
Structured Prediction
with Projection Oracles

Mathieu Blondel

NTT, Kyoto, Japan

June 19th, 2019

Outline

1. Background

2. Proposed framework

3. Experiments

Outline

1. Background

2. Proposed framework

3. Experiments

Structured prediction

f : 𝒳 → 𝒴
Learn a mapping from input space to output space

Goal

Structured prediction

f : 𝒳 → 𝒴
Learn a mapping from input space to output space

Goal

exponentially large

Structured prediction

f : 𝒳 → 𝒴
Learn a mapping from input space to output space

Goal

θ ∈ Θ = ℝd ̂y ∈ 𝒴
decoding

Typically assume f = dec ∘ g

model
x ∈ 𝒳

g dec

Decomposition

exponentially large

Structured prediction

f : 𝒳 → 𝒴
Learn a mapping from input space to output space

Goal

θ ∈ Θ = ℝd ̂y ∈ 𝒴
decoding

Typically assume f = dec ∘ g

model
x ∈ 𝒳

g dec

Decomposition

ℒ(f) ≜ 𝔼(X,Y)∼p L(f(X), Y) L : 𝒴 × 𝒴 → ℝ+

Target loss risk

exponentially large

Structured prediction

f : 𝒳 → 𝒴
Learn a mapping from input space to output space

Goal

θ ∈ Θ = ℝd ̂y ∈ 𝒴
decoding

Typically assume f = dec ∘ g

model
x ∈ 𝒳

g dec

Decomposition

ℒ(f) ≜ 𝔼(X,Y)∼p L(f(X), Y) L : 𝒴 × 𝒴 → ℝ+

Target loss risk
Non-convex, discontinuous!

exponentially large

Surrogate losses

𝒮(g) ≜ 𝔼(X,Y)∼p S(g(X), Y) S : Θ × 𝒴 → ℝ+

Surrogate loss risk

Surrogate losses

𝒮(g) ≜ 𝔼(X,Y)∼p S(g(X), Y) S : Θ × 𝒴 → ℝ+

Surrogate loss risk

𝒮(gn) → inf
g∈𝒢

𝒮(g) ℒ(dec ∘ gn) → inf
g∈𝒢

ℒ(dec ∘ g)

Fisher consistency

Surrogate losses

𝒮(g) ≜ 𝔼(X,Y)∼p S(g(X), Y) S : Θ × 𝒴 → ℝ+

Extensively studied in the multiclass setting [Zhang 2004, Bartlett et al. 2006]

Only recently studied in the structured setting
[Ciliberto et al 2016, 
Osokin et al. 2017,  

Nowak-Vila et al. 2019]

Surrogate loss risk

𝒮(gn) → inf
g∈𝒢

𝒮(g) ℒ(dec ∘ gn) → inf
g∈𝒢

ℒ(dec ∘ g)

Fisher consistency

Structured perceptron loss

S(θ, y) ≜ max
y′�∈𝒴

⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

[Collins, 2002]

φ : 𝒴 → ℝd

Structured perceptron loss

S(θ, y) ≜ max
y′�∈𝒴

⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

Training oracle

MAP(θ) ≜ arg max
y∈𝒴

⟨θ, φ(y)⟩

[Collins, 2002]

φ : 𝒴 → ℝd

Structured perceptron loss

S(θ, y) ≜ max
y′�∈𝒴

⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

Training oracle

MAP(θ) ≜ arg max
y∈𝒴

⟨θ, φ(y)⟩

Decoding oracle

dec = MAP

[Collins, 2002]

φ : 𝒴 → ℝd

Structured perceptron loss

S(θ, y) ≜ max
y′�∈𝒴

⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

Training oracle

MAP(θ) ≜ arg max
y∈𝒴

⟨θ, φ(y)⟩

✕ Not smooth
✕ Not consistent

Decoding oracle

dec = MAP

[Collins, 2002]

φ : 𝒴 → ℝd

Structured hinge loss

S(θ, y) ≜ max
y′�∈𝒴

L(y′�, y) + ⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

[Tsochantaridis et al., 2005]

Structured hinge loss

S(θ, y) ≜ max
y′�∈𝒴

L(y′�, y) + ⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

Training oracle

arg max
y′�∈𝒴

L(y, y′�) + ⟨θ, φ(y′�)⟩

[Tsochantaridis et al., 2005]

Structured hinge loss

S(θ, y) ≜ max
y′�∈𝒴

L(y′�, y) + ⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

Training oracle

arg max
y′�∈𝒴

L(y, y′�) + ⟨θ, φ(y′�)⟩

Decoding oracle

dec = MAP

[Tsochantaridis et al., 2005]

Structured hinge loss

S(θ, y) ≜ max
y′�∈𝒴

L(y′�, y) + ⟨θ, φ(y′�)⟩ − ⟨θ, φ(y)⟩
Loss

Training oracle

arg max
y′�∈𝒴

L(y, y′�) + ⟨θ, φ(y′�)⟩

✕ Not smooth
✕ Not consistent

Decoding oracle

dec = MAP

[Tsochantaridis et al., 2005]

Conditional Random Field (CRF) loss

S(θ, y) ≜ log ∑
y′�∈𝒴

e⟨θ,φ(y′ �)⟩ − ⟨θ, φ(y)⟩

Loss

[Lafferty et al., 2001]

Conditional Random Field (CRF) loss

S(θ, y) ≜ log ∑
y′�∈𝒴

e⟨θ,φ(y′ �)⟩ − ⟨θ, φ(y)⟩

Loss

[Lafferty et al., 2001]

Training oracle

marginal(θ) ≜ 𝔼Y∼p(⋅;θ)[φ(Y)]

p(y; θ) ∝ exp⟨φ(y), θ⟩

Conditional Random Field (CRF) loss

S(θ, y) ≜ log ∑
y′�∈𝒴

e⟨θ,φ(y′ �)⟩ − ⟨θ, φ(y)⟩

Loss

[Lafferty et al., 2001]

Decoding oracle

MAP
Calibrated decoding

Training oracle

marginal(θ) ≜ 𝔼Y∼p(⋅;θ)[φ(Y)]

p(y; θ) ∝ exp⟨φ(y), θ⟩

Conditional Random Field (CRF) loss

S(θ, y) ≜ log ∑
y′�∈𝒴

e⟨θ,φ(y′ �)⟩ − ⟨θ, φ(y)⟩

Loss

✓ Smooth
✓ Consistent (w/ calibrated decoding) [Nowak-Vila et al., 2019]

[Lafferty et al., 2001]

Decoding oracle

MAP
Calibrated decoding

Training oracle

marginal(θ) ≜ 𝔼Y∼p(⋅;θ)[φ(Y)]

p(y; θ) ∝ exp⟨φ(y), θ⟩

Conditional Random Field (CRF) loss

S(θ, y) ≜ log ∑
y′�∈𝒴

e⟨θ,φ(y′ �)⟩ − ⟨θ, φ(y)⟩

Loss

✓ Smooth
✓ Consistent (w/ calibrated decoding) [Nowak-Vila et al., 2019]

[Lafferty et al., 2001]

Decoding oracle

MAP
Calibrated decoding

Training oracle

marginal(θ) ≜ 𝔼Y∼p(⋅;θ)[φ(Y)]

p(y; θ) ∝ exp⟨φ(y), θ⟩

✕ Marginal inference is intractable for some tasks

Squared loss

S(θ, y) ≜
1
2

∥φ(y) − θ∥2

Loss

[Ciliberto et al., 2016]

Squared loss

S(θ, y) ≜
1
2

∥φ(y) − θ∥2

Loss

[Ciliberto et al., 2016]

Training oracle

None!

