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Neural networks
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Traditional neural networks

Sigmoid Relu

o(u) = o(u) = max(u,0)



Polynomial networks (Livni et al. 2014)
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Today's topics

k
Ven =D Vs Um(hgx)
s=1

* Properties of polynomial networks

o Ability to represent polynomials efficiently, universality

e How to train polynomial networks

o Can we do better than just gradient descent?

e A very related model: factorization machines
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Efficient representation of polynomials (1/2)

» A monomial of degree m is a function f: RY — R s.t.

f(x) =11 x. = xi.x; - - - X, Vjied{l,...,d}"
t=1

* A homogeneous polynomial of degree m is a function
f: RY > Rst.

)= h1lx  vieRr
J t=

The cardinality of 3 is (i) i.e., O(d™) parameters!
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Efficient representation of polynomials (2/2)

e |t is easy to see that

om(BIX) = (HTX)" = 3 T heyx,

t=1

e Plugging this in ypy, we obtain
) m _ k m
yen =206 11 x5, with  Gj:= > vs [] hs,
j =1 s=1 t=1

e Factored weights: only kd + k parameters
instead of O(d™)!
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Inhomogeneous polynomials

¢ In practice, we would like to use monomials of degree 1
up to m, not just m

e By the binomial theorem

om([h A" [x 1])
:Um(th + ’7)

:(Z’) om(h*x)7° + (T)am_l(thhl +- (T)Uo(hTX)Vm

We can simply augment the data with an all-one feature
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Relation with kernel methods

om(h"x 4+ ) = (h"x +~)™ is just the usual polynomial kernel

Kernel methods

n
Jm = i Om(X X +7)
i=1

fix the learn the
hidden layer “support vectors”

2-layer polynomial networks
K

Jpn = sz om(hix +7)

s=1




Universality of polynomial networks

« Polynomials can approximate any function f: RY — R
arbitrarily well on a compact subset of R
(Stone-Weierstrass theorem)

o With sufficiently many parameters, PNs can approximate
any polynomial arbitrarily well

* And so PNs can approximate any function

e Livni et al. (2014) bound how many layers and units are
needed for polynomial networks to approximate
sigmoidal networks
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Learning PNs: two points of view

e Convex neural networks view (Bengio et al. 2005, Bach 2014)

o Conditional gradient (a.k.a. Frank-Wolfe) algorithm

e Low-rank matrix / tensor decomposition view
(Blondel et al. 2016)

o Alternating minimization of convex problems

* Both have theoretical guarantees for square activations
o(u) = u?
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Convex Neural Networks (1/2)

Key idea: learn a sparse linear model in an infinite-dimensional space

% = o(h"x)

12 Infinite features Output



Convex Neural Networks (2/2)

 Objective (assume f is smooth with constant 3)

=1 |hlz<1

min f(v) = ig (y,-, > h o(th,-)) st. ||v|li <7

» Conditional gradient (a.k.a. Frank-Wolfe) training

Infinite linear model view Practical implementation
h* = argmax |Vuf(v)| h* = argmax |Vuf(v)|
[h2<1 [hl2<1
n = —7sign (Vyf(v)) H <~ [H h*]
v+ (L=7)v+ ey v [(1—=7)v ]
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Case of square activation (1/2)

 For Relu activations, finding h* (hidden unit selection
problem) is NP-hard (Bach, 2014)

o When using o»(u) = u?, we can find the optimal h* since
nf(v) = ;51(%,%)02(th0
s (zl (yi. y,-)x,-x,.T) h
=: hTI\;l_h

h* = argmax |h" Mh| is the dominant eigenvector of M
(PSS!
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Case of square activation (2/2)

 Standard analysis of the conditional gradient algorithm
guarantees that we can obtain an e-accurate solution in

7_275

€

O(——) iterations

* Translates into a bound on #hidden units since

#hidden units < #iterations
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Case of factorization machines (FMs)

* FMs are a closely-related model to deal with a large
number of pairwise feature interactions (Rendle 2010)

* One can get FMs by replacing (Blondel et al. 2016)
O'Q(hTX) = (hTX)2 = Z hJXJhJ'XJ'
JJ'
with the ANOVA kernel
a(h, x) = hixjhyxy

i<J

FMs are a neural network with a different activation
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Case of cubic activation

3

e When using o3(u) = u°, we now need to solve

argmax [(M,h® h® h)|
[h[l2<1

where M =Y V(y;, i)x; @ x; @ x; € RY>dxd
i=1

e Can no longer be solved globally unless there exists an
orthogonal decomposition of M
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Recent works using conditional gradient like approach

o, 03 a refitting regularized

Livni et. al (2014) v V v
Blondel et. al (2015) Vv v v v
Yamada et. al (2015) v v

o refitting: whether v is refitted over its current support
after adding a new hidden unit

 regularized: whether v is regularized by the /; norm
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Multi-linearity property of ANOVA activations

k
o Let )A/FM = Z Vsag(hs, X)

s=1

o Then there exist aj € R¥ and Bi € Rs.t.

