Higher-order Factorization Machines

Mathieu Blondel

NTT Communication Science Laboratories Kyoto, Japan

Joint work with M. Ishihata, A. Fujino and N. Ueda

2016/9/28

Regression analysis

Variables

$$y \in \mathbb{R}$$
: target variable $oldsymbol{x} \in \mathbb{R}^d$: explanatory variables (features)

Training data

$$oldsymbol{y} = [oldsymbol{y}_1, \dots, oldsymbol{y}_n]^{\mathrm{T}} \in \mathbb{R}^n$$

 $oldsymbol{X} = [oldsymbol{x}_1, \dots, oldsymbol{x}_n] \in \mathbb{R}^{d imes n}$

Goal

- Learn model parameters
- Compute prediction y for a new \mathbf{x}

Linear regression

Model

$$\hat{y}_{LR}(oldsymbol{x};oldsymbol{w})\coloneqq \langleoldsymbol{w},oldsymbol{x}
angle = \sum_{j=1}^d w_j x_j$$

Parameters

$$\boldsymbol{w} \in \mathbb{R}^d$$
: feature weights

- Pros and cons
 - \bigcirc O(d) predictions
 - © Learning w can be cast as a convex optimization problem
 - Ooes not use feature interactions

3

Polynomial regression

Model

$$\hat{y}_{PR}(\boldsymbol{x}; \boldsymbol{w}) \coloneqq \langle \boldsymbol{w}, \boldsymbol{x}
angle + \boldsymbol{x}^{\mathrm{T}} \boldsymbol{W} \boldsymbol{x} = \langle \boldsymbol{w}, \boldsymbol{x}
angle + \sum_{j,j'=1}^{d} w_{j,j'} x_j x_{j'}$$

.

Parameters

$$\boldsymbol{w} \in \mathbb{R}^{d}$$
: feature weights
 $\boldsymbol{W} \in \mathbb{R}^{d \times d}$: weight matrix

- Pros and cons
 - \odot Learning **w** and **W** can be cast as a convex optimization problem
 - $\bigcirc O(d^2)$ time and memory cost

Kernel regression

Model

$$\hat{y}_{KR}(\boldsymbol{x};\boldsymbol{\alpha}) \coloneqq \sum_{i=1}^{n} \alpha_i \mathcal{K}(\boldsymbol{x}_i,\boldsymbol{x})$$

Parameters

 $\boldsymbol{lpha} \in \mathbb{R}^n$: instance weights

- Pros and cons
 - © Can use non-linear kernels (RBF, polynomial, etc...)
 - \odot Learning lpha can be cast as a convex optimization problem
 - © O(dn) predictions (linear dependence on training set size) ⁵

Factorization Machines (FMs) (Rendle, ICDM 2010)

Model

$$\hat{V}_{FM}(oldsymbol{x};oldsymbol{w},oldsymbol{P})\coloneqq\langleoldsymbol{w},oldsymbol{x}
angle+\sum\limits_{j'>j}\langleoldsymbol{ar{p}}_j,oldsymbol{ar{p}}_{j'}
angle x_jx_{j'}$$

• Parameters

$$oldsymbol{w} \in \mathbb{R}^d$$
: feature weights
 $oldsymbol{P} \in \mathbb{R}^{d imes k}$: weight matrix

- Pros and cons
 - Cartes into account feature combinations
 - \bigcirc O(2dk) predictions (linear-time) instead of $O(d^2)$
 - \bigcirc Parameter estimation involves a non-convex optimization problem

Application 1: recsys without features

Formulate it as a matrix completion problem

	Movie 1	Movie 2	Movie 3	Movie 4	
Alice	**	?	***	?	
Bob	*	?	**	?	
Charlie	**	?	?	**	

 Matrix factorization: find U, V that approximately reconstruct the rating matrix

 $R \approx UV^{\mathrm{T}}$

Conversion to a regression problem

	Movie 1	Movie 2	Movie 3	Movie 4
Alice	**	?	***	?
Bob	*	?	**	?
Charlie	**	?	?	**

 \Downarrow one-hot encoding

Using this representation, FMs are equivalent to MF!

