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Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize
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Fusedmax attentionOur contributions

•A principled framework for differentiable argmax operators

• Recovers softmax and sparsemax as special cases

• Enables to construct new operators easily

•Efficient forward and backward computations for fusedmax

•Extensive experiments on NMT and sentence summarization
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Figure 3: Attention weights when considering the contradicted hypothesis “No one is dancing.”

fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize
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fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.
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fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.
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Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
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this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
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Figure 7: Attention alignment examples for French-to-English translation, following the conventions of Figure 1. “@-@" denotes a hyphen not separated by spaces.
When oscarmax induces multiple clusters, we denote them using different bullets (e.g., •,N,⌅). Fusedmax often selects meaningful grammatical segments, such as
“est consacré,” as well as determiner-noun constructions.

18

Oscarmax attention

Niculae & Blondel, NIPS 2017



16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU 

Romanian-English

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU 

Experiments based on Open-NMT  
using WMT16 dataset

Neural Machine Translation



16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU 

Romanian-English

16.8%

17.2%

17.6%

18.0%

18.4%

softmax sparsemax fusedmax oscarmax sq-pnorm-max

BLEU 

Experiments based on Open-NMT  
using WMT16 dataset

Neural Machine Translation

. Experiments on 7 language pairs 

. Competitive results with enhanced interpretability!



Figure 1: Attention weights produced by the proposed fusedmax, compared to softmax and sparsemax,
on sentence summarization. The input sentence to be summarized (taken from [39]) is along the
x-axis. From top to bottom, each row shows where the attention is distributed when producing
each word in the summary. All rows sum to 1, the grey background corresponds to exactly 0 (never
achieved by softmax), and adjacent positions with exactly equal weight are not separated by borders.
Fusedmax pays attention to contiguous segments of text with equal weight; such segments never
occur with softmax and sparsemax. In addition to enhancing interpretability, we show in §4.3 that
fusedmax outperforms both softmax and sparsemax on this task in terms of ROUGE scores.

softmax. Compared to softmax, sparsemax outputs more interpretable attention weights, as illustrated
in [31] on the task of textual entailment. The principle of parsimony, which states that simple expla-
nations should be preferred over complex ones, is not, however, limited to sparsity: it remains open
whether new attention mechanisms can be designed to benefit from more structural prior knowledge.

Our contributions. The success of sparsemax motivates us to explore new attention mechanisms
that can both output sparse weights and take advantage of structural properties of the input through
the use of modern sparsity-inducing penalties. To do so, we make the following contributions:

1) We propose a new general framework that builds upon a max operator, regularized with a strongly
convex function. We show that this operator is differentiable, and that its gradient defines a mapping
from real values to probabilities, suitable as an attention mechanism. Our framework includes as
special cases both softmax and a slight generalization of sparsemax. (§2)

2) We show how to incorporate the fused lasso [42] in this framework, to derive a new attention
mechanism, named fusedmax, which encourages the network to pay attention to contiguous segments
of text when making a decision. This idea is illustrated in Figure 1 on sentence summarization. For
cases when the contiguity assumption is too strict, we show how to incorporate an OSCAR penalty
[7] to derive a new attention mechanism, named oscarmax, that encourages the network to pay equal
attention to possibly non-contiguous groups of words. (§3)

3) In order to use attention mechanisms defined under our framework in an autodiff toolkit, two
problems must be addressed: evaluating the attention itself and computing its Jacobian. However,
our attention mechanisms require solving a convex optimization problem and do not generally
enjoy a simple analytical expression, unlike softmax. Computing the Jacobian of the solution of
an optimization problem is called argmin/argmax differentiation and is currently an area of active
research (cf. [1] and references therein). One of our key algorithmic contributions is to show how
to compute this Jacobian under our general framework, as well as for fused lasso and OSCAR. (§3)

4) To showcase the potential of our new attention mechanisms as a drop-in replacement for existing
ones, we show empirically that our new attention mechanisms enhance interpretability while achieving
comparable or better accuracy on three diverse and challenging tasks: textual entailment, machine
translation, and sentence summarization. (§4)