Squared loss

S(θ, y) ≜
1
2

∥φ(y) − θ∥2

Loss

[Ciliberto et al., 2016]

Decoding oracle

Calibrated decoding

Training oracle

None!

Squared loss

S(θ, y) ≜
1
2

∥φ(y) − θ∥2

Loss

✓ Smooth
✓ Consistent (when using calibrated decoding)

[Ciliberto et al., 2016]

Decoding oracle

Calibrated decoding

Training oracle

None!

Squared loss

S(θ, y) ≜
1
2

∥φ(y) − θ∥2

Loss

✓ Smooth
✓ Consistent (when using calibrated decoding)

[Ciliberto et al., 2016]

Decoding oracle

Calibrated decoding

✕ Ignores structural information at training time

Training oracle

None!

Summary

Loss Training oracle Decoding Smooth Consistent

Perceptron MAP MAP No No

SVM Loss-augmented MAP MAP No No

CRF Marginal MAP 
Calibrated decoding Yes No 

Yes

Squared None Calibrated decoding Yes Yes

Summary

Loss Training oracle Decoding Smooth Consistent

Perceptron MAP MAP No No

SVM Loss-augmented MAP MAP No No

CRF Marginal MAP 
Calibrated decoding Yes No 

Yes

Squared None Calibrated decoding Yes Yes

Proposed Projection Calibrated
decoding Yes Yes

Outline

1. Background

2. Proposed framework

3. Experiments

θ

θ

φ(𝒴)

Proposed inference pipeline

model
x ∈ 𝒳

g

u ∈ 𝒞
Projection

u

u = P𝒞(θ) ≜ arg min
μ∈𝒞

∥μ − θ∥2

P𝒞

𝒞

θ

θ

φ(𝒴)

Proposed inference pipeline

model
x ∈ 𝒳

g

u ∈ 𝒞
Projection

u

u = P𝒞(θ) ≜ arg min
μ∈𝒞

∥μ − θ∥2

P𝒞

𝒞

θ

θ

φ(𝒴)

Proposed inference pipeline

model
x ∈ 𝒳

g
̂y ∈ 𝒴

̂yL

Calibrated decoding

̂y

ℳ

ℳ ≜ conv(φ(𝒴))

Smallest convex set = convex hull (a.k.a. marginal polytope)

Choice of the convex set

ℳ

ℳ ≜ conv(φ(𝒴))

Smallest convex set = convex hull (a.k.a. marginal polytope)

Choice of the convex set

θ

ℳ

ℳ ≜ conv(φ(𝒴))

Smallest convex set = convex hull (a.k.a. marginal polytope)

Choice of the convex set

𝒞
Can use any superset with cheaper to compute projection

θ ℳ

ℳ ≜ conv(φ(𝒴))

Smallest convex set = convex hull (a.k.a. marginal polytope)

Choice of the convex set

Associated loss function

φ(y)

θ

c

Squared loss

SQ(θ, y) ≜
1
2

∥φ(y) − θ∥2 = c

Associated loss function

φ(y)

θ

c

Squared loss

SQ(θ, y) ≜
1
2

∥φ(y) − θ∥2 = c

Associated loss function

Ignores structure!

φ(y)

θ

b
P𝒞(θ)

NC𝒞(θ, y) ≜
1
2

∥φ(y) − P𝒞(θ)∥2 = b

Associated loss function

φ(y)

θ

b
P𝒞(θ)

NC𝒞(θ, y) ≜
1
2

∥φ(y) − P𝒞(θ)∥2 = b

Associated loss function

Non-convex!

φ(y)

θ

c

b

a

P𝒞(θ)

Proposed loss

S𝒞(θ, y) ≜ SQ(θ, y) −
1
2

∥θ − P𝒞(θ)∥2 = c − a

Associated loss function

φ(y)

θ

c

b

a

P𝒞(θ)

Proposed loss

S𝒞(θ, y) ≜ SQ(θ, y) −
1
2

∥θ − P𝒞(θ)∥2 = c − a

Associated loss function

Generalized  
Pythagorean theorem

a + b ≤ c

NC𝒞(θ, y) ≤ S𝒞(θ, y)
↓

1.

4. S𝒞(θ, y) = 0 ⇔ P𝒞(θ) = φ(y)

S𝒞(θ, y) is convex w.r.t. θ

2. S𝒞(θ, y) is smooth w.r.t. θ (gradient is Lipschitz cont.)

3. S𝒞(θ, y) ≥ 0

Properties

NC𝒞(θ, y) ≤ S𝒞(θ, y) ∀θ, φ(y) ∈ 𝒞
Convex upper bound

Upper bounds

NC𝒞(θ, y) ≤ S𝒞(θ, y) ∀θ, φ(y) ∈ 𝒞
Convex upper bound

Upper bounds

Upper bounds

S𝒞(θ, y) ≤ S𝒞′ �(θ, y) ∀𝒞 ⊆ 𝒞′�

Superset upper bound

Upper bounds

S𝒞(θ, y) ≤ S𝒞′ �(θ, y) ∀𝒞 ⊆ 𝒞′�

Superset upper bound

Ω(u) ≜
1
2

∥u∥2 if u ∈ 𝒞, ∞ otherwiseLet

“Fenchel-Young losses”, Blondel, Martins, Niculae, 2019

Link with Fenchel duality

Ω(u) ≜
1
2

∥u∥2 if u ∈ 𝒞, ∞ otherwiseLet

“Fenchel-Young losses”, Blondel, Martins, Niculae, 2019

Link with Fenchel duality

φ(y)

dom(Ω) = 𝒞
primal space

Ω(u) ≜
1
2

∥u∥2 if u ∈ 𝒞, ∞ otherwiseLet

“Fenchel-Young losses”, Blondel, Martins, Niculae, 2019

Link with Fenchel duality

φ(y)

dom(Ω) = 𝒞
primal space

dom(Ω*) = ℝ2

θ

dual space

Ω(u) ≜
1
2

∥u∥2 if u ∈ 𝒞, ∞ otherwiseLet

“Fenchel-Young losses”, Blondel, Martins, Niculae, 2019

Link with Fenchel duality

φ(y)

dom(Ω) = 𝒞
primal space

dom(Ω*) = ℝ2

θ

dual space

u
∇Ω* = P𝒞

Ω(u) ≜
1
2

∥u∥2 if u ∈ 𝒞, ∞ otherwiseLet

“Fenchel-Young losses”, Blondel, Martins, Niculae, 2019

Link with Fenchel duality

φ(y)

dom(Ω) = 𝒞
primal space

dom(Ω*) = ℝ2

θ

dual space

u
∇Ω* = P𝒞

S𝒞(θ, y) = Ω*(θ) + Ω(φ(y)) − ⟨φ(y), θ⟩

Ω(u) ≜ ⟨u, log u⟩ if u ∈ 𝒞, ∞ otherwise

Kullback Leibler geometry

Ω(u) ≜ ⟨u, log u⟩ if u ∈ 𝒞, ∞ otherwise
∇Ω*(θ) = arg min

u∈𝒞
KL(u, eθ−1)

Kullback Leibler geometry

Ω(u) ≜ ⟨u, log u⟩ if u ∈ 𝒞, ∞ otherwise
∇Ω*(θ) = arg min

u∈𝒞
KL(u, eθ−1)

S𝒞(θ, y) = Ω*(θ) + Ω(φ(y)) − ⟨φ(y), θ⟩

Kullback Leibler geometry

β = max
u∈𝒞

∥u∥1Let . Then,

S𝒞(θ, y) is -smoothβ with respect to ∥ ⋅ ∥∞ .