Generalization ability of FMs

- The weight of $x_j x_{j'}$ is $\langle \bar{\boldsymbol{p}}_j, \bar{\boldsymbol{p}}_{j'} \rangle$ compared to $w_{j,j'}$ for PR
- The same parameters $ar{m{p}}_j$ are shared for the weight of $x_j x_{j'} \ \forall j > j'$
- This increases the amount of data used to estimate *p*_j at the cost of introducing some bias (low-rank assumption)
- This allows to generalize to feature interactions that were not observed in the training set

Application 2: recsys with features

Rating	User		Movie		
	Gender	Age	Genre	Director	
**	М	20-30	Adventure	S. Spielberg	
***	F	0-10	Anime	H. Miyazaki	
*	М	20-30	Drama	A. Kurosawa	
÷	:			÷	

- Interactions between categorical variables
 - Gender \times genre: {M, F} \times {Adventure, Anime, Drama, ...}
 - Age \times director: {0-10, 10-20, ...} \times {S. Spielberg, H. Miyazaki, A. Kurosawa, ...}
- In practice, the number of interactions can be huge!

Conversion to regression

Rating	User		Movie		
	Gender	Age	Genre	Director	
**	М	20-30	Adventure	S. Spielberg	
***	F	0-10	Anime	H. Miyazaki	
*	M	20-30	Drama	A. Kurosawa	
÷	:	:	:	÷	

 \Downarrow one-hot encoding

11

$FMs\ revisited\ (Blondel+,\ ICML\ 2016)$

• ANOVA kernel of degree m = 2 (Stitson+, 1997; Vapnik, 1998)

$$\mathcal{A}^2(\boldsymbol{p}, \boldsymbol{x}) \coloneqq \sum_{j'>j} p_j x_j \ p_{j'} x_{j'}$$

• Then

$$\hat{y}_{FM}(\mathbf{x}; \mathbf{w}, \mathbf{P}) = \langle \mathbf{w}, \mathbf{x}
angle + \sum_{j'>j} \langle \bar{\mathbf{p}}_j, \bar{\mathbf{p}}_{j'}
angle x_j x_{j'}$$

= $\langle \mathbf{w}, \mathbf{x}
angle + \sum_{s=1}^k \mathcal{A}^2(\mathbf{p}_s, \mathbf{x})$
 $\uparrow s^{\text{th column of } \mathbf{P}}$

ANOVA kernel (arbitrary-order case)

• ANOVA kernel of degree $2 \le m \le d$

$$\mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x}) \coloneqq \sum_{j_m > \cdots > j_1} (p_{j_1} x_{j_1}) \dots (p_{j_m} x_{j_m})$$

 \uparrow All possible *m*-combinations of $\{1, \ldots, d\}$

- Intuitively, the kernel uses all *m*-combinations of features without replacement: x_{j1} ... x_{jm} for j1 ≠ ··· ≠ jm
- Computing $\mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x})$ naively takes $O(d^m)$ \otimes

Higher-order FMs (HOFMs)

Model

$$\hat{y}_{HOFM}(\boldsymbol{x}; \boldsymbol{w}, \{\boldsymbol{P}^t\}_{t=2}^m) \coloneqq \langle \boldsymbol{w}, \boldsymbol{x} \rangle + \sum_{t=2}^m \sum_{s=1}^k \mathcal{A}^t(\boldsymbol{p}_s^t, \boldsymbol{x})$$

Parameters

$$\boldsymbol{w} \in \mathbb{R}^d$$
: feature weights
 $\boldsymbol{P}^2, \dots, \boldsymbol{P}^m \in \mathbb{R}^{d \times k}$: weight matrices

- Pros and cons
 - Takes into account higher-order feature combinations
 - \bigcirc $O(dkm^2)$ prediction cost using our proposed algorithms
 - ☺ More complex than 2nd-order FMs

Learning HOFMs (1/2)

- We use alternating mimimization w.r.t. w, P², ..., P^m
- Learning *w* alone reduces to linear regression
- Learning *P^m* can be cast as minimizing

$$F(\boldsymbol{P}) \coloneqq \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_i, \sum_{s=1}^{k} \mathcal{A}^m(\boldsymbol{p}_s, \boldsymbol{x}_i) + o_i\right) + \frac{\beta}{2} \|\boldsymbol{P}\|^2$$

where o_i is the contribution of degrees other than m

Learning HOFMs (2/2)