Notation. We denote the set {1, . . . , d} by [d]. We denote the (d − 1)-dimensional probability
simplex by ∆d := {x ∈ Rd : ∥x∥1 = 1,x ≥ 0} and the Euclidean projection onto it by P∆d(x) :=
argminy∈∆d ∥y − x∥2. Given a function f : Rd → R ∪ {∞}, its convex conjugate is defined by

f∗(x) := supy∈dom f yTx−f(y). Given a norm ∥·∥, its dual is defined by ∥x∥∗ := sup∥y∥≤1 yTx.
We denote the subdifferential of a function f at y by ∂f(y). Elements of the subdifferential are
called subgradients and when f is differentiable, ∂f(y) contains a single element, the gradient of f
at y, denoted by ∇f(y). We denote the Jacobian of a function g : Rd → Rd at y by Jg(y) ∈ Rd×d

and the Hessian of a function f : Rd → R at y by Hf (y) ∈ Rd×d.
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fusedmax results in the most interpretable feature groupings: Figure 3 shows the weights of the
neural network’s attention to the text, when considering the hypothesis “No one is dancing.” In this
case, all four models correctly predicted that the text “A band is playing on stage at a concert and the
attendants are dancing to the music,” denoted along the x-axis, contradicts the hypothesis, although
the attention weights differ. Notably, fusedmax identifies the meaningful segment “band is playing”.

4.2 Machine translation experiments

Sequence-to-sequence neural machine translation (NMT) has recently become a strong contender in
machine translation [2, 29]. In NMT, attention weights can be seen as an alignment between source
and translated words. To demonstrate the potential of our new attention mechanisms for NMT, we ran
experiments on 10 language pairs. We build on OpenNMT-py [24], based on PyTorch [37], with all
default hyperparameters (detailed in Appendix C.3), simply replacing softmax with the proposed ΠΩ.

OpenNMT-py with softmax attention is optimized for the GPU. Since sparsemax, fusedmax, and
oscarmax rely on sorting operations, we implement their computations on the CPU for simplicity,
keeping the rest of the pipeline on the GPU. However, we observe that, even with this context
switching, the number of tokens processed per second was within 3/4 of the softmax pipeline. For
sq-pnorm-max, we observe that the projected gradient solver used in the forward pass, unlike the
linear system solver used in the backward pass, could become a computational bottleneck. To mitigate
this effect, we set the tolerance of the solver’s stopping criterion to 10−2.

Quantitatively, we find that all compared attention mechanisms are always within 1 BLEU score
point of the best mechanism (for detailed results, cf. Appendix C.3). This suggests that structured
sparsity does not restrict accuracy. However, as illustrated in Figure 4, fusedmax and oscarmax often
lead to more interpretable attention alignments, as well as to qualitatively different translations.

Figure 4: Attention weights for French to English translation, using the conventions of Figure 1.
Within a row, weights grouped by oscarmax under the same cluster are denoted by “•”. Here, oscarmax
finds a slightly more natural English translation. More visulizations are given in Appendix C.3.

4.3 Sentence summarization experiments

Attention mechanisms were recently explored for sentence summarization in [39]. To generate
sentence-summary pairs at low cost, the authors proposed to use the title of a news article as a
noisy summary of the article’s leading sentence. They collected 4 million such pairs from the
Gigaword dataset and showed that this seemingly simplistic approach leads to models that generalize
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attention time per epoch

softmax 1h 26m 40s ± 51s
sparsemax 1h 24m 21s ± 54s
fusedmax 1h 23m 58s ± 50s
oscarmax 1h 23m 19s ± 50s

Table 3: Timing results for training textual entailment on SNLI,
using the implementation and experimental setup from [31]. With
this C++ CPU implementation, fusedmax and oscarmax are as
fast as sparsemax, and all three sparse attention mechanisms are
slightly faster than softmax.

• BENCHMARK: Training, validation, and test data from the NMT-Benchmark project (http:
//scorer.nmt-benchmark.net/). All languages have ~1M training sentence pairs, and
equal validation and test sets of size 1K (French) and 2K (Italian, Dutch and Swedish).

• BENCHMARK+: Training and validation data as above, but testing on all available newstest
data. For Italian we use the 2009 data (~2.5K sentence pairs), and for French we concatenate
2009–2014 (~11K sentence pairs).