Proposition

Ω(u) ≜ ⟨u, log u⟩ if u ∈ 𝒞, ∞ otherwise
∇Ω*(θ) = arg min

u∈𝒞
KL(u, eθ−1)

S𝒞(θ, y) = Ω*(θ) + Ω(φ(y)) − ⟨φ(y), θ⟩

Kullback Leibler geometry

β = max
u∈𝒞

∥u∥1Let . Then,

S𝒞(θ, y) is -smoothβ with respect to ∥ ⋅ ∥∞ .

Proposition

Ω(u) ≜ ⟨u, log u⟩ if u ∈ 𝒞, ∞ otherwise
∇Ω*(θ) = arg min

u∈𝒞
KL(u, eθ−1)

S𝒞(θ, y) = Ω*(θ) + Ω(φ(y)) − ⟨φ(y), θ⟩
Smaller set → smoother loss!

Kullback Leibler geometry

Calibrated decoding

Calibrated decoding

L(̂y, y) = ⟨φ(̂y), Vφ(y) + b⟩ + c(y)
Affine decomposition of the target loss

Calibrated decoding

L(̂y, y) = ⟨φ(̂y), Vφ(y) + b⟩ + c(y)
Affine decomposition of the target loss

̂yL(u) ≜ arg min
y′�∈𝒴

⟨φ(y′�), Vu + b⟩
Decoding calibrated for loss L

Calibrated decoding

L(̂y, y) = ⟨φ(̂y), Vφ(y) + b⟩ + c(y)
Affine decomposition of the target loss

̂yL(u) ≜ arg min
y′�∈𝒴

⟨φ(y′�), Vu + b⟩
Decoding calibrated for loss L

= MAP(−Vu − b)

Calibrated decoding

L(̂y, y) = ⟨φ(̂y), Vφ(y) + b⟩ + c(y)
Affine decomposition of the target loss

̂yL(u) ≜ arg min
y′�∈𝒴

⟨φ(y′�), Vu + b⟩
Decoding calibrated for loss L

= MAP(−Vu − b)

Decomposition important both for computational tractability  
and theoretical analysis

Consistency

δ𝒮𝒞(g) ≜ 𝒮𝒞(g) − inf
g′�: 𝒳→Θ

𝒮𝒞(g′�)

Excess risks

δℒ(f) ≜ ℒ(f) − inf
f′�: 𝒳→𝒴

ℒ(f′�)

Consistency

δ𝒮𝒞(g) ≜ 𝒮𝒞(g) − inf
g′�: 𝒳→Θ

𝒮𝒞(g′�)

Excess risks

δℒ(f) ≜ ℒ(f) − inf
f′�: 𝒳→𝒴

ℒ(f′�)

∀g : 𝒳 → Θ :
δℒ(dec ∘ g)2

8βσ2
≤ δ𝒮𝒞(g)

Calibration between excess risks

dec ≜ ̂yL ∘ P𝒞 β ≜ Lipschitz constant of P𝒞 σ ≜ sup
y∈𝒴

∥V⊤φ(y)∥
w.r.t. ∥ ⋅ ∥

𝒴 = [k] ≜ {1,…, k}

Output set

Probability simplex

𝒴 = [k] ≜ {1,…, k}

Output set

φ(y) = ey

ℳ = conv(φ(𝒴)) = △k

'(1) = [1, 0, 0]

'(2) = [0, 1, 0]

'(3) = [0, 0, 1]

Encoding

Marginal polytope

Probability simplex

𝒴 = [k] ≜ {1,…, k}

Output set

φ(y) = ey

ℳ = conv(φ(𝒴)) = △k

'(1) = [1, 0, 0]

'(2) = [0, 1, 0]

'(3) = [0, 0, 1]

Encoding

Marginal polytope

Euclidean: sparsemax, O(k) or O(k log k)

KL: softmax, O(k)

MAP: O(k)

Oracles

Probability simplex

𝒴 = 2[k]
Output set

Unit cube

𝒴 = 2[k]
Output set

Unit cube

φ(y) =
|y|

∑
i=1

eyi

ℳ = [0,1]k

Encoding

Marginal polytope

'({1})

'({1, 3})

'({1, 2})
'({2})

'({2, 3})

'({3})

'({})

'({1, 2, 3})

𝒴 = 2[k]
Output set

Euclidean: clipping to [0,1], O(k)

KL: O(k)

MAP: O(k)

Oracles

Unit cube

φ(y) =
|y|

∑
i=1

eyi

ℳ = [0,1]k

Encoding

Marginal polytope

'({1})

'({1, 3})

'({1, 2})
'({2})

'({2, 3})

'({3})

'({})

'({1, 2, 3})

𝒴 = {y ∈ 2[k] : l ≤ |y | ≤ u}
Output set

Budget polytope

𝒴 = {y ∈ 2[k] : l ≤ |y | ≤ u}
Output set

Budget polytope

ℳ = {y ∈ [0,1]k : l ≤ y⊤1 ≤ m}

Encoding

Marginal polytope

φ(y) =
|y|

∑
i=1

eyi

'({1})

'({1, 3})

'({1, 2})
'({2})

'({2, 3})

'({3})

'({})

Figure 1: Left: Illustration of projection-based losses in the binary classification setting. We set
Y = [2], '(y) = ey, = 1

2k · k
2 (Euclidean projection) and C = 4

2, here depicted with a red line.
The gradient r⌦⇤(✓) projects the model prediction ✓ 2 R2 (one score for each class) onto C. The
distance b = D (u,r⌦⇤(✓)) between the ground truth u and r⌦⇤(✓) defines a natural loss but is
not necessarily convex in ✓. The loss defined as S⌦(✓, u) = c� a, where c = D (u,r ⇤(✓)) and
a = D (C,r ⇤(✓)) = D (r⌦⇤(✓),r ⇤(✓)), is in contrast always convex. From the Pythagorean
theorem for Bregman divergences [4], a+ b  c and therefore D (u,r⌦⇤(✓))  S⌦(✓, u). Right:
Illustration of a budget polytope with k = 3 , l = 0 and u = 2, a strict subset of the cube [0, 1]3.
Using this polytope for multilabel classification allows to “carve away” entire regions of the cube.

Fenchel-Young losses. It was recently shown that all previous losses can be unified using the class
of so-called Fenchel-Young losses [27, 8, 9], S⌦ : dom(⌦⇤)⇥ dom(⌦) ! R+. They are defined by

S⌦(✓, u) := ⌦
⇤(✓) + ⌦(u)� h✓, ui, (4)

where ⌦ : Rd
! R [{1} is a regularization function. A surrogate loss S : ⇥⇥ Y ! R+ can then

be defined by S(✓, y) := S⌦(✓,'(y)), where we assume '(y) 2 dom(⌦). As shown in [8, 9], if ⌦
is strictly convex, then we have the following properties:

• r⌦⇤(✓) = argmaxu2dom(⌦)h✓, ui � ⌦(u),

• S⌦(✓, u) = f⌦(r⌦⇤(✓))� f⌦(u) � 0, where f⌦(u) := h✓, ui � ⌦(u),
• r✓S⌦(✓, u) = r⌦⇤(✓)� u,
• S⌦(✓, u) = 0 , r⌦⇤(✓) = u.

