Recent advances on polynomial neural

networks and factorization machines

Mathieu Blondel

NTT Communication Science Laboratories
Kyoto, Japan

2017/2/23

Neural networks

kxd
% = o(hTx), s € [K] H e R™
hi1 v € R¥

Input layer Hidden layer Output layer

Traditional neural networks

Sigmoid Relu

o(u) = o(u) = max(u,0)

Polynomial networks (Livni et al. 2014)

Square

And more generally, o,(u) =

4

100

u

Cubic

50 /
“a

-2 0 2

™ for some degree m

Today's topics

k
Ven =D Vs Um(hgx)
s=1

* Properties of polynomial networks

o Ability to represent polynomials efficiently, universality

e How to train polynomial networks

o Can we do better than just gradient descent?

e A very related model: factorization machines

5

Efficient representation of polynomials (1/2)

» A monomial of degree m is a function f: RY — R s.t.

f(x) =11 x. = xi.x; - - - X, Vjied{l,...,d}"
t=1

* A homogeneous polynomial of degree m is a function
f: RY > Rst.

)= h1lx vieRr
J t=

The cardinality of 3 is (i) i.e., O(d™) parameters!

6

Efficient representation of polynomials (2/2)

e |t is easy to see that

om(BIX) = (HTX)" = 3 T heyx,

t=1

e Plugging this in ypy, we obtain
) m _ k m
yen =206 11 x5, with Gj:= > vs [] hs,
j =1 s=1 t=1

e Factored weights: only kd + k parameters
instead of O(d™)!

7

Inhomogeneous polynomials

¢ In practice, we would like to use monomials of degree 1
up to m, not just m

e By the binomial theorem

om([h A" [x 1])
:Um(th + ’7)

:(Z’) om(h*x)7° + (T)am_l(thhl +- (T)Uo(hTX)Vm

We can simply augment the data with an all-one feature

8

Relation with kernel methods

om(h"x 4+) = (h"x +~)™ is just the usual polynomial kernel

Kernel methods

n
Jm = i Om(X X +7)
i=1

fix the learn the
hidden layer “support vectors”

2-layer polynomial networks
K

Jpn = sz om(hix +7)

s=1

Universality of polynomial networks

« Polynomials can approximate any function f: RY — R
arbitrarily well on a compact subset of R
(Stone-Weierstrass theorem)

o With sufficiently many parameters, PNs can approximate
any polynomial arbitrarily well

* And so PNs can approximate any function

e Livni et al. (2014) bound how many layers and units are
needed for polynomial networks to approximate
sigmoidal networks

10

Learning PNs: two points of view

e Convex neural networks view (Bengio et al. 2005, Bach 2014)

o Conditional gradient (a.k.a. Frank-Wolfe) algorithm

e Low-rank matrix / tensor decomposition view
(Blondel et al. 2016)

o Alternating minimization of convex problems

* Both have theoretical guarantees for square activations
o(u) = u?

11

Convex Neural Networks (1/2)

Key idea: learn a sparse linear model in an infinite-dimensional space

% = o(h"x)

12 Infinite features Output

Convex Neural Networks (2/2)

 Objective (assume f is smooth with constant 3)

=1 |hlz<1

min f(v) = ig (y,-, > h o(th,-)) st. ||v|li <7

» Conditional gradient (a.k.a. Frank-Wolfe) training

Infinite linear model view Practical implementation
h* = argmax |Vuf(v)| h* = argmax |Vuf(v)|
[h2<1 [hl2<1
n = —7sign (Vyf(v)) H <~ [H h*]
v+ (L=7)v+ ey v [(1—=7)v]

13

Case of square activation (1/2)

 For Relu activations, finding h* (hidden unit selection
problem) is NP-hard (Bach, 2014)

o When using o»(u) = u?, we can find the optimal h* since
nf(v) = ;51(%,%)02(th0
s (zl (yi. y,-)x,-x,.T) h
=: hTI\;l_h

h* = argmax |h" Mh| is the dominant eigenvector of M
(PSS!
14

Case of square activation (2/2)

 Standard analysis of the conditional gradient algorithm
guarantees that we can obtain an e-accurate solution in

7_275

€

O(——) iterations

* Translates into a bound on #hidden units since

#hidden units < #iterations

15

Case of factorization machines (FMs)

* FMs are a closely-related model to deal with a large
number of pairwise feature interactions (Rendle 2010)

