
McCLIM User’s Manual

The Users Guide

and

API Reference

Copyright c© 2004,2005,2006,2007,2008,2017,2019 the McCLIM hackers.

i

Table of Contents

Introduction . 1
Standards . 1
How CLIM Is Different . 1

1 User manual . 3
1.1 Building McCLIM . 3

1.1.1 Examples and demos . 3
1.1.2 Applications . 3

1.2 The first application . 4
1.2.1 A bit of terminology . 4
1.2.2 How CLIM applications produce output . 4
1.2.3 Panes and Gadgets . 6
1.2.4 Defining Application Frames . 6
1.2.5 A First Attempt . 6
1.2.6 Executing the Application . 8
1.2.7 Adding Functionality . 8
1.2.8 An application displaying a data structure 12

1.3 Using incremental redisplay . 13
1.4 Using presentation types . 16

1.4.1 What is a presentation type . 16
1.4.2 A simple example . 17

1.5 Using views . 18
1.6 Using command tables . 21
1.7 Using menu bar . 22

1.7.1 Creating Menu bar . 22
1.7.2 Modifying Menu bar . 22

2 Reference manual . 25
2.1 Concepts . 25

2.1.1 Coordinate systems . 25
2.1.2 Arguments to drawing functions . 25

2.2 Sheet hierarchies . 25
2.2.1 Computing the native transformation . 26
2.2.2 Computing the native region . 26
2.2.3 Moving and resizing sheets and regions . 26
2.2.4 Scrolling . 26

2.3 Drawing functions . 26
2.3.1 Windowing system drawing . 26
2.3.2 CLIM drawing . 26

2.4 Panes . 27
2.4.1 Creating panes . 28
2.4.2 Pane names . 29

ii

2.4.3 Redisplaying panes . 29
2.4.4 Layout protocol . 30

2.4.4.1 Space composition . 31
2.4.4.2 Space allocation . 31
2.4.4.3 Change-space Notification Protocol 32

2.5 Output Protocol . 32
2.6 Command Processing . 34
2.7 Incremental redisplay . 35

3 Developer manual . 36
3.1 Coding conventions . 36

3.1.1 Packages . 36
3.1.2 Examples . 36

3.2 Pointer cursors . 36
3.3 Writing backends . 37

3.3.1 Different types of backends . 37
3.3.2 Backend protocol . 37
3.3.3 Event handling . 38
3.3.4 Graft protocol . 38
3.3.5 Medium drawing . 38
3.3.6 Medium operation . 38
3.3.7 Port protocol . 38
3.3.8 Frame manager, panes and gadgets . 39
3.3.9 Pointer protocol (events?) . 39
3.3.10 Text size . 39
3.3.11 Additional output destinations . 40
3.3.12 Miscellaneous . 40
3.3.13 Obsolete . 40

3.4 PostScript backend . 40
3.4.1 Postscript fonts . 40
3.4.2 Additional functions . 41

4 Extensions . 42
4.1 Frame redefinition semantics . 42
4.2 Frame and sheet icons . 42
4.3 Frame and sheet names . 43
4.4 Frame and sheet shrinking . 44
4.5 Frame command table change . 44
4.6 Text editor substrate . 44
4.7 Extended text formatting . 45

4.7.1 Page abstraction . 45
4.7.2 FILLING-OUTPUT extension . 45

4.8 Extended blank area presentation type . 46
4.9 Tab Layout . 46
4.10 Fonts and Extended Text Styles . 48

4.10.1 Extended Text Styles . 49

iii

4.10.2 Listing Fonts . 49
4.11 Raster Images . 50
4.12 Drawing backends . 51

4.12.1 Interactive backend as a medium . 51
4.12.2 PostScript . 51
4.12.3 PDF . 52
4.12.4 SVG . 52
4.12.5 RasterImage . 52
4.12.6 Adding new backends . 52

4.13 Additional arguments to drawing functions 53
4.14 Gestures and Gesture Names extensions . 53

5 Applications . 55
5.1 Debugger . 55

5.1.1 Debugger usage . 55
5.1.2 Keyboard shortcuts . 55
5.1.3 Debugger API . 55

5.2 Inspector . 56
5.2.1 Usage . 56

5.2.1.1 Quick Start . 56
5.2.1.2 The Inspector Window . 57
5.2.1.3 Objects and Places . 57
5.2.1.4 Evaluating Forms . 59
5.2.1.5 Navigating . 59
5.2.1.6 Handling of Specific Object Types 60
5.2.1.7 Updating the Inspected Object . 61

5.2.2 Extending Clouseau . 61
5.2.2.1 Running Example . 61
5.2.2.2 State and Style of Presented Objects 63
5.2.2.3 Defining Inspection Methods for Objects 64

5.2.3 API . 66
5.2.3.1 Functions for Invoking Clouseau . 66
5.2.3.2 Functions for Extending Clouseau . 67
5.2.3.3 Other Functions . 69
5.2.3.4 Deprecated Functions . 69

5.3 Listener . 70
5.3.1 Usage . 70

5.3.1.1 Quick start . 70
5.3.1.2 Commands . 71

5.3.2 The #! macro character . 72
5.3.3 Calling commands from lisp . 72
5.3.4 Command output destinations . 72
5.3.5 Debugger integration . 73

iv

Auxiliary material . 74
Glossary . 74
Development History . 76

Concept index . 79

Function and macro and variable and type index . . 81

1

Introduction

CLIM is a large layered software system that allows the user to customize it at each level.
The most simple ways of using CLIM is to directly use its top layer, which contains appli-
cation frames, panes, and gadgets, very similar to those of traditional windowing system
toolkits such as GTK, Tk, and Motif.

But there is much more to using CLIM. In CLIM, the upper layer with panes and gadgets
is written on top of a basic layer containing more basic functionality in the form of sheets.
Objects in the upper layer are typically instances of classes derived from those of the lower
layer. Thus, nothing prevents a user from adding new gadgets and panes by writing code
that uses the sheet layer.

Finally, since CLIM is written in Common Lisp, essentially all parts of it can be modified,
replaced, or extended.

For that reason, a user’s manual for CLIM must contain not only a description of the
protocols of the upper layer, but also of all protocols, classes, functions, macros, etc. that
are part of the specification.

Standards

This manual documents McCLIM 0.9.8 which is a mostly complete implementation of the
CLIM 2.0 specification and its revision 2.2. To our knowledge version 2.2 of the CLIM spec-
ification is only documented in the “CLIM 2 User’s Guide” by Franz. While that document
is not a formal specification, it does contain many cleanups and is often clearer than the
official specification; on the other hand, the original specification is a useful reference. This
manual will note where McCLIM has followed the 2.2 API.

Also, some protocols mentioned in the 2.0 specification, such as parts of the incremental
redisplay protocol, are clearly internal to CLIM and not well described. It will be noted
here when they are partially implemented in McCLIM or not implemented at all.

How CLIM Is Different

Many new users of CLIM have a hard time trying to understand how it works and how to
use it. A large part of the problem is that many such users are used to more traditional
GUI toolkits, and they try to fit CLIM into their mental model of how GUI toolkits should
work.

But CLIM is much more than just a GUI toolkit, as suggested by its name, it is an interface
manager, i.e. it is a complete mediator between application “business logic” and the way
the user interacts with objects of the application. In fact, CLIM doesn’t have to be used
with graphics output at all, as it contains a large collection of functionality to manage text.

Traditional GUI toolkits have an event loop.

Events are delivered to GUI elements called gadgets (or widgets), and the programmer at-
taches event handlers to those gadgets in order to invoke the functionality of the application
logic. While this way of structuring code is sometimes presented as a virtue (“Event-driven
programming”), it has an unfortunate side effect, namely that event handlers are executed in
a null context, so that it becomes hard to even remember two consecutive events. The effect

Introduction 2

of event-driven programming is that applications written that way have very rudimentary
interaction policies.

At the lowest level, CLIM also has an event loop, but most application programmers never
have any reason to program at that level with CLIM. Instead, CLIM has a command loop

at a much higher level than the event loop. At each iteration of the command loop:

1. A command is acquired. You might satisfy this demand by clicking on a menu item,
by typing the name of a command, by hitting some kind of keystroke, by pressing a
button, or by pressing some visible object with a command associated with it;

2. Arguments that are required by the command are acquired. Each argument is often
associated with a presentation type, and visible objects of the right presentation type
can be clicked on to satisfy this demand. You can also type a textual representation of
the argument, using completion, or you can use a context menu;

3. The command is called on the arguments, usually resulting in some significant modifi-
cation of the data structure representing your application logic;

4. A display routine is called to update the views of the application logic. The display
routine may use features such as incremental redisplay.

Instead of attaching event handlers to gadgets, writing a CLIM application therefore consists
of:

• writing CLIM commands that modify the application data structures independently
of how those commands are invoked, and which may take application objects as argu-
ments;

• writing display routines that turn the application data structures (and possibly some
"view" object) into a collection of visible representations (having presentation types)
of application objects;

• writing completion routines that allow you to type in application objects (of a certain
presentation type) using completions;

• independently deciding how commands are to be invoked (menus, buttons, presenta-
tions, textual commands, etc).

By using CLIM as a mediator of command invocation and argument acquisition, you can
obtain some very modular code. Application logic is completely separate from interaction
policies, and the two can evolve separately and independently.

3

1 User manual

1.1 Building McCLIM

The McCLIM source distribution comes with a number of demos, examples and applica-
tions. They are intended to showcase specific CLIM features, demonstrate programming
techniques or provide useful tools.

These demos and applications are available in the Examples and Apps subdirectories of
the source tree’s root directory. The following sections give a brief overview of the included
examples and applications and explain how to compile, load and run them. Furthermore, the
INSTALL file in the source tree’s root directory contains more detailed McCLIM installation
instructions for your Common Lisp implementation.

1.1.1 Examples and demos

Demos are meant to be run after loading the clim-examples system from the frame created
with (clim-demo:demodemo).

The easiest way to try this is to use the Quicklisp library manager. Assuming that Quicklisp
has already been set up, trying out the demos is straightforward:

(ql:quickload :clim-examples)

(clim-demo:demodemo)

Alternatively, for the more courageous (which requires separately downloading dependencies
and setting a local repository), asdf also works well starting from the McCLIM source code
directory.

(asdf:load-system "clim-examples")

(clim-demo:demodemo)

The source code of all demos can be found in the Examples directory.

1.1.2 Applications

Additionally McCLIM has a few bundled applications:

Apps/Listener

CLIM-enabled Lisp listener. System name is clim-listener. See Section 5.3
[Listener], page 70, for more information.

(asdf:load-system "clim-listener")

(clim-listener:run-listener)

Apps/Clouseau

CLIM-enabled Lisp inspector. System name is clouseau. See Section 5.2 [In-
spector], page 56, for more information.

(asdf:load-system "clouseau")

(clouseau:inspect clim:+indian-red+)

Apps/Debugger

Common Lisp debugger implemented in McCLIM. It uses the portable debugger
interface for sldb (part of Slime project). System name is clim-debugger. See
Section 5.1 [Debugger], page 55, for more information.

(asdf:load-system "clim-debugger")

Chapter 1: User manual 4

(clim-debugger:with-debugger

(break "simple-break"))

Apps/Functional-Geometry

Peter Henderson idea, see http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf

and http://www.ecs.soton.ac.uk/~ph/papers/funcgeo2.pdf implemented
in Lisp by Frank Buss. CLIM Listener interface by Rainer Joswig. System
name is functional-geometry.

(asdf:load-system 'functional-geometry)

(functional-geometry:run-functional-geometry)

(clim-plot *fishes*) ; from a listener

1.2 The first application

1.2.1 A bit of terminology

CLIM was developed before the GUI toolkits widely used at the moment. Qt, GTK and
others appeared much later than CLIM and the difference of terminology reflects this.

A CLIM application is made up of a hierarchy of an application frame, panes and gadgets
(gadgets are special kinds of panes):

application frame
An application frame is what would usually be called an application.

panes At a very high level, panes describe an application frame’s visual building
blocks: a side bar, a menu bar, a table displaying a list of items, a text in-
put are all panes. They can be used by application programmers to compose
the top-level user interface of their applications, as well as auxiliary components
such as menus and dialogs. In addition, panes can be more abstract such as lay-
out panes such as hbox, vbox to arrange other panes horizontally or vertically,
etc.

gadgets gadgets correspond to what other toolkits call widgets and control. Frequently
used CLIM gadgets are buttons, sliders, etc.

1.2.2 How CLIM applications produce output

Although it is easy to imagine panes in terms of their appearance on screen, they are much
richer: they are actually the series of operations that produces that appearance. They
are not only the end product visible on a screen, but they contain all the step-by-step
information that led to that representation.

More precisely, CLIM panes record the series of operations that generates an output. This
means that such a pane maintains a display list, consisting of a sequence of output records,
ordered chronologically, from the first output record to be drawn to the last.

This display list is used to fill in damaged areas of the pane, for instance as a result of the
pane being partially or totally covered by other panes, and then having some or all of its
area again becoming visible. The output records of the display list that have some parts in
common with the exposed area are partially or totally replayed (in chronological order) to
redraw the contents of the area.

http://www.ecs.soton.ac.uk/~ph/funcgeo.pdf
http://www.ecs.soton.ac.uk/~ph/papers/funcgeo2.pdf

Chapter 1: User manual 5

An application can have a pane establish this display list in several fundamentally different
ways, each more sophisticated:

Simple application
Very simple applications have no internal data structure to keep track of appli-
cation objects, and simply produce output to the pane from time to time as a
result of running commands, occasionally perhaps erasing the pane and start-
ing over. Such applications typically use text or graphics output as a result of
running commands. CLIM maintains the display list for the pane, and adds to
the end of it, each time also producing the pixels that result from drawing the
new output record. If the pane uses scrolling (which it typically does), then
CLIM must determine the extent of the pane so as to update the scroll bar
after each new output.

Application with a static display function
More complicated applications use a display function. Before the display func-
tion is run, the existing display list is typically deleted, so that the purpose
of the display function becomes to establish an entirely new display list. The
display function might for instance produce some kind of form to be filled in,
and application commands can use text or graphics operations to fill in the
form. A game of tic-tac-toe could work this way, where the display function
draws the board and commands draw shapes into the squares.

Application with a dynamic display function
Even more complicated applications might have some internal data structure
that has a direct mapping to output, and commands simply modify this internal
data structure. In this case, the display function is run after each time around
the command loop, because a command can have modified the internal data
structure in some arbitrary ways. Some such applications might simply want to
delete the existing display list and produce a new one each time (to minimize
flicker, double buffering could be used). This is a very simple way of structuring
an application, and entirely acceptable in many cases. Consider, for instance,
a board game where pieces can be moved (as opposed to just added). A very
simple way of structuring such an application is to have an internal representa-
tion of the board, and to make the display function traverse this data structure
and produce the complete output each time in the command loop.

Application with an incremental static display function
Some applications have very large internal data structures to be displayed,
and it would cause a serious performance problem if the display list had to
be computed from scratch each time around the command loop. To solve this
problem, CLIM contains a feature called incremental redisplay. It allows many
of the output records to be kept from one iteration of the command loop to
the next. This can be done in two different ways. The simplest way is for
the application to keep the simple structure which consists of traversing the
entire data structure each time, but at various points indicate to CLIM that
the output has not changed since last time, so as to avoid actually invoking
the application code for computing it. This is accomplished by the use of
updating-output. The advantage of updating-output is that the application

Chapter 1: User manual 6

logic remains straightforward, and it is up to CLIM to do the hard work of
recycling output records. The disadvantage is that for some very demanding
applications, this method might not be fast enough.

Programmer does it all
The other way is more complicated and requires the programmer to structure
the application differently. Essentially, the application has to keep track of the
output records in the display list, and inform CLIM about modifications to it.
The main disadvantage of this method is that the programmer must now write
the application to keep track of the output records itself, as opposed to leaving
it to CLIM.

1.2.3 Panes and Gadgets

A CLIM application is made up of a hierarchy of panes and gadgets (gadgets are special
kinds of panes). These elements correspond to what other toolkits call widgets. Frequently
used CLIM gadgets are buttons, sliders, etc, and typical panes are the layout panes such
as hbox, vbox, hrack, etc.

1.2.4 Defining Application Frames

Each CLIM application is defined by an application frame. An application frame is an
instance of the class application-frame. As a CLIM user, you typically define a class
that inherits from the class application-frame, and that contains additional slots needed
by your application. It is considered good style to keep all your application-specific data
in slots in the application frame (rather than, say, in global variables), and to define your
application-specific application frame in its own package.

The usual way to define an application frame is to use the macro define-application-frame.
This macro works much like defclass, but also allows you to specify the hierarchy of panes
and gadgets to use.

1.2.5 A First Attempt

Let us define a very primitive CLIM application. For that, let us put the following code in
a file:

(in-package :common-lisp-user)

(defpackage :my-first-app

;; Imports the appropriate CLIM library

(:use :clim :clim-lisp)

;; The package will only export a function to run the app

(:export run-my-first-app))

;; Good practice

(in-package :my-first-app)

;; Definition of the structure of a minimum app

(define-application-frame my-first-clim-app ()

()

Chapter 1: User manual 7

;; This app only has 1 pane

(:panes

(my-interactor :interactor

:height 400

:width 600))

;; :layouts section describes how the pane is positioned inside

;; the application frame.

;; With 1 pane, no point getting complicated, Default is fine...

(:layouts

(my-default my-interactor)))

;; Now that the structure of the app is defined, need a function

;; to launch an instance of this app. (The user could run

;; several instances of the same app.)

(defun run-my-first-app ()

(run-frame-top-level (make-application-frame 'my-first-clim-app)))

As we can see in this example, we have put our application in a separate package, here
a package named MY-FIRST-APP. While not required, putting the application in its own
package is good practice.

