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Supervised learning with polynomials

o From {x;,y;}"_,, x; € R? and y; € R, learn a polynomial
y:RY - R

¢ Motivation

o Universality: polynomials can approximate any y: RY — R
arbitrary well on a compact subset of R
(Stone-Weierstrass theorem)

o Interpretability: Feature combinations are meaningful in many
applications (NLP, bioinformatics, etc)
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Polynomial regression

* Assign weights to feature combinations

yer(X; w, W) = (w, x) + > W, jxjxj
J>j

where w € R? and W e R
e Pro: reduces to a simple linear model

e Con: does not scale well to high-dimensional data
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Kernel methods for polynomial regression

* Use a polynomial kernel so as to implicitly map the
data to feature combinations via the kernel trick

o Linear dependence on
» Predictions are computed by training set sizel

n

Pm(x; @) =S aiK(x;, x)

i=1

where o € R"” and K is set to

P,T(X,',X) = (7 + <Xi7x>)m
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Factorization machines (rendie 2010)

¢ Recall polynomial regression

yer(x; w, W) = (w, x) + > W, jxix;
J'>j

e In FMs, we replace W € RI*d by a factorized matrix

Jem(x; w, P) = (w, x) + 3 (PP"); yxx;
J'>j

weR!, PeR” k<d
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FMs: pros and cons

©® Reduced number of parameters to estimate
O(dk) instead of O(d?) (PR) or O(n) (KM)

©® Faster predictions
O(dk) instead of O(d?) (PR) or O(dn) (KM)

© Ability to infer weight of unobserved feature
combinations (useful for recommender systems)

@ Learning P involves a non-convex problem
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Proposed framework

e We consider models of the form
k
le(XQ A, P) = Z )\slc(ps: X)
s=1
where A € R¥ and P € R¥* with columns ps, ..., p«

e We focus on two kernels:

o ANOVA kernel (recover factorization machines)

o Homogeneous polynomial kernel (recover “polynomial networks")
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Polynomial and ANOVA kernels (m = 2)

* Homogeneous polynomial kernel
2 2 d
H(p.x) == (P, x)" = X pixipX;
ij=1
Uses all feature combinations: x? and xixj for i # j

o ANOVA kernel (Vapnik 1998)

A2(Pa X) =Y piXiPjX;

j>i

Uses distinct feature combinations: x;x; for i # j
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Polynomial and ANOVA kernels (m = 3)

* Homogeneous polynomial kernel

d
H(p,x) = (p,x)° = > pixipxiprx
et

Uses all feature combinations: x3, x?

7, X7 xj, and x;x;xk

o ANOVA kernel (Vapnik 1998)

A¥p.x) = Y pixipixiPiXi

k>j>i

Uses distinct feature combinations: xixjx, for i # j # k
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Polynomial and ANOVA kernels (m > 2)

* Homogeneous polynomial kernel
d
H™(p,x) = (p.x)" = X Pi - Pin X
J15--dm=

Uses all feature combinations (with replacement)

o ANOVA kernel (Vapnik 1998)

A™(p,X) = > PiXi - PinXin
Jm>...>jl
Uses distinct feature combinations (without
replacement)
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Expressing FMs and PNs using kernels

e Recall that
el A, P) = 320 K(p )
o Expressing factorization machines
ym(x; w, P) = (w, x) + J.0(x; 1, P)
o Expressing polynomial networks

Pen(x; w, A P) = (w, x) + Pa2(x; A, P)
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Direct optimization

e Most natural approach: directly minimize

n k
Di(A, P) = _Zlf Vi ZIASIC(PS,XI) + B [1psl?
i= s=
where ¢ is a p-smooth convex loss function

¢ Convexity?

K=H" K=A"
A convex convex
P non-convex | non-convex
rows of P non-convex convex <« thanks to
columns of P | non-convex | non-convex multi-linearity of A™
elements of P | non-convex convex
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Direct optimization

(b) when K = A?