• WMT16, WMT17: Translation tasks at the first and second ACL Conferences for Machine
Translation, available at http://www.statmt.org/wmt16/translation-task.html
and http://www.statmt.org/wmt17/translation-task.html. Training, validation,
and test sizes are, approximately, for Romanian 400K/2K/2K, for German 5.8M/6K/3K, for
Finnish 2.6M/2K/2K, for Latvian 4.5M/2K/2K, and for Turkish 207K/1K/3K.

We use the preprocessing scripts from Moses [25] for tokenization, and, where needed, SGML
parsing. We limit source and target vocabulary sizes to 50K lower-cased tokens and prune sentences
longer than 50 tokens at training time and 100 tokens at test time. We do not perform recasing.

We report BLEU scores in Table 4 and showcase the enhanced interpretability induced by our
proposed attention mechanisms in Figure 7. Timing measurements can be found in Table 5.

Table 4: Neural machine translation results: tokenized BLEU scores on test data.
BENCHMARK BENCHMARK+ WMT16 WMT17

fr it nl sv fr it ro de fi lv tr

from English

softmax 36.94 37.20 36.12 34.97 27.13 24.86 17.71 22.32 14.54 11.02 11.95

sparsemax 37.03 37.21 36.12 35.09 26.99 24.49 17.61 22.43 14.85 11.07 11.66
fusedmax 37.08 36.73 36.04 34.30 26.89 24.47 17.19 22.25 14.28 11.27 11.32
oscarmax 36.66 36.89 35.96 34.86 27.02 24.76 17.26 22.42 14.02 11.19 11.63

sq-pnorm-max 37.16 37.39 36.21 34.63 27.25 24.56 17.80 —– 14.45 —– 11.58

to English

softmax 36.79 39.95 40.06 37.96 25.72 25.37 17.86 25.82 15.11 13.60 11.78
sparsemax 36.91 40.13 40.25 38.09 25.97 25.62 17.46 25.76 14.95 13.59 12.04

fusedmax 36.64 39.64 39.87 37.83 25.72 25.41 18.29 25.58 15.08 13.53 11.91
oscarmax 36.90 40.05 40.17 38.12 26.13 25.65 17.89 25.69 14.94 13.71 11.70

sq-pnorm-max 36.84 40.23 40.48 38.12 25.72 25.70 17.44 —– 15.20 —– 11.93

attention time per epoch

softmax 2h
sparsemax 2h 18m
fusedmax 3h 5m
oscarmax 3h 25m

sq-pnorm-max 7h 5m

Table 5: Timing results for French-to-English translation using
OpenNMT-py (all standard errors are under 2 minutes). For sim-
plicity, all attention mechanisms, except softmax, are implemented
on the CPU, thus incurring memory copies in both directions. (The
rest of the pipeline runs on the GPU.) Even without special opti-
mization, sparsemax, fusedmax, and oscarmax are practical, taking
within 1.75x the training time of a softmax model on the GPU.
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTW�H(✓) = �7.49

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1 ) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTWk·k2(✓) = 9.61

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1 ) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1: DTW⌦(✓) is an instantiation of the proposed smoothed dynamic programming operator, DP⌦(✓),
to the dynamic time warping (DTW) computational graph. In this picture, ✓ is the squared Euclidean
distance matrix between the observations of two time-series. The gradient rDTW⌦(✓) is equal to the
expected alignment under a certain random walk characterized in §3.3 and is a sound continuous relaxation to
the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy
regularization (left), `22 regularization leads to exactly sparse alignments (right). Our framework allows to
backpropagate through both DTW⌦(✓) and rDTW⌦(✓), which makes it possible to learn the distance
matrix ✓ end-to-end.

of conditional random fields (CRFs) (La↵erty et al., 2001), which can be seen as changing the semiring
used by the dynamic program — replacing all values by their exponentials and all (max,+) operations with
(+,⇥) operations (Verdu & Poor, 1987). While this modification smoothes the dynamic program, it looses
the sparsity of solutions, since hard assignments become soft ones. Moreover, a general understanding of
how to relax and di↵erentiate dynamic programs is lacking. In this work, we propose to do so by leveraging
smoothing (Moreau, 1965; Nesterov, 2005) and backpropagation (Linnainmaa, 1970). We make the following
contributions.

1) We present a unified framework for turning a broad class of dynamic programs (DP) into di↵erentiable
operators. Unlike existing works, we propose to change the semiring to use (max⌦,+) operations, where
max⌦ is a max operator smoothed with a strongly convex regularizer ⌦ (§2).