The package for the application uses two packages: CLIM and CLIM-LISP. The CLIM package
is the one that contains all the symbols needed for using CLIM. The CLIM-LISP package
replaces the COMMON-LISP package for CLIM applications. It is essentially the same as the
COMMON-LISP package as far as the user is concerned.

In our example, we export the symbol that corresponds to the main function to start our
application, here called run-my-first-app.

The most important part of the code in our example is the definition of the application-
frame. In our example, we have defined an application frame called my-first-clim-app,
which becomes a CLOS class that automatically inherits from some standard CLIM appli-
cation frame class.

The second argument to define-application-frame is a list of additional superclasses from
which you want your application frame to inherit. In our example, this list is empty, which
means that our application frame only inherits from the standard CLIM application frame.

The third argument to define-application-frame is a list of CLOS slots to be added to any
instance of this kind of application frame. These slots are typically used for holding all
application-specific data. The current instance of the application frame will always be the
value of the special variable *application-frame*,

so that the values of these slots can be accessed. In our example, we do not initially have
any further slots.

The rest of the definition of an application frame contains additional elements that CLIM
will allow the user to define. In our example, we have two additional (mandatory) elements:
:panes and :layouts.

The :panes element defines a collection of CLIM panes that each instance of your appli-
cation may have. Each pane has a name, a type, and perhaps some options that are used

Chapter 1: User manual 8

to instantiate that particular type of pane. Here, we have a pane called my-interactor of
type :interactor with a height of 400 units and a width of 600 units. In McCLIM, the
units are initially physical units (number of pixels) of the native windowing system.

The :layouts element defines one or more ways of organizing the panes in a hierarchy.
Each layout has a name and a description of a hierarchy. In our example, only one layout,
named my-default, is defined. The layout called my-default is the one that is used by
CLIM at startup. In our example, the corresponding hierarchy is trivial, since it contains
only the one element my-interactor, which is the name of our only pane.

1.2.6 Executing the Application

In order to run a CLIM application, you must have a Lisp system that contains McCLIM.
If you use CMUCL or SBCL, you either need a core file that already has McCLIM in it, or
else, you have to load the McCLIM compiled files that make up the McCLIM distribution.
The first solution is recommended so as to avoid having to load the McCLIM files each time
you start your CLIM application.

To execute the application, load the file containing your code (possibly after compiling it)
into your running Lisp system. Then start the application. Our example can be started by
typing (my-first-app:run-my-first-app).

1.2.7 Adding Functionality

In a serious application, you would probably want some area where your application objects
are to be displayed. In CLIM, such an area is called an application pane, and would be an
instance (direct or indirect) of the CLIM class application-pane. In fact, instances of this
class are in reality also streams which can be used in calls both to ordinary input and output
functions such as format and read and to CLIM-specific functions such as draw-line.

Let’s consider an improved example, where the my- names have been replaced by shorter
versions for brevity:

(in-package :common-lisp-user)

(defpackage :app

(:use :clim :clim-lisp)

(:export run-app))

(in-package :app)

(define-application-frame superapp ()

()

(:pointer-documentation t)

(:panes

;; Let's add an additional pane

(app :application

;; :DISPLAY-TIME specifies when this pane should be displayed

;; in the command loop. Note that the refresh is

;; pane-specific, not application-wide.

Chapter 1: User manual 9

:display-time nil

:height 400

:width 600)

(int :interactor

:height 200

:width 600))

(:layouts

;; This time we explicitly specify that the 2 defined panes

;; should be stacked vertically.

(default (vertically ()

app int))))

;;

;; Let's also define commands that will act on the application.

;;

;; How to leave the application.

;; Note the '-superapp-' part of the command definition, coming from

;; the name of the application frame.

(define-superapp-command (com-quit :name t) ()

(frame-exit *application-frame*))

;; This is an additional command that will be used in the next

;; example, so its content is not important. However, it is useful to

;; describe some aspects of the command loop. See below.

(define-superapp-command (com-parity :name t) ((number 'integer))

(format t "~a is ~a~%" number

(if (oddp number)

"odd"

"even")))

(defun run-app ()

(run-frame-top-level (make-application-frame 'superapp)))

In this example we have such an application pane, the name of which is app. As you
can see, we have defined it with an option :display-time nil. The default value for this
option for an application pane is :command-loop, which means that the pane is cleared after
each iteration in the command loop, and then redisplayed using a client-supplied display
function. The default display function does nothing, and we have not supplied any, so if
we had omitted the :display-time nil option, the parity command would have written
to the pane. Then, at the end of the command loop, the pane would have been cleared,
and nothing else would have been displayed. The net result is that we would have seen no

Chapter 1: User manual 10

visible output. With the option :display-time nil, the pane is never cleared, and output
is accumulated every time we execute the parity command.

For this example, we also added a few commands.

Such commands are defined by the use of a macro called define-name-command, where
name is the name of the application, in our case superapp. This macro is automatically
defined by define-application-frame.

In addition, we added a pane that automatically provides documentation for different actions
on the pointer device. This was done by including (:pointer-documentation t) in the
frame definition.

If you execute this example, you will find that you now have three different panes—the
application pane, the interactor pane, and the pointer documentation pane. In the pointer
documentation pane, you will see the text ‘R possibilities’ which indicates that if you
click the right mouse button, you will automatically see a popup menu that lets you choose a
command. In our case, you will have the default commands that are automatically proposed
by McCLIM plus the commands that you defined yourself, in this case quit and parity.

Figure 1.1 shows what ought to be visible on the screen.

Chapter 1: User manual 11

Figure 1.1: View of the improved example.

Notice that commands, in order to be available from the command line, must have an option
of :name t. The reason is that some commands will be available only from menus or by
some other mechanism.

You may notice that if the output of the application is hidden (say by the window of
some other application) and then re-exposed, the output reappears normally, without any
intervention necessary on the part of the programmer. This effect is accomplished by a
CLIM mechanism called output recording.

Essentially, every piece of output is not only displayed in the pane, but also captured in
an output record associated with the pane. When a pane is re-exposed, its output records
are consulted and if any of them overlap the re-exposed region, they are redisplayed. In
fact, some others may be redisplayed as well, because CLIM guarantees that the effect will
be the same as when the initial output was created. It does that by making sure that the
order between (partially) overlapping output records is respected.

Chapter 1: User manual 12

Not all panes support output recording, but application panes certainly do, so it is recom-
mended that you use some subclass of application-pane to display application-specific
objects, so that output recording is done automatically.

1.2.8 An application displaying a data structure

Many applications use a central data structure that is to be on display at all times, and
that is modified by the commands of the application. CLIM allows for a very easy way
to write such an application. The main idea is to store the data structure in slots of the
application frame, and to use a display function

that after each iteration of the command loop displays the entire data structure to the
application pane.

Here is a variation of the previous application that shows this possibility:

(in-package :common-lisp-user)

(defpackage "APP"

(:use :clim :clim-lisp)

(:export "APP-MAIN"))

(in-package :app)

(define-application-frame superapp ()

;; New addition of a slot to the application frame, which defines a

;; application-specific slot. The slot is simply a number.

((current-number :initform nil

:accessor current-number))

;; We no longer specify :DISPLAY-TIME (see below), and we supply our

;; own :DISPLAY-FUNCTION. The rest of the application frame is

;; unchanged.

(:pointer-documentation t)

(:panes

(app :application

:height 400

:width 600

:display-function 'display-app)

(int :interactor

:height 200

:width 600))

(:layouts

(default (vertically ()

app int))))

;; The display function for the "app" pane. It simply prints the

;; number from the application frame slot, and whether it is odd or

;; even. Note that the print stream of `format' is PANE.

(defun display-app (frame pane)

Chapter 1: User manual 13

(let ((number (current-number frame)))

(format pane "~a is ~a"

number

(cond ((null number) "not a number")

((oddp number) "odd")

(t "even")))))

(define-superapp-command (com-quit :name t) ()

(frame-exit *application-frame*))

(define-superapp-command (com-parity :name t) ((number 'integer))

(setf (current-number *application-frame*) number))

(defun app-main ()

(run-frame-top-level (make-application-frame 'superapp)))

Here, we have added a slot that is called current-number to the application frame. It is
initialized to NIL and it has an accessor function that allow us to query and to modify the
value.

Observe that in this example, we no longer have the option :display-time nil set in the
application pane. By default, then, the :display-time is :command-loop, which means
that the pane is erased after each iteration of the command loop. Also observe the option
:display-function in the application pane definition, which takes the name of a function
that will be called to display the pane after it has been cleared. In this case, the function
is display-app, which we have defined immediately after the application frame.

Instead of immediately displaying information about its argument, the command
com-parity instead modifies the new slot of the application frame. Think of this function
as being more general, for instance a command to add a new object to a set of graphical
objects in a figure drawing program, or as a command to add a new name to an address
book. Notice how this function accesses the current application frame by means of the
special variable *application-frame*.

A display function is called with the frame and the pane as arguments. It is good style to
use the pane as the stream in calls to functions that will result in output. This makes it
possible for the same function to be used by several different frames, should that be called
for. In our simple example, the display function only displays the value of a single number
(or NIL), but you could think of this as displaying all the objects that have been drawn in
some figure drawing program or displaying all the entries in an address book.

1.3 Using incremental redisplay

While the example in the previous section is a very simple way of structuring an applica-
tion (let commands arbitrarily modify the data structure, and simply erase the pane and
redisplay the structure after each iteration of the command loop), the visual result is not
so great when many objects are to be displayed. There is most often a noticeable flicker
between the moment when the pane is cleared and the objects are drawn. Sometimes this

Chapter 1: User manual 14

is inevitable (as when nearly all objects change), but most of the time, only an incremental
modification has been made, and most of the objects are still in the same place as before.

In simple toolkits, the application programmer would have to figure out what has changed
since the previous display, and only display the differences. CLIM offers a mechanism called
incremental redisplay

that automates a large part of this task. As we mentioned earlier, CLIM captures output
in the form of output records. The same mechanism is used to obtain incremental redisplay.

To use incremental redisplay, client code remains structured in the simple way that was
mention above: after each iteration of the command loop, the display function output the
entire data structure as usual, except that it helps the incremental redisplay mechanism by
telling CLIM which piece of output corresponds to which piece of output during the previous
iteration of the command loop. It does this by giving some kind of unique identity to some
piece of output, and some means of indicating whether the contents of this output is the
same as it was last time. With this information, the CLIM incremental redisplay mechanism
can figure out whether some output is new, has disappeared, or has been moved, compared
to the previous iteration of the command loop. As with re-exposure, CLIM guarantees that
the result is identical to that which would have been obtained, had all the output records
been output in order to a blank pane.

The next example illustrates this idea. It is a simple application that displays a fixed
number (here 20) of lines, each line being a number. Here is the code:

(in-package :common-lisp-user)

(defpackage "APP"

(:use :clim :clim-lisp)

(:export "APP-MAIN"))

(in-package :app)

(define-application-frame superapp ()

((numbers :initform (loop repeat 20 collect (list (random 100000000)))

:accessor numbers)

(cursor :initform 0 :accessor cursor))

(:pointer-documentation t)

(:panes

(app :application

:height 400 :width 600

:incremental-redisplay t

:display-function 'display-app)

(int :interactor :height 200 :width 600))

(:layouts

(default (vertically () app int))))

;; As usual, the displaying code relates to a pane, not the application frame.

(defun display-app (frame pane)

(loop

Chapter 1: User manual 15

;; Taking items one-by-one from the frame slot 'numbers'...

for current-element in (numbers frame)

;; ...and increasing line-by-line...

for line from 0

;; ...print a star if the cursor is on that line...

;; (Note that here, there is no incremental redisplay. The output

;; record of the star will be printed at each call of the display

;; function, i.e. at each iteration of the command loop.)

do (princ (if (= (cursor frame) line) "*" " ") pane)

;; ...and incrementally update the rendering instructions of the

;; number on that line.

;; (Note that 'numbers' was defined as a list of lists, each

;; sublist holding an individual number. The reason for that is

;; explained below, but this is why (car current-element) is

;; needed.)

do (updating-output (pane :unique-id current-element

:id-test #'eq

:cache-value (car current-element)

:cache-test #'eql)

(format pane "~a~%" (car current-element)))))

;;

;; Command definitions

;;

;; Increase the value of the number on the current line.

(define-superapp-command (com-add :name t) ((number 'integer))

(incf (car (elt (numbers *application-frame*)

(cursor *application-frame*)))

number))

;; Move the cursor one line down (increasing the cursor position),

;; looping back to the beginning if going too far.

(define-superapp-command (com-next :name t) ()

(incf (cursor *application-frame*))

(when (= (cursor *application-frame*)

(length (numbers *application-frame*)))

(setf (cursor *application-frame*) 0)))

;; Move the cursor one line up

(define-superapp-command (com-previous :name t) ()

(decf (cursor *application-frame*))

(when (minusp (cursor *application-frame*))

Chapter 1: User manual 16

(setf (cursor *application-frame*)

(1- (length (numbers *application-frame*))))))

;; Command to quit the app

(define-superapp-command (com-quit :name t) ()

(frame-exit *application-frame*))

;; Exported function to launch an instance of the application frame

(defun app-main ()

(run-frame-top-level (make-application-frame 'superapp)))

We store the numbers in a slot called numbers of the application frame. However, we store
each number in its own list. This is a simple way to provide a unique identity for each
number. We could not use the number itself, because two numbers could be the same and
the identities would not be unique. Instead, we use the cons cell that store the number
as the unique identity. By using :id-test #’eq we inform CLIM that it can figure out
whether an output record is the same as one that was issued previous time by using the
function eq to compare them. But there is a second test that has to be verified, namely
whether an output record that was issued last time has to be redisplayed or not. That is
the purpose of the cache-value. Here we use the number itself as the cache value and eql

as the test to determine whether the output is going to be the same as last time.

For convenience, we display a * at the beginning of the current line, and we provide two
commands next and previous to navigate between the lines.

Notice that in the declaration of the pane in the application frame, we have given the
option :incremental-redisplay t. This informs CLIM not to clear the pane after each
command-loop iteration, but to keep the output records around and compare them to the
new ones that are produced during the new iteration.

1.4 Using presentation types

1.4.1 What is a presentation type

The concept of presentation types is central to CLIM. Client code can choose to output
graphical or textual representations of application objects either as just graphics or text, or
to associate such output with an arbitrary Common Lisp object and a presentation type.
The presentation type is not necessarily related to the idea Common Lisp might have of the
underlying object.

When a CLIM command or some other client code requests an object (say as an argument)
of a certain presentation type, the user of the application can satisfy the request by clicking
on any visible output labeled with a compatible presentation type. The command then
receives the underlying Common Lisp object as a response to the request.

CLIM presentation types are usually distinct from Common Lisp types. The reason is that
the Common Lisp type system, although very powerful, is not quite powerful enough to
represent the kind of relationships between types that are required by CLIM. However,
every Common Lisp class (except the built-in classes) is automatically a presentation type.

Chapter 1: User manual 17

A presentation type has a name, but can also have one or more parameters. Parameters
of presentation types are typically used to restrict the type. For instance, the presentation
type integer takes as parameters the low and the high values of an interval. Such param-
eters allow the application to restrict objects that become clickable in certain contexts, for
instance if a date in the month of March is requested, only integers between 1 and 31 should
be clickable.

1.4.2 A simple example

Consider the following example:

(in-package :common-lisp-user)

(defpackage :app

(:use :clim :clim-lisp)

(:export #:app-main))

(in-package :app)

(define-application-frame superapp ()

()

(:pointer-documentation t)

(:panes

(app :application :display-time t :height 300 :width 600)

(int :interactor :height 200 :width 600))

(:layouts

(default (vertically () app int))))

(defun app-main ()

(run-frame-top-level (make-application-frame 'superapp)))

(define-superapp-command (com-quit :name t) ()

(frame-exit *application-frame*))

(define-presentation-type name-of-month ()

:inherit-from 'string)

(define-presentation-type day-of-month ()

:inherit-from 'integer)

(define-superapp-command (com-out :name t) ()

(with-output-as-presentation (t "The third month" 'name-of-month)

(format t "March~%"))

(with-output-as-presentation (t 15 'day-of-month)

(format t "fifteen~%")))

(define-superapp-command (com-get-date :name t)

((name 'name-of-month) (date 'day-of-month))

Chapter 1: User manual 18

(format (frame-standard-input *application-frame*)

"the ~a of ~a~%" date name))

In this application, we have two main panes, an application pane and an interactor pane.
The application pane is given the option :display-time t which means that it will not be
erased before every iteration of the command loop.

We have also defined two presentation types: name-of-month and day-of-month. The
out command uses with-output-as-presentation in order to associate some output, a
presentation type, and an underlying object. In this case, it will show the string “March”
which is considered to be of presentation type name-of-month with the underlying object
being the character string "The third month". It will also show the string “fifteen” which
is considered to be of presentation type day-of-month with the underlying object being the
number 15. The argument t to with-output-as-presentation indicates that the stream
to present on is *standard-output*.

Thus, if the out command has been executed, and then the user types ‘Get Date’ in the
interactor pane, the get-date command will try to acquire its arguments, the first of pre-
sentation type name-of-month and the second of type day-of-month. At the first prompt,
the user can click on the string ‘March’ but not on the string ‘fifteen’ in the application
pane. At the second prompt it is the string ‘fifteen’ that is clickable, whereas ‘March’ is
not.

The get-date command will acquire the underlying objects. What is finally displayed (in
the interactor pane, which is the standard input of the frame), is ‘the 15 of The third

month’.

1.5 Using views

The CLIM specification mentions a concept called a view, and also lists a number of prede-
fined views to be used in various different contexts.

In this chapter we show how the view concept can be used in some concrete programming
examples. In particular, we show how to use a single pane to show different views of
the application data structure at different times. To switch between the different views,
we supply a set of commands that alter the stream-default-view feature of all CLIM
extended output streams.

The example shown here has been stripped to a bare minimum in order to illustrate the
important concepts. A more complete version can be found in Examples/views.lisp in
the McCLIM source tree.

