nuclear norm (a.k.a trace norm)

• To promote low-rank solutions, we use the nuclear
norm

• Nuclear norm of a symmetric matrix Z =
d∑

s=1
λspspT

s

‖Z‖∗ = Tr(
√

ZZ) = ‖λ‖1

⇒ nuclear norm = `1 norm of eigenvalues

• sparse λ⇒ low-rank Z
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Sparse vs. low-rank

`1 norm nuclear norm
Definition ‖w ||1 ‖Z‖∗ = ‖λ‖1

Surrogate of ‖w‖0 rank(Z)

Effect sparse low-rank

Decomposition w =
d∑

j=1
wje j Z =

d∑
s=1

λspspT
s

Atoms e j (standard basis) pspT
s (rank-one matrix)
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Objective function

• Proposed objective:

min
w∈Rd ,Z∈Rd×d

n∑
i=1

`
(
yi , ŷ(x i)

)
+ α

2 ‖w ||
2 + β‖Z‖∗

where ` is a twice-differentiable convex loss function

• Jointly convex in w and Z

• The larger β, the smaller rank(Z)

• Optimal Z is always symmetric
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Algorithm outline

• Two-block coordinate descent

1. Minimize w.r.t. w

2. Minimize w.r.t. Z

3. Repeat until convergence

4. Return w∗ and Z∗ = P diag(λ)PT

• Converges to a global solution
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Minimizing w.r.t. Z

• Standard nuclear norm penalized objective

min
Z∈Rd×d

L(Z) + β‖Z‖∗

where L is twice-differentiable convex

• Proximal methods and ADMM do not scale well

• State-of-the-art: greedy coordinate descent

• Can exploit symmetry to derive more efficient solver
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Algorithm outline

• P ← [ ] λ← [ ] (equivalent to Z ← 0)

• Repeat until convergence
1. Find p which most violates KKT conditions

2. Find optimal λ (closed form solution for squared loss)

3. P ← [P p] λ← [λ λ] (equivalent to Z ← Z + λppT)

4. Periodically: refit objective restricted to current subspace

• Return Z ∗ = P diag(λ)PT
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Refitting

• Given the current iterate Z = P diag(λ)PT

• Diagonal refitting

min
λ∈Rk

L(P diag(λ)PT) + β‖λ‖1

• Fully-corrective refitting

min
A∈Rk×k

L(PAPT) + β‖A‖∗

since ‖PAPT‖∗ = ‖A‖∗ when P is an orthogonal matrix
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Quadratic kernel interpretation

• We can rewrite the prediction function as

ŷ(x) = wTx + 〈Z , xxT〉

= wTx + 〈
k∑

s=1
λspspT

s , xxT〉

= wTx +
k∑

s=1
λs(pT

s x)2

• (pT
s x)2 is the homogeneous quadratic kernel between ps

and x
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Quadratic kernel interpretation

• Compare

ŷ(x) = wTx +
k∑

s=1
λs(pT

s x)2

with a kernelized regression model

ŷ(x) =
n∑

i=1
aiκ(x i , x)

• By learning a low-rank Z , we are indirectly learning basis
vectors p1, . . . ,pk and their weights λ1, . . . , λk
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Experiments
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Synthetic data
• Generate X using xij ∼ N (0, 1)

• Generate w using wj ∼ N (0, 1)

• Generate P using pjs ∼ N (0, 1)
• Generate λ

◦ λs ∼ N (0, 1) if not PSD

◦ λs ∼ U(0, 1) if PSD

• Generate y
◦ yi = wTx i + 〈P diag(λ)PT, x ixT

i 〉+ ε if use diag

◦ yi = wTx i + 〈P diag(λ)PT, x ixT
i − diag(x i)2〉+ ε if ignore diag
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Synthetic experiment
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Application to collaborative filtering
• If user u ∈ {1, . . . ,U} gave 3 stars to movie

i ∈ {1, . . . , I}, we can set

x := [0, . . . , 0,
u︷︸︸︷
1 , 0, . . . , 0︸ ︷︷ ︸
U

, 0, . . . , 0,
U+i︷︸︸︷
1 , 0, . . . , 0︸ ︷︷ ︸
I

]T

y := 3
• Number of training pairs (x i , yi) is number of ratings

• Number of features is d = U + I

• Then factorization machines are equivalent to matrix
factorization
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Solver comparison
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Comparison with original FMs

Convex FMs Convex FMs Original FMs
(use diag) (ignore diag)

ML 100k 0.93 0.93 0.93
ML 1m 0.87 0.85 0.86

ML 10m 0.84 0.82 0.81
Last.fm 2.21 2.05 2.13

Test RMSE with hyper-parameters tuned by 3-fold CV
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Conclusion

• Factorization machines are useful for leveraging feature
interactions even with high-dimensional sparse data

• We proposed a convex formulation of factorization
machines

• Although they are especially popular in the recsys
community, we emphasize that factorization machines
are general-purpose

• In particular, more applications using biological data
would be welcome
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