The last property suggests that minimizing a Fenchel-Young loss requires adjusting the scores ✓ to
produce a mapping r⌦⇤(✓) that is close to the target u = '(y), reducing the duality gap. In the next
section, we build upon that framework to construct loss functions derived from a projection.

3 Structured prediction with Bregman projections

3.1 Defining a convex and smooth loss from a projection

In this work, we study loss functions derived from a new kind of oracle: projections onto a convex set.
More precisely, we focus on a subset of Fenchel-Young losses (4) with regularization ⌦ defined as

⌦(u) = (u) + IC(u), (5)
where C ✓ dom() is a convex set containing '(y) for all y 2 Y , and is Legendre type [34, 41],
meaning that it is strictly convex and r explodes at the boundary of the interior of dom().

Projection. The advantage of choosing (5) is that r⌦⇤ now becomes a Bregman projection onto C,
r⌦⇤(✓) = argmin

u2C

D (u,r
⇤(✓)). (6)

In particular, by choosing = 1
2kuk

2
2 and (u) = hu, log ui (Shannon negative entropy), we obtain

r⌦⇤(✓) = argmin
u2C

ku� ✓k
2
2 and r⌦⇤(✓) = argmin

u2C

KL(u, e✓�1), (7)

the Euclidean and KL projections of ✓ and e
✓�1. Note that marginal inference (3) is also a projection

in the sense of (6), for a different choice of [9]. However, we will give examples of structured
tasks for which the Euclidean and KL projections (7) are tractable while marginal inference is not.

3

𝒴 = {y ∈ 2[k] : l ≤ |y | ≤ u}
Output set

Euclidean: O(k)
KL: O(k log k)

MAP: O(k log k)

Oracles

Budget polytope

ℳ = {y ∈ [0,1]k : l ≤ y⊤1 ≤ m}

Encoding

Marginal polytope

φ(y) =
|y|

∑
i=1

eyi

'({1})

'({1, 3})

'({1, 2})
'({2})

'({2, 3})

'({3})

'({})

Figure 1: Left: Illustration of projection-based losses in the binary classification setting. We set
Y = [2], '(y) = ey, = 1

2k · k
2 (Euclidean projection) and C = 4

2, here depicted with a red line.
The gradient r⌦⇤(✓) projects the model prediction ✓ 2 R2 (one score for each class) onto C. The
distance b = D (u,r⌦⇤(✓)) between the ground truth u and r⌦⇤(✓) defines a natural loss but is
not necessarily convex in ✓. The loss defined as S⌦(✓, u) = c� a, where c = D (u,r ⇤(✓)) and
a = D (C,r ⇤(✓)) = D (r⌦⇤(✓),r ⇤(✓)), is in contrast always convex. From the Pythagorean
theorem for Bregman divergences [4], a+ b  c and therefore D (u,r⌦⇤(✓))  S⌦(✓, u). Right:
Illustration of a budget polytope with k = 3 , l = 0 and u = 2, a strict subset of the cube [0, 1]3.
Using this polytope for multilabel classification allows to “carve away” entire regions of the cube.

Fenchel-Young losses. It was recently shown that all previous losses can be unified using the class
of so-called Fenchel-Young losses [27, 8, 9], S⌦ : dom(⌦⇤)⇥ dom(⌦) ! R+. They are defined by

S⌦(✓, u) := ⌦
⇤(✓) + ⌦(u)� h✓, ui, (4)

where ⌦ : Rd
! R [{1} is a regularization function. A surrogate loss S : ⇥⇥ Y ! R+ can then

be defined by S(✓, y) := S⌦(✓,'(y)), where we assume '(y) 2 dom(⌦). As shown in [8, 9], if ⌦
is strictly convex, then we have the following properties:

• r⌦⇤(✓) = argmaxu2dom(⌦)h✓, ui � ⌦(u),

• S⌦(✓, u) = f⌦(r⌦⇤(✓))� f⌦(u) � 0, where f⌦(u) := h✓, ui � ⌦(u),
• r✓S⌦(✓, u) = r⌦⇤(✓)� u,
• S⌦(✓, u) = 0 , r⌦⇤(✓) = u.

The last property suggests that minimizing a Fenchel-Young loss requires adjusting the scores ✓ to
produce a mapping r⌦⇤(✓) that is close to the target u = '(y), reducing the duality gap. In the next
section, we build upon that framework to construct loss functions derived from a projection.

3 Structured prediction with Bregman projections

3.1 Defining a convex and smooth loss from a projection

In this work, we study loss functions derived from a new kind of oracle: projections onto a convex set.
More precisely, we focus on a subset of Fenchel-Young losses (4) with regularization ⌦ defined as

⌦(u) = (u) + IC(u), (5)
where C ✓ dom() is a convex set containing '(y) for all y 2 Y , and is Legendre type [34, 41],
meaning that it is strictly convex and r explodes at the boundary of the interior of dom().

Projection. The advantage of choosing (5) is that r⌦⇤ now becomes a Bregman projection onto C,
r⌦⇤(✓) = argmin

u2C

D (u,r
⇤(✓)). (6)

In particular, by choosing = 1
2kuk

2
2 and (u) = hu, log ui (Shannon negative entropy), we obtain

r⌦⇤(✓) = argmin
u2C

ku� ✓k
2
2 and r⌦⇤(✓) = argmin

u2C

KL(u, e✓�1), (7)

the Euclidean and KL projections of ✓ and e
✓�1. Note that marginal inference (3) is also a projection

in the sense of (6), for a different choice of [9]. However, we will give examples of structured
tasks for which the Euclidean and KL projections (7) are tractable while marginal inference is not.

3

𝒴 = [k]
Output set

Order simplex

1 ≺ … ≺ k

𝒴 = [k]
Output set

Order simplex

1 ≺ … ≺ k

ℳ = {μ ∈ ℝk−1 : 1 ≥ μ1 ≥ μ2 ≥ … ≥ μk−1 ≥ 0}

Encoding

Marginal polytope

φ(y) = ∑
1≤i<y≤k

ei ∈ ℝk−1

'(1) = [0, 0, 0]

'(2) = [1, 0, 0]

'(3) = [1, 1, 0]

'(4) = [1, 1, 1]

𝒴 = [k]
Output set

Order simplex

1 ≺ … ≺ k

ℳ = {μ ∈ ℝk−1 : 1 ≥ μ1 ≥ μ2 ≥ … ≥ μk−1 ≥ 0}

Encoding

Marginal polytope

φ(y) = ∑
1≤i<y≤k

ei ∈ ℝk−1

'(1) = [0, 0, 0]

'(2) = [1, 0, 0]

'(3) = [1, 1, 0]

'(4) = [1, 1, 1]

Eucl: isotonic reg, O(k)
MAP: O(k)

Oracles

KL: isotonic optimization

𝒴 = Permutations([m])
Output set

Birkhoff polytope

𝒴 = Permutations([m])
Output set

Birkhoff polytope

φ((2,1,3)) φ((2,3,1))

φ((3,2,1))

φ((3,1,2))