2) We show that the resulting DP operators, that we call DP⌦, are smoothed relaxations of the original DP
algorithm and satisfy several key properties, chief among them convexity. In addition, we show that their
gradient, rDP⌦, is equal to the expected trajectory of a certain random walk and can be used as a sound
relaxation to the original dynamic program’s solution. Using negative entropy for ⌦ recovers existing CRF-
based works from a di↵erent perspective — we provide new arguments as to why this ⌦ is a good choice.
On the other hand, using squared `2 norm for ⌦ leads to new algorithms whose expected solution is sparse.
We derive a clean and e�cient method to backpropagate gradients, both through DP⌦ and rDP⌦. This
allows us to define di↵erentiable DP layers that can be incorporated in neural networks trained end-to-end
(§3).

3) We illustrate how to to derive two particular instantiations of our framework, a smoothed Viterbi algo-
rithm for sequence prediction and a smoothed DTW algorithm for supervised time-series alignment (§4).
The latter is illustrated in Figure 1. Finally, we showcase these two instantiations on structured prediction
tasks (§5) and on structured attention for neural machine translation (§6).

Notation. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold upper-case
letters, e.g., y, y and Y . We denote the elements of Y by yi,j and its rows by yi. We denote the Frobenius
inner product between A and B by hA,Bi , P

i,j
ai,jbi,j . We denote the (D � 1)-probability simplex by

4
D , {� 2 RD

+ : k�k1 = 1}. We write conv(Y) , {
P

Y 2Y �Y Y : � 2 4
|Y|

} the convex hull of Y, [N ] the

set {1, . . . , N} and supp(x) , {j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the Shannon entropy
by H(q) , P

i
qi log qi.

We will release an optimized modular PyTorch implementation for reproduction and reuse.

Entropic regularization

(Cuturi & Blondel, 2017)

Hard solution (DTW alignment) Soft solution (expected alignment 𝔼p[Y])

Expected Alignment (Path)
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTW�H(✓) = �7.49

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1 ) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).

DTWk·k2(✓) = 9.61

Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1 ) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1: DTW⌦(✓) is an instantiation of the proposed smoothed dynamic programming operator, DP⌦(✓),
to the dynamic time warping (DTW) computational graph. In this picture, ✓ is the squared Euclidean
distance matrix between the observations of two time-series. The gradient rDTW⌦(✓) is equal to the
expected alignment under a certain random walk characterized in §3.3 and is a sound continuous relaxation to
the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy
regularization (left), `22 regularization leads to exactly sparse alignments (right). Our framework allows to
backpropagate through both DTW⌦(✓) and rDTW⌦(✓), which makes it possible to learn the distance
matrix ✓ end-to-end.

of conditional random fields (CRFs) (La↵erty et al., 2001), which can be seen as changing the semiring
used by the dynamic program — replacing all values by their exponentials and all (max,+) operations with
(+,⇥) operations (Verdu & Poor, 1987). While this modification smoothes the dynamic program, it looses
the sparsity of solutions, since hard assignments become soft ones. Moreover, a general understanding of
how to relax and di↵erentiate dynamic programs is lacking. In this work, we propose to do so by leveraging
smoothing (Moreau, 1965; Nesterov, 2005) and backpropagation (Linnainmaa, 1970). We make the following
contributions.

1) We present a unified framework for turning a broad class of dynamic programs (DP) into di↵erentiable
operators. Unlike existing works, we propose to change the semiring to use (max⌦,+) operations, where
max⌦ is a max operator smoothed with a strongly convex regularizer ⌦ (§2).

2) We show that the resulting DP operators, that we call DP⌦, are smoothed relaxations of the original DP
algorithm and satisfy several key properties, chief among them convexity. In addition, we show that their
gradient, rDP⌦, is equal to the expected trajectory of a certain random walk and can be used as a sound
relaxation to the original dynamic program’s solution. Using negative entropy for ⌦ recovers existing CRF-
based works from a di↵erent perspective — we provide new arguments as to why this ⌦ is a good choice.
On the other hand, using squared `2 norm for ⌦ leads to new algorithms whose expected solution is sparse.
We derive a clean and e�cient method to backpropagate gradients, both through DP⌦ and rDP⌦. This
allows us to define di↵erentiable DP layers that can be incorporated in neural networks trained end-to-end
(§3).

