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Supervised learning with polynomials

• From {x i , yi}n
i=1, x i ∈ Rd and yi ∈ R, learn a polynomial

ŷ : Rd → R

• Motivation
◦ Universality: polynomials can approximate any ŷ : Rd → R

arbitrary well on a compact subset of Rd

(Stone-Weierstrass theorem)

◦ Interpretability: Feature combinations are meaningful in many
applications (NLP, bioinformatics, etc)
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Polynomial regression

• Assign weights to feature combinations

ŷPR(x; w ,W ) := 〈w , x〉+
∑
j ′>j

W j ,j ′xjxj ′

where w ∈ Rd and W ∈ Rd×d

• Pro: reduces to a simple linear model

• Con: does not scale well to high-dimensional data
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Kernel methods for polynomial regression

• Use a polynomial kernel so as to implicitly map the
data to feature combinations via the kernel trick

• Predictions are computed by

ŷKM(x; α) :=
n∑

i=1
αiK(x i , x)

where α ∈ Rn and K is set to

Pm
γ (x i , x) := (γ + 〈x i , x〉)m
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↙
Linear dependence on
training set size!



Factorization machines (Rendle 2010)

• Recall polynomial regression

ŷPR(x; w ,W ) := 〈w , x〉+
∑
j ′>j

W j ,j ′xjxj ′

• In FMs, we replace W ∈ Rd×d by a factorized matrix

ŷFM(x; w ,P) := 〈w , x〉+
∑
j ′>j

(PPT)j ,j ′xjxj ′

w ∈ Rd , P ∈ Rd×k k � d
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FMs: pros and cons

, Reduced number of parameters to estimate
O(dk) instead of O(d2) (PR) or O(n) (KM)

, Faster predictions
O(dk) instead of O(d2) (PR) or O(dn) (KM)

, Ability to infer weight of unobserved feature
combinations (useful for recommender systems)

/ Learning P involves a non-convex problem
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Proposed framework

• We consider models of the form

ŷK(x; λ,P) :=
k∑

s=1
λsK(ps , x)

where λ ∈ Rk and P ∈ Rd×k with columns p1, . . . ,pk

• We focus on two kernels:
◦ ANOVA kernel (recover factorization machines)

◦ Homogeneous polynomial kernel (recover “polynomial networks”)
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Polynomial and ANOVA kernels (m = 2)

• Homogeneous polynomial kernel

H2(p, x) := 〈p, x〉2 =
d∑

i ,j=1
pixipjxj

Uses all feature combinations: x 2
i and xixj for i 6= j

• ANOVA kernel (Vapnik 1998)

A2(p, x) :=
∑
j>i

pixipjxj

Uses distinct feature combinations: xixj for i 6= j
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Polynomial and ANOVA kernels (m = 3)

• Homogeneous polynomial kernel

H3(p, x) := 〈p, x〉3 =
d∑

i ,j ,k=1
pixipjxjpkxk

Uses all feature combinations: x 3
i , x 2

i xj , and xixjxk

• ANOVA kernel (Vapnik 1998)

A3(p, x) :=
∑

k>j>i
pixipjxjpkxk

Uses distinct feature combinations: xixjxk for i 6= j 6= k
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Polynomial and ANOVA kernels (m ≥ 2)
• Homogeneous polynomial kernel

Hm(p, x) := 〈p, x〉m =
d∑

j1,...,jm=1
pj1xj1 . . . pjmxjm

Uses all feature combinations (with replacement)

• ANOVA kernel (Vapnik 1998)

Am(p, x) :=
∑

jm>···>j1
pj1xj1 . . . pjmxjm

Uses distinct feature combinations (without
replacement)
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Expressing FMs and PNs using kernels

• Recall that

ŷK(x; λ,P) :=
k∑

s=1
λsK(ps , x)

• Expressing factorization machines

ŷFM(x; w ,P) = 〈w , x〉+ ŷA2(x; 1,P)

• Expressing polynomial networks

ŷPN(x; w ,λ,P) = 〈w , x〉+ ŷH2(x; λ,P)
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Direct optimization

• Most natural approach: directly minimize

DK(λ,P) :=
n∑

i=1
`

yi ,
k∑

s=1
λsK(ps , x i)

 + β|λs | ‖ps‖2

where ` is a µ-smooth convex loss function

• Convexity?
K = Hm K = Am

λ convex convex
P non-convex non-convex

rows of P non-convex convex
columns of P non-convex non-convex
elements of P non-convex convex
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← thanks to
multi-linearity of Am