Here is the example:

(cl:in-package #:clim-user)

;;; part of application "business logic"

(defclass person ()

((%last-name :initarg :last-name :accessor last-name)

(%first-name :initarg :first-name :accessor first-name)

(%address :initarg :address :accessor address)

(%membership-number :initarg :membership-number :reader membership-number)))

Chapter 1: User manual 19

;;; constructor for the PERSON class. Not strictly necessary.

(defun make-person (last-name first-name address membership-number)

(make-instance 'person

:last-name last-name

:first-name first-name

:address address

:membership-number membership-number))

;;; initial list of members of the organization we imagine for this example

(defparameter *members*

(list (make-person "Doe" "Jane" "123, Glencoe Terrace" 12345)

(make-person "Dupont" "Jean" "111, Rue de la Republique" 54321)

(make-person "Smith" "Eliza" "22, Trafalgar Square" 121212)

(make-person "Nilsson" "Sven" "Uppsalagatan 33" 98765)))

;;; the CLIM view class that corresponds to a list of members, one member

;;; per line of text in a CLIM application pane.

(defclass members-view (view) ())

;;; since this view does not take any parameters in our simple example,

;;; we need only a single instance of it.

(defparameter *members-view* (make-instance 'members-view))

;;; the application frame. It contains instance-specific data

;;; such as the members of our organization.

(define-application-frame views ()

((%members :initform *members* :accessor members))

(:panes

(main-pane :application :height 500 :width 500

:display-function 'display-main-pane

;; notice the initialization of the default view of

;; the application pane.

:default-view *members-view*)

(interactor :interactor :height 100 :width 500))

(:layouts

(default (vertically ()

main-pane

interactor))))

;;; the trick here is to define a generic display function

;;; that is called on the frame, the pane AND the view,

;;; whereas the standard CLIM display functions are called

;;; only on the frame and the pane.

(defgeneric display-pane-with-view (frame pane view))

;;; this is the display function that is called in each iteration

;;; of the CLIM command loop. We simply call our own, more elaborate

Chapter 1: User manual 20

;;; display function with the default view of the pane.

(defun display-main-pane (frame pane)

(display-pane-with-view frame pane (stream-default-view pane)))

;;; now we can start writing methods on our own display function

;;; for different views. This one displays the data each member

;;; on a line of its own.

(defmethod display-pane-with-view (frame pane (view members-view))

(loop for member in (members frame)

do (with-output-as-presentation

(pane member 'person)

(format pane "~a, ~a, ~a, ~a~%"

(membership-number member)

(last-name member)

(first-name member)

(address member)))))

;;; this CLIM view is used to display the information about

;;; a single person. It has a slot that indicates what person

;;; we want to view.

(defclass person-view (view)

((%person :initarg :person :reader person)))

;;; this method on our own display function shows the detailed

;;; information of a single member.

(defmethod display-pane-with-view (frame pane (view person-view))

(let ((person (person view)))

(format pane "Last name: ~a~%First Name: ~a~%Address: ~a~%Membership Number: ~a~%"

(last-name person)

(first-name person)

(address person)

(membership-number person))))

;;; entry point to start our applciation

(defun views-example ()

(run-frame-top-level (make-application-frame 'views)))

;;; command to quit the application

(define-views-command (com-quit :name t) ()

(frame-exit *application-frame*))

;;; command to switch the default view of the application pane

;;; (which is the value of *standard-output*) to the one that

;;; shows a member per line.

(define-views-command (com-show-all :name t) ()

(setf (stream-default-view *standard-output*) *members-view*))

Chapter 1: User manual 21

;;; command to switch to a view that displays a single member.

;;; this command takes as an argument the person to display.

;;; In this application, the only way to satisfy the demand for

;;; the argument is to click on a line of the members view. In

;;; more elaborate application, you might be able to type a

;;; textual representation (using completion) of the person.

(define-views-command (com-show-person :name t) ((person 'person))

(setf (stream-default-view *standard-output*)

(make-instance 'person-view :person person)))

The example shows a stripped-down example of a simple database of members of some
organization.

The main trick used in this example is the display-main-pane function that is declared to
be the display function of the main pane in the application frame. The display-main-pane
function trampolines to a generic function called display-pane-with-view, and which
takes an additional argument compared to the display functions of CLIM panes. This
additional argument is of type view which allows us to dispatch not only on the type of
frame and the type of pane, but also on the type of the current default view. In this example
the view argument is simply taken from the default view of the pane.

A possibility that is not obvious from reading the CLIM specification is to have views
that contain additional slots. Our example defines two subclasses of the CLIM view class,
namely members-view and person-view.

The first one of these does not contain any additional slots, and is used when a global view
of the members of our organization is wanted. Since no instance-specific data is required
in this view, we follow the idea of the examples of the CLIM specification to instantiate a
singleton of this class and store that singleton in the stream-default-view of our main
pane whenever a global view of our organization is required.

The person-view class, on the other hand, is used when we want a closer view of a single
member of the organization. This class therefore contains an additional slot which holds the
particular person instance we are interested in. The method on display-pane-with-view

that specializes on person-view displays the data of the particular person that is contained
in the view.

To switch between the views, we provide two commands. The command com-show-all

simply changes the default view of the main pane to be the singleton instance of the
members-view class. The command com-show-person is more complicated. It takes an
argument of type person, creates an instance of the person-view class initialized with the
person that was passed as an argument, and stores the instance as the default view of the
main pane.

1.6 Using command tables

A command table is an object that is used to determine what commands are available in a
particular context and the ways in which commands can be executed.

Simple applications do not manage command tables explicitly. A default command table is
created as a result of a call to the macro define-application-frame and that command
table has the same name as the application frame.

Chapter 1: User manual 22

Each command table has a name and that CLIM manages a global namespace for command
tables.

[Function]find-command-table [clim] name &key (errorp t)
This function returns the command table with the name name. If there is no command
table with that name, then what happens depends on the value of errorp. If errorp is
true, then an error of type command-table-not-found is signaled. If errorp is false,
otherwise nil is returned.

1.7 Using menu bar

Menu bar has become essential part of every GUI system, including McCLIM. Ideally,
McCLIM should try to use the menu bar provided by host window system via McCLIM
backends, but the current clx-backend doesn’t supports native menu bars. That’s why it
has some quirks of its own, like you need to keep mouse button pressed while accessing the
sub-menus.

1.7.1 Creating Menu bar

McCLIM makes creating menu bar quite easy.

(clim:define-application-frame foo ()

;; ...

(:menu-bar t)

;; ...

)

The only argument for :menu-bar can be:

T (default)

McCLIM will provide the menu bar. Later, when you start defining commands,
you can provide a (:menu t) argument to command definition that will add
this command to menu bar.

NIL McCLIM won’t provide the menu bar.

command-table

If you provide a named command table as argument, that command table is
used to provide the menu bar (See Section 1.6 [Using command tables], page 21).

To add a sub-menu to menu bar, you need to change the type of menu-item from :command

to :menu (which requires another command-table as argument) which is described in the
next section.

1.7.2 Modifying Menu bar

Menu bar can be changed anytime by changing command-table associated with the current
frame.

(setf (frame-command-table *application-frame*)

new-command-table)

Example above changes menu bar of *application-frame* by replacing cur-
rent command-table (accessible with frame-command-table function) with
new-command-table.

Chapter 1: User manual 23

Modifying menu items of command table

[Function]add-menu-item-to-command-table [clim] command-table string type
value &rest args &key documentation after keystroke text-style errorp

Adds menu item to the command table.

Function arguments:

command-table
Command table to which we want to add the menu item.

string Name of the menu item as it will appear on the menu bar. Its character case is
ignored e.g. you may give it ‘file’ or ‘FILE’ but it will appear as ‘File’.

type and value
type can be one of :command, :function, :menu and :divider. Value of value
depends on type:

:command value must be a command or a cons of command name and its
arguments. If you omit the arguments McCLIM will prompt for
them.

:function

value must be a function having indefinite extent that, when called,
returns a command. The function must accept two arguments: the
gesture (keyboard or mouse press event) and a numeric argument.

:menu value must be another command table. This type is used to add
sub-menus to the menu.

:divider value is ignored and string is used as a divider string. Using ‘|’ as
string will make it obvious to users that it is a divider.

documentation
You can provide the documentation (for non-obvious menu items) which will
be displayed on pointer-documentation pane (if you have one).

after (default :end)
This determines where item will be inserted in the menu. The default is to add
it to the end. Other values could be :start, :sort (add in alphabetical order)
or string which is name of existing menu-item to add after it.

keystroke If keystroke is supplied, it will be added to comand tables keystroke accelerator
table. Value must be a keyboard gesture name e.g. (:s :control) for Control
+ s.

text-style Either a text style spec or NIL. It is used to indicate that the command menu
item should be drawn with the supplied text style in command menus.

error-p If T and the item already exists in the menu, it signal a command-already-

present error. If NIL, it will first remove the existing item and add the new
item to the command-table.

To remove items from command table, the following function is used:

Chapter 1: User manual 24

[Function]remove-menu-item-from-command-table [clim] command-table
string &key errorp

Removes item from the command-table.

Where command-table is command-table-designator and string is the menu item’s name (it
is case-insensitive). You can provide :error-p nil to suppress the error if item is not in
the command-table.

Note that both of the above functions do not automatically update the menu bar.
For that you need to replace the existing frame-command-table with the modified
command table using setf. The typical way to do this is to use let to create a copy of
frame-command-table, modify it and at the end call setf to replace the original.

25

2 Reference manual

2.1 Concepts

2.1.1 Coordinate systems

CLIM uses a number of different coordinate systems and transformations to transform
coordinates between them.

The coordinate system used for the arguments of drawing functions is called the user coor-
dinate system,

and coordinate values expressed in the user coordinate system are known as user coordinates.

Each sheet has its own coordinate system called the sheet coordinate system,

and positions expressed in this coordinate system are said to be expressed in sheet coordi-
nates.

User coordinates are translated to sheet coordinates by means of the user transformation
also called themedium transformation. This transformation is stored in themedium used for
drawing. The medium transformation can be composed temporarily with a transformation
given as an explicit argument to a drawing function. In that case, the user transformation
is temporarily modified for the duration of the drawing.

Before drawing can occur, coordinates in the sheet coordinate system must be transformed
to native coordinates, which are coordinates of the coordinate system of the native window-
ing system. The transformation responsible for computing native coordinates from sheet
coordinates is called the native transformation. Notice that each sheet potentially has its
own native coordinate system, so that the native transformation is specific for each sheet.
Another way of putting it is that each sheet has a mirror, which is a window in the un-
derlying windowing system. If the sheet has its own mirror, it is the direct mirror of the
sheet. Otherwise its mirror is the direct mirror of one of its ancestors. In any case, the
native transformation of the sheet determines how sheet coordinates are to be translated
to the coordinates of that mirror, and the native coordinate system of the sheet is that of
its mirror.

The composition of the user transformation and the native transformation is called the
device transformation. It allows drawing functions to transform coordinates only once
before obtaining native coordinates.

Sometimes, it is useful to express coordinates of a sheet in the coordinate of its parent. The
transformation responsible for that is called the sheet transformation.

2.1.2 Arguments to drawing functions

Drawing functions are typically called with a sheet as an argument.

A sheet often, but not always, corresponds to a window in the underlying windowing system.

2.2 Sheet hierarchies

CLIM sheets are organized into a hierarchy. Each sheet has a sheet transformation and
a sheet region. The sheet tranformation determines how coordinates in the sheet’s own
coordinate system get translated into coordinates in the coordinate system of its parent.

Chapter 2: Reference manual 26

The sheet region determines the potentially visible area of the otherwise infinite drawing
plane of the sheet. The sheet region is given in the coordinate system of the sheet.

In McCLIM, every grafted sheet has a native transformation. The native transformation
is used by drawing functions to translate sheet coordinates to native coordinates, so that
drawing can occur on the (not necessarily immediate) mirror of the sheet. It would therefore
be enough for sheets that support the output protocol to have a native transformation.
However, it is easier to generalize it to all sheets, in order to simplify the programming
of the computation of the native transformation. Thus, in McCLIM, even sheets that are
mute for output have a native transformation.

In McCLIM, every grafted sheet also has a native region. The native region is intersection
the sheet region and the region of all of its ancestors, except that the native region is
given in native coordinates, i.e. the coordinates obtained after the application of the native
transformation of the sheet.

2.2.1 Computing the native transformation

2.2.2 Computing the native region

2.2.3 Moving and resizing sheets and regions

2.2.4 Scrolling

2.3 Drawing functions

2.3.1 Windowing system drawing

A typical windowing system provides a hierarchy of rectangular areas called windows. When
a drawing functions is called to draw an object (such as a line or a circle) in a window of
such a hierarchy, the arguments to the drawing function will include at least the window
and a number of coordinates relative to (usually) the upper left corner of the window.

To translate such a request to the actual altering of pixel values in the video memory,
the windowing system must translate the coordinates given as argument to the drawing
functions into coordinates relative to the upper left corner of the entire screen. This is done
by a composition of translation transformations applied to the initial coordinates. These
transformations correspond to the position of each window in the coordinate system of its
parent.

Thus a window in such a system is really just some values indicating its height, its width,
and its position in the coordinate system of its parent, and of course information about
background and foreground colors and such.

2.3.2 CLIM drawing

CLIM generalizes the concept of a hierarchy of window in a windowing system in several
different ways. A window in a windowing system generalizes to a sheet in CLIM. More
precisely, a window in a windowing system generalizes to the sheet region of a sheet. A
CLIM sheet is an abstract concept with an infinite drawing plane and the region of the
sheet is the potentially visible part of that drawing plane.

Chapter 2: Reference manual 27

CLIM sheet regions don’t have to be rectangular the way windows in most windowing
systems have to be. Thus, the width and the height of a window in a windowing system
generalizes to an arbitrary region in CLIM. A CLIM region is simply a set of mathematical
points in a plane. CLIM allows this set to be described as a combination (union, intersection,
difference) of elementary regions made up of rectangles, polygons and ellipses.

Even rectangular regions in CLIM are generalizations of the width+height concept of win-
dows in most windowing systems. While the upper left corner of a window in a typical
windowing system has coordinates (0, 0), that is not necessarily the case of a CLIM region.
CLIM uses that generalization to implement various ways of scrolling the contents of a
sheet. To see that, imagine just a slight generalization of the width + height concept of a
windowing system into a rectangular region with x+ y+width+height. Don’t confuse the
x and y here with the position of a window within its parent, they are different. Instead,
imagine that the rectangular region is a hole into the (infinite) drawing plane defined by all
possible coordinates that can be given to drawing functions. If graphical objects appear in
the window with respect to the origin of some coordinate system, and the upper-left corner
of the window has coordinates (x, y) in that coordinate system, then changing x and y will
have the effect of scrolling.

CLIM sheets also generalize windows in that a window typically has pixels with integer-value
coordinates. CLIM sheets, on the other hand, have infinte resolution. Drawing functions
accept non-integer coordinate values which are only translated into integers just before the
physical rendering on the screen.

The x and y positions of a window in the coordinate system of its parent window in a typical
windowing system is a translation transformation that takes coordinates in a window and
transform them into coordinates in the parent window. CLIM generalizes this concepts to
arbitrary affine transformations (combinations of translations, rotations, and scalings). This
generalization makes it possible for points in a sheet to be not only translated compared
to the parent sheet, but also rotated and scaled (including negative scaling, giving mirror
images). A typical use for scaling would be for a sheet to be a zoomed version of its parent,
or for a sheet to have its y-coordinate go the opposite direction from that of its parent.

When the shapes of, and relationship between sheets are as simple as those of a typical win-
dowing system, each sheet typically has an associated window in the underlying windowing
system. In that case, drawing on a sheet translates in a relativly straightforward way into
drawing on the corresponding window. CLIM sheets that have associated windows in the
underlying windowing system are called mirrored sheets and the system-dependent window
object is called the mirror. When shapes and relationships are more complicated, CLIM
uses its own transformations to transform coordinates from a sheet to its parent and to its
grandparent, etc., until a mirrored sheet is found. To the user of CLIM, the net effect is to
have a windowing system with more general shapes of, and relationships between windows.

2.4 Panes

Panes are subclasses of sheets. Some panes are layout panes that determine the size and
position of its children according to rules specific to each particular type of layout pane.
Examples of layout panes are vertical and horizontal boxes, tables etc.

According to the CLIM specification, all CLIM panes are rectangular objects. For McCLIM,
we interpret that phrase to mean that:

Chapter 2: Reference manual 28

• CLIM panes appear rectangular in the native windowing system;

• CLIM panes have a native transformation that does not have a rotation component,
only translation and scaling.

Of course, the specification is unclear here. Panes are subclasses of sheets, and sheets don’t
have a shape per-se. Their regions may have a shape, but the sheet itself certainly does
not.

The phrase in the specification could mean that the sheet-region of a pane is a subclass
of the region class rectangle. But that would not exclude the possibility that the region
of a pane would be some non-rectangular shape in the native coordinate system. For that
to happen, it would be enough that the sheet-transformation of some ancestor of the pane
contain a rotation component. In that case, the layout protocol would be insufficient in its
current version.

McCLIM panes have the following additional restrictions:

• McCLIM panes have a coordinate system that is only a translation compared to that
of the frame manager;

• The parent of a pane is either nil or another pane.

Thus, the panes form a prefix in the hierarchy of sheets. It is an error for a non-pane to
adopt a pane.

Notice that the native transformation of a pane need not be the identity transformation. If
the pane is not mirrored, then its native transformation is probably a translation of that of
its parent.

Notice also that the native transformation of a pane need not be the composition of the
identity transformation and a translation. That would be the case only of the native trans-
formation of the top level sheet is the identity transformation, but that need not be the case.
It is possible for the frame manager to impose a coordinate system in (say) millimeters as
opposed to pixels. The native transformation of the top level sheet of such a frame manager
is a scaling with coefficients other than 1.