3) We illustrate how to to derive two particular instantiations of our framework, a smoothed Viterbi algo-
rithm for sequence prediction and a smoothed DTW algorithm for supervised time-series alignment (§4).
The latter is illustrated in Figure 1. Finally, we showcase these two instantiations on structured prediction
tasks (§5) and on structured attention for neural machine translation (§6).

Notation. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold upper-case
letters, e.g., y, y and Y . We denote the elements of Y by yi,j and its rows by yi. We denote the Frobenius
inner product between A and B by hA,Bi , P

i,j
ai,jbi,j . We denote the (D � 1)-probability simplex by

4
D , {� 2 RD

+ : k�k1 = 1}. We write conv(Y) , {
P

Y 2Y �Y Y : � 2 4
|Y|

} the convex hull of Y, [N ] the

set {1, . . . , N} and supp(x) , {j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the Shannon entropy
by H(q) , P

i
qi log qi.

We will release an optimized modular PyTorch implementation for reproduction and reuse.
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).
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Notation. We denote scalars, vectors and matrices using
lower-case, bold lower-case and bold upper-case letters,
e.g., y, y and Y , respectively. Given a matrix Y , we de-
note its elements by yi,j and its rows by yi. We denote the
Frobenius inner product between two matrices A and B by
hA,Bi , P

i,j
ai,jbi,j . We write the (D � 1)-probability

simplex by 4
D , {� 2 RD

+ : k�k1 = 1}. We denote
conv(Y) , {

P
Y 2Y �Y Y : � 2 4

|Y|
} the convex hull

of Y and [N ] the set {1, . . . , N}. We denote the Shannon
entropy by H(q) , P

i
qi log qi.

2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1 ) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider
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tions of our framework, a smoothed Viterbi algorithm for
sequence prediction and a smoothed DTW algorithm for
supervised time-series alignment (§4). We showcase these
two instantiations on structured prediction tasks (§5) and
on structured attention for neural machine translation (6).
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Notation. We denote scalars, vectors and matrices using
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2. Smoothed max operators

Smoothed max operators (Nesterov, 2005; Niculae & Blon-
del, 2017), as their name indicates, are smooth approx-
imations of max operators. These operators will serve
as a powerful and generic abstraction to define differen-
tiable dynamic programming layers in §3. Formally, let
⌦ : RD

! R be a strongly convex regularizer and x 2 RD.
Then, we define the max operator smoothed by ⌦ as:

max⌦(x) , max
q24D

hq,xi � ⌦(q). (1)

In other words, max⌦ is the convex conjugate of ⌦, re-
stricted to the simplex. By the duality between strong con-
vexity and smoothness, max⌦ is smooth (differentiable ev-
erywhere and with Lipschitz continuous gradient). Since
the argument that achieves the maximum in (1) is unique,
as per Danskin’s theorem, it equals the gradient of max⌦:

rmax⌦(x) = argmax
q24D

hq,xi � ⌦(q).

By Rademacher’s theorem, rmax⌦(x) is differentiable al-
most everywhere. We will denote Clarke’s generalized Ja-
cobian of rmax⌦(x), or equivalently the generalized Hes-
sian of max⌦(x), by r

2max⌦(x). Next, we state several
properties that will be useful throughout this paper.

Lemma 1. Properties of max⌦ operators

Let x = (x1, . . . , xD)> 2 RD
.

1. Boundedness: If ⌦ is lower-bounded by L⌦,D and

upper-bounded by U⌦,D on the simplex 4
D

, then

max(x)� U⌦,D  max⌦(x)  max(x)� L⌦,D.

2. Distributivity of + over max⌦:

max⌦(x+ c1) = max⌦(x) + c 8c 2 R.

3. Commutativity: If ⌦(Pq) = ⌦(q), where P is a per-

mutation matrix, then max⌦(Px) = max⌦(x).