Direct optimization

pj1
p j2

(a) when K = H2

pj1
p j2

(b) when K = A2

Objective function w.r.t. one row of P
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Multi-convex optimization

• When K = Am, the objective is called multi-convex
• We can use alternating minimization
◦ Popular in the matrix and tensor factorization literature

◦ Simple to implement

◦ Converges to a stationary point

◦ When ` is the squared loss, each sub-problem can be solved
analytically
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A tensor approach

• When K = Hm, the direct objective is neither convex
nor multi-convex

• We will now present an objective that is multi-convex for
both K = Hm and Am

• The main idea is to convert the estimation of λ and P
to that of a low-rank symmetric tensor W
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Rank-one symmetric tensor

x⊗m := x ⊗ · · · ⊗ x︸ ︷︷ ︸
m times

∈ Sdm

x1 x2 x3 x4

x1

x2

x3

x4

x1
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x4

x1
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x4

x1 x2 x3 x4

x1

x2

x3

x4

x2x3x1

=

x⊗3 x⊗ x⊗ x
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Symmetric tensor decomposition

W =
k∑

s=1
λsp⊗m

s

where k is the (symmetric) rank of W

= λ1 + λ2 + . . .

W ∈ Sd3 p⊗31 p⊗32
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Link between tensors and poly. kernel
Homogeneous polynomial kernel can be rewritten as

Hm(p, x) := 〈p, x〉m = 〈p⊗m, x⊗m〉

〈 , 〉

p⊗3 x⊗3

p2p3p1 x2x3x1
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H3(p, x) =



Link between tensors and ANOVA kernel

• For the ANOVA kernel, we need to ignore irrelevant
feature combinations...

• We introduce the following notation

〈W ,X 〉> :=
∑

jm>···>j1
W j1,...,jmX j1,...,jm W ,X ∈ Sdm

• Then
Am(p, x) = 〈p⊗m, x⊗m〉>
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Link between tensors and kernel expansions

• Assume W is decomposed as
k∑

s=1
λsp⊗m

s . Then,

ŷH2 = 〈W , x⊗m〉 =
k∑

s=1
λsHm(ps , x)

ŷA2 = 〈W , x⊗m〉> =
k∑

s=1
λsAm(ps , x)

• We can convert the estimation of λ and P to that of a
low-rank tensor W
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↓ not multi-linear /



Key idea of the proposed method

• Expressing the loss as a function of W

LHm(W) :=
n∑

i=1
`
(
yi , 〈W , x⊗m

i 〉
)

LAm(W) :=
n∑

i=1
`
(
yi , 〈W , x⊗m

i 〉>
)

• Our idea: we set W = S
 r∑

s=1
u1

s ⊗ · · · ⊗ um
s


where S(M) is the symmetrization of M
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Multi-convex formulation

min
U1,...,Um∈Rd×r

LK
S

 r∑
s=1

u1
s ⊗ · · · ⊗ um

s

+β

2
m∑

t=1
‖U t‖2

F

where ut
s is s th column of U t

• Convex in U1, . . . ,Um separately due to multi-linearity

• When m = 2, this is equivalent to direct formulation
(and we can easily convert U1, U2 to λ, P)

• Coordinate descent: costs O(mrnz(X)) per epoch
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Direct vs. proposed approach

Direct Proposed

Parameters λ ∈ Rk U1, . . . ,Um ∈ Rd×r

P ∈ Rd×k

Multi-convex if K = Am K = Am or Hm

Multi-convex in λ and rows of P U1, . . . ,Um

In practice, we set r = k/m.
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Direct vs. proposed (“lifted”)
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(a) K = A2
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Direct vs. lifted optimization with K=H2

(b) K = H2

E2006-tfidf dataset
n = 16, 087, d = 150, 360
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Low-budget non-linear regression
We compared six methods:

1. Proposed with K = H3 (with xT ← [1, xT]),

2. Proposed with K = A3 (with xT ← [1, xT]),

3. Nyström method with K = P3
γ , where γ = 1

4. Random Selection: choose bases uniformly at random
from training set with K = P3

γ .

5. Linear ridge regression

6. Kernel ridge regression with K = P3
γ
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Conclusion

• We proposed a unified framework for factorization
machines (FM) and polynomial networks (PN)

• We proposed efficient training algorithms based on
tensor decomposition

Open-source implementation by Vlad Niculae:
http://contrib.scikit-learn.org/polylearn/
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