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Outline

• Non-negative matrix factorization (NMF)

• Optimization algorithms

• Passive-aggressive algorithms for NMF
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Non-negative matrix factorization (NMF)
Given observed matrix R ∈ Rn×d

+ , find matrices P ∈ Rn×m
+

and Q ∈ Rm×d
+ such that

R ≈ PQ
r1,1 · · · r1,d

... . . . ...
rn,1 · · · rn,d


︸ ︷︷ ︸

n×d

≈


p1,1 · · · p1,m

... . . . ...
pn,1 · · · pn,m


︸ ︷︷ ︸

n×m

×


q1,1 · · · q1,d

... . . . ...
qm,1 · · · qm,d


︸ ︷︷ ︸

m×d

m is a user-given hyper-parameter

PQ is called a low-rank approximation of R
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Examples of non-negative data

The matrix R could contain...

• Number of word occurrences in text documents

• Pixel intensities in images

• Ratings given by users to movies

• Magnitude spectrogram of an audio signal

• etc...
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Why imposing non-negativity of P and Q?

• Natural assumption if R is non-negative

• Each row of R is approximated by a strictly additive
combination of factors / bases / atoms

[ru,1, · · · , ru,d ] ≈
m∑

k=1
pu,k︸ ︷︷ ︸

weight / activation

× [qk,1, · · · , qk,d ]︸ ︷︷ ︸
factor / basis / atom

• P and Q tend to be sparse (have many zeros)
⇒ easy-to-interpret, part-based solution
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Application 1: document analysis

• R is a collection of n text documents

• Each row [ru,1, · · · , ru,d ] of R corresponds to a document
represented as a bag of words

• ru,i is the number of occurrences of word i in document u

• Factors [qk,1, . . . , qk,d ] in Q correspond to “topics”

• pu,k is the weight of topic k in document u
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Application 1: document analysis
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.

© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 401 | 21 OCTOBER 1999 | www.nature.com 791

parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.
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parts are likely to occur together. This results in complex depen-
dencies between the hidden variables that cannot be captured by
algorithms that assume independence in the encodings. An alter-
native application of ICA is to transform the PCA basis images, to
make the images rather than the encodings as statistically indepen-
dent as possible18. This results in a basis that is non-global; however,
in this representation all the basis images are used in cancelling
combinations to represent an individual face, and thus the encod-
ings are not sparse. In contrast, the NMF representation contains
both a basis and encoding that are naturally sparse, in that many of
the components are exactly equal to zero. Sparseness in both the
basis and encodings is crucial for a parts-based representation.

The algorithm of Fig. 2 performs both learning and inference
simultaneously. That is, it both learns a set of basis images and
infers values for the hidden variables from the visible variables.
Although the generative model of Fig. 3 is linear, the inference
computation is nonlinear owing to the non-negativity constraints.
The computation is similar to maximum likelihood reconstruction
in emission tomography19, and deconvolution of blurred astro-
nomical images20,21.

According to the generative model of Fig. 3, visible variables are
generated from hidden variables by a network containing excitatory
connections. A neural network that infers the hidden from the
visible variables requires the addition of inhibitory feedback con-
nections. NMF learning is then implemented through plasticity in
the synaptic connections. A full discussion of such a network is
beyond the scope of this letter. Here we only point out the

consequence of the non-negativity constraints, which is that
synapses are either excitatory or inhibitory, but do not change
sign. Furthermore, the non-negativity of the hidden and visible
variables corresponds to the physiological fact that the firing rates of
neurons cannot be negative. We propose that the one-sided con-
straints on neural activity and synaptic strengths in the brain may be
important for developing sparsely distributed, parts-based repre-
sentations for perception. !

Methods
The facial images used in Fig. 1 consisted of frontal views hand-aligned in a 19 ! 19 grid.
For each image, the greyscale intensities were first linearly scaled so that the pixel mean and
standard deviation were equal to 0.25, and then clipped to the range [0,1]. NMF was
performed with the iterative algorithm described in Fig. 2, starting with random initial
conditions for W and H. The algorithm was mostly converged after less than 50 iterations;
the results shown are after 500 iterations, which took a few hours of computation time on a
Pentium II computer. PCA was done by diagonalizing the matrix VVT. The 49 eigenvectors
with the largest eigenvalues are displayed. VQ was done via the k-means algorithm,
starting from random initial conditions for W and H.