4. Non-decreasingness in each coordinate:

max⌦(x)  max⌦(y) 8x  y

5. Insensitivity to �1: xj = �1 ) rmax⌦(x)j = 0.

Proofs are given in §A.1. In particular, property 3 holds
whenever ⌦(q) =

P
D

i=1 !(qi), for some function !. We
focus in this paper on two specific regularizers ⌦: negen-
tropy and squared `2 norm. For these choices, all properties
above are satisfied and we can derive closed-form expres-
sions for max⌦, its gradient and its Hessian — see §B.1.
When using negentropy, max⌦ becomes the log-sum-exp.
This operator satisfies associativity, which as we shall see,
makes it natural to use in dynamic programming. With the
squared `2 regularization, as observed by Martins & As-
tudillo (2016), the gradient rmax⌦ is sparse. This will
prove useful to impose sparsity in the models we study.

3. Differentiable DP layers

Dynamic programing (DP) is a generic way of solving
combinatorial optimization problems by recursively solv-
ing problems on smaller sets. We first introduce this cat-
egory of algorithms in a broad setting, then use smoothed
max operators to define differentiable DP layers.

3.1. Dynamic programming on a DAG

The archetype case of dynamic programing, to which ev-
ery problem that it solves can be reduced, is the computa-
tion of the highest-scoring path between a start node and an
end node, on a weighted directed acyclic graph (DAG). We
therefore introduce our formalism on this generic problem,
and give concrete examples in §4.

Formally, let G = (V, E) be a DAG, with nodes V and
edges E . We write N = |V| � 2 the number of nodes.
Without loss of generality, we number the nodes in topo-
logical order, from 1 (start) to N (end), and thus V = [N ].
Node 1 is the only node without parents, and node N the
only node without children. Every directed edge (i, j) from
a parent node j to a child node i has a weight ✓i,j 2 R. We
gather the edge weights in a matrix ✓ 2 ⇥ ✓ RN⇥N , set-
ting ✓i,j = �1 if (i, j) /2 E and ✓1,1 = 1. We consider

Figure 1: DTW⌦(✓) is an instantiation of the proposed smoothed dynamic programming operator, DP⌦(✓),
to the dynamic time warping (DTW) computational graph. In this picture, ✓ is the squared Euclidean
distance matrix between the observations of two time-series. The gradient rDTW⌦(✓) is equal to the
expected alignment under a certain random walk characterized in §3.3 and is a sound continuous relaxation to
the hard DTW alignment between the two time-series (here depicted with a yellow path). Unlike negentropy
regularization (left), `22 regularization leads to exactly sparse alignments (right). Our framework allows to
backpropagate through both DTW⌦(✓) and rDTW⌦(✓), which makes it possible to learn the distance
matrix ✓ end-to-end.

of conditional random fields (CRFs) (La↵erty et al., 2001), which can be seen as changing the semiring
used by the dynamic program — replacing all values by their exponentials and all (max,+) operations with
(+,⇥) operations (Verdu & Poor, 1987). While this modification smoothes the dynamic program, it looses
the sparsity of solutions, since hard assignments become soft ones. Moreover, a general understanding of
how to relax and di↵erentiate dynamic programs is lacking. In this work, we propose to do so by leveraging
smoothing (Moreau, 1965; Nesterov, 2005) and backpropagation (Linnainmaa, 1970). We make the following
contributions.

1) We present a unified framework for turning a broad class of dynamic programs (DP) into di↵erentiable
operators. Unlike existing works, we propose to change the semiring to use (max⌦,+) operations, where
max⌦ is a max operator smoothed with a strongly convex regularizer ⌦ (§2).

2) We show that the resulting DP operators, that we call DP⌦, are smoothed relaxations of the original DP
algorithm and satisfy several key properties, chief among them convexity. In addition, we show that their
gradient, rDP⌦, is equal to the expected trajectory of a certain random walk and can be used as a sound
relaxation to the original dynamic program’s solution. Using negative entropy for ⌦ recovers existing CRF-
based works from a di↵erent perspective — we provide new arguments as to why this ⌦ is a good choice.
On the other hand, using squared `2 norm for ⌦ leads to new algorithms whose expected solution is sparse.
We derive a clean and e�cient method to backpropagate gradients, both through DP⌦ and rDP⌦. This
allows us to define di↵erentiable DP layers that can be incorporated in neural networks trained end-to-end
(§3).