2.4.1 Creating panes

There is some confusion about the options that are allowed when a pane is created with
make-pane. Some parts of the specification suggest that stream panes such as application
panes and interactor panes can be created using make-pane and an option :scroll-bars.
Since these application panes do not in themselves contain any scroll bars, using that
option results in a pane hierarchy being created with the topmost pane being a pane of
type scroller-pane.

As far as McCLIM is concerned, this option to make-pane is obsolete.1

This does not apply for using this option together with the equivalent keyword, i.e.,
:application or :interactor, in the :panes section of define-application-frame,
because they are created by the function make-clim-stream-pane which does specify this
argument.

1 In the specification, there is no example of the use of this option to make-pane or to the equivalent keywords
in the :panes section of define-application-frame. There is however one instance where the :scroll-bars
option is mention for pane creation. We consider this to be an error in the specification.

Chapter 2: Reference manual 29

Instead, we recommend following the examples of the specification, where scroll bars are
added in the layouts section of define-application-frame.

When specification talks about panes in a fashion implying some order (i.e “first application-
pane”) McCLIM assumes order of definition, not order of appearing in layout. Particularly
that means, that if one pane is put before another in :panes option, then it precedes it.
It is relevant to frame-standard-output (therefore binding of *standard-output*) and
other similar functions.

2.4.2 Pane names

Every pane class accepts the initialization argument :name the value of which is typically a
symbol in the package defined by the application. The generic function pane-name returns
the value of this initialization argument. There is no standard way of changing the name
of an existing pane. Using the function reinitialize-instance may not have the desired
effect, since the application frame may create a dictionary mapping names to panes, and
there is no way to invalidate the contents of such a potential dictionary.

The function find-pane-named searches the pane hierarchy of the application frame, con-
sulting the names of each pane until a matching name is found. The CLIM specification
does not say what happens if a name is given that does not correspond to any pane. Mc-
CLIM returns nil in that case. If pane names are not unique, it is unspecified which of
several panes is returned by a call to this function.

If the advice of Section 2.4.1 [Creating panes], page 28, is followed, then the name given
in the :panes option of the macro define-application-frame will always be the name of
the top-level pane returned by the body following the pane name.

If that advice is not followed, then the name given to a pane in the :panes option of the
macro define-application-frame may or may not become the name of the pane that is
constructed by the body that follows the name. Recall that the syntax of the expression
that defines a pane in the :panes option is (name . body). Currently, McCLIM does the
following:

• If the body creates a pane by using a keyword, or by using an explicitly mentioned call
to make-pane, then the name is given to the pane of the type explicitly mentioned,
even when the option :scroll-bars is given.

• If the body creates a pane by calling some arbitrary form other than a call to make-

pane, then the name is given to the topmost pane returned by the evaluation of that
form.

We reserve the right to modify this behavior in the future. Application code should respect
the advice given in Section 2.4.1 [Creating panes], page 28.

2.4.3 Redisplaying panes

Recall that redisplay refers to the creation of the output history of a pane. There are two
typical ways of creating this output history:

• The application maintains some data structure that needs to be reflected in the text and
graphics of the pane. In this case, a pane of type application-pane is typically used,
and the default value of the :display-time option is used, which means that some
kind of application-supplied display function is executed at the end of each iteration
of the command loop. In this situation, the output history is either recomputed from

Chapter 2: Reference manual 30

scratch in each iteration, or the programmer can use the incremental redisplay facility
to reuse some of the existing output records in the history.

• The application does not keep any data structure, and instead generates output in-
crementally, either as a result of some user action, or of some data arriving from an
external source. In this case, the :display-time option is either going to be t or nil.
With both of these options, the output history is maintained intact after each iteration
of the command loop. Instead, when user actions are issued, more output records are
simply added to the existing output history.

For the second possibility, the pane is never redisplayed. Instead, the action of updating the
pane contents is referred to as replaying the output history. The remainder of this section
is entirely dedicated to the redisplay action.

It is occasionally necessary for the application to redisplay a pane explicitly, as opposed
to letting the command loop handle it. For example, if the application data structure is
updated in some way, but this update is not the result of a command, then after such an
update, the redisplay function needs to be executed explicitly. Such an update could be the
result of a timer event, or of communication with an external process.

[Generic Function]redisplay-frame-pane [clim] frame pane &key force-p
Calling this generic function causes an immediate redisplay of pane. When force-p is false
and the incremental redisplay facility is in use for pane, then output records are reused
as appropriate. Supplying a true value for force-p causes the entire output history to be
recomputed from scratch.

Notice that this function does not check whether the pane has been marked to need redisplay,
as indicated by a call to the generic function pane-needs-redisplay. It results in an
unconditional redisplay of pane.

[Generic Function]redisplay-frame-panes [clim] frame &key force-p
Calling this generic function causes an immediate redisplay of all the panes of frame that
are visible in the current layout. This function simply calls redisplay-frame-pane for
each visible pane of frame.

Again, notice that no check is being made as to whether the visible panes have been marked
as needing redisplay. This function calls redisplay-frame-pane unconditionally for each
visible pane, and since redisplay-frame-pane redisplays the pane unconditionally, it fol-
lows that all visible panes are unconditionally redisplayed.

Also notice that the implication of this unconditional behavior on the part of redisplay-
frame-panes means that this is not the function called by the standard command loop. The
standard command loop only redisplays panes that have been marked as needing redisplay,
though when the value of the :display-time option is :command-loop for some pane, then
it is always marked as needing redisplay in each iteration of the command loop.

2.4.4 Layout protocol

There is a set of fundamental rules of CLIM dividing responsibility between a parent pane
and a child pane, with respect to the size and position of the region of the child and the
sheet transformation of the child. This set of rules is called the layout protocol.

The layout protocol is executed in two phases. The first phase is called the space compostion
phase, and the second phase is called the space allocation phase.

Chapter 2: Reference manual 31

2.4.4.1 Space composition

The space composition is accomplished by the generic function compose-space. When ap-
plied to a pane, compose-space returns an object of type space-requirement indicating the
needs of the pane in terms of preferred size, minimum size and maximum size. The phase
starts when compose-space is applied to the top-level pane of the application frame. That
pane in turn may ask its children for their space requirements, and so on until the leaves
are reached. When the top-level pane has computed its space requirments, it asks the
system for that much space. A conforming window manager should respect the request
(space wanted, min space, max space) and allocate a top-level window of an acceptable
size. The space given by the system must then be distributed among the panes in the
hierarchy space-allocation.

Each type of pane is responsible for a different method on compose-space. Leaf panes such
as labelled gadgets may compute space requirements based on the size and the text-style of
the label. Other panes such as the vbox layout pane compute the space as a combination
of the space requirements of their children. The result of such a query (in the form of a
space-requirement object) is stored in the pane for later use, and is only changed as a result
of a call to note-space-requirement-changed.

Most composite panes can be given explicit values for the values of :width, :min-width,
:max-width, :height, :min-height, and :max-height options. If such arguments are not
given (effectively making these values nil), a general method is used, such as computing
from children or, for leaf panes with no such reasonable default rule, a fixed value is given.
If such arguments are given, their values are used instead. Notice that one of :height and
:width might be given, applying the rule only in one of the dimensions.

Subsequent calls to compose-space with the same arguments are assumed to return the
same space-requirement object, unless a call to note-space-requirement-changed has been
called in between.

2.4.4.2 Space allocation

When allocate-space is called on a pane P, it must compare the space-requirement of the
children of P to the available space, in order to distribute it in the most preferable way. In
order to avoid a second recursive invokation of compose-space at this point, we store the
result of the previous call to compose-space in each pane.

To handle this situtation and also explicitly given size options, we use an :around method
on compose-space. The :around method will call the primary method only if necessary
(i.e., (eq (slot-value pane 'space-requirement) nil)), and store the result of the call
to the primary method in the space-requirement slot.

We then compute the space requirement of the pane as follows:

(setf (space-requirement-width ...) (or explicit-width

(space-requirement-width request)) ...

(space-requirement-max-width ...) (or explicit-max-width

explicit-width (space-requirement-max-width request)) ...)

When the call to the primary method is not necessary we simply return the stored value.

The spacer-pane is an exception to the rule indicated above. The explicit size you can
give for this pane should represent the margin size. So its primary method should only call

Chapter 2: Reference manual 32

compose on the child. And the around method will compute the explicit sizes for it from
the space requirement of the child and for the values given for the surrounding space.

2.4.4.3 Change-space Notification Protocol

The purpose of the change-space notification protocol is to force a recalculation of the space
occupied by potentially each pane in the pane hierarchy. The protocol is triggerred by a call
to note-space-requirement-changed on a pane P. In McCLIM, we must therefore invalidate
the stored space-requirement value and re-invoke compose-space on P. Finally, the parent
of P must be notified recursively.

This process would be repeated for all the panes on a path from P to the top-level pane,
if it weren’t for the fact that some panes compute their space requirements independently
of those of their children. Thus, we stop calling note-space-requirement-changed in the
following cases:

• when P is a restraining-pane,

• when P is a top-level-sheet-pane, or

• when P has been given explicit values for :width and :height

In either of those cases, allocate-space is called.

Issue: This description is wrong. note-space-requirement-change is called by CLIM af-
ter the space requirements has changed. Application programmer should call change-space-
requirements to indicate that compose-space may now return something different from the
previous invocation and/or to update user space requirements options. This may (but doesn’t
have to) trigger layout-protocol. Macro changing-space-requirements should be described
too. — JD

2.5 Output Protocol

The CLIM specification says that the output record should capture its clipping region.
However this is not a feasible solution because when the output record is moved, it is
impossible to tell whether the clip should be moved with it or not.

For example, we may want to clip all output to happen in a heart-shaped region - this clip
should never move. Then we format a list of items and each item is clipped with a circle -
these clips should be moved with their corresponding records.

The only solution that embraces both cases is to treat the clipping region as a compound
output record. Then whether it is moved or not depends on whether it is a child or a parent
of the moved output record.

[Generic Function]medium-miter-limit [clim-extensions] medium
If line-style-joint-shape is :miter and the angle between two consequent lines
is less than the values return by medium-miter-limit, :bevel is used instead.

[Generic Function]line-style-effective-thickness [clim-extensions] line-style
medium

Returns the thickness in device units of a line, rendered on medium with the style
line-style.

Chapter 2: Reference manual 33

[Generic Function]line-style-effective-dashes [clim-extensions] line-style
medium

Return a dash length or a sequence of dash lengths device units for a dashed line,
rendered on medium with the style line-style.

[Generic Function](setf output-record-parent) [clim] parent record
Additional protocol generic function. parent may be an output record or nil.

[Generic Function]replay-output-record [clim] record stream &optional region
x-offset y-offset

Displays the output captured by record on the stream, exactly as it was originally
captured. The current user transformation, line style, text style, ink and clipping
region of stream are all ignored. Instead, these are gotten from the output record.

Only those records that overlap region are displayed.

[Function]map-over-output-records [clim] function record &optional x-offset
y-offset &rest function-args

Maps over all of the children of record, calling function on each one. It is a function
of one or more arguments and called with all of function-args as apply arguments.

[Generic Function]map-over-output-records-containing-position [clim]

function record x y &optional x-offset y-offset &rest function-args
Maps over all of the children of record that contain the point at (x,y), calling function
on each one. function is a function of one or more arguments, the first argument being
the record containing the point. function is also called with all of function-args as
apply arguments.

If there are multiple records that contain the point, map-over-output-records-

containing-position hits the most recently inserted record first and the least re-
cently inserted record last. Otherwise, the order in which the records are traversed is
unspecified.

[Generic Function]map-over-output-records-overlapping-region [clim]

function record region &optional x-offset y-offset &rest function-args
Maps over all of the children of record that overlap the region, calling function on
each one. function is a function of one or more arguments, the first argument being
the record overlapping the region. function is also called with all of function-args as
apply arguments.

If there are multiple records that overlap the region and that overlap each other, map-
over-output-records-overlapping-region hits the least recently inserted record
first and the most recently inserted record last. Otherwise, the order in which the
records are traversed is unspecified.

[Class]standard-output-recording-stream [clim]

Class precedence list: standard-output-recording-stream, output-recording-stream,

standard-object, slot-object, t

Slots:

• local-record-p

This flag is used for dealing with streams outputting strings char-by-char.

Chapter 2: Reference manual 34

This class is mixed into some other stream class to add output recording facilities. It
is not instantiable.

[Generic Function]add-output-record [clim] child record
Sets record to be the parent of child.

[Generic Function]delete-output-record [clim] child record &optional errorp
If child is a child of record, sets the parent of child to nil.

[Generic Function]clear-output-record [clim] record
Sets the parent of all children of record to nil.

[Generic Function]invoke-with-new-output-record [clim] stream continuation
record-type constructor &key parent &allow-other-keys

Same as in CLIM 2.2 (missing constructor added).

[Macro]with-new-output-record [clim] (stream &optional record-type record
&rest initargs) &body body

Creates a new output record of type record-type and then captures the output of body
into the new output record, and inserts the new record into the current "open" output
record associated with stream. If record is supplied, it is the name of a variable that
will be lexically bound to the new output record inside the body. initargs are CLOS
initargs that are passed to make-instance when the new output record is created. It
returns the created output record. The stream argument is a symbol that is bound
to an output recording stream. If it is t, *standard-output* is used.

[Macro]with-output-to-output-record [clim] (stream &optional record-type
record &rest initargs) &body body

Creates a new output record of type record-type and then captures the output of
body into the new output record. The cursor position of stream is initially bound
to (0,0). If record is supplied, it is the name of a variable that will be lexically
bound to the new output record inside the body. initargs are CLOS initargs that
are passed to make-instance when the new output record is created. It returns the
created output record. The stream argument is a symbol that is bound to an output
recording stream. If it is t, *standard-output* is used.

2.6 Command Processing

[Macro]define-command-table [clim] name &key inherit-from menu
inherit-menu

[Function]make-command-table [clim] name &key inherit-from inherit-menu
(errorp t)

By default command tables inherit from global-command-table. A command table inherits
from no command table if nil is passed as an explicit argument to inherit-from.

Chapter 2: Reference manual 35

2.7 Incremental redisplay

CLIM applications are most often structured around the command loop. The various steps
that such an application follow are:

• A command is acquired because the user, either typed the name of the command to
an interactive prompt, selected a menu item representing a command, or clicked on an
active object that translates to a command.

• The arguments to that command are acquired. As with the acquisition of the command
itself, various gestures can be used to supply the arguments.

• The command is executed with the acquired arguments. Typically, the command mod-
ifies some part of the model2 contained in one or more slots in the application frame.

• The redisplay functions associated with the visible panes of the application are exe-
cuted. Typically, the redisplay function erases all the output and traverses the entire
model in order to produce a new version of that output. Since output exists in the
form of output records, this process involves deleting the existing output records and
computing an entirely new set of them.

This way of structuring an application is very simple. The resulting code is very easy to
understand, and the relationship between the code of a redisplay function and the output
it produces is usually obvious. The concept of output records storing the output in the
application pane is completely hidden, and instead output is produced using textual or
graphic drawing functions, or more often produced indirectly through the use of present
or with-output-as-presentation.

However, if the model contains a large number of objects, then this simple way of struc-
turing an application may penalize performance. In most libraries for creating graphic user
interfaces, the application programmer must then rewrite the code for manipulating the
model, and especially for incrementally altering the output according to the modification
of the model resulting from the execution of a command.

In CLIM, a different mechanism is provided called incremental redisplay. This mechanism
allows the user to preserve the simple logic of the display function with only minor modifi-
cations while still being able to benefit in terms of performance.

2 Some authors use the term business logic instead of model. Both words refer to the representation of
the intrinsic purpose of the application, as opposed to superficial characteristics such as how objects are
physically presented to the user.

36

3 Developer manual

3.1 Coding conventions

In the McCLIM codebase, we try to follow certain coding conventions for consistency and
better maintainability. We default to conventions mentioned in the specification (http://
bauhh.dyndns.org:8000/clim-spec/2.html) and to the usual conventions (http://www.
cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf). The conventions described in the
following sections cover aspects not discussed in these documents.

3.1.1 Packages

In addition to the packages mentioned in the specification, McCLIM defines the packages
clim-extensions and clim-backend. Both are used by the clim-internals package to
avoid conflicts.

clim-extensions (which has the nickname clime) exports all extensions provided by Mc-
CLIM. While each extension may define its own package for implementation purposes,
application programmers should access symbols only via the clim-extensions package.

clim-backend (which has the nickname climb) exports symbols which are intended for use
by backend writers. It uses the packages clim and clim-extensions.

3.1.2 Examples

Examples and demos which are distributed with McCLIM are loaded from a separate system
named clim-examples. Each example should be put either directly in the package clim-

demo or live in its own package the name of which should be start with clim-demo., for
instance clim-demo.foobar-example.

3.2 Pointer cursors

CLIMspecifies the protocol to set the pointer cursor but does not specify what are its valid
values.

McCLIMspecifies an obligaory set of system cursors designated by a symbol. They are
listed in the table below.

Backends may implement other valid cursor values. Backends are also encouraged to support
designs of the class image-pattern.

:default Normal cursor (i.e an arrow).

:prompt The element underneath the cursor is editable (i.e an i-beam).

:button The element underneath the cursor is actionable (i.e a hand).

:busy Cursor signaling that the application is busy (i.e a hourglass).

:not-allowed

Cursor signaling that the action is not allowed.

:position

Precise cursor for selecting a point (i.e a crosshair).

:move The element underneath the cursor is being moved (i.e four arrows).

http://bauhh.dyndns.org:8000/clim-spec/2.html
http://bauhh.dyndns.org:8000/clim-spec/2.html
http://www.cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf
http://www.cs.umd.edu/~nau/cmsc421/norvig-lisp-style.pdf

Chapter 3: Developer manual 37

:arrow-we

The element underneath the cursor may be dragged horizontally.