ℳ = {P ∈ ℝm×m : P⊤1m = 1,P1m = 1,0 ≤ P ≤ 1}

Encoding

Marginal polytope

φ(y) = permutation matrix

associated with y

φ((1,2,3))

φ((1,3,2))

𝒴 = Permutations([m])
Output set

Birkhoff polytope

Eucl: LBFGS dual, O(m2/ε)
MAP: Hungarian, O(m3)

Oracles

KL: Sinkhorn, O(m2/ε)
Marginal: intractable

φ((2,1,3)) φ((2,3,1))

φ((3,2,1))

φ((3,1,2))

ℳ = {P ∈ ℝm×m : P⊤1m = 1,P1m = 1,0 ≤ P ≤ 1}

Encoding

Marginal polytope

φ(y) = permutation matrix

associated with y

φ((1,2,3))

φ((1,3,2))

𝒴 = Permutations([m])
Output set

Birkhoff polytope

Eucl: LBFGS dual, O(m2/ε)
MAP: Hungarian, O(m3)

Oracles

KL: Sinkhorn, O(m2/ε)
Marginal: intractable

φ((2,1,3)) φ((2,3,1))

φ((3,2,1))

φ((3,1,2))

ℳ = {P ∈ ℝm×m : P⊤1m = 1,P1m = 1,0 ≤ P ≤ 1}

Encoding

Marginal polytope

φ(y) = permutation matrix

associated with y

φ((1,2,3))

φ((1,3,2))

△m×m ≜ {P ∈ ℝm×m : P⊤1m = 1,0 ≤ P ≤ 1} ⊃ ℳ
Row-stochastic matrices

𝒴 = Permutations([m])

Output set

Permutahedron

𝒴 = Permutations([m])

Output set

Permutahedron

ℳ = {μ ∈ ℝm : ∑
i∈S

μi ≤
|S|

∑
i=1

wi ∀S ⊂ [m],
m

∑
i=1

μi =
m

∑
i=1

wi}

Encoding

Marginal polytope

φ(y) = permutation of a vector w  
according to y

Blondel, Martins, and Niculae

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

Figure 6: Examples of instances of permutahedron induced by w. Round circles
indicate vertices of the permutahedron, permutations ofw. Choosingw = [1, 0, 0]
recovers the probability simplex (red) while choosing w = [12 ,

1
2 , 0] recovers the

capped probability simplex (blue). The other two instances are obtained by
w = [23 ,

1
3 , 0] (gray) and w = [12 ,

1
3 ,

1
6] (green). Euclidean projection onto these

polytopes can be cast as isotonic regression. More generally, Bregman projection
reduces to isotonic optimization.

• Choosing w = 2
d(d+1) [d, d� 1, . . . , 1] corresponds to predicting full rankings.

• Choosing w = 2
k(k+1) [k, k�1, . . . , 1, 0, . . . , 0| {z }

d�k�1 times

] corresponds to predicting partial rankings.

The corresponding polytopes are illustrated in Figure 6. In all the examples above, w 2 4d,
implying conv(Y) ✓ 4d. Therefore, by⌦(✓) outputs a probability distribution.

As discussed in §3.2, computing the regularized prediction function by⌦(✓) is equivalent to a
Bregman projection when ⌦ = +IC , where is Legendre type. The Euclidean projection
onto C = conv(Y) reduces to isotonic regression (Zeng and Figueiredo, 2015; Negrinho and
Martins, 2014). The computational cost is O(d log d). More generally, Bregman projections
reduce to isotonic optimization (Lim and Wright, 2016). This provides a unified way to
compute by⌦(✓) e�ciently, regardless of w.

The generated Fenchel-Young loss L⌦(✓;y), is illustrated in Figure 7 for various choices of
⌦. When ⌦ = 0, as expected, the loss is zero as long as the predicted ranking is correct.
Note that in order to define a meaningful loss, it is necessary that y 2 Y or more generally
y 2 conv(Y). That is, y should belong to the convex hull of the permutations of w.

Permutahedra have been used to derive online learning to rank algorithms (Yasutake et al.,
2011; Ailon et al., 2016) but it is not obvious how to extract a loss from these works. Ordered
weighted averaging (OWA) operators have been used to define related top-k multiclass
losses (Usunier et al., 2009; Lapin et al., 2015) but without identifying the connection

32

w = [3, 2, 1] / 6

w = [1, 0, 0]

w = [2, 1, 0] / 3

w = [1, 1, 0] / 2

𝒴 = Permutations([m])

Output set

Permutahedron

Eucl: isotonic reg, O(m log m)
MAP: O(m log m)

Oracles

KL: isotonic optimization
ℳ = {μ ∈ ℝm : ∑

i∈S

μi ≤
|S|

∑
i=1

wi ∀S ⊂ [m],
m

∑
i=1

μi =
m

∑
i=1

wi}

Encoding

Marginal polytope

φ(y) = permutation of a vector w  
according to y

Blondel, Martins, and Niculae

[1, 0, 0]

[0, 1, 0]

[0, 0, 1]

Figure 6: Examples of instances of permutahedron induced by w. Round circles
indicate vertices of the permutahedron, permutations ofw. Choosingw = [1, 0, 0]
recovers the probability simplex (red) while choosing w = [12 ,

1
2 , 0] recovers the

capped probability simplex (blue). The other two instances are obtained by
w = [23 ,

1
3 , 0] (gray) and w = [12 ,

1
3 ,

1
6] (green). Euclidean projection onto these

polytopes can be cast as isotonic regression. More generally, Bregman projection
reduces to isotonic optimization.

• Choosing w = 2
d(d+1) [d, d� 1, . . . , 1] corresponds to predicting full rankings.

• Choosing w = 2
k(k+1) [k, k�1, . . . , 1, 0, . . . , 0| {z }

d�k�1 times

] corresponds to predicting partial rankings.

The corresponding polytopes are illustrated in Figure 6. In all the examples above, w 2 4d,
implying conv(Y) ✓ 4d. Therefore, by⌦(✓) outputs a probability distribution.

As discussed in §3.2, computing the regularized prediction function by⌦(✓) is equivalent to a
Bregman projection when ⌦ = +IC , where is Legendre type. The Euclidean projection
onto C = conv(Y) reduces to isotonic regression (Zeng and Figueiredo, 2015; Negrinho and
Martins, 2014). The computational cost is O(d log d). More generally, Bregman projections
reduce to isotonic optimization (Lim and Wright, 2016). This provides a unified way to
compute by⌦(✓) e�ciently, regardless of w.

The generated Fenchel-Young loss L⌦(✓;y), is illustrated in Figure 7 for various choices of
⌦. When ⌦ = 0, as expected, the loss is zero as long as the predicted ranking is correct.
Note that in order to define a meaningful loss, it is necessary that y 2 Y or more generally
y 2 conv(Y). That is, y should belong to the convex hull of the permutations of w.

Permutahedra have been used to derive online learning to rank algorithms (Yasutake et al.,
2011; Ailon et al., 2016) but it is not obvious how to extract a loss from these works. Ordered
weighted averaging (OWA) operators have been used to define related top-k multiclass
losses (Usunier et al., 2009; Lapin et al., 2015) but without identifying the connection

32

w = [3, 2, 1] / 6

w = [1, 0, 0]

w = [2, 1, 0] / 3

w = [1, 1, 0] / 2

Outline

1. Background

2. Proposed framework

3. Experiments

Experiments

1
n

n

∑
i=1

S𝒞(Wxi, yi) + λ∥W∥2
F

• Label ranking

• Ordinal regression

• Multilabel classification

Label ranking

2 ≻ 1 ≻ 3 ≻ 4
Full-ranking supervision setting (no relevance scores)

e.g.