In the semantic analysis application of Fig. 4, the vocabulary was defined as the 15,276
most frequent words in the database of Grolier encyclopedia articles, after removal of the
430 most common words, such as ‘the’ and ‘and’. Because most words appear in relatively
few articles, the word count matrix V is extremely sparse, which speeds up the algorithm.
The results shown are after the update rules of Fig. 2 were iterated 50 times starting from
random initial conditions for W and H.
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Figure 4 Non-negative matrix factorization (NMF) discovers semantic features of
m ¼ 30;991 articles from the Grolier encyclopedia. For each word in a vocabulary of size
n ¼ 15;276, the number of occurrences was counted in each article and used to form the
15;276 ! 30;991 matrix V. Each column of V contained the word counts for a particular
article, whereas each row of V contained the counts of a particular word in different
articles. The matrix was approximately factorized into the form WH using the algorithm
described in Fig. 2. Upper left, four of the r ¼ 200 semantic features (columns of W). As
they are very high-dimensional vectors, each semantic feature is represented by a list of
the eight words with highest frequency in that feature. The darkness of the text indicates
the relative frequency of each word within a feature. Right, the eight most frequent words
and their counts in the encyclopedia entry on the ‘Constitution of the United States’. This
word count vector was approximated by a superposition that gave high weight to the
upper two semantic features, and none to the lower two, as shown by the four shaded
squares in the middle indicating the activities of H. The bottom of the figure exhibits the
two semantic features containing ‘lead’ with high frequencies. Judging from the other
words in the features, two different meanings of ‘lead’ are differentiated by NMF.

Using n = 30, 991 articles from Grolier encyclopedia,
vocabulary size d = 15, 276 and number of topics m = 200
[Lee & Seung, 99]
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Application 2: image processing

• R is a collection of n images or image patches

• Each row [ru,1, · · · , ru,d ] of R corresponds to an image or
image patch

• ru,i is the pixel intensity of pixel i in image u

• Factors [qk,1, . . . , qk,d ] in Q correspond to image “parts”

• pu,k is the weight of part k in image u
⇒ can be used as high-level feature descriptor
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

© 1999 Macmillan Magazines Ltd

letters to nature

NATURE | VOL 401 | 21 OCTOBER 1999 | www.nature.com 789

PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function
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n
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½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
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faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
n

i¼1
!

m

m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
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faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.
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PCA constrains the columns of W to be orthonormal and the
rows of H to be orthogonal to each other. This relaxes the unary
constraint of VQ, allowing a distributed representation in which
each face is approximated by a linear combination of all the basis
images, or eigenfaces6. A distributed encoding of a particular face is
shown next to the eigenfaces in Fig. 1. Although eigenfaces have a
statistical interpretation as the directions of largest variance, many
of them do not have an obvious visual interpretation. This is
because PCA allows the entries of W and H to be of arbitrary sign.
As the eigenfaces are used in linear combinations that generally
involve complex cancellations between positive and negative
numbers, many individual eigenfaces lack intuitive meaning.

NMF does not allow negative entries in the matrix factors W and
H. Unlike the unary constraint of VQ, these non-negativity con-
straints permit the combination of multiple basis images to repre-
sent a face. But only additive combinations are allowed, because the
non-zero elements of W and H are all positive. In contrast to PCA,
no subtractions can occur. For these reasons, the non-negativity
constraints are compatible with the intuitive notion of combining
parts to form a whole, which is how NMF learns a parts-based
representation.

As can be seen from Fig. 1, the NMF basis and encodings contain
a large fraction of vanishing coefficients, so both the basis images
and image encodings are sparse. The basis images are sparse because
they are non-global and contain several versions of mouths, noses
and other facial parts, where the various versions are in different
locations or forms. The variability of a whole face is generated by
combining these different parts. Although all parts are used by at

least one face, any given face does not use all the available parts. This
results in a sparsely distributed image encoding, in contrast to the
unary encoding of VQ and the fully distributed PCA encoding7–9.