:arrow-ns

The element underneath the cursor may be dragged vertically.

:grab The element underneath the cursor is being grabbed (i.e a clenched hand).

:help The element underneath the cursor is inspectable (i.e a question mark).

3.3 Writing backends

3.3.1 Different types of backends

Backend provides platform specific API for low level drawing operations, getting events,
managing window geometry properties and providing native look-and-feel to the application.

There are three types of backends:

Draw-only backend
This type doesn’t implement any kind of events and allows only drawing on
it. A good example of it is the See Section 3.4 [PostScript backend], page 40,
which is part of CLIM II specification.

Basic backend
OpenGL, X, or HTML 5 canvas are resources which provide only drawing and
event handling primitives. In this case we need to wrap their APIs for McCLIM
to use. McCLIM will then use these drawing and windowing primitives to
implement portable widgets.

Native backend
Native backend is based on already complete GUI library which provides a rich
set of widgets (for example Cocoa or Win32 API). Additionally to the things
needed to be implement in the first two cases, we can also map these native
look and feel widgets in McCLIM.

The clim-null backend can be used as a template to start with a new backend. If the
underlying library you write backend for manages window hierarchy, positioning and events,
it is possible to base new pane types on mirrored-sheet-mixin class which provides native
handles into native windowing system. Mirrored and “native lisp” sheets may be freely
mixed in the pane hierarchy.

3.3.2 Backend protocol

NEW CLASS FOR BACKEND `FOO'

foo-frame-manager

foo-native-frame-manager (optional)

foo-graft

foo-port

foo-medium

foo-pointer

Chapter 3: Developer manual 38

3.3.3 Event handling

EVENT HANDLING (in port.lisp)

;;; Originally in CLIM-INTERNALS

synthesize-pointer-motion-event

3.3.4 Graft protocol

GRAFT (in grafts.lisp)

;;; Originally in CLIM

graft ; root window/screen

graft-height ; screen height

graft-width ; screen width

3.3.5 Medium drawing

MEDIUM DRAWING (in medium.lisp)

;;; Originally in CLIM

medium-draw-ellipse*

medium-draw-line*

medium-draw-lines*

medium-draw-point*

medium-draw-points*

medium-draw-polygon*

medium-draw-rectangle*

medium-draw-rectangles*

medium-draw-text*

3.3.6 Medium operation

MEDIUM OPERATIONS (in medium.lisp)

;;; Originally in CLIM

make-medium ; make medium for a given sheet

medium-beep

medium-buffering-output-p

medium-clear-area

medium-copy-area

medium-finish-output

medium-force-output

medium-line-style

medium-text-style

3.3.7 Port protocol

PORT (BRIDGE) TO GUI (A SERVER LIKE)

;;; Originally in CLIM

Chapter 3: Developer manual 39

destroy-port

;;; Originally in CLIM-INTERNALS

enable-mirror

disable-mirror

set-mirror-name

set-mirror-icon

set-mirror-geometry

port-force-output

set-sheet-pointer-cursor

3.3.8 Frame manager, panes and gadgets

FRAME MANAGER, PANES AND GADGETS

;;; Originally in CLIM

;; in frame-manager.lisp

make-pane-1

note-space-requirements-changed

adopt-frame

;; in port.lisp or pane.lisp/gadget.lisp

allocate-space

destroy-mirror

handle-repaint

realize-mirror

3.3.9 Pointer protocol (events?)

POINTER (port.lisp or pointer.lisp)

;;; Originally in CLIM

pointer-button-state

pointer-position

3.3.10 Text size

TEXT SIZE (medium.lisp)

;;; Originally in CLIM-INTERNALS

text-style-character-width

;;; Originally in CLIM

text-size

text-style-ascent

text-style-descent

text-style-height

text-style-mapping

text-style-width

Chapter 3: Developer manual 40

3.3.11 Additional output destinations

A backend implementation may register additional output destination types for the
:output-destination keyword parameter accepted by some commands. Doing so allows
the command to be invoked with *standard-output* bound to a stream provided by the
backend that redirects the command’s output to a non-default destination such as a vector
graphics or raster image file.

To support this protocol in a backend, three things are required:

1. A new output destination class (usually a subclass of clim-backend:output-

destination or one of its subclasses).

2. A method on [Generic-Function clim-backend:invoke-with-standard-output], page 40
specialized to the new output destination class.

3. A call to [Function clim-backend:register-output-destination-type], page 40 in order to
register the new output destination.

[Generic Function]invoke-with-standard-output [clim-backend] continuation
destination

Call continuation (with no arguments) with *standard-output* rebound according
to destination.

[Function]register-output-destination-type [clim-backend] name class-name
Register class-name as an additional output destination type under the name name.
class-name must name a subclass of clim-backend:output-destination. A method
on [Generic-Function clim-backend:invoke-with-standard-output], page 40 must be
applicable to an instance of class-name.

3.3.12 Miscellaneous

MISC

;;; Originally in CLIM-EXTENSIONS

medium-miter-limit ; determine a draw for miter < sina/2

3.3.13 Obsolete

NO LONGER NEEDED IN BACKEND

queue-callback ; moved to clim-core

medium-clipping- ; moved to clim-basic

3.4 PostScript backend

3.4.1 Postscript fonts

Font mapping is a cons, the car of which is the name of the font (FontName field in the
AFM file), and the cdr is the size in points. Before establishing the mapping, an information
about this font should be loaded with the function load-afm-file.

Chapter 3: Developer manual 41

3.4.2 Additional functions

Package clim-postscript exports the following functions:

[Function]load-afm-file afm-filename
Loads a description of a font from the specified AFM file.

42

4 Extensions

4.1 Frame redefinition semantics

By default when the application frame class is redefined with the macro clim:define-

application-frame panes and layouts of the existing instances are not changed. To update
the frame programmer must call the function reinitialize-instance. The function may
be called on a running frame ouside of its event loop.

McCLIM extends the macro clim:define-application-frame to update existing frames
automatically when the new option :reinitialize-frames is not nil. Instances are up-
dated by defining a method update-instance-for-redefined-class :after and making
all instances obsolete. Then a slot of each adopted frame is read to trigger the update
without delay.

• When the option is nil (a default) then nothing happens.

• When the option is t then all instances are updated by calling on them the function
reinitialize-instance (running frames are updated immedietely and the reset when-
ever the implementation chose to call the function update-instance-for-redefined-

class).

• When the option is a plist then additionally this plist is prepended to initargs applied
to the function reinitialize-instance.

The following initargs when present in the class definition are applied to reinitialize-

instance: :current-layout, :pretty-name, :icon, :command-table, :menu-bar and
:pointer-documentation. For example:

(define-application-frame example-frame ()

((xxx :initarg :xxx :reader xxx))

(:panes (i :interactor)

(y :push-button :label "BAMasdf DIM DOM"))

(:layouts (l1 (vertically () i y))

(l2 (vertically () y)))

(:pointer-documentation t)

(:current-layout l2)

(:pretty-name "hellobo")

(:reinitialize-frames :pretty-name "foo" :xxx 15))

After compiling the above form all instances of the class example-frame will be reinitialized
with:

(reinitialize-instance instance :pretty-name "foo"

:xxx 15

:current-layout 'l2

:pretty-name "hellobo"

:pointer-documentation T)

4.2 Frame and sheet icons

According to the CLIM specification, an icon can be defined for an application frame class
using the :icon initarg of the define-application-frame macro. McCLIM extends this design
to top-level sheets and adds

Chapter 4: Extensions 43

[Generic Function]sheet-icon [clim-extensions] sheet
Return the icon or icons of sheet.

These icons are typically used by window managers to represent windows that are not
currently visible or added to other representations of windows to make them more
easily recognizable.

[Generic Function](setf sheet-icon) [clim-extensions] new-value sheet
Set icon or icons of sheet to new-value.

new-value must be a clim-extensions:image-pattern or a sequence of those. If a
sequence is supplied, the window manager is instructed to prefer the first element, if
possible. Some window managers select different icons for different purposes based
on the icon sizes.

[Generic Function]frame-icon [clim-extensions] frame
Return the icon or icons of frame.

The return value is either a clim-extensions:image-pattern or sequence of those.
These icons are typically used – via the top-level sheet of frame – by window managers
to represent windows that are not currently visible or added to other representations
of windows to make them more easily recognizable.

[Generic Function](setf frame-icon) [clim-extensions] new-value frame
Set icon or icons of frame to new-value.

new-value must be a clim-extensions:image-pattern or a sequence of those. If a
sequence is supplied, the window manager is instructed to prefer the first element, if
possible. Some window managers select different icons for different purposes based on
the icon sizes. This function also sets new-value as the icon(s) of the top-level sheet
of frame.

[Generic Function]note-frame-icon-changed [clim-extensions] frame-manager
frame new-icon

Notify client that the pretty name of frame, managed by frame-manager, changed to
new-icon.

frame-manager can be nil if frame is not owned by a frame manager at the time of
the change.

4.3 Frame and sheet names

According to the CLIM specification, a frame has a name and a pretty name the latter
of which can be changed. McCLIM extends this design to top-level sheets in form of the
following protocol:

[Generic Function]sheet-name [clim-extensions] sheet
Return the name of sheet. The returned name is a symbol and does not change. For
sheets which are also panes, the returned name is identical to the pane name.

[Generic Function]sheet-pretty-name [clim-extensions] sheet
Return the pretty name of sheet. The returned name is a string and may change over
time. The pretty name usually corresponds to the title of the associated window.

Chapter 4: Extensions 44

[Generic Function](setf sheet-pretty-name) [clim-extensions] new-value sheet
Set sheet’s pretty name to new-value. new-value must be a string. Changing the
pretty name of sheet usually changes the title of the window associated with it.

The class clim-extensions:top-level-sheet-mixin can be added as a superclass
to sheet classes that implement the above protocol. Otherwise default methods on
clim-extensions:sheet-name and clim-extensions:sheet-pretty-name return nil

and "(Unnamed sheet)" respectively.

Furthermore McCLIM provides a way for clients to be notified when the pretty name of a
frame changes:

[Generic Function]note-frame-pretty-name-changed [clim-extensions]

frame-manager frame new-name
Notify client that the pretty name of frame, managed by frame-manager, changed to
NEW-NAME. frame-manager can be NIL if frame is not owned by a frame manager
at the time of the change.

4.4 Frame and sheet shrinking

According to the CLIM specification, a frame may be shrunk the function shrink-frame.
This operation disables a top-level sheet by minimizing it.

McCLIM extends this design to top-level sheets and ports in form of the following protocol:

[Generic Function]shrink-sheet [clim-extensions] sheet
Calling this method on a top-level sheet should disable the sheet and minimize the
window associated with the sheet.

[Generic Function]shrink-mirror [clim-backend] port sheet
Calling this method on a port and on a mirrored sheet should minimize the window
associated with the sheet.

4.5 Frame command table change

When the command table is changed this may result in necessity to change the menu. Menu
is managed by the frame manager so McCLIM adds the appropriate notification protocol.

[Generic Function]clim-extensions:note-frame-command-table-changed
frame-manager frame new-command-table

McCLIM extension: Notify client that the command-table of FRAME, managed by
FRAME-MANAGER, changed to NEW-COMMAND-TABLE.

4.6 Text editor substrate

For brievity only basic topics common to all substrates are covered in the manual. Drei
documentation is provided as a separate document.

Chapter 4: Extensions 45

4.7 Extended text formatting

standard-extended-output-stream has been extended by protocols complementary to
already defined ones. Some were clearly missing given how it is specified - like margins and
word wrap. Some are useful in contemporary text displaying applications like text direction
and alignment.

4.7.1 Page abstraction

[Function]page-initial-position [clime] stream
[Function]page-final-position [clime] stream

Both functions return two values, x and y coordinates of the respective position.
Initial position is where the cursor is placed on a fresh page, and the final position is
where the cursor is placed right before the page ends. Coordinates depend on current
margins and text alignment.

[Function]stream-page-region [clime] stream
This function returns a region which corresponds to the stream page format. This
region corresponds the stream margins.

[Macro]with-temporary-margins [clime] (stream &key (move-cursor t) left
right top bottom) &body body

Execute body in a dynamic environment where stream’s margins are augmented with
left, right, top and bottom. Not all margins have to be specified. If they are not
current margin values are taken as defaults.

Each margin must be in one of following formats: (:relative space) or (:absolute
space). space may be specified as for :x-spacing and :y-spacing for horizontal
and vertical margins accordingly. If a margin is “absolute” then it corresponds to its
exact placement in stream coordinates. “relative” margins are relative to the stream
viewport region.

If the Boolean move-cursor is T then the cursor is left where it was placed after the
last operation. Otherwise upon completion of body, the cursor position is restored to
its previous value.

Programmers using clime:with-temporary-margins should begin body with a call
to the function clim:stream-set-cursor-position which will set the cursor to
clime:page-initial-position.

4.7.2 FILLING-OUTPUT extension

The macro clim:filling-output behaves the same as before with a few additions:

:after-line-break-subsequent is complementary to :after-line-break-initially, it
decides whether :after-line-break is printed for lines after the first break. It defaults to
T.

:after-line-break-composed decides whether after-line-break from the external
filling-output should be called as well (defaults to T).

:after-line-break may be a string or a function accepting two arguments: a stream
and a flag indicating whether it is a soft newline or not. The function will be executed

Chapter 4: Extensions 46

conditionally depending on values of :after-line-break-initially and :after-line-

break-subsequent flags.

The macro preserves a text-style, ink and indentation from state in which it was invoked.
That means in particular that indenting-output may be called from inside filling-

output and after-line-break will be printed without this indent.

4.8 Extended blank area presentation type

CLIM specifies clim:blank-area as a special presentation type that represents places at
which no other presentation is applicable given the current input context. The value of
clim:*null-presentation* is specified to a presentation instance with presentation type
clim:blank-area. The specification implies that there is only one such instance. McCLIM
slightly deviates from this by

1. allowing multiple presentation instances with presentation type clim:blank-area.

2. adding keyword parameters to the clim:blank-area presentation type: &key sheet

region.

When the system constructs a presentation instance with presentation type clim:blank-

area for a pointer motion or click at position (x,y) on sheet sheet:

• The object of the presentation instance is a pointer event with sheet sheet and position
(x,y).

• The value of the sheet presentation type parameter is sheet.

• The value of the region presentation type parameter is a clim:point instance with
position (x,y).

The subtype relation for clim:blank-area presentation types with supplied parameters is
based on the sheet matching if supplied and the region of the subtype being contained in
the region of the supertype if supplied.

4.9 Tab Layout

The tab layout is a composite pane arranging its children so that exactly one child is visible
at any time, with a row of buttons allowing the user to choose between them.

See also the tabdemo.lisp example code located under Examples in the McCLIM distri-
bution. It can be started using (clim-demo:demodemo).

[Class]tab-layout [clim-tab-layout]

Class precedence list: tab-layout, sheet-multiple-child-mixin,

basic-pane, sheet-parent-mixin, pane, standard-repainting-mixin,

standard-sheet-input-mixin, sheet-transformation-mixin, basic-sheet,

sheet, bounding-rectangle, standard-object, slot-object, t

The abstract tab layout pane is a composite pane arranging its children so that exactly
one child is visible at any time, with a row of buttons allowing the user to choose
between them. Use with-tab-layout to define a tab layout and its children, or
use the :pages argument to specify its contents when creating it dynamically using
make-pane.

Chapter 4: Extensions 47

[Class]tab-layout-pane [clim-tab-layout]

Class precedence list: tab-layout-pane, tab-layout, sheet-multiple-child-mixin,

basic-pane, sheet-parent-mixin, pane, standard-repainting-mixin,

standard-sheet-input-mixin, sheet-transformation-mixin, basic-sheet,

sheet, bounding-rectangle, standard-object, slot-object, t

A pure-lisp implementation of the tab-layout, this is the generic implementation cho-
sen by the CLX frame manager automatically. Users should create panes for type
tab-layout, not tab-layout-pane, so that the frame manager can customize the
implementation.

[Class]tab-page [clim-tab-layout]

Class precedence list: tab-page, standard-object, slot-object, t

Instances of tab-page represent the pages in a tab-layout. For each child pane, there
is a tab-page providing the page’s title and additional information about the child.
Valid initialization arguments are :title, :pane (required), :presentation-type
and :drawing-options (optional).

[Macro]with-tab-layout [clim-tab-layout] (default-presentation-type &rest
initargs &key name &allow-other-keys) &body body

Return a tab-layout. Any keyword arguments, including its name, will be passed
to make-pane. Child pages of the tab-layout can be specified using body, using
lists of the form (title pane &key presentation-type drawing-options enabled-

callback). default-presentation-type will be passed as :presentation-type to
pane creation forms that specify no type themselves.

[Generic Function]tab-layout-pages [clim-tab-layout] tab-layout
Return all tab-pages in tab-layout, in order from left to right. Do not modify the
resulting list destructively. Use the setf function of the same name to assign a new
list of pages. The setf function will automatically add tabs for new page objects,
remove old pages, and reorder the pages to conform to the new list.

[Generic Function]tab-page-tab-layout [clim-tab-layout] tab-page
Return the tab-layout tab-page belongs to.

[Generic Function]tab-page-title [clim-tab-layout] tab-page
Return the title displayed in the tab for tab-page. Use the setf function of the same
name to set the title dynamically.

[Generic Function]tab-page-pane [clim-tab-layout] tab-page
Return the CLIM pane page displays. See also sheet-to-page, the reverse operation.

[Generic Function]tab-page-presentation-type [clim-tab-layout] tab-page
Return the type of the presentation used when tab-page’s header gets clicked. Use
the setf function of the same name to set the presentation type dynamically. The
default is tab-page.

[Generic Function]tab-page-drawing-options [clim-tab-layout] tab-page
Return the drawing options of tab-page’s header. Use the setf function of the same
name to set the drawing options dynamically.