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Using Euclidean projections

= squared loss

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

L = Hamming loss

Label ranking

2 ≻ 1 ≻ 3 ≻ 4
Full-ranking supervision setting (no relevance scores)

e.g.

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Using Euclidean projections

= squared loss

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

L = Hamming loss

Label ranking

2 ≻ 1 ≻ 3 ≻ 4
Full-ranking supervision setting (no relevance scores)

e.g.

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Using Euclidean projections

= squared loss

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

L = Hamming loss

Label ranking

2 ≻ 1 ≻ 3 ≻ 4
Full-ranking supervision setting (no relevance scores)

e.g.

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Using Euclidean projections

= squared loss

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

L = Hamming loss

Label ranking

2 ≻ 1 ≻ 3 ≻ 4
Full-ranking supervision setting (no relevance scores)

e.g.

Label ranking
Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Euclidean KLvs.

Label ranking
Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Euclidean KLvs.

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Pℬ(Wx)

“soft permutation matrix”

W ∈ ℝn×mW ∈ ℝn×m

Label ranking
Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Linear Poly 3

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.06
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.49
Iris 27.78 10.37 19.26 4.44 1.48 2.96 27.41

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 11.62
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 14.35
Wine 10.19 1.85 1.23 1.85 1.85 1.85 8.02

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 8.59
Glass 24.35 5.43 7.11 5.68 5.04 4.65 8.14
Iris 27.78 10.37 19.26 4.44 1.48 2.96 5.93

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 9.26
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 10.21
Wine 10.19 1.85 1.23 1.85 1.85 1.85 6.79

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Poly 2

Table 1: Hamming loss for label ranking with Euclidean projections. The first line indicates the
projection set C = Im(r⌦⇤) = dom(⌦) in (7). The second line indicates the decoding set (O) in
(10). Using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

Projection [0, 1]m⇥m
4

m⇥m Rm⇥m [0, 1]m⇥m
4

m⇥m
B P

Decoding [0, 1]m⇥m
4

m⇥m
B B B B P

Authorship 12.83 5.62 5.70 5.18 5.70 5.10 10.50
Glass 24.35 5.43 7.11 5.68 5.04 4.65 7.10
Iris 27.78 10.37 19.26 4.44 1.48 2.96 20.00

Vehicle 26.36 7.43 9.04 7.57 6.99 5.88 8.30
Vowel 43.71 9.65 10.57 9.56 9.18 8.76 11.74
Wine 10.19 1.85 1.23 1.85 1.85 1.85 3.08

B: Birkhoff polytope, P : permutahedron

Projection 4
m⇥m Rm⇥m

+ [0, 1]m⇥m
4

m⇥m
B

Decoding 4
m⇥m

B B B B

Authorship 5.84 5.10 5.62 5.84 5.10
Glass 5.43 5.81 5.94 5.68 4.65
Iris 11.11 18.52 4.44 1.48 2.96

Vehicle 7.57 8.46 7.43 7.21 6.25
Vowel 9.50 9.40 9.42 9.28 9.17
Wine 4.32 1.85 1.85 1.85 1.85

Table 2: Same as Table 1 but with KL projections instead. Figure 2: Example of soft
permutation matrix.

Label ranking. We consider the label ranking setting where supervision is given as full rankings
(e.g., 2 � 1 � 3 � 4) rather than as label relevance scores. We use the same six public datasets as
in [21]. We compare different convex sets for the projection r⌦⇤ (used both at train and prediction
times) and the decoding byL (used at prediction time). For the Euclidean and KL projections onto
the Birkhoff polytope, we solve the semi-dual formulation [15, 10] by L-BFGS. For the Euclidean
projection onto the permutahedron, we use the isotonic regression solver from scikit-learn [32]. We
report the mean Hamming loss between the ground-truth and predicted permutation matrices in the
test set. Results are presented in Table 1 and Table 2. We summarize our main findings below.

• For decoding, using [0, 1]m⇥m or 4m⇥m considerably degrades accuracy. This is not surprising,
as these choices do not produce valid permutation matrices, unlike the Birkhoff polytope.

• Using a squared loss 1
2k'(y) � ✓k

2 (i.e., no projection) combined with Birkhoff decoding at
prediction time works relatively well. Using sets with computationally cheap projections, such
as [0, 1]m⇥m or 4m⇥m, improves accuracy substantially. However, the best accuracy is obtained
with the projection onto the Birkhoff polytope, both for Euclidean and KL projections. Therefore,
using the Birkhoff polytope for both projections and decoding achieves the best accuracy.

• Using the Birkhoff polytope works quite better than the permutahedron. This is partly because
using a permutation matrix as encoding ' guarantees calibration w.r.t. the Hamming loss (§A).

• The losses derived from Euclidean and KL projections perform similarly. This is informative, as
algorithms for Euclidean projections onto various sets are more widely available.

Beyond accuracy improvements, the projection µ 2 r⌦⇤(✓) is useful to visualize soft permutation
matrices predicted by the model, an advantage lost when using supersets of the Birkhoff polytope.

Ordinal regression. We compared classical ridge regression to our order simplex based loss on
sixteen publicly-available datasets [19]. For evaluation, we use mean absolute error (MAE), for which
our loss is consistent when suitably setting V and b (cf. §A). We find that ridge regression performs
the worst with an average MAE of 0.72. Combining a squared loss 1

2k'(y) � ✓k
2 (no projection)

with order simplex decoding at prediction time improves the MAE to 0.47. Using a projection on
the unit cube, a superset of the order simplex, further improves the MAE to 0.45. Finally, using the
Euclidean projection onto the order simplex achieves the best MAE of 0.43, confirming that using the
order simplex for both projections and decoding works better. Detailed results are reported in Table 3.

8

Using Euclidean projections

Birkhoff vs. permutahedron

W ∈ ℝp×m2 W ∈ ℝp×m

Ordinal regression
𝒴 = [k] 1 ≺ … ≺ k

Ordinal regression
𝒴 = [k] 1 ≺ … ≺ k

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

L = MAE = Mean Absolute Error

Averaged over 16 datasets

Ordinal regression
𝒴 = [k] 1 ≺ … ≺ k

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

L = MAE = Mean Absolute Error

Averaged over 16 datasets

Ordinal regression

OS = Order Simplex

𝒴 = [k] 1 ≺ … ≺ k

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

L = MAE = Mean Absolute Error

Averaged over 16 datasets

Ordinal regression

OS = Order Simplex

𝒴 = [k] 1 ≺ … ≺ k

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

L = MAE = Mean Absolute Error

Averaged over 16 datasets

Ordinal regression

OS = Order Simplex

𝒴 = [k] 1 ≺ … ≺ k

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

L = MAE = Mean Absolute Error

Averaged over 16 datasets

Ordinal regression

OS = Order Simplex

𝒴 = [k] 1 ≺ … ≺ k

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

hyperparameter, we refit the model on the entire training set. For multilabel datasets, we removed
samples with zero label. We ran all experiments on a machine with Intel(R) Xeon(R) CPU with
2.90GHz and 4GB of RAM.