We implemented NMF with the update rules for Wand H given in
Fig. 2. Iteration of these update rules converges to a local maximum
of the objective function

F ¼ !
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m¼1

½VimlogðWHÞim ! ðWHÞimÿ ð2Þ

subject to the non-negativity constraints described above. This
objective function can be derived by interpreting NMF as a
method for constructing a probabilistic model of image generation.
In this model, an image pixel Vim is generated by adding Poisson
noise to the product (WH)im. The objective function in equation (2)
is then related to the likelihood of generating the images in V from
the basis W and encodings H.

The exact form of the objective function is not as crucial as the
non-negativity constraints for the success of NMF in learning parts.
A squared error objective function can be optimized with update
rules for W and H different from those in Fig. 2 (refs 10, 11). These
update rules yield results similar to those shown in Fig. 1, but have
the technical disadvantage of requiring the adjustment of a parameter
controlling the learning rate. This parameter is generally adjusted
through trial and error, which can be a time-consuming process if
the matrix V is very large. Therefore, the update rules described in
Fig. 2 may be advantageous for applications involving large data-
bases.
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Original Figure 1 Non-negative matrix factorization (NMF) learns a parts-based representation of
faces, whereas vector quantization (VQ) and principal components analysis (PCA) learn
holistic representations. The three learning methods were applied to a database of
m ¼ 2;429 facial images, each consisting of n ¼ 19 " 19 pixels, and constituting an
n " m matrix V. All three find approximate factorizations of the form V " WH, but with
three different types of constraints on W and H, as described more fully in the main text
and methods. As shown in the 7 " 7 montages, each method has learned a set of
r ¼ 49 basis images. Positive values are illustrated with black pixels and negative values
with red pixels. A particular instance of a face, shown at top right, is approximately
represented by a linear superposition of basis images. The coefficients of the linear
superposition are shown next to each montage, in a 7 " 7 grid, and the resulting
superpositions are shown on the other side of the equality sign. Unlike VQ and PCA, NMF
learns to represent faces with a set of basis images resembling parts of faces.

Using n = 2, 429 face images, d = 19× 19 pixels and
m = 49 basis images [Lee & Seung, 99]
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Application 3: recommendation systems
• R is a partially observed rating matrix

2.1. Framework 11

For instance, in the case of movies, Alice might have given the rating of 1 (out of 5)
to the movie Avatar. Note however that r can be any arbitrary function.

What makes the recommendation problem so difficult is that r is not defined on
the whole U ⇥ I space, but only on some subset of it. In other words, the challenge
behind making recommendations is to extrapolate r to the rest of that space. To
make things worse, the size of the subspace where r is known is usually very small
in comparison with the size of the unknown region. Yet, recommendations should
be useful even when the system includes a small number of examples. In addition,
the size of U and I might range from a few hundreds of elements to millions in some
applications. For scalability reasons, this shouldn’t be lost of sight.
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Alice 1 2 ? 5 4
Bob 3 ? 2 5 3 R(u)
Clint ? ? ? ? 2
Dave 5 ? 4 4 5
Ethan 4 ? 1 1 ?

R(u,i) R(i)

 Figure 2.1: Example of rating matrix R

In case of ratings, r can be represented as a matrix R, as depicted in figure 2.1.
In that case, the recommendation problem boils down to predict unknown values
of R. The set of ratings given by some user u will be represented by an incomplete
array R(u), while the rating of u on some item i will be denoted R(u, i). Note that
this value may be unknown. The subset of items i 2 I actually rated by u is I(u).
The number of items in that set is denoted |I(u)|. Similarly, the set of ratings given
to some item i will be represented by an incomplete array R(i). The subset of users
u 2 U which have actually rated i is noted U(i). The number of items in that set is

ru,i11 / 44



Application 3: recommendation systems

• Users and movies are projected in a common
m-dimensional latent space [Louppe, 2010]2.3. Popular algorithms 21