Stochastic gradient update

$$\boldsymbol{p}_{s} \leftarrow \boldsymbol{p}_{s} - \eta \ell'(y_{i}, \hat{y}_{i}) \nabla \mathcal{A}^{m}(\boldsymbol{p}_{s}, \boldsymbol{x}_{i}) - \eta \beta \boldsymbol{p}_{s}$$

where η is a learning rate hyper-parameter and $\hat{y}_i \coloneqq \sum_{s=1}^k \mathcal{A}^m(\boldsymbol{p}_s, \boldsymbol{x}_i) + o_i$

- We propose O(dm) (linear time) DP algorithms for
 - Evaluating ANOVA kernel $\mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x}) \in \mathbb{R}$
 - $\circ~$ Computing gradient $abla \mathcal{A}^m(oldsymbol{p},oldsymbol{x}) \in \mathbb{R}^d$

Evaluating the ANOVA kernel (1/3)

Recursion (Blondel+, ICML 2016)

$$\mathcal{A}^m(oldsymbol{p},oldsymbol{x}) = \mathcal{A}^m(oldsymbol{p}_{
eg j},oldsymbol{x}_{
eg j}) + egin{array}{c} p_j x_j & \mathcal{A}^{m-1}(oldsymbol{p}_{
eg j},oldsymbol{x}_{
eg j}) \ orall j \end{array}$$

where $p_{\neg j}, x_{\neg j} \in \mathbb{R}^{d-1}$ are vectors with the jth element removed

• We can use this recursion to remove features until computing the kernel becomes trivial

Evaluating the ANOVA kernel (2/3)

Evaluating the ANOVA kernel (3/3)

Ways to avoid redundant computations:

- Top-down approach with memory table
- Bottum-up dynamic programming (DP)

Algorithm 1 Evaluating $\mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x})$ in O(dm)

Input:
$$\boldsymbol{p} \in \mathbb{R}^d$$
, $\boldsymbol{x} \in \mathbb{R}^d$
 $a_{j,t} \leftarrow 0 \ \forall t \in \{1, \dots, m\}, j \in \{0, 1, \dots, d\}$
 $a_{j,0} \leftarrow 1 \ \forall j \in \{0, 1, \dots, d\}$

for
$$t \coloneqq 1, \ldots, m$$
 do
for $j \coloneqq t, \ldots, d$ do
 $a_{j,t} \leftarrow a_{j-1,t} + p_j x_j a_{j-1,t-1}$
end for
end for

Output:
$$\mathcal{A}^m(oldsymbol{p},oldsymbol{x})=a_{d,m}$$

Backpropagation (chain rule)

- Ex: compute derivatives of composite function $f(g(h(\mathbf{p})))$
- Forward pass

Backward pass

 ∂c

$$a = h(\mathbf{p})$$

$$b = g(a)$$

$$c = f(b)$$

Only the last part
depends on j

$$\downarrow$$

$$\frac{\partial c}{\partial b} \frac{\partial b}{\partial a} \frac{\partial a}{\partial p_j} = f'(b) g'(a) h'_j(\mathbf{p})$$

Can compute all derivatives in one pass

Gradient computation (1/2)

- We want to compute $abla \mathcal{A}^m(m{p},m{x}) = [ilde{p}_1,\ldots, ilde{p}_d]^{\mathrm{T}}$
- Using the chain rule, we have

$$\tilde{p}_{j} := \frac{\partial a_{d,m}}{\partial p_{j}} = \sum_{t=1}^{m} \underbrace{\frac{\partial a_{d,m}}{\partial a_{j,t}}}_{:=\tilde{a}_{j,t}} \underbrace{\frac{\partial a_{j,t}}{\partial p_{j}}}_{=a_{j-1,t-1}x_{j}} = \sum_{t=1}^{m} \tilde{a}_{j,t} a_{j-1,t-1} x_{j}$$

since p_j influences $a_{j,t} \forall t \in [m]$

• $\tilde{a}_{j,t}$ can be computed recursively in reverse order

$$\tilde{a}_{j,t} = \tilde{a}_{j+1,t} + p_{j+1}x_{j+1} \ \tilde{a}_{j+1,t+1}$$

Gradient computation (2/2)

Algorithm 2 Computing $\nabla \mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x})$ in O(dm)