Chapter 4: Extensions 48

� �
Note: Not all implementations of the tab layout will understand all drawing options.
In particular, the Gtkairo backends understands only the :ink option at this time.
 	

[Function]add-page [clim-tab-layout] page tab-layout &optional enable
Add page at the left side of tab-layout. When enable is true, move focus to the new
page. This function is a convenience wrapper; you can also push page objects directly
into tab-layout-pages and enable them using (setf tab-layout-enabled-page).

[Function]remove-page [clim-tab-layout] page
Remove page from its tab layout. This is a convenience wrapper around sheet-

disown-child, which can also be used directly to remove the page’s pane with the
same effect.

[Generic Function]tab-layout-enabled-page [clim-tab-layout] tab-layout
The currently visible tab page of tab-layout, or nil if the tab layout does not have
any pages currently. Use the setf function of the name to change focus to another
tab page.

[Function]sheet-to-page [clim-tab-layout] sheet
For sheet that is a child of a tab layout, return the page corresponding to sheet. See
also tab-page-pane, the reverse operation.

[Function]find-tab-page-named [clim-tab-layout] name tab-layout
Find the tab page with the specified name in tab-layout. Note that uniqueness of
names is not enforced; the first page found will be returned.

[Function]switch-to-page [clim-tab-layout] page
Move the focus in page’s tab layout to page. This function is a one-argument con-
venience version of (setf tab-layout-enabled-page), which can also be called di-
rectly.

[Function]remove-page-named [clim-tab-layout] title tab-layout
Remove the tab page with the specified title from tab-layout. Note that uniqueness
of titles is not enforced; the first page found will be removed. This is a convenience
wrapper, you can also use find-tab-page-named to find and the remove a page
yourself.

[Generic Function]note-tab-page-changed [clim-tab-layout] layout page
This internal function is called by the setf methods for tab-page-title and tab-

page-drawing-options to inform page’s tab-layout about the changes, allowing it
to update its display. Only called by the tab-layout implementation and specialized
by its subclasses.

4.10 Fonts and Extended Text Styles

Chapter 4: Extensions 49

4.10.1 Extended Text Styles

McCLIM extends the legal values for the family and face arguments to make-text-style

to include strings (in additional to the portable keyword symbols), as permitted by the
CLIM spec, section 11.1.

Each backend defines its own specific syntax for these family and face names.

The CLX backend maps the text style family to the X font’s foundry and family values,
separated by a dash. The face is mapped to weight and slant in the same way. For example,
the following form creates a text style for -misc-fixed-bold-r-*-*-18-*-*-*-*-*-*-* :

(make-text-style "misc-fixed" "bold-r" 18)

In the GTK backend, the text style family and face are used directly as the Pango font
family and face name. Please refer to Pango documentation for details on the syntax of
face names. Example:

(make-text-style "Bitstream Vera Sans" "Bold Oblique" 54)

4.10.2 Listing Fonts

McCLIM’s font listing functions allow applications to list all available fonts available on a
port and create text style instances for them.

Example:

* (find "Bitstream Vera Sans Mono"

(clim-extensions:port-all-font-families (clim:find-port))

:key #'clim-extensions:font-family-name

:test #'equal)

#<CLIM-GTKAIRO::PANGO-FONT-FAMILY Bitstream Vera Sans Mono>

* (clim-extensions:font-family-all-faces *)

(#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Bold>

#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Bold Oblique>

#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Oblique>

#<CLIM-GTKAIRO::PANGO-FONT-FACE Bitstream Vera Sans Mono, Roman>)

* (clim-extensions:font-face-scalable-p (car *))

T

* (clim-extensions:font-face-text-style (car **) 50)

#<CLIM:STANDARD-TEXT-STYLE "Bitstream Vera Sans Mono" "Bold" 50>

[Class]font-family [clim-extensions]

Class precedence list: font-family, standard-object, slot-object, t

The protocol class for font families. Each backend defines a subclass of font-family
and implements its accessors. Font family instances are never created by user code.
Use port-all-font-families to list all instances available on a port.

[Class]font-face [clim-extensions]

Class precedence list: font-face, standard-object, slot-object, t

Chapter 4: Extensions 50

The protocol class for font faces Each backend defines a subclass of font-face and
implements its accessors. Font face instances are never created by user code. Use
font-family-all-faces to list all faces of a font family.

[Generic Function]port-all-font-families [clim-extensions] port &key
invalidate-cache &allow-other-keys

Returns the list of all font-family instances known by PORT. With INVALIDATE-
CACHE, cached font family information is discarded, if any.

[Generic Function]font-family-name [clim-extensions] font-family
Return the font family’s name. This name is meant for user display, and does not, at
the time of this writing, necessarily the same string used as the text style family for
this port.

[Generic Function]font-family-port [clim-extensions] font-family
Return the port this font family belongs to.

[Generic Function]font-family-all-faces [clim-extensions] font-family
Return the list of all font-face instances for this family.

[Generic Function]font-face-name [clim-extensions] font-face
Return the font face’s name. This name is meant for user display, and does not, at
the time of this writing, necessarily the same string used as the text style face for this
port.

[Generic Function]font-face-family [clim-extensions] font-face
Return the font family this face belongs to.

[Generic Function]font-face-all-sizes [clim-extensions] font-face
Return the list of all font sizes known to be valid for this font, if the font is restricted
to particular sizes. For scalable fonts, arbitrary sizes will work, and this list represents
only a subset of the valid sizes. See font-face-scalable-p.

[Generic Function]font-face-text-style [clim-extensions] font-face &optional
size

Return an extended text style describing this font face in the specified size. If size is
nil, the resulting text style does not specify a size.

4.11 Raster Images

This extension has the goal to provide a fast and flexible way to display images in the
screen. An image is a rectangular object and is represented as a rectangular pattern and
follows pattern protocol. Pixel values are represented as 32-bit RGBA numbers.

collapse-pattern make-pattern-from-bitmap-file

define-bitmap-file-reader define-bitmap-file-writer bitmap-format-supported-p
bitmap-output-supported-p read-bitmap-file write-bitmap-file

Images are read with read-bitmap-file. Images are wrote with write-bitmap-file.

Images are created with make-image. Images are cloned with clone-image. Images are
copied with copy-image. Images are blended with blend-image. Images are filled with
fill-image.

Chapter 4: Extensions 51

Operations having source and destination image as arguments may use the same image
without copying it.

To draw an image use draw-pattern* or draw-design. Image may be also used as an ink
in other drawing functions.

4.12 Drawing backends

CLIM specification defines a macro with-output-to-postscript-stream that is used to
create a backend including a medium that implements:

• CLIM’s medium protocol, and

• CLIM’s output stream protocol.

McCLIM generalizes this operator by defining a macro and a specializable generic function:

[Macro]with-output-to-drawing-stream [clime] (stream-var backend
destination &rest options) &body body

[Generic Function]invoke-with-output-to-drawing-stream [clime]

(continuation backend destination &rest options)
Within body, stream-var is bound to a stream that implements the output protocols
so it is suitable as a stream or medium argument to any CLIM output utility, such
as draw-line* or write-string.

The value of backendmust be a server path that is a suitable argument to the function
find-port, for example :ps or niL.

The value of options depends on the actual backend and allows to specify the
backend-specific options (for example :width and :height).

4.12.1 Interactive backend as a medium

When the macro is used with an interactive backend then the default method opens a
window stream with open-window-stream. options are as for this function except for that
the :port keyword parameter is supplied by the default method.

The only valid value of destination in this default method is nil.

4.12.2 PostScript

This backend symbol designator is :ps.

Valid values of destination are:

• a string or a pathname denoting the file to create

• a character or a binary output stream the file contents will be written to

This backend accepts the following options:

• device-type

• orientation

• multi-page

• scale-to-fit

• header-comments

Chapter 4: Extensions 52

4.12.3 PDF

This backend symbol designator is :pdf.

Valid values of destination are:

• a string or a pathname denoting the file to create

• a binary output stream the file contents will be written to

This backends accepts the same set of options as the PostScript backend.

4.12.4 SVG

This backend symbol designator is :svg. To make this backend available load the system
"mcclim-svg".

Valid values of destination are:

• a string or a pathname denoting the file to create

• an output stream the file contents will be written to

This backend accepts the following options:

• scale-to-fit - scale and move graphics so they fill whole viewport

• width - width in :units units, defaults to :compute

• height - height in :units units, defaults to :compute

• dpi - density used to calculate device units, defaults to 96

• units - graft units, defaults to :device

• orientation - graft orientation, defaults to :default

• preview - opens the file with xdg-open

4.12.5 RasterImage

This backend symbol designator is :raster.

Valid values of destination are:

• a string or a pathname

• a binary output stream

• a keyword :pattern

This backend accepts the following options:

• width - defaults to :compute

• height - defaults to :compute

• format - output format (unless implicit from the destination)

• target - when the destination is :pattern, then try to reuse the target

• recording-p - when true, then the second returned value is the history

format is a symbol that names the type of the image. Valid values are :png, :jpg, :jpeg,
tiff, tif, gif, pbm, pgm, and ppm. Its default value is :png.

4.12.6 Adding new backends

Describe here howe to specialize invoke-with-output-to-drawing-stream.

Chapter 4: Extensions 53

4.13 Additional arguments to drawing functions

Functions draw-arrow and draw-arrow* can take a :head-filled keyword argument,
which is a generalized boolean, and is false by default. If true, any arrow heads are filled
in; otherwise, they are drawn as lines.

4.14 Gestures and Gesture Names extensions

McCLIM extends the set of gesture types and specs with the following:

• :pointer-button

This gesture type is the same but the set of allowed buttons is extended with: (member
:wheel-up :wheel-down :wheel-left :wheel-right). When the user scrolls the
pointer then the backend will send events matching types: :pointer-scroll,
:pointer-button-press and :ponter-button-release.

• :pointer-motion

This gesture type will match all pointer-motion events. The gesture spec accepts the
same set of buttons as the :pointer-button but it may be a list. For example:

(define-gesture-name whoosh :pointer-motion ((:left :right) :control))

• :pointer-scroll

This gesture type will match the scroll events. The gesture spec is similar to :pointer-
button, but the name of a pointer button is of type (member :wheel-up :wheel-down

:wheel-left :wheel-right).

• :timer

This gesture type will match the timer events. The gesture spec is a keyword that is
the timer event qualifier to distinguish them.

(define-gesture-name cookie :timer :cookie)

(define-gesture-name school :timer :school)

;;; cookie in 20s!

(schedule-timer-event my-sheet :cookie 20)

;;; school in 2 hours!

(schedule-timer-event my-sheet :school (* 2 60 60))

• :indirect

This gesture type will match other gesture names. It is possible to create “group”
gestures and configurable gesture sets for different programs.

(defun use-wsad ()

(define-gesture-name move-north :indirect wsad-up)

(define-gesture-name move-south :indirect wsad-down)

(define-gesture-name move-west :indirect wsad-left)

(define-gesture-name move-east :indirect wsad-right))

(defun use-arrows ()

(define-gesture-name move-north :indirect arrow-up)

(define-gesture-name move-south :indirect arrow-down)

(define-gesture-name move-west :indirect arrow-left)

Chapter 4: Extensions 54

(define-gesture-name move-east :indirect arrow-right))

(define-gesture movement-group :indirect move-north :unique t)

(define-gesture movement-group :indirect move-south :unique nil)

(define-gesture movement-group :indirect move-west :unique nil)

(define-gesture movement-group :indirect move-east :unique nil)

55

5 Applications

5.1 Debugger

The debugger is used for interactively inspecting stack frames when an unhandled condition
is encountered. Given high enough debug settings, the debugger can inspect frame-local
variables, evaluate code in particular stack frame and invoke available restarts.

5.1.1 Debugger usage

To get up and running quickly with Debugger:

1. With Quicklisp loaded, invoke in REPL:

(ql:quickload 'clim-debugger)

2. Run simple test condition:

(clim-debugger:with-debugger () (error "test"))

The debugger is inspired by SLIME’s debugger and uses Swank to gain portability across
implementations. The application is still under development and some details may change
in the future.

Clicking frame with the mouse pointer toggles the display of its details and selects it.
Each locale value may be inspected by selection with mouse pointer. The selected frame is
distinguished from others with red color. The Eval in frame command evaluates expression
in the selected frame.

5.1.2 Keyboard shortcuts

Warning: these key accelerators may change in the future.

M-p Mark previous frame active

M-n Mark next frame active

m Show more frames

e Eval in active frame

TAB Toggle active frame details

[0-9] Invoke nth restart

q Quit debugger

5.1.3 Debugger API

[function]debugger [clim-debugger] condition me-or-my-encapsulation
Starts debugger with condition. me-or-my-encapsulation should be supplied by the
Lisp implementation allowing to encapsulate or supply different debugger for recursive
debugger calls.

[macro]with-debugger [clim-debugger] options &body body
Executes the code in body invoking the CLIMdebugger when an unhandled condi-
tion is signalled. The macro binds *debugger-hook* to #'debugger. Bindings are
inherited by new threads. options are not used at the moment.

Chapter 5: Applications 56

[function]install-debugger [clim-debugger]

Installs clim-debugger globally (no need to wrap body in with-debugger).

5.2 Inspector

“Clouseau” is used for interactively inspecting Common Lisp objects. It lets you look inside
objects, inspect slots, disassemble and trace functions, view keys and values in hash tables,
and quite a few other things as well. It can be extended to aid in debugging of specific
programs, similar to the way the Lisp printer can be extended with print-object. The
inspector can be used as a standalone application or embedded into CLIM applications.

The inspector should be portable, but has only been tested in SBCL, CCL and ECL so far.
Some features of the inspector have to use non-standard features of implementations and
are thus not available in all implementations.

5.2.1 Usage

5.2.1.1 Quick Start

To get up and running quickly with Clouseau:

1. Load the clouseau system with (ql:quickload "clouseau"). Alternatively,
use (asdf:load-system "clouseau"), potentially after manually loading
mcclim/Apps/Clouseau/clouseau.asd.

2. Inspect an object with (clouseau:inspect object) where object can be any Lisp
object. If you use a multithreaded Lisp implementation, you can also include the
:new-process keyword argument. If it is true, then Clouseau is started in a separate
thread, causing the above call to return immediately.

For example, executing the following code

(defclass foo () ((a :initarg :a) (b :initform #(1 2 3)) (c :initarg :c)))

(clouseau:inspect (make-instance 'foo :c (make-instance 'foo)))

should cause a window similar to the one shown below to open:

Chapter 5: Applications 57

3. Interactively explore the object graph:

• Left-click an object to expand or collapse it.

• Middle-click an object to make it the new root (as in the SLIME inspector).

• Right-click an object to open a context menu containing other commands appli-
cable to the object.

That’s really all you need to know to get started. The best way to learn how to use Clouseau
is to start inspecting your own objects.

5.2.1.2 The Inspector Window

After starting the inspector, a window similar to the one shown below should appear:

The central pane shows the tree of objects currently being inspected. In the above example,
the root object is an instance of a class named FOO with three slots, A, B and C. Commands
can be issued by clicking on objects in the central pane or by typing command names into
the pane below it. The bottom pane shows available commands for the object under the
mouse pointer and how to invoke them.

By default, Clouseau will display a CLIM interactor pane for typing named commands and
printing command output. The keyboard shortcut C-i (control key and "i" key pressed at
the same time) toggles visibility of the interactor pane.

5.2.1.3 Objects and Places

Within the currently displayed object tree, each visible object is either collapsed, meaning it
is displayed compactly and objects contained in it are not displayed, or expanded, meaning
that it is displayed in more detail and objects immediately contained in it are displayed
(those objects are initially collapsed but may be expanded). The collapsed representation of
an object may be something like #<STANDARD-CLASS SALAD-MIXIN>. To expand collapsed
objects, left-click on them. Left-click on them again and they will go back to a collapsed
form.

Chapter 5: Applications 58

Note: When collapsing objects, make sure not to click on one of the object’s children
since that expands the child instead of collapsing the object. The object that would
be affected by a mouse click at the current pointer position is always indicated by
surrounding it with a black rectangle that is updated as the pointer moves. In addi-
tion, the pointer-documentation pane at the bottom of the window always describes
the available actions for the object currently under the pointer.

An expanded object is related to its children through “places”. For example, a standard
object has a place for each of its slots and a child object for each of its bound slots. Other
examples of places include:

• Elements of lists (including “key” and “value” places in association lists and property
lists)

• Elements of arrays

• “Key” and “value” places in hash-tables

• Fill pointer and length of a vector

Places are generally visually represented as some kind of bullet or arrow symbol. Examples
include: •, and →. Immutable places (such as the length of a non-adjustable vector) are
displayed in orange, mutable places (such as object slots, vector elements or the length of
an adjustable array) are displayed in purple.

Places provide their own commands which are to some extent independent of the respective
objects they contain. The applicable commands for a given place can be seen by right-
clicking it. Some common place commands are:

Copy Place Value

This command copies the value of the place into another place. The source
place must have a value (i.e. if it is a slot, it must be bound). The target place
must be mutable and accept the type of object stored in the source place. This
command can be invoked by clicking the source place and dragging it onto the
target place.

Chapter 5: Applications 59

Swap Place Values

This command swaps the values of two places. It is similar to Copy Place

Value except that it requires the source place to be mutable as well. It can be
invoked via drag-and-drop by holding down the control key.

Set Place This command sets the value of a place to the result of evaluating a form. Only
mutable places support this. The command can be invoked by holding down
the meta key and left-clicking the place. It will ask for a form to evaluate,
evaluate the specified form and attempt to set the place to the value produced
by evaluating the form. See Section 5.2.1.4 [Evaluating Forms], page 59.

Remove Place Value

This command removes the value of a place. Not all mutable places support
this. Here are some examples of places that do:

• If the place corresponds to a slot in a standard object or structure object,
the slot is made unbound.

• If the slot corresponds to the symbol function of a symbol, the symbol
function is removed.