Male-orientedFemale-oriented

Comedy

Drama

Alice

Ed

Bob

Clint

Figure 2.4: The latent factor approach. Movies and users are projected into a space whose
dimensions measure the characteristics of movies and user’s interest in these
characteristics. In this simplified example, movies and users are projected along
two axis. The first axis corresponds to whether a movie is more female- or male-
oriented while the second corresponds to whether a movie is more a drama or
a comedy. It also shows where users lie in that space. From this example, one
might say that Alice would love Pride and Prejudice while she’d hate Beverly
Hills Cop. Note that some movies, such a SiCKO, or some users, such like Bob,
might be seen as fairly neutral with respect to these dimensions

item interactions are modelled as inner products in that space [37]. In other words,
each user u is associated to a vector of factors P (u) 2 Rf while each item i is asso-
ciated to a vector of factors Q(i) 2 Rf . The elements of Q(i) measure the level of
expression of the corresponding features in item i while the elements of P (u) mea-
sure the interest of u in these characteristics. The dot product of these two vectors
represents the overall interest of user u in item i, which is nothing else than R(u, i):

R(u, i) = P (u)T Q(i) (2.13)

In that context, learning a latent factor model boils down to search for the best
mapping between the user-item space and Rf . In matrix terms, P (u) and Q(i) can
respectively be aggregated into a matrix P of format |U | ⇥ f and a matrix Q of
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Application 3: recommendation systems

• Inner product in this space can be used to predict
missing values

ru,i ≈ [pu,1, . . . , pu,m]︸ ︷︷ ︸
pu


q1,i

...
qm,i


︸ ︷︷ ︸

q i
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Optimization algorithms
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Formulating an optimization problem

How do we find P ∈ Rn×m
+ and Q ∈ Rm×d

+ such that

R ≈ PQ

?
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Formulating an optimization problem
Using Euclidean distance:

minimize
P≥0,Q≥0

F (P,Q) =
1
2‖R − PQ‖2

︸ ︷︷ ︸
error term

+
λ

2

(
‖P‖2 + ‖Q‖2

)
︸ ︷︷ ︸

regularization term

Non-convex in P and Q jointly
Convex in P or Q separately

⇒ we can alternate between updating P and Q
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Formulating an optimization problem
Using generalized KL divergence, a.k.a. I-divergence:

minimize
P≥0,Q≥0

F (P,Q) = DI(R||PQ)︸ ︷︷ ︸
error term

+
λ

2

(
‖P‖2 + ‖Q‖2

)
︸ ︷︷ ︸

regularization term

where DI(A||B) =
∑
u,i

Au,i log(
Au,i

Bu,i
)− Au,i + Bu,i .

When λ = 0, equivalent to MLE solution assuming
ru,i ∼ Poisson((PQ)u,i) [Févotte, 2009]
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Two kinds of sparsity
• Sparsity of non-zero entries

R =


1 0 3
0 2 0
0 0 1


• Sparsity of observed values

R =


1 ? 3
? 2 ?
? ? 1


• These two settings require different algorithm design

and implementation
18 / 44



Multiplicative method

• Euclidean distance, no regularization [Lee & Seung,
2001]

Pu,k ← Pu,k
(RQT)u,k

(PQQT )u,k
Qk,i ← Qk,i

(PTR)k,i

(PT PQ)k,i

• Similar updates for generalized KL divergence case

• Guarantees that the objective is non-increasing... [Lee
& Seung, 2001]

• ...but not convergence [Lin, 2007]
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Projected gradient method

• Gradient step followed by a truncation [Lin, 2007]

P ← max
(
P − η∇PF (P,Q), 0

)
Q ← max

(
Q − η∇QF (P,Q), 0

)

• η can be fixed to a small constant or adjusted by line
search

• Converges to a stationary point of F
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Projected stochastic gradient method

• Objective with missing values:

minimize
P≥0,Q≥0

F (P,Q) =
1

2|Ω|
∑

(u,i)∈Ω

(r u,i − pu · q i)
2+

λ

2

(
‖P‖2 + ‖Q‖2

)

where Ω is the set of observed values
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Projected stochastic gradient method
• Similar to projected gradient method but use a

stochastic approximation of the gradient

pu ← max
(
pu − η∇

(u,k)
P F (P,Q), 0

)
q i ← max

(
q i − η∇

(k,i)
Q F (P,Q), 0

)
• Slow convergence in terms of number of iterations...