Input:
$$p \in \mathbb{R}^d$$
, $x \in \mathbb{R}^d$, $\{a_{j,t}\}_{j,t=0}^{d,m}$
 $\tilde{a}_{j,t} \leftarrow 0 \ \forall t \in [m+1], j \in [d]$
 $\tilde{a}_{d,m} \leftarrow 1$
for $t \coloneqq m, \dots, 1$ do
for $j \coloneqq d-1, \dots, t$ do
 $\tilde{a}_{j,t} \leftarrow \tilde{a}_{j+1,t} + \tilde{a}_{j+1,t+1}p_{j+1}x_{j+1}$
end for

end for

$$\widetilde{p}_j \coloneqq \sum_{t=1}^m \widetilde{a}_{j,t} a_{j-1,t-1} x_j \ \forall j \in [d]$$

Output: $\nabla \mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x}) = [\widetilde{p}_1, \dots, \widetilde{p}_d]^{\mathrm{T}}$

Summary so far

- HOFMs can be expressed using the ANOVA kernel \mathcal{A}^m
- We proposed O(dm) time algorithms for computing $\mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x})$ and $\nabla \mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x})$
- The cost per epoch of stochastic gradient algorithms for learning *P^m* is therefore *O*(*dnkm*)
- The prediction cost is $O(dkm^2)$

Other contributions

- Coordinate-descent algorithm for learning *P^m* based on a different recursion
 - Cost per epoch is $O(dnkm^2)$ (2)
 - However, no learning rate to tune! ☺
- HOFMs with shared parameters: $P^2 = \cdots = P^m$
 - Total prediction cost is O(dkm) instead of $O(dkm^2)$ \bigcirc
 - Corresponds to using new kernels derived from the ANOVA kernel

Experiments

Application to link prediction

Goal: predict missing links between nodes in a graph

Graph:

- Co-author network
- Enzyme network

Bipartite graph:

- User-movie
- Gene-disease

Application to link prediction

- We assume two sets of nodes A (e.g., users) and B (e.g, movies) of size n_A and n_B
- Nodes in A are represented by feature vectors $oldsymbol{a}_i \in \mathbb{R}^{d_A}$
- Nodes in B are represented by feature vectors $oldsymbol{b}_j \in \mathbb{R}^{d_B}$
- We are given a matrix $\mathbf{Y} \in \{-1, +1\}^{n_A \times n_B}$ such that $y_{i,j} = +1$ if there is a link between \mathbf{a}_i and \mathbf{b}_j
- Number of positive samples is *n*₊

Datasets

Dataset	n_+	Columns of A	n _A	d _A	Columns of B	n _B	d _B
NIPS	4,140	Authors	2,037	13,649			
Enzyme	2,994	Enzymes	668	325			
GD	3,954	Diseases	3,209	3,209	Genes	12,331	25,275
ML 100K	21,201	Users	943	49	Movies	1,682	29

Features:

- NIPS: word occurence in author publications
- Enzyme: phylogenetic information, gene expression information and gene location information
- GD: MimMiner similarity scores (diseases) and HumanNet similarity scores (genes)
- ML 100K: age, gender, occupation, living area (users); release year, genre (movies)

Goal: predict if there is a link between \boldsymbol{a}_i and \boldsymbol{b}_j vector concatenation

• HOFM:
$$\hat{y}_{i,j} = \hat{y}_{HOFM}(\boldsymbol{a}_i \oplus \boldsymbol{b}_j; \boldsymbol{w}, \{\boldsymbol{P}^t\}_{t=2}^m)$$

- HOFM-shared: same but with $P^2 = \cdots = P^m$
- Polynomial network (PN): replace ANOVA kernel by polynomial kernel
- Bilinear regression (BLR): $\hat{y}_{i,j} = \boldsymbol{a}_i \boldsymbol{U} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{b}_j$

Experimental protocol

- We sample $n_- = n_+$ negatives samples (missing edges are treated as negative samples)
- We use 50% for training and 50% for testing
- We use ROC-AUC (area under ROC curve) for evaluation
- β tuned by CV, k fixed to 30
- P^2, \ldots, P^m initialized randomly
- ℓ is set to the squared loss

(a) NIPS

(c) GD

(b) Enzyme

(d) ML100K

Solver comparison

- Coordinate descent
- AdaGrad
- L-BFGS

AdaGrad and L-BFGS use the proposed DP algorithm to compute $\nabla \mathcal{A}^m(\boldsymbol{p}, \boldsymbol{x})$