3) We illustrate how to to derive two particular instantiations of our framework, a smoothed Viterbi algo-
rithm for sequence prediction and a smoothed DTW algorithm for supervised time-series alignment (§4).
The latter is illustrated in Figure 1. Finally, we showcase these two instantiations on structured prediction
tasks (§5) and on structured attention for neural machine translation (§6).

Notation. We denote scalars, vectors and matrices using lower-case, bold lower-case and bold upper-case
letters, e.g., y, y and Y . We denote the elements of Y by yi,j and its rows by yi. We denote the Frobenius
inner product between A and B by hA,Bi , P

i,j
ai,jbi,j . We denote the (D � 1)-probability simplex by

4
D , {� 2 RD

+ : k�k1 = 1}. We write conv(Y) , {
P

Y 2Y �Y Y : � 2 4
|Y|

} the convex hull of Y, [N ] the

set {1, . . . , N} and supp(x) , {j 2 [D] : xj 6= 0} the support of x 2 RD. We denote the Shannon entropy
by H(q) , P

i
qi log qi.

We will release an optimized modular PyTorch implementation for reproduction and reuse.
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t + 1t − 1 t

… …

vt,i(θ) = max
j

vt−1,j(θ) + θt,i,j
Best value in  

state i up to time t

θt,1,1

θt,1,2

θt,1,3

vt,1(θ)vt−1,1(θ)

vt−1,2(θ)

vt−1,2(θ)

Forward pass

Bellman’s recursion



T − 1 T
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Forward pass
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vT,1(θ)

vT,2(θ)

vT,3(θ)

DP value and optimality

DP(θ)≜



T − 1 T

…

1

1

1

Forward pass

END STATE

vT,1(θ)

vT,2(θ)

vT,3(θ)

DP value and optimality

DP(θ)≜

DP(θ) = max
y∈𝒴

⟨y, θ⟩ ∈ ℝOptimality:



t + 1t − 1 t

… …

bt,i(θ) = arg max
j

vt−1,j(θ) + θt,i,j ∈ [S]

vt,1(θ)

Forward pass

vt,2(θ)

vt,3(θ)

bt,1(θ)
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bt,2(θ)

Maintaining back pointers
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Viterbi      → Forward-Backward  
CKY         → Inside-Outside 
DTW        → Soft-DTW 
max-sum  → sum-product (BP)

Computation: change semiring

x → ex (max , + ) → ( + , × )marginal(θ)
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p = argmaxΩ ((⟨y, θ⟩)y∈𝒴) ∈ △|𝒴|

Can we use                            ?Ω(p) =
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Sparse marginal inference?

Difficult to compute exactly
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•Based on the novel viewpoint of smoothed max operators

•Works for any shortest path problem over a DAG

•Enjoys same big-O complexity as regular DP

•Sparse solutions when using quadratic regularization

•Probabilistic interpretation

•Unified and numerically stable implementation  
(computations directly in log-domain!)

Our proposal for differentiable DP

Mensch & Blondel, ICML 2018
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Recall  the definition of differentiable argmax operator

maxΩ(θ) ≜ max
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Similarly we define the smoothed max operator (Nesterov, 2005)

Strongly convex Ω over Δ Smooth maxΩ ⇔
From the duality between smoothness  and strong convexity
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Random walk (finite Markov chain) defines  
a distribution p over paths

Each time step t has its own transition matrix Qt ∈ ℝS×S

Random walk
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Sampling is easy. 

How to compute expectation             ? 𝔼p[Y]



Proposition (Mensch & Blondel, 2018)
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Proposition (Mensch & Blondel, 2018)

∇DPΩ(θ) = 𝔼p[Y] ∈ conv(𝒴)

Can compute 𝔼p[Y] at the same cost as computing DPΩ(θ) by backpropagation

Gradient = Expected path

∇DPΩ(θ) = 𝔼p[Y] =
∑y∈𝒴 exp⟨y, θ⟩y

Z(θ)

For Ω = negative entropy, we have
Intractable sum  

if computed naively

(See also Eisner, 2016)
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Backpropagation

E ≜ 𝔼p[Y] et,⋅,j = qt+1,⋅,j ∘ (e⊤
t+1,⋅,j1)

et,⋅,1 et,⋅,1

et,⋅,2

et,⋅,3

Backpropagation

…

Up to 12x faster in our experiments  
compared to PyTorch’s autodiff
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1.  DPΩ(θ) is convex 

Proof uses that x ≤ y ⇒ maxΩ(x) ≤ maxΩ(y)

Theoretical results

3.