• List, array and hash-table elements can be removed as well.

Set Place To True

Some places have specialized commands. For example, if the type of a place
is known to be Boolean and the current value is false, this command sets the
value of the place to t. Similarly, Set Place To False sets the value to nil.

Increment Place

If the value of a place is an integer x, this command replaces the value of the
place with the integer x + 1. Similarly, Decrement Place replaces the value
with x − 1. These commands will be particularly handy when it will become
possible to bind them to mousewheel-up and mousewheel-down gestures.

5.2.1.4 Evaluating Forms

The context menu of every object provides an Evaluate a form in this context com-
mand. When invoked, this commands asks for a form in the interactor pane. Any valid
Common Lisp form can be entered.

Generally, the commands Set Place, Eval With Context, Eval Inspect and Eval all read
a form and evaluate it. During the evaluation of the form, the special variable cl:** is
bound to the root object. If the command has been invoked on an object or place, cl:* is
bound to that object or the current value of that place.

5.2.1.5 Navigating

There are two ways of navigating inspected objects:

Retaining the current object tree
The basic and most used operation is expanding and collapsing objects (See
Section 5.2.1.3 [Objects and Places], page 57). Toggling an object between the
collapsed and expanded states can be accomplished by clicking the left mouse
button while the cursor is positioned over any part of the object that is not
associated with a more specific command.

Chapter 5: Applications 60

Some types of objects provide additional display styles. For example, the slots
of standard object and structure objects can be displayed as a “flat” list or they
can be grouped according to the superclass containing the direct slot. These
additional display styles can be selected in the context menu of the object.

Replacing the object tree
The context menu for every object contains a Select ... command. This
command replaces the current tree of inspected objects with a new one rooted
at the selected object. This is useful to focus on an object of interest after
“drilling down” by expanding a number of irrelevant parent objects.

Another way of replacing the object tree is the named command Eval Inspect.
Typing ‘Eval Inspect’ in the interactor initiates the command which will ask
for a form to evaluate and then replace the tree of inspected objects with a new
one rooted at the object that is the result of evaluating the given form.

5.2.1.6 Handling of Specific Object Types

Clouseau can handle numerous object types in different ways. Here are some handy features
you might miss if you don’t know to look for them:

Standard Objects
Standard objects have their slots shown, either grouped by superclass or as a
“flat” list. The Change Class command can be used to change the class of the
inspected object.

Structures

Structures are inspected the same way as standard objects except that the
Change Class command is not available.

Functions

You can disassemble functions with the Show Disassembly command. If the
disassembly is already shown, Hide Disassembly hides it. Named functions can
also be traced and untraced with the Trace Function and Untrace Function

commands.

Generic Functions
In addition to everything possible with standard objects and functions, you
can remove methods from generic functions with the Remove Place Value and
Remove all Methods commands.

Symbols

The value, function and type “slots” of a symbol are mutable places and can
thus be manipulated using the usual place commands1.

Lists and Conses
Lists and conses can be displayed in either the classic format (such as (1 3 (4 .

6) "Hello" 42)), as a list, or a more graphical cons-cell diagram format. The
default is the classic format when collapsed and a list when expanded, but this
can be toggled with the Conses as List and Conses as Graph commands.

1 Unless the implementation supports package locks and the symbol’s home package is locked

Chapter 5: Applications 61

The graphical cons cell diagram looks like this:

5.2.1.7 Updating the Inspected Object

Sometimes the contents of inspected objects changes over time. Consider an object corre-
sponding to a rigid body in a dynamics simulation: its position, velocity and acceleration
usually change with each simulation step. In some cases, it is useful to have such changes
automatically reflected in the inspector’s display of the object. Assuming the client has the
ability to call the inspector after relevant changes have happened, the following pattern can
be used:

1. Call [Function clouseau:inspect], page 66 with :new-process t and hold on to the
second return value which is the application frame of the inspector instance.

2. At a suitable point in time, run (setf (clouseau:root-object frame :run-hook-p

t) object) where object can be the same root object as before. This call causes the
inspector to redisplay inspected objects using their state at the time of the call.

Here is a complete example:

(let* ((list (list #C(1 0))) ; mutable object

(frame (nth-value 1 (clouseau:inspect ; make inspector, keep frame

list :new-process t)))) ; runs in its own thread

;; Now change the object by replacing the car of the cons cell, then

;; notify the inspector. Repeat 30 times a second.

(loop :for i :from 0 :by 0.1

:do (setf (first list) (complex (* 1 (cos i)) (* 1 (sin i))))

(setf (clouseau:root-object frame :run-hook-p t) list)

(sleep 1/30)))

5.2.2 Extending Clouseau

Sometimes Clouseau’s built-in inspection abilities aren’t enough, and you want to extend it
to inspect one of your own classes in a special way. Clouseau supports this, and it’s fairly
simple and straightforward.

5.2.2.1 Running Example

Suppose that you’re writing a statistics program and you want to specialize the inspector for
your application. When you’re looking at a sample of some characteristic of a population,
you want to be able to inspect it and see some statistics about it, like the average. This is
easy to do.

We define a class for a statistical sample. We’re keeping this very basic, so it’ll just contain
a list of numbers:

(cl:in-package #:clim-user)

Chapter 5: Applications 62

(defclass sample ()

((%data :initarg :data

:accessor data

:type list

:initform '()))

(:documentation "A statistical sample"))

(defgeneric sample-size (sample)

(:documentation "Return the size of a statistical sample"))

(defmethod sample-size ((sample sample))

(length (data sample)))

The print-object method we define will print samples unreadably, just showing their sample
size. For example, a sample with nine numbers will print as #<SAMPLE n=9>. We create
such a sample and call it *my-sample*:

(defmethod print-object ((object sample) stream)

(print-unreadable-object (object stream :type t)

(format stream "n=~D" (sample-size object))))

(defparameter *my-sample*

(make-instance 'sample

:data '(12.8 3.7 14.9 15.2 13.66

8.97 9.81 7.0 23.092)))

We need some basic statistics functions. First, we’ll do sum:

(defgeneric sum (sample)

(:documentation "The sum of all numbers in a statistical

sample"))

(defmethod sum ((sample sample))

(reduce #'+ (data sample)))

Next, we want to be able to compute the mean. This is just the standard average that
everyone learns: add up all the numbers and divide by how many of them there are. It’s
written x.

(defgeneric mean (sample)

(:documentation "The mean of the numbers in a statistical

sample"))

(defmethod mean ((sample sample))

(/ (sum sample) (sample-size sample)))

Finally, to be really fancy, we’ll throw in a function to compute the standard deviation
which is a measurement of how spread out or bunched together the numbers in the sample

are. It’s called s, and it’s computed like this: s =
√

1
N−1

∑N
i=1(xi − x)2.

(defgeneric standard-deviation (sample)

(:documentation "Find the standard deviation of the numbers

Chapter 5: Applications 63

in a sample. This measures how spread out they are."))

(defmethod standard-deviation ((sample sample))

(let ((mean (mean sample)))

(sqrt (/ (loop for x in (data sample)

sum (expt (- x mean) 2))

(1- (sample-size sample))))))

This is all very nice, but when we inspect *my-sample* all we see is its class and its single
slot. Since we just defined two methods for summarizing samples, there’s a lot of potential
being missed here. How do we take advantage of it?

5.2.2.2 State and Style of Presented Objects

Let us start by taking a closer look at how the inspector presents inspected objects. Each
occurrence of an inspected object on the screen2 has an associated state which in turn
stores a presentation style for the object. The state and style control how an object is
presented and which commands can be applied to it. Object states and thus styles for each
occurrence of an object are independent from those associated with other occurrences of
the same object.

The state characterizes the object and the class of the state can depend on the particular
object. State classes are generally subclasses of clouseau:inspected-object. Objects are
presented with clim:present using the name of the class of the state as the presentation
type. The class of the state therefore determines which commands are applicable to a given
object.

The style indicates how the object or certain parts of the object should currently be pre-
sented. The style is stored in the state and can be replaced with a different style via certain
commands such as Expand and Collapse. Clouseau comes with a basic hierarchy of styles:

The figure below illustrates for a vector as an example of an inspected object which parts
of the visible output are produced by the [Generic-Function clouseau:inspect-object-using-
state], page 67 methods specialized to the respective style keywords. The colors of the
borders correspond the colors in the previous figure.

2 There can be more than one occurrence. For example, the class class occurs twice in the following list:
(list (find-class 'class) (find-class 'class)).

Chapter 5: Applications 64

5.2.2.3 Defining Inspection Methods for Objects

We can define specialized inspection methods for our objects. To do this, we define methods
on [Generic-Function clouseau:inspect-object-using-state], page 67 which expects the object,
the associated state, the current style and a target stream as its arguments. To change how
sample objects are presented in the :collapsed and :expanded styles, we could define
methods which are specialized to those styles. However, because we defined print-object
for the sample class to be as informative as we want the simple representation to be,
we don’t need to define a [Generic-Function clouseau:inspect-object-using-state], page 67
method for the :collapsed style. We will, define methods for the :expanded-header and
:expanded-body styles, though:

(defmethod clouseau:inspect-object-using-state

((object sample)

(state clouseau:inspected-instance)

(style (eql :expanded-header))

(stream t))

(format stream "SAMPLE n=~D" (sample-size object)))

(defmethod clouseau:inspect-object-using-state

((object sample)

(state clouseau:inspected-instance)

(style (eql :expanded-body))

(stream t))

(clouseau:formatting-place (object 'clouseau:reader-place 'mean

present-place present-object)

(write-string "mean" stream) ; label

(present-place stream) ; place indicator for the "slot"

(present-object stream)) ; the value of the "slot" is the object

(fresh-line stream)

(clouseau:formatting-place (object 'clouseau:reader-place 'standard-deviation

present-place present-object)

(write-string "std. dev." stream) ; label

(present-place stream) ; place indicator for the "slot"

(present-object stream))) ; the value of the "slot" is the object

With the above methods in place, our object is presented like this for the :expanded style:

Chapter 5: Applications 65

This is already pretty functional: our statistical summaries are presented as a label, an
immutable place and a value. The places and values behave as expected with respect to
presentation highlighting and available commands.

Presenting the place indicators using the usual style would make their nature more obvious.
What we also want is something visually more closely adapted to our needs. It would be
nice if we could just have a table of things like x = 12.125776 and have them come out
formatted nicely. Before we attempt mathematical symbols, let’s focus on getting the basic
layout right. For this, we can use CLIM’s table formatting, Clouseau’s convenience function
[Function clouseau:format-place-row], page 69 and the clouseau:reader-place place class:

(defmethod clouseau:inspect-object-using-state

((object sample)

(state clouseau:inspected-instance)

(style (eql :expanded-body))

(stream t))

(formatting-table (stream)

(clouseau:format-place-row

stream object 'clouseau:reader-place 'mean :label "mean")

(clouseau:format-place-row

stream object 'clouseau:reader-place 'standard-deviation

:label "std. dev.")))

[Function clouseau:format-place-row], page 69 creates one instance of clouseau:reader-
place for each of our statistical functions mean and standard-deviation. Each of these place
instances together with the values returned by the respective function are then presented
as a table row with three cells corresponding to the label, the place and the value.

This refinement gets us most of the way towards the goal:

Finally, for our amusement and further practice, we’ll try to get some mathematical symbols
— in this case we’ll just need x. We can get this by printing an italic x and drawing a line
over it:

(defun xbar (stream)

"Draw an x with a bar over it"

(with-room-for-graphics (stream)

(with-text-face (stream :italic)

(princ #\x stream)

(draw-line* stream 0 0 (text-size stream #\x) 0))))

(defmethod clouseau:inspect-object-using-state

((object sample)

(state clouseau:inspected-instance)

(style (eql :expanded-body))

Chapter 5: Applications 66

(stream t))

(formatting-table (stream)

(clouseau:format-place-row

stream object 'clouseau:reader-place 'mean

:label #'xbar)

(clouseau:format-place-row

stream object 'clouseau:reader-place 'standard-deviation

:label #\S :label-style '(:text-face :italic))))

Finally, to illustrate the use of the :expanded-header style, suppose that we want the ‘n=9’
(or whatever the sample size n equals) part to have an italicized n: easily:

(defmethod clouseau:inspect-object-using-state

((object sample)

(state clouseau:inspected-instance)

(style (eql :expanded-header))

(stream t))

(clouseau::inspect-class-as-name (class-of object) stream)

(write-char #\Space stream)

(with-drawing-options (stream :text-family :serif :text-face :italic)

(write-char #\n stream))

(format stream "=~D" (sample-size object)))

Our final version looks like this:

For more examples of how to extend the inspector, you can look at the files in the
Apps/Clouseau/src/objects/ directory.

5.2.3 API

The following symbols are exported from the clouseau package:

5.2.3.1 Functions for Invoking Clouseau

[Function]inspect [clouseau] object &key new-process handle-errors
Inspect object in a new inspector window.

Return two values: 1) object 2) the created inspector application frame.

If new-process is false (the default), this function returns to the caller after the in-
spector window has been closed. If new-process is true, this function returns to the
caller immediately and the inspector frame executes in a separate thread.

handle-errors controls whether errors signaled when printing and inspecting objects
should be handled. handle-errors must be a valid type specifier (t and nil are legal
values). Signaled errors of the specified type will be handled by printing an error
messages in place of the inspected object. Other errors will not be handled and might
invoke the debugger in the usual way.

Chapter 5: Applications 67

5.2.3.2 Functions for Extending Clouseau

The following functions and macro can be used to add support for custom object types to
Clouseau:

[Generic Function]inspect-object-using-state [clouseau] object state style
stream

Present object to stream according to state and style.

state stores information that is permanently associated with object.

style on the other hand consists of transient information such as whether object should
be presented in expanded or collapsed form.

stream is the stream to which object should be presented.

Example:

(defmethod clouseau:inspect-object-using-state

((object symbol)

(state clouseau:inspected-object)

(style (eql :expanded-body))

(stream t))

(clouseau:formatting-place

(object 'clouseau:reader-place 'symbol-name

present-place present-object)

(write-string "Symbol name" stream)

(present-place stream)

(present-object stream)))

[Generic Function]note-object-occurrence [clouseau] object state presentation
stream

Note that presentation is a representation of object in stream.

state is the state associated with object.

The main purpose of this generic function is tracking multiple occurrences of objects
so the circularity can be indicated.

[function]call-without-noting-object-occurrences [clouseau] thunk
Call thunk with [Generic-Function clouseau:note-object-occurrence], page 67 calls
devoid of effects.

[Macro]without-noting-object-occurrences [clouseau] () &body
Execute body with [Generic-Function clouseau:note-object-occurrence], page 67 calls
devoid of effects.

[Macro]formatting-place [clouseau] (container place-class cell present-place
present-object &key place-var) &body

Execute body with present-place and present-object bound to print functions.

Before body is executed, an instance of place-class representing the child of container
selected by place-class and cell is created and stored in the place associated with
container unless such an instance already exists.

place-class must be a symbol naming a class or a class object and is passed to make-

instance to create the object which represents the place.

Chapter 5: Applications 68

cell indicates the cell within the place that is being formatted. For example, if con-
tainer is a one-dimensional array and place-class designates (a subclass of) array-

element-place, a suitable value for cell is any array index that is valid for container.

present-place is bound to a function that, when called with a stream as its sole
argument, outputs a presentation corresponding to the created place to the stream.
The produced presentation will be of presentation-type place.

present-object is bound to a function that, when called with a stream as its sole
argument, outputs a presentation corresponding to the child of container selected by
place-class and cell.

Example:

This application of the macro

(clouseau:formatting-place

(object 'clouseau:reader-place 'symbol-name

present-place present-object)

(write-string "Symbol name" stream) ; Label

(present-place stream) ; Write place presentation

(present-object stream)) ; Write value presentation

outputs the name of the symbol object as an immutable place to stream like this:

Symbol name → <value>

^ Label ^ Value presentation

^ Place presentation

In the above example a place of type clouseau:reader-place is created and the cell
for that place is the symbol symbol-name. For this combination, the value of the
place is the result of evaluating (symbol-value object).

[Function]format-place-cells [clouseau] stream object place-class cell &key
label label-style place-style object-style

Present the child of object selected by place-class and cell to stream.

Retrieve an existing place instance for the child of object selected by place-class and
cell or make a new instance of place-class.

Each of the following is written to stream within a separate clim:formatting-cell:

1. If non-nil, label is written to stream. If label is a function, it is called with
stream as its sole argument.

If label-style is non-nil, it must be either a keyword naming one of the styles
known to clouseau:call-with-style or a list of arguments suitable for clim:invoke-
with-drawing-options. Either way, the specified style is applied when outputting
label.

2. The place instance is presented using clim:present with the presentation type
clouseau:place.

place-style works like label-style.

3. The child of object selected by place-class and cell is inspected using [Generic-
Function clouseau:inspect-place], page 69.

object-style works like label-style.

Chapter 5: Applications 69

Example:

The call

(clouseau:format-place-cells

stream symbol 'clouseau:reader-place 'symbol-name

:label "Symbol name")

outputs the name of symbol as an immutable place to stream in three table cells like
this:

cell 1 cell 2 cell 3

v v v

Symbol name | → | <value>

^ Label ^ Value presentation

^ Place presentation

[Function]format-place-row [clouseau] stream object place-class cell &key label
label-style place-style object-style

Like [Function clouseau:format-place-cells], page 68 but surrounded by an additional
clim:formatting-row.

5.2.3.3 Other Functions

It should normally not be necessary to directly call or define methods on the following
generic functions:

[Generic Function]inspect-place [clouseau] place stream
Present place to stream.

By default, retrieve the value of place and inspect it using inspect-object.

User code normally does not have to define methods on this generic functions.

[Generic Function]inspect-object [clouseau] object stream
Present object to stream.

By default, calls inspector-object-using-state.

stream is the stream to which object should be presented.

User code normally does not have to define methods on this generic functions.