* One can get FMs by replacing (Blondel et al. 2016)
O'Q(hTX) = (hTX)2 = Z hJXJhJ'XJ'
JJ'
with the ANOVA kernel
a(h, x) = hixjhyxy

i<J

FMs are a neural network with a different activation
16

Case of cubic activation

3

e When using o3(u) = u°, we now need to solve

argmax [(M,h® h® h)|
[h[l2<1

where M =Y V(y;, i)x; @ x; @ x; € RY>dxd
i=1

e Can no longer be solved globally unless there exists an
orthogonal decomposition of M

17

Recent works using conditional gradient like approach

o, 03 a refitting regularized

Livni et. al (2014) v V v
Blondel et. al (2015) Vv v v v
Yamada et. al (2015) v v

o refitting: whether v is refitted over its current support
after adding a new hidden unit

 regularized: whether v is regularized by the /; norm

18

Multi-linearity property of ANOVA activations

k
o Let)A/FM = Z Vsag(hs, X)

s=1

o Then there exist aj € R¥ and Bi € Rs.t.

Jm=ajhj+p; Vjel[d

i.e., rm is affine in h.; given everything else fixed

o This implies that ¢(y, yru) is convex in h.; for any
convex loss function ¢

19

Objective surface w.r.t. one column of H, h.;

Square activation (07) Second-order anova activation (az)

20

Low-rank matrix decomposition view

* We can view PNs / FMs as learning a low-rank matrix

k
)’7PN - 231 Vs Ug(h;Fx) = xT Wx = Z Wj,j’Xij’
5= Jo

k
Vem = Y vs ao(hs, x) = > wjpx;x;p
s=1 i<

k

where W =) vshshsT e RI*9
s=1

21

Link with nuclear norm (1/2)

 Nuclear norm (a.k.a. trace norm) of a symmetric matrix

W = l[v]:
rank(W)
where W = Y v,h;h! (eigendecomposition of W)
s=1

» This gives us a link between the convex neural network
view and the matrix decomposition view

22

Link with nuclear norm (2/2)

i=1 h: |[h],<1

min > ¢ (y,-, > va Uz(thi)) st [vli <7

0

Cly,, x: Wx;) st. |[|W]], <
Wrgﬂl%gde (vi, xi Wx;) st [[W]. <7

Can be solved using projected gradient descent

23

Bi-convex formulation

» We consider the change of variable W = UVT

e and use the well-known variational formulation
1 2 2 _ T
IW\. = i SIUIR+ [VI?) st W = UV
* which leads us (Blondel et al. 2016) to

Jmin, 3 6 xT UV) st (U + V) <
VGR"X"I_

All local minima are global provided that k > rank(W™)

24

Case of cubic activation (1/2)

e We can view PNs as learning a low-rank tensor

k
v = vs o3(hlx) = (W, x @ x ® x)
s=1
- Z Wi j2js X %2 Xj3
J1:J2:J3

W e Rdxdxd hi®h; @ h; hy ® ho ® hy

25

Case of cubic activation (2/2)

* We can decompose W into 3 matrices v, U, y®
(objective is block-wise convex)

o I}Io more link with nuclear norm but we can use
2(||U(1)H2 + | UP|12 + [UP|?) < 7 as a heuristic

regularizer

* No global minimum guarantee anymore but alternating
minimization works well in practice

26

Case of higher-order FMs

» Higher-order FMs correspond to using the ANOVA kernel
of degree m as activation

am(h7 X) = Z hjlle e hijjm

<<
 Naive computation takes O(d™) time

* We proposed dynamic programming algorithms to
compute both the ANOVA kernel and its gradient in
O(dm) time (Blondel et al. 2016)

27

All-subsets activation

* The all-subsets kernel (Shawe-Taylor and Cristianini 2004)

S(h,x) = f[(l + hix;)

J
e Corresponds to summing ag to ay

S(h,x) = zd: ar(h,x) =1+ h"x+ zd: a(h, x)

t=0 t=2

Hence uses all possible d-combinations of features

» Both the kernel and its gradient can be computed in
O(d) time

28

Some other recent related works

e Chen and Manning 2014: use cubic activation on the
task of dependency parsing and train with Adagrad

» Stoudenmire and Schwab (2016), Novikov et al (2016):
replace CP decomposition by tensor networks (a.k.a.
tensor train) and use all d-combinations

 Gautier et al (2016): develop a training algorithm for PN
with global optimality guarantee under the following
restrictions

o Impose non-negativity on parameter weights

o Need one hyper-parameter per hidden unit

29

Experimental results

Solver comparison (1/2)

Goal: check whether optimizing the bi-convex formulation
is advantageous compared to direct formulation

e Bi-convex formulation (PN case)