In all experiments, we use publicly-available datasets:

• https://github.com/akorba/Structured_Approach_Label_Ranking

• http://www.uco.es/grupos/ayrna/ucobigfiles/datasets-orreview.zip

• http://mulan.sourceforge.net/datasets-mlc.html

• https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

B.1 Ordinal regression

Table 3: Mean absolute error (MAE) of our losses with Euclidean projections. For context, the first
column indicates a simple baseline in which we always predict the median label calculated on the
train set. The second column indicates classical ridge regression where we used rounding to the
closest integer as decoding. Using the order simplex for both projections and decoding achieves the
best MAE on average.

Projection Baseline R Rk�1 [0, 1]k�1
OS

Decoding Round OS OS OS

ERA 1.61 1.24 1.19 1.19 1.19
ESL 1.12 0.34 0.37 0.30 0.30
LEV 0.71 0.41 0.48 0.46 0.46
SWD 0.63 0.47 0.41 0.42 0.42

Automobile 1.02 0.50 0.54 0.54 0.48
Balance-scale 0.91 0.29 0.10 0.10 0.10

Car 0.41 0.32 0.23 0.17 0.17
Contact-lenses 0.5 0.50 0.33 0.17 0.17

Eucalyptus 1.22 3.96 0.40 0.44 0.45
Newthyroid 0.29 0.09 0.11 0.02 0.02

Pasture 0.66 0.44 0.33 0.33 0.33
Squash-stored 0.54 0.38 0.54 0.62 0.62

Squash-unstored 0.54 0.46 0.31 0.31 0.15
Tae 0.69 0.66 0.66 0.66 0.66
Toy 0.97 0.96 0.97 0.97 0.97

Winequality-red 0.66 0.46 0.45 0.46 0.46

Average MAE 0.78 0.72 0.47 0.45 0.43

Average rank 4.75 2.9 2.1 1.6 1.5
OS: order simplex

B.2 Multilabel classification

Table 4: Multilabel dataset statistics

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
SIAM TMC Text 16,139 5,380 7,077 30,438 22 2.22

Yeast Micro-array 1,125 375 917 103 14 4.17

14

L = MAE = Mean Absolute Error

Averaged over 16 datasets

Multilabel classification
⌈𝔼[|Y |] + 𝕍[|Y |]⌉lower bound = 0 upper bound =

F1 score

Multilabel classification

Table 5: Accuracy comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 90.21 90.61 90.61 90.70
Cal500 85.78 85.76 85.78 85.80

Emotions 77.64 76.32 75.99 75.83
Mediamill 96.90 96.85 96.90 96.82

Scene 90.05 88.34 89.62 90.79
TMC 94.67 94.48 94.65 94.67
Yeast 79.75 79.70 79.75 79.71

K: budget polytope

Table 6: F1-score comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 38.87 37.75 39.21 39.43
Cal500 34.62 35.86 34.63 34.61

Emotions 56.60 51.73 53.98 62.57
Mediamill 56.22 55.35 56.22 54.53

Scene 61.06 50.33 58.95 69.01
TMC 60.45 58.61 60.37 60.25
Yeast 60.24 60.20 60.23 60.06

K: budget polytope

C Proofs

C.1 Strong convexity of Shannon negentropy over a bounded set (Proposition 2)

Let C ✓ Rd
+ and (u) = hu, log ui. For all u, v 2 C we have

 (u) = (v) +r (v)>(u� v) +
1

2
(u� v)>r2 (w)(u� v),

for some w 2 C in the line segment [u, v], and where r (u) = log u + 1, r2 (u) = diag(u�1).
Recall that is 1

� -strongly convex over C w.r.t. k · k if for all u, v 2 C

 (u) � (v) +r (v)>(u� v) +
1

2�
ku� vk

2
. (14)

Therefore, letting z = u� v, it suffices to show that for all u, v, w 2 C

�z
>
r

2 (w)z � kzk
2
1. (15)

Note that if there exists wi = 0, then (15) clearly holds. Therefore we can focus on showing (15) for
w > 0. This is indeed verified since by the Cauchy–Schwarz inequality

kz||
2
1 =

dX

i=1

|zi|
p
wi

p
wi

!2



dX

i=1

z
2
i

wi

dX

i=1

wi = z
>
r

2 (w)z ||w||1.

Therefore is 1
� -strongly convex over C w.r.t. k · k1, with � = supw02C ||w

0
||1.

C.2 Projection onto the budget polytope

Euclidean case. The Euclidean projection onto the budget polytope is

argmin
µ2Rk

1

2
kµ� ✓k

2 s.t. l  hµ,1i  u, 0  µ  1.

15

⌈𝔼[|Y |] + 𝕍[|Y |]⌉lower bound = 0 upper bound =

F1 score

Multilabel classification

Table 5: Accuracy comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 90.21 90.61 90.61 90.70
Cal500 85.78 85.76 85.78 85.80

Emotions 77.64 76.32 75.99 75.83
Mediamill 96.90 96.85 96.90 96.82

Scene 90.05 88.34 89.62 90.79
TMC 94.67 94.48 94.65 94.67
Yeast 79.75 79.70 79.75 79.71

K: budget polytope

Table 6: F1-score comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 38.87 37.75 39.21 39.43
Cal500 34.62 35.86 34.63 34.61

Emotions 56.60 51.73 53.98 62.57
Mediamill 56.22 55.35 56.22 54.53

Scene 61.06 50.33 58.95 69.01
TMC 60.45 58.61 60.37 60.25
Yeast 60.24 60.20 60.23 60.06

K: budget polytope

C Proofs

C.1 Strong convexity of Shannon negentropy over a bounded set (Proposition 2)

Let C ✓ Rd
+ and (u) = hu, log ui. For all u, v 2 C we have

 (u) = (v) +r (v)>(u� v) +
1

2
(u� v)>r2 (w)(u� v),

for some w 2 C in the line segment [u, v], and where r (u) = log u + 1, r2 (u) = diag(u�1).
Recall that is 1

� -strongly convex over C w.r.t. k · k if for all u, v 2 C

 (u) � (v) +r (v)>(u� v) +
1

2�
ku� vk

2
. (14)

Therefore, letting z = u� v, it suffices to show that for all u, v, w 2 C

�z
>
r

2 (w)z � kzk
2
1. (15)

Note that if there exists wi = 0, then (15) clearly holds. Therefore we can focus on showing (15) for
w > 0. This is indeed verified since by the Cauchy–Schwarz inequality

kz||
2
1 =

dX

i=1

|zi|
p
wi

p
wi

!2



dX

i=1

z
2
i

wi

dX

i=1

wi = z
>
r

2 (w)z ||w||1.

Therefore is 1
� -strongly convex over C w.r.t. k · k1, with � = supw02C ||w

0
||1.

C.2 Projection onto the budget polytope

Euclidean case. The Euclidean projection onto the budget polytope is

argmin
µ2Rk

1

2
kµ� ✓k

2 s.t. l  hµ,1i  u, 0  µ  1.