• ...but very low iteration cost
⇒ very fast in practice ,

• However, quite sensitive to the choice of η /
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Coordinate descent

• Update a single variable at a time [Hsieh & Dhillon,
2011, Yu et al. 2012]

Pu,k ← Pu,k + argmin
δ

F (P + Eu,kδ,Q) or

Qk,i ← Qk,i + argmin
δ

F (P,Q + Ek,iδ)

where Eu,k is a matrix with all elements zero except the
(u, k) element which equals one

• Closed-form update in the Euclidean distance case

• My personal favorite in the batch setting ,
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Passive-aggressive
algorithms for NMF
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Online algorithms

• In real-world applications, missing entries in R may be
observed in real time
◦ A user gave a rating to a movie

◦ A user clicked on a link

• Ideally, P and Q should be updated in real time to
reflect the knowledge that we gained from the new entry
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Online algorithms

1. Initialize P and Q randomly

q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3



p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
p3,1 p3,2 p3,3




? ? ?
? ? ?
? ? ?
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Online algorithms

2. An element of R is revealed
(e.g., a user rated a movie)


q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3



p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
p3,1 p3,2 p3,3




? ? ?
? ? 3
? ? ?
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Online algorithms

3. Update corresponding row of P and column of Q

q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3



p1,1 p1,2 p1,3
p2,1 p2,2 p2,3
p3,1 p3,2 p3,3




? ? ?
? ? 3
? ? ?
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Large-scale learning using online
algorithms

• Online algorithms can also be used in a large-scale batch
setting

• Online to batch conversion: make several passes over the
dataset

• Advantages of online algorithms
◦ Low iteration cost

◦ Low memory footprint

◦ Ease of implementation
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Passive-aggressive algorithms for NMF

• Passive-aggressive [Crammer et al., 2006] are online
algorithms for classification and regression

• Very popular in the Natural Language Processing (NLP)
community

• We propose passive-aggressive algorithms for NMF
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Passive-aggressive algorithms for NMF

• On iteration t, rut ,it is revealed

• We propose to update put and q it by

pt+1
ut

= argmin
p∈Rm

+

1
2‖p − pt

ut
‖2 s.t. |p · qt

it − rut ,it | = 0

qt+1
it = argmin

q∈Rm
+

1
2‖q − qt

it‖
2 s.t. |pt

ut
· q − rut ,it | = 0

• Conservative (do not change model too much) and
corrective (satisfy constraint) update
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Passive-aggressive algorithms for NMF

Since the two problems are the same, we can simplify
notation

w = p or q (variable)
w t+1 = pt+1

ut
or qt+1

it (solution)
w t = pt

ut
or qt

it (current iterate)
x t = qt

it or pt
ut

(input)
yt = rut ,it (target)
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Passive-aggressive algorithms for NMF

• Allow to not perfectly fit the target

w t+1 = argmin
w∈Rm

+

1
2‖w −w t‖2 s.t. |w · x t − yt | ≤ ε

• If |w t · x t − yt | ≤ ε, the algorithm is “passive”, i.e.,
w t+1 = w t

• Otherwise, it is “aggressive”: the model is updated
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Passive-aggressive algorithms for NMF

• The previous update changes the model as much as
needed to satisfy the constraint ⇒ potential overfitting

• Introduce a slack variable to allow some error

w t+1, ξ
∗ = argmin

w∈Rm
+, ξ∈R+

1
2‖w −w t‖2 + Cξ

s.t. |w · x t − yt | ≤ ε + ξ,

• C > 0 controls the trade-off between being conservative
and corrective
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Passive-aggressive algorithms for NMF

• The solution is of the form

w t+1 = max
(
w t + (κ− θ)x t , 0

)

where κ and θ are non-negative scalars
• In our AISTATS paper, we present three O(m) methods

for finding κ and θ [Blondel et al., 2014]
◦ An exact method

◦ A bisection method

◦ An approximate update method
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Passive-aggressive algorithms for NMF

Difference between the effect of ε and C
• Increasing ε increases the number of passive updates
⇒ trades some error for faster training

• Reducing C reduces update aggressiveness, since
0 ≤ κ ≤ C and 0 ≤ θ ≤ C
⇒ reduces overfitting
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NMF algorithm comparison