A
Umﬂépkaﬁ(y,, x; UVixi) + S(1UIFP+ [V]P?)
V€Rd><k

o Direct formulation (PN case)

usin. 2 S Uy 3 v x)) + 3 3wl
veRX

31

Solver comparison (2/2)

10°- 10° -

j = c

K=l S

© 9]

=3 =)

2 ®

o o

) 3

© o

> >

Q 107 - - g 107

g g

2 9

2 —— Bi-convex (CD) 2

2 — Direct (L-BFGS) g

= — Direct (SGD) ©

& —— Direct (CD) &

102+) ‘ ‘ - 107. ; ; ; -
10! 10° 10! 102 10° 10! 10° 10! 10? 10°
CPU time (seconds) CPU time (seconds)

Second-order anova activation (az) Square activation (o)

E2006-tfidf dataset
n = 16,087, d = 150,360

32

Low-budget polynomial regression (1/2)

Goal: learn small polynomial regression model
We compared the following methods

e PN with o3 activation (trained by coordinate descent)

FM with a3 activation (trained by coordinate descent)

Random selection: fix hidden units as training samples
and fit output layer only

Nystréom method

Linear and kernel ridge regression

33

Low-budget polynomial regression (2/2)

~ 0.60- ~ 1.0
[4
5 5
2055 = 0.8-
© ©
£ <
£ 0.50- I
c E06-
g Bg g
L o045 —o— 3
kS —m— Nystrém 6 04-
= 0.40-) o
S ~—— Random Selection S
& 0.35- --- Ridge g %2
Y . N
Q -=-=- Kernel Ridge g
© 0.30- ! ; ; . . O 0.0-
0 10 20 30 40 50 0 10 20 30 40 50
Number of hidden units Number of hidden units
Abalone Cpusmall

34

Application to recommender systems

e Formulate it as a matrix completion problem

Movie 1 | Movie 2 | Movie 3 | Movie 4
Alice *k 7 * * % 7
Bob * ? ok 7
Charlie ok ? 7 Hok

o Matrix factorization: find U, V that approximately
reconstruct the rating matrix

R~UV"

35

Conversion to a regression problem

Movie 1 | Movie 2 | Movie 3 | Movie 4
Alice *k ? * % * ?
Bob * ? Hok ?
Charlie ok ? ? *ok
|} one-hot encoding
[x| (1 0 01 0 0 O]
* K K 1 000010
* 0101000
Fok 0100010 Using this
okl 0011000 representation,
| **] _0 01000 1_ FMs are equivalent
—— . to MF!

36

Application to recommender systems

2.6° mmmmm e
2.5

w B a2, (augment)

22.4-

= B a; + linear

il s o, (augment)

223 B 0, + linear

N l u ‘
2.1-

k=6 k=10 k=20 k= 30 k 50
Number of hidden units

Last.fm

37

o °
o ©
= N

o o
© ©
© o

Test RMSE
e o o
© (o] fos]
(o)) ~ [ee]

o
©
@

0.84-

Number of hidden units

MovieLens 1M

Conclusion

PNs and FMs learn efficient representations of
polynomials

PNs: feature combinations with replacement

3 2
O €8 X)X Xins XXX

FMs: feature combinations without replacement

© €8 Xy Xp X3

PNs and FMs are useful for learning fast-to-evaluate
polynomial models and for recommender systems

38

Questions?

References

» Bach. Breaking the curse of dimensionality with convex
neural networks. arXiv preprint 2014.

» Bengio et al. Convex neural networks. In NIPS, 2005.

e Blondel et al. Convex factorization machines. In
ECML/PKDD, 2015

» Blondel et al. Polynomial Networks and Factorization
Machines: New Insights and Efficient Training
Algorithms. In ICML 2016.

» Blondel et al. Higher-order Factorization Machines. In
NIPS 2016.

References

» Gautier et al. Globally optimal training of generalized

polynomial neural networks with nonlinear spectral
methods. In NIPS, 2016.

e Livni et al. On the computational efficiency of training
neural networks. In NIPS 2014.

* Novikov et al. Exponential machines. arXiv preprint
2016.

41

References

e Rendle. Factorization machines. In ICDM 2010.

e Shawe-Taylor, John and Cristianini, Nello. Kernel
Methods for Pattern Analysis. Cambridge University
Press, 2004.

» Stoudenmire and Schwab. Supervised learning with
tensor networks. In NIPS, 2016.

e Yamada et al. Convex Factorization Machine for
Regression. arXiv preprint 2015.

42