Jm=ajhj+p; Vjel[d

i.e., rm is affine in h.; given everything else fixed

o This implies that ¢(y, yru) is convex in h.; for any
convex loss function ¢

19



Objective surface w.r.t. one column of H, h.;

Square activation (07) Second-order anova activation (az)
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Low-rank matrix decomposition view

* We can view PNs / FMs as learning a low-rank matrix

k
)’7PN - 231 Vs Ug(h;Fx) = xT Wx = Z Wj,j’Xij’
5= Jo

k
Vem = Y vs ao(hs, x) = > wjpx;x;p
s=1 i<

k

where W =) vshshsT e RI*9
s=1
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Link with nuclear norm (1/2)

 Nuclear norm (a.k.a. trace norm) of a symmetric matrix

W = l[v]:
rank(W)
where W = Y v,h;h! (eigendecomposition of W)
s=1

» This gives us a link between the convex neural network
view and the matrix decomposition view
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Link with nuclear norm (2/2)

i=1 h: |[h],<1

min > ¢ (y,-, > va Uz(thi)) st [vli <7

0

Cly,, x: Wx;) st. |[|W]], <
Wrgﬂl%gde (vi, xi Wx;) st [[W]. <7

Can be solved using projected gradient descent
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Bi-convex formulation

» We consider the change of variable W = UVT

e and use the well-known variational formulation
1 2 2 _ T
IW\. = i SIUIR+ [ VI?) st W = UV
* which leads us (Blondel et al. 2016) to

Jmin, 3 6 xT UV ) st (U + V) <
VGR"X"I_

All local minima are global provided that k > rank(W™)
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Case of cubic activation (1/2)

e We can view PNs as learning a low-rank tensor

k
v = vs o3(hlx) = (W, x @ x ® x)
s=1
- Z Wi j2js X %2 Xj3
J1:J2:J3

W e Rdxdxd hi®h; @ h; hy ® ho ® hy

25



Case of cubic activation (2/2)

* We can decompose W into 3 matrices v, U, y®
(objective is block-wise convex)

o I}Io more link with nuclear norm but we can use
2(||U(1)H2 + | UP|12 + [ UP|?) < 7 as a heuristic

regularizer

* No global minimum guarantee anymore but alternating
minimization works well in practice
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Case of higher-order FMs

» Higher-order FMs correspond to using the ANOVA kernel
of degree m as activation

am(h7 X) = Z hjlle e hijjm

<<
 Naive computation takes O(d™) time

* We proposed dynamic programming algorithms to
compute both the ANOVA kernel and its gradient in
O(dm) time (Blondel et al. 2016)
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All-subsets activation

* The all-subsets kernel (Shawe-Taylor and Cristianini 2004)

S(h,x) = f[(l + hix;)

J
e Corresponds to summing ag to ay

S(h,x) = zd: ar(h,x) =1+ h"x+ zd: a(h, x)

t=0 t=2

Hence uses all possible d-combinations of features

» Both the kernel and its gradient can be computed in
O(d) time
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Some other recent related works

e Chen and Manning 2014: use cubic activation on the
task of dependency parsing and train with Adagrad

» Stoudenmire and Schwab (2016), Novikov et al (2016):
replace CP decomposition by tensor networks (a.k.a.
tensor train) and use all d-combinations

 Gautier et al (2016): develop a training algorithm for PN
with global optimality guarantee under the following
restrictions

o Impose non-negativity on parameter weights

o Need one hyper-parameter per hidden unit
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Experimental results



Solver comparison (1/2)

Goal: check whether optimizing the bi-convex formulation
is advantageous compared to direct formulation

e Bi-convex formulation (PN case)

A
Umﬂépkaﬁ(y,, x; UVixi) + S(1UIFP+ [ V]P?)
V€Rd><k

o Direct formulation (PN case)

usin. 2 S Uy 3 v x)) + 3 3wl
veRX
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Solver comparison (2/2)
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Low-budget polynomial regression (1/2)

Goal: learn small polynomial regression model
We compared the following methods

e PN with o3 activation (trained by coordinate descent)

FM with a3 activation (trained by coordinate descent)

Random selection: fix hidden units as training samples
and fit output layer only

Nystréom method

Linear and kernel ridge regression
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Low-budget polynomial regression (2/2)
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Application to recommender systems

e Formulate it as a matrix completion problem

Movie 1 | Movie 2 | Movie 3 | Movie 4
Alice *k 7 * * % 7
Bob * ? ok 7
Charlie ok ? 7 Hok

o Matrix factorization: find U, V that approximately
reconstruct the rating matrix

R~UV"
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Conversion to a regression problem

Movie 1 | Movie 2 | Movie 3 | Movie 4
Alice *k ? * % * ?
Bob * ? Hok ?
Charlie ok ? ? *ok
|} one-hot encoding
[ x| (1 0 01 0 0 O]
* K K 1 000010
* 0101000
Fok 0100010 Using this
okl 0011000 representation,
| ** ] _0 01000 1_ FMs are equivalent
—— . to MF!
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Application to recommender systems
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Conclusion

PNs and FMs learn efficient representations of
polynomials

PNs: feature combinations with replacement

3 2
O €8 X)X Xins XXX

FMs: feature combinations without replacement

© €8 Xy Xp X3

PNs and FMs are useful for learning fast-to-evaluate
polynomial models and for recommender systems
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Questions?
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