Objective function w.r.t. one row of P
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Multi-convex optimization

* When IC = A", the objective is called multi-convex

* We can use alternating minimization

o Popular in the matrix and tensor factorization literature
o Simple to implement
o Converges to a stationary point

o When / is the squared loss, each sub-problem can be solved
analytically
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A tensor approach

e When IC = H", the direct objective is neither convex
nor multi-convex

* We will now present an objective that is multi-convex for
both I = H" and A"

e The main idea is to convert the estimation of A and P
to that of a low-rank symmetric tensor VW
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Rank-one symmetric tensor

XM =x@---@xeS?
| —
m times
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Symmetric tensor decomposition

k
W=>" )‘sp?m
s=1

where k is the (symmetric) rank of W

/\l@ +/\2@ + ...

: 3 3
W es? py py
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Link between tensors and poly. kernel

Homogeneous polynomial kernel can be rewritten as

H™(p, x) = (p,x)" = (p”", x*)

DP2P3P1 ToT3T

e et R e
H(px)=( ¢ 7 : )

p®3 &3
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Link between tensors and ANOVA kernel

o For the ANOVA kernel, we need to ignore irrelevant
feature combinations...

* We introduce the following notation

W, X)s = > Wi inXiin W, X €89

Jm>>)1

e Then
A"(p,x) = (p®", x*)-
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Link between tensors and kernel expansions

J not multi-linear ®
k
o Assume W is decomposed as Y. A\.pZ™. Then,

s=1

k
)’77_12 = <W,X®m> = z:l)\SHm(ps,X)
k

‘)/}A2 = <W,X®m>> —

S

AsAT(ps, )
1

e We can convert the estimation of A and P to that of a
low-rank tensor W
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Key idea of the proposed method

o Expressing the loss as a function of W

I
M:

Lyn(W) = 22 € (yi, (W, X))

1

-

I
M:

Lan(W) =3 L (yi, (W, X))

1

-~.

| multi-linear ®
e Our idea: we set W = S(Zu@) ®us)

where S(M) is the symmetrization of M
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Multi-convex formulation

UL... UmeRdxr

min Ly (8 (Z ule-® ug”))+§ ST U2
s=1

where uf is s™ column of U*
o Convex in UL, ..., U™ separately due to multi-linearity

e When m = 2, this is equivalent to direct formulation
(and we can easily convert U, U?to )\, P)

 Coordinate descent: costs O(mrn,(X)) per epoch
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Direct vs. proposed approach

Direct Proposed
A € RK Ut ..., U™ e R
Parameters p c Réxk
Multi-convex if K=A" K=A"or H™
Multi-convex in | A and rows of P Uu-,...,um

In practice, we set r = k/m.
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Direct vs. proposed (“lifted”)

100, Direct vs. lifted optimization with K=A? 100, Direct vs. lifted optimization with K=H?

Lifted (CD)
Direct (L-BFGS)
Direct (SGD)
Direct (CD)

Relative objective value reduction
Relative objective value reduction

107 " " " - ) ) ) -
10" 10° 10" 10? 10° 10" 10° 10! 10° 10°
CPU time (seconds) CPU time (seconds)

(a) K = A? (b) K = H?

E2006-tfidf dataset
n= 16,087, d = 150, 360
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Low-budget non-linear regression

We compared six methods:

1. Proposed with IC = #3? (with x* « [1,x"]),
2. Proposed with K = A% (with x « [1,x"]),
3. Nystrom method with IC = Pﬁ, where v =1

4. Random Selection: choose bases uniformly at random
from training set with IC = 733.

5. Linear ridge regression

6. Kernel ridge regression with IC = 733
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Coefficient of determination R
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Conclusion

» We proposed a unified framework for factorization
machines (FM) and polynomial networks (PN)

» We proposed efficient training algorithms based on
tensor decomposition

Open-source implementation by Vlad Niculae:
http://contrib.scikit-learn.org/polylearn/
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