Solver Iteration cost Online Hyper-parameter
Multiplicative / / ,

Projected grad. / / ,
Projected stochastic grad. , , /

Coordinate descent , / ,
Passive-Aggressive , , ,

In the setting with missing values.
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Experimental results

• Datasets used

Dataset Users Items Ratings
Movielens10M 69,878 10,677 10,000,054

Netflix 480,189 17,770 100,480,507
Yahoo-Music 1,000,990 624,961 252,800,275

• We split ratings into 4/5 for training and 1/5 for testing

• The task is to predict ratings in the test set

38 / 44



Convergence results
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Results w.r.t. test data on the Movielens10M dataset
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Comparison with other solvers
Dataset Passes NN-PA-I SGD CD

Movielens10M

1 Error 23.75 ± 0.05 31.58 ± 1.91 34.59 ± 0.03
Time 3.24 ± 0.01 2.68 ± 0.01 3.88 ± 0.01

3 Error 20.91 ± 0.04 25.27 ± 0.02 21.38 ± 0.05
Time 10.28 ± 0.01 8.09 ± 0.08 12.73 ± 0.01

5 Error 20.61 ± 0.01 24.54 ± 0.02 20.47 ± 0.01
Time 17.40 ± 0.06 13.44 ± 0.03 22.57 ± 0.01

Netflix

1 Error 22.32 ± 0.01 27.29 ± 0.81 34.31 ± 0.01
Time 34.29 ± 0.10 27.68 ± 0.41 36.58 ± 0.37

3 Error 20.01 ± 0.01 24.28 ± 0.01 21.60 ± 0.01
Time 109.53 ± 2.97 82.98 ± 0.14 153.46 ± 0.72

5 Error 19.64 ± 0.01 23.70 ± 0.14 19.37 ± 0.01
Time 181.43 ± 0.22 133.59 ± 0.60 270.28 ± 0.49

Yahoo-Music

1 Error 50.64 ± 0.33 52.52 ± 0.68 57.08 ± 0.28
Time 114.16 ± 0.05 96.89 ± 0.04 170.38 ± 0.06

3 Error 38.44 ± 0.16 44.63 ± 1.24 45.32 ± 0.23
Time 335.13 ± 0.34 291.59 ± 0.24 468.86 ± 0.69

5 Error 36.26 ± 0.09 41.62 ± 1.15 37.97 ± 0.21
Time 576.08 ± 0.73 475.86 ± 2.90 787.57 ± 1.68
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Learned topic model
Topic 1 Topic 2 Topic 3
Scream Dumb & Dumber Pocahontas

(Comedy, Horror, Thriller) (Comedy) (Animation, Children, Musical, ...)
The Fugitive Ace Ventura: Pet Detective Aladdin

(Thriller) (Comedy) (Adventure, Animation, Children, ...)
The Blair Witch Project Five Corners Merry Christmas Mr. Lawrence

(Horror, Thriller) (Drama) (Drama, War)
Deep Cover Ace Ventura: When Nature Calls Toy Story

(Action, Crime, Thriller) (Comedy) (Adventure, Animation, Children, ...)
The Plague of the Zombies Jump Tomorrow The Sword in the Stone

(Horror) (Comedy, Drama, Romance) (Animation, Children, Fantasy, ...)

Topic 4 Topic 5 Topic 6
Belle de jour Four Weddings and a Funeral Terminator 2: Judgment Day

(Drama) (Comedy, Romance) (Action, Sci-Fi)
Jack the Bear The Birdcage Braveheart

(Comedy, Drama) (Comedy) (Action, Drama, War)
The Cabinet of Dr. Caligari Shakespeare in Love Aliens
(Crime, Drama, Fantasy, ...) (Comedy, Drama, Romance) (Action, Horror, Sci-Fi)

M*A*S*H Henri V Mortal Kombat
(Comedy, Drama, War) (Drama, War) (Action, Adventure, Fantasy)

Bed of Roses Three Men and a Baby Congo
(Drama, Romance) (Comedy) (Action, Adventure, Mystery, ...)

6 out of 20 topics extracted from the Movielens10M
dataset41 / 44



Conclusion

• NMF is a widely-used method in machine learning and
signal processing

• Its main applications are high-level feature
extraction, denoising and matrix completion

• We proposed online passive-aggressive algorithms for the
setting with missing values
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