Proof reduces to showing that max-H is the only maxΩ supporting 
associativity, i.e., max-H(x, max-H(y, z)) = max-H(max-H(x, y), z)

DPΩ(θ) = maxΩ((⟨y, θ⟩)y∈𝒴) ⇔ Ω = -H (Shannon’s negentropy)

2. Approximation error

(N-1) L ≤ DPΩ(θ) - DP(θ) ≤ (N-1) U

N: #nodes in DAG

L, U: constants that depend on Ω
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Structured prediction losses

= DP(θ) − ⟨θ, ytrue⟩

Smoothed loss (proposed)

DPΩ(θ) − ⟨θ, ytrue⟩

max
y∈𝒴

⟨θ, y⟩ − ⟨θ, ytrue⟩
Structured perceptron loss (Collins, 2002)

Training time

Test time

arg max
y∈𝒴⊆ℝm

⟨y, θ⟩
MAP solution Expected solution

∇DPΩ(θ) = 𝔼p[Y]

Ranking

Sort by probability 
(sparse case)

Entropic regularization   → CRF loss

Quadratic regularization → new loss
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Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.
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C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.
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Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.
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English Spanish German Dutch

CRF loss 
(Entropy) 90.80 86.68 77.35 87.56

Squared 
norm 90.86 85.51 76.01 86.58

Lample et al 
2016 

(CRF loss)
90.96 85.75 78.76 81.74

NER experiments

. Competitive results with other losses 

. Fast convergence at train time thanks to smoothness  

. Sparse probabilistic model available at test time!

F1 score comparison on CoNLL03 NER datasets



Summary of second part

T1 T − 12

…
…

…
S E

Smoothing induces a random walk

a distribution over paths in the DAG

Gradient = Expected path

∇DPΩ(θ) = 𝔼p[Y]

Entropic regularization = CRF

computed efficiently by backprop
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C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.
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C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.
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Figure 6: Test predictions from the entropy and `
2
2 regularized named entity recognition (NER) models.

Red dots indicate ground truth. When using `
2
2 regularization, model predictions are sparse (grey borders

indicates non-zero cells). They are thus easier to introspect for ambiguities, as we can list a finite number
of possible outputs.

C.1 Named entity recognition (section §5.2)

Our model extracts word embedding from a 300-dimensional lookup table concatenated with a 50-dimensional
character embedding. This character embedding corresponds to the concatenation of the last hidden unit
of a bi-directional character LSTM, as in Lample et al. (2016). Character embedding size is set to 50. A
word LSTM then produces sentence-aware features for each word. This LSTM is bi-directional with 100-
dimensional hidden units per direction. The final features X used to build the potential tensor ✓ are thus
200-dimensional. Note that, in contrast with Lample et al. (2016):

• The look-up table is initialized with 300-dimensional embeddings from FastText (Joulin et al., 2016),
trained on Wikipedia corpus.

• We do not pad letters prior to feeding the character LSTM as it is not principled.
• We do not train the unknown word embedding as we found it had no e↵ect.

We convert tags to the IOBES (Inside-Outside-Begin-End-Stop) scheme to build a richer Vit⌦ model than
if we used the simpler IOB (Inside-Outside-Begin) scheme, that has a lower number of tags. We performed
a small grid-search to select the step-size and batch-size used for optimization: s 2 {0.005, 0.01, 0.02},
b 2 {8, 32, 128}. For each language and each loss, we select the highest-scoring model on the validation set,
and report the test score.

The model is strongly subject to overfitting using the convex surrogate loss and the log likelihood. We have
to use a small batch size (b = 8) and vanilla SGD with large step size (s = 0.01) to avoid this overfitting
issue. For all losses, accelerated stochastic optimizers have all lower generalization performance than SGD,
as also noticed in (Lample et al., 2016) when using the classical negative log-likelihood as a loss.

L2 regularization = new sparse model
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Conclusion

•The log-sum-exp and softmax are ubiquitous in deep learning

•maxΩ and argmaxΩ operators provide drop-in replacement for 
them with sparse and/or structured outputs 

•Induce a probabilistic perspective 

•Many more potential applications to explore