15

⌈𝔼[|Y |] + 𝕍[|Y |]⌉lower bound = 0 upper bound =

F1 score

Multilabel classification

Table 5: Accuracy comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 90.21 90.61 90.61 90.70
Cal500 85.78 85.76 85.78 85.80

Emotions 77.64 76.32 75.99 75.83
Mediamill 96.90 96.85 96.90 96.82

Scene 90.05 88.34 89.62 90.79
TMC 94.67 94.48 94.65 94.67
Yeast 79.75 79.70 79.75 79.71

K: budget polytope

Table 6: F1-score comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 38.87 37.75 39.21 39.43
Cal500 34.62 35.86 34.63 34.61

Emotions 56.60 51.73 53.98 62.57
Mediamill 56.22 55.35 56.22 54.53

Scene 61.06 50.33 58.95 69.01
TMC 60.45 58.61 60.37 60.25
Yeast 60.24 60.20 60.23 60.06

K: budget polytope

C Proofs

C.1 Strong convexity of Shannon negentropy over a bounded set (Proposition 2)

Let C ✓ Rd
+ and (u) = hu, log ui. For all u, v 2 C we have

 (u) = (v) +r (v)>(u� v) +
1

2
(u� v)>r2 (w)(u� v),

for some w 2 C in the line segment [u, v], and where r (u) = log u + 1, r2 (u) = diag(u�1).
Recall that is 1

� -strongly convex over C w.r.t. k · k if for all u, v 2 C

 (u) � (v) +r (v)>(u� v) +
1

2�
ku� vk

2
. (14)

Therefore, letting z = u� v, it suffices to show that for all u, v, w 2 C

�z
>
r

2 (w)z � kzk
2
1. (15)

Note that if there exists wi = 0, then (15) clearly holds. Therefore we can focus on showing (15) for
w > 0. This is indeed verified since by the Cauchy–Schwarz inequality

kz||
2
1 =

dX

i=1

|zi|
p
wi

p
wi

!2



dX

i=1

z
2
i

wi

dX

i=1

wi = z
>
r

2 (w)z ||w||1.

Therefore is 1
� -strongly convex over C w.r.t. k · k1, with � = supw02C ||w

0
||1.

C.2 Projection onto the budget polytope

Euclidean case. The Euclidean projection onto the budget polytope is

argmin
µ2Rk

1

2
kµ� ✓k

2 s.t. l  hµ,1i  u, 0  µ  1.

15

⌈𝔼[|Y |] + 𝕍[|Y |]⌉lower bound = 0 upper bound =

F1 score

Multilabel classification

Table 5: Accuracy comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 90.21 90.61 90.61 90.70
Cal500 85.78 85.76 85.78 85.80

Emotions 77.64 76.32 75.99 75.83
Mediamill 96.90 96.85 96.90 96.82

Scene 90.05 88.34 89.62 90.79
TMC 94.67 94.48 94.65 94.67
Yeast 79.75 79.70 79.75 79.71

K: budget polytope

Table 6: F1-score comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 38.87 37.75 39.21 39.43
Cal500 34.62 35.86 34.63 34.61

Emotions 56.60 51.73 53.98 62.57
Mediamill 56.22 55.35 56.22 54.53

Scene 61.06 50.33 58.95 69.01
TMC 60.45 58.61 60.37 60.25
Yeast 60.24 60.20 60.23 60.06

K: budget polytope

C Proofs

C.1 Strong convexity of Shannon negentropy over a bounded set (Proposition 2)

Let C ✓ Rd
+ and (u) = hu, log ui. For all u, v 2 C we have

 (u) = (v) +r (v)>(u� v) +
1

2
(u� v)>r2 (w)(u� v),

for some w 2 C in the line segment [u, v], and where r (u) = log u + 1, r2 (u) = diag(u�1).
Recall that is 1

� -strongly convex over C w.r.t. k · k if for all u, v 2 C

 (u) � (v) +r (v)>(u� v) +
1

2�
ku� vk

2
. (14)

Therefore, letting z = u� v, it suffices to show that for all u, v, w 2 C

�z
>
r

2 (w)z � kzk
2
1. (15)

Note that if there exists wi = 0, then (15) clearly holds. Therefore we can focus on showing (15) for
w > 0. This is indeed verified since by the Cauchy–Schwarz inequality

kz||
2
1 =

dX

i=1

|zi|
p
wi

p
wi

!2



dX

i=1

z
2
i

wi

dX

i=1

wi = z
>
r

2 (w)z ||w||1.

Therefore is 1
� -strongly convex over C w.r.t. k · k1, with � = supw02C ||w

0
||1.

C.2 Projection onto the budget polytope

Euclidean case. The Euclidean projection onto the budget polytope is

argmin
µ2Rk

1

2
kµ� ✓k

2 s.t. l  hµ,1i  u, 0  µ  1.

15

⌈𝔼[|Y |] + 𝕍[|Y |]⌉lower bound = 0 upper bound =

F1 score

Multilabel classification

Table 5: Accuracy comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 90.21 90.61 90.61 90.70
Cal500 85.78 85.76 85.78 85.80

Emotions 77.64 76.32 75.99 75.83
Mediamill 96.90 96.85 96.90 96.82

Scene 90.05 88.34 89.62 90.79
TMC 94.67 94.48 94.65 94.67
Yeast 79.75 79.70 79.75 79.71

K: budget polytope

Table 6: F1-score comparison on multilabel classification, using Euclidean projections.

Projection [0, 1]k Rk [0, 1]k K

Decoding [0, 1]k K K K

Birds 38.87 37.75 39.21 39.43
Cal500 34.62 35.86 34.63 34.61

Emotions 56.60 51.73 53.98 62.57
Mediamill 56.22 55.35 56.22 54.53

Scene 61.06 50.33 58.95 69.01
TMC 60.45 58.61 60.37 60.25
Yeast 60.24 60.20 60.23 60.06

K: budget polytope

C Proofs

C.1 Strong convexity of Shannon negentropy over a bounded set (Proposition 2)

Let C ✓ Rd
+ and (u) = hu, log ui. For all u, v 2 C we have

 (u) = (v) +r (v)>(u� v) +
1

2
(u� v)>r2 (w)(u� v),

for some w 2 C in the line segment [u, v], and where r (u) = log u + 1, r2 (u) = diag(u�1).
Recall that is 1

� -strongly convex over C w.r.t. k · k if for all u, v 2 C

 (u) � (v) +r (v)>(u� v) +
1

2�
ku� vk

2
. (14)

Therefore, letting z = u� v, it suffices to show that for all u, v, w 2 C

�z
>
r

2 (w)z � kzk
2
1. (15)

Note that if there exists wi = 0, then (15) clearly holds. Therefore we can focus on showing (15) for
w > 0. This is indeed verified since by the Cauchy–Schwarz inequality

kz||
2
1 =

dX

i=1

|zi|
p
wi

p
wi

!2



dX

i=1

z
2
i

wi

dX

i=1

wi = z
>
r

2 (w)z ||w||1.

Therefore is 1
� -strongly convex over C w.r.t. k · k1, with � = supw02C ||w

0
||1.

C.2 Projection onto the budget polytope

Euclidean case. The Euclidean projection onto the budget polytope is

argmin
µ2Rk

1

2
kµ� ✓k

2 s.t. l  hµ,1i  u, 0  µ  1.

15

⌈𝔼[|Y |] + 𝕍[|Y |]⌉lower bound = 0 upper bound =

F1 score

Conclusion

Conclusion

•We proposed a generic framework for deriving a loss  
from the projection onto a convex set 

Conclusion

•We proposed a generic framework for deriving a loss  
from the projection onto a convex set 

• If its projection is affordable,  
the marginal polytope is the best convex set 

Conclusion

•We proposed a generic framework for deriving a loss  
from the projection onto a convex set 

• If its projection is affordable,  
the marginal polytope is the best convex set 

• If not, any convex superset with cheaper  
projection can be used (e.g., unit cube)　