5.2.3.4 Deprecated Functions

A previous version of Clouseau provided the following functions and macros which are now
deprecated:

[Generic Function]inspect-object-briefly [clouseau] object pane
A brief version of inspect-object. The output should be short, and should try to fit
on one line.� �
Deprecated

A method on [Generic-Function clouseau:inspect-object-using-state], page 67 spe-
cialized to style (eql :collapsed) should be used instead
 	

Chapter 5: Applications 70

[Macro]inspector-table [clouseau] (object pane) header \body body
Present object in tabular form on pane, with header evaluated to print a label in a
box at the top. body should output the rows of the table, possibly using inspector-

table-row.� �
Deprecated

clim:formatting-table should be used instead.
 	
[Macro]inspector-table-row [clouseau] (pane) left right

Output a table row with two items, produced by evaluating left and right, on pane.
This should be used only within inspector-table.

When possible, you should try to use this and inspector-table for consistency, and
because they handle quite a bit of effort for you.� �
Deprecated

[Function clouseau:format-place-row], page 69 should be used instead.
 	
[Generic Function]define-inspector-command [clouseau] name args &rest body

This is just an inspector-specific version of define-command. If you want to define an
inspector command for some reason, use this.� �
Deprecated

clim:define-command with :command-table clouseau:inspector should be used
instead.
 	

5.3 Listener

The McCLIM Listener provides an interactive toplevel with full access to the graphical capa-
bilities of CLIM and a set of built-in commands intended to be useful for Lisp development
and experimentation. Present features include:

• Reading/evaluation of Lisp expressions

• Ability to run external programs, through the Run command or #! macro

• Commands for inspecting classes (superclasses/subclasses, slots, etc.)

• Navigation of the filesystem, including a directory stack

• Launching of external programs sensitive to file type (determined by mailcap and
mime.types files)

5.3.1 Usage

5.3.1.1 Quick start

To get up and running quickly with the Listener:

Chapter 5: Applications 71

1. Load the clim-listener system with (ql:quickload "clim-listener"). Alterna-
tively, use (asdf:load-system "clim-listener"), potentially after manually loading
mcclim/Apps/Listener/clim-listener.asd.

2. Once loaded, you can run the Listener using: (clim-listener:run-listener). If
you use a multithreaded Lisp implementation, you can also include the :new-process
keyword argument. If it is true, then the Listener is started in a separate thread,
causing the above call to return immediately.

After starting the Listener, a typical Lisp prompt will be displayed, with the package name
preceding the prompt. You may type Lisp forms or commands to this prompt. The ,

(comma) character starts a command, every other input will be treated by the Listener as
a form to be evaluated.

At the bottom of the window is a “wholine” which shows various things such as the user-
name/hostname, package, current directory (*default-pathname-defaults*), the depth
of the directory stack (if not empty), and the current memory usage. Some of these items
will be sensitive to pointer gestures.

5.3.1.2 Commands

The command Help (with) Commands will produce a list of available commands.

General Commands

Help

Clear Output History

Clears the screen

Exit

Basic Lisp Commands

AproposDescribeRoomTraceUntraceEvalLoad File Compile File

Compile and Load

CLOS Commands

Show Class Superclasses

Show Class Subclasses

Show Class Slots

Show Class Generic Functions

Show Applicable Methods

Filesystem Commands

Show Directory

Up Directory

Edit File Probably broken

Show File Almost certainly broken

Chapter 5: Applications 72

Directory Stack Commands

Display Directory Stack

Push Directory

Pop Directory

Swap Directory

Drop Directory

Other Commands

Run Run an external program

Background Run

As above, but don’t wait for program to complete

5.3.2 The #! macro character

Although there are commands for running external programs, the #! macro character tries
to provide a nicer interface. It allows you to run external programs as a lisp function call,
and attempts to transform the arguments in some meaningful way. Several transformations
are performed:

• Keywords are converted to options. Single character keywords are turned into an option
with a single dash (e.g., :v becomes -v). Longer keywords become an option preceded
by two dashes (e.g., :verbose becomes --verbose)

• Sequences are flattened into separate arguments

• Wild pathnames are expanded (currently subject to brokenness in the directory func-
tion of various CL environments)

My apologies to anyone doing something more useful with this macro character if I have
clobbered your readtable.

5.3.3 Calling commands from lisp

Calling CLIM commands from Lisp is straightforward. By convention, the pretty names
used at the interactor map to a function name which implements the command body by up-
casing the name, replacing spaces with hyphens, and prepending COM- (e.g., Show Directory

becomes COM-SHOW-DIRECTORY).

5.3.4 Command output destinations

McCLIM’s implementation of the clim:define-commandmacro accepts a :provide-output-
destination-keyword keyword argument which allows redirecting the output of the com-
mand from *standard-output* to some other destination. The Listener code supplies this
argument for many of the defined commands. As a result, many Listener commands can
be invoked with the :output-destination keyword, for example

CLIM-USER> ,Show Class Superclasses (class) standard-class

(keywords) :output-destination

(output-destination) Postscript File

(destination file) /tmp/output.ps

will redirect the command’s output to the file /tmp/output.ps.

Chapter 5: Applications 73

5.3.5 Debugger integration

When a command executed in the Listener signals an error, the default behavior consists
in invoking the McCLIM Debugger (see Section 5.1 [Debugger], page 55). This behavior
can be controlled by supplying a Boolean value for the :debugger keyword argument when
calling the clim-listener:run-listener function.

74

Auxiliary material

Glossary

Active gadget

An active gadget is available for input. For most gadgets, this means processing events
when active and ignoring events when not active.

Armed gadget

The exact definition of arming and disarming varies between kinds of gadgets, but typically
a gadget becomes armed when the pointer is moved into its region.

Device transformation

TODO

Direct mirror

A mirror of a sheet which is not shared with any of the ancestors of the sheet. All grafted
McCLIM sheets have mirrors, but not all have direct mirrors. A McCLIM sheet that does
not have a direct mirror uses the direct mirror of its first ancestor having a direct mirror for
graphics output. Asking for the direct mirror of a sheet that does not have a direct mirror
returns nil.

Whether a McCLIM sheet has a direct mirror or not, is decided by the frame manager. Some
frame managers may only allow for the graft to be a mirrored sheet. Even frame managers
that allow hierarchical mirrors may decide not to allocate a direct mirror for a particular
sheet. Although sheets with a direct mirror must be instances of the class mirrored-sheet-
mixin, whether a McCLIM sheet has a direct mirror or not is not determined statically by
the class of a sheet, but dynamically by the frame manager.

Medium

An object that contains the state information required for producing output on a particular
sheet.

Medium transformation

A transformation that converts the coordinates presented to the drawing functions to the
medium’s coordinate system. The identity transformation by default.

Mirror

A device window such as an X11 window that parallels a sheet in the CLIM sheet hierarchy.
A sheet having such a direct mirror is called a mirrored sheet . When drawing functions are
called on a mirrored sheet, they are forwarded to the host windowing system as drawing
commands on the mirror.

CLIM sheets that are not mirrored must be descendents (direct or indirect) of a mirrored
sheet , which will then be the sheet that receives the drawing commands.

Mirrored sheet

A sheet in the CLIM sheet hiearchy that has a direct parallel (called the direct mirror) in
the host windowing system. A mirrored sheet is always an instance of the class mirrored-
sheet-mixin, but instances of that class are not necessarily mirrored sheets. The sheet is
called a mirrored sheet only if it currently has a direct mirror. There may be several reasons
for an instance of that class not to currently have a direct mirror. One is that the sheet is

Auxiliary material 75

not grafted. Only grafted sheets can have mirrors. Another one is that the frame manager
responsible for the look and feel of the sheet hierarchy may decide that it is inappropriate
for the sheet to have a direct mirror, for instance if the underlying windowing system does
not allow nested windows inside an application, or that it would simply be a better use of
resources not to create a direct mirror for the sheet. An example of the last example would
be a stream pane inside a the viewport of a scroller pane. The graphics objects (usually
text) that appear in a stream pane can have very large coordinate values, simply because
there are many lines of text. Should the stream pane be mirrored, the coordinate values
used on the mirror may easily go beyond what the underlying windowing system accepts.
X11, for instance, can not handle coordinates greater than 64k (16 bit unsigned integer).
By not having a direct mirror for the stream pane, the coordinates will be translated to
those of the (not necessarily direct) mirror of the viewport before being submitted to the
windowing system, which gives more reasonable coordinate values.

It is important to realize the implications of this terminology. A mirrored sheet is therefore
not a sheet that has a mirror. All grafted sheets have mirrors. For the sheet to be a mirrored
sheet it has to have a direct mirror. Also, a call to sheet-mirror returns a mirror for all
grafted sheets, whether the sheet is a mirrored sheet or not. A call to sheet-direct-mirror,
on the other hand, returns nil if the sheet is not a mirrored sheet.

Mirror transformation

The transformation that transforms coordinates in the coordinate system of a mirror (i.e.
the native coordinates of the mirror) to native coordinates of its parent in the underlying
windowing system. On most systems, including X, this transformation will be a simple
translation.

Native coordinates

Each mirror has a coordinate system called the native coordinate system. Usually, the
native coordinate system of a mirror has its origin in the upper-left corner of the mirror,
the x-axis grows to the right and the y-axis downwards. The unit is usually pixels, but the
frame manager can impose a native coordinate system with other units, such as millimeters.

The native coordinate system of a sheet is the native coordinate system of its mirror (direct
or not). Thus, a sheet without a direct mirror has the same native coordinate system
as its parent. To obtain native coordinates of the parent of a mirror, use the mirror
transformation.

Native region

The native region of a sheet is the intersection of its region and the sheet region of all of its
parents, expressed in the native coordinates of the sheet.

Native transformation

TODO

Potentially visible area

A bounded area of an otherwise infinte drawing plane that is visible unless it is covered by
other visible areas.

Sheet coordinates

The coordinate system of coordinates obtained by application of the user transformation.

Sheet region

Auxiliary material 76

The region of a sheet determines the visible part of the drawing plane. The dimensions of
the sheet region are given in sheet coordinates. The location of the visible part of a sheet
within its parent sheet is determined by a combination of the sheet transformation and the
position of the sheet region.

For instance, assuming that the sheet region is a rectangle with its upper-left corner at
(2, 1) and that the sheet transformation is a simple translation (3, 2). Then the origin of
the sheet coordinate system is at the point (3, 2) within the sheet coordinate system of its
parent sheet. The origin of its coordinate system is not visible, however, because the visible
region has its upper-left corner at (2, 1) in the sheet coordinate system. Thus, the visible
part will be a rectangle whose upper-left corner is at (5, 3) in the sheet coordinate system
of the parent sheet.

Panes and gadgets alter the region and sheet transformation of the underlying sheets (panes
and gadgets are special kinds of sheets) to obtain effects such as scrolling, zooming, coordi-
nate system transformations, etc.

Sheet transformation

The transformation used to transform sheet coordinates of a sheet to sheet coordinates of
its parent sheet. The sheet transformation determines the position, shape, etc. of a sheet
within the coordinate system of its parent.

Panes and gadgets alter the transformation and sheet region of the underlying sheets (panes
and gadgets are special kinds of sheets) to obtain effects such as scrolling, zooming, coordi-
nate system transformations, etc.

Clipping region

TODO

User clipping region

A clipping region used to limit the effect of drawing functions. The user clipping region is
stored in the medium. It can be altered either by updating the medium, or by passing a
value for the :clipping-region drawing option to a drawing function.

User coordinates

The coordinate system of coordinates passed to the drawing functions.

User transformation

A transformation used to transform user coordinates into sheet coordinates. The user trans-
formation is stored in the medium. It can be altered either by updating the medium, or by
passing a value for the :transformation drawing option to a drawing function.

Visible area

TODO

Development History

Mike McDonald started developing McCLIM in 1998. His initial objective was to be able to
run the famous “address book” demo, and to distribute the first version when this demo ran.
With this in mind, he worked “horizontally”, i.e., writing enough of the code for many of
the chapters of the specification to be able to run the address book example. In particular,
Mike wrote the code for chapters 15 (Extended Stream Output), 16 (Output Recording),

Auxiliary material 77

and 28 (Application Frames), as well as the code for interactor panes. At the end of 1999,
Mike got too busy with other projects, and nothing really moved.

Also in 1998, Gilbert Baumann started working “vertically”, writing a mostly-complete
implementation of the chapters 3 (Regions) and 5 (Affine Transformations). At the end
of 1999, he realized that he was not going to be able to finish the project by himself. He
therefore posted his code to the free-CLIM mailing list. Gilbert’s code was distributed
according to the GNU Lesser General Public License (LGPL).

Robert Strandh picked up the project in 2000, starting from Gilbert’s code and writing
large parts of chapters 7 (Properties of Sheets) and 8 (Sheet Protocols) as well as parts of
chapters 9 (Ports, Grafts, and Mirrored Sheets), 10 (Drawing Options), 11 (Text Styles),
12 (Graphics), and 13 (Drawing in Color).

In early 2000, Robert got in touch with Mike and eventually convinced him to distribute his
code, also according to the LGPL. This was a major turning point for the project, as the
code base was now sufficiently large that a number of small demos were actually running.
Robert then spent a few months merging his code into that produced by Mike.

Arthur Lemmens wrote the initial version of the code for the gadgets in June of 2000.

Bordeaux students Iban Hatchondo and Julien Boninfante were hired by Robert for a 3-
month summer project during the summer of 2000. Their objective was to get most of
the pane protocols written (in particular space composition and space allocation) as well
as some of the gadgets not already written by Arthur, in particular push buttons. The
calculator demo was written to show the capabilities of their code.

In July of 2000, Robert invited Gilbert to the LSM-2000 meeting in Bordeaux (libre software
meeting). This meeting is a gathering of developers of free software with the purpose of
discussing strategy, planning future projects, starting new ones, and working on existing
ones. The main result of this meeting was that Gilbert managed to merge his code for
regions and transformations into the main code base written by Mike, Robert, Iban, and
Julien. This was also a major step towards a final system. We now had one common code
base, with a near-complete implementation of regions, transformations, sheet protocols,
ports, grafts, graphics, mediums, panes, and gadgets.

Meanwhile, Mike was again able to work on the project, and during 2000 added much of
the missing code for handling text interaction and scrolling. In particular, output recording
could now be used to redisplay the contents of an interactor pane. Mike and Robert also
worked together to make sure the manipulation of sheet transformations and sheet regions
as part of scrolling and space-allocation respected the specification.

Robert had initially planned for Iban and Julien to work on McCLIM for their fifth-year
student project starting late 2000 and continuing until end of march 2001. For reasons
beyond his control, however, he was forced to suggest a different project. Thus, Iban and
Julien, together with two other students, were assigned to work on Gsharp, an interactive
score editor. Gsharp was the original reason for Robert to start working on CLIM as he
needed a toolkit for writing a graphical user interface for Ghsarp. The lack of a freely-
available version of a widely-accepted toolkit such as CLIM made him decide to give it a
shot. Robert’s idea was to define the student project so that a maximum of code could be
written as part of McCLIM. The result was a complete rewrite of the space-allocation and
space-composition protocols, and many minor code snippets.

Auxiliary material 78

As part of the Gsharp project, Robert wrote the code for menu bars and for a large part of
chapter 27 (Command Processing).

Julien was hired for six months (April to September of 2001) by Robert to make major
progress on McCLIM. Julien’s first task was to create a large demo that showed many
of the existing features of McCLIM (a “killer app”). It was decided to use Gsharp since
Julien was already familiar with the application and since it was a sufficiently complicated
application that most of the features would be tested. An additional advantage of a large
application was to serve as a “smoke test” to run whenever substantial modifications to the
code base had been made. As part of the Gsharp project, Julien first worked on adding the
possibility of using images as button labels.

Early 2001, Robert had already written the beginning of a library for manipulating 2-
dimensional images as part of McCLIM. A group of four fourth-year students (Gregory
Bossard, Michel Cabot, Cyrille Dindart, Lionel Vergé) at the university of Bordeaux was
assigned the task of writing efficient code for displaying such images subject to arbitrary
affine transformations. This code would be the base for drawing all kinds of images such
as icons and button labels, but also for an application for manipulating document images.
The project lasted from January to May of 2001.

Another group of four fourth-year students (Löic Lacomme, Nicolas Louis, Arnaud Rouanet,
Lionel Salabartan) at the university of Bordeaux was assigned the task of writing a file-
selector gadget presented as a tree of directories and files, and with the ability to open and
close directories, to select files, etc. The project lasted from January to May of 2001.

One student in particular, Arnaud Rouanet started becoming interested in the rest of CLIM
as well. During early 2001, he fixed several bugs and also added new code, in particular in
the code for regions, graphics, and clx-mediums.

Arnaud and Lionel were hired by Robert for the summer of 2001 to work on several things.
In particular, they worked on getting output recording to work and wrote CLIM-fig, a demo
that shows how output recording is used. They also worked on various sheet protocols, and
wrote the first version of the PostScript backend.

Alexey Dejneka joined the project in the summer of 2001. He wrote the code for table
formatting, bordered output and continued to develop the PostScript output facility.

In the fall of 2001 Tim Moore became interested in the presentation type system. He
implemented presentation type definition and presentation method dispatch. Wanting to
see that work do something useful, he went on to implement present and accept methods,
extended input streams, encapsulating streams, and the beginnings of input editing streams.
In the spring of 2002 he wrote the core of Goatee, an Emacs-like editor. This is used to
implement CLIM input editing.

Brian Spilsbury became involved towards the beginning of 2001. His motivation for getting
involved was in order to have internationalization support. He quickly realized that the first
step was to make SBCL and CMUCL support Unicode. He therefore worked to make that
happen. So far (summer 2001) he has contributed a number of cosmetic fixes to McCLIM
and also worked on a GTK-like gadget set. He finally started work to get the OpenGL
backend operational.

79

Concept index

A
Active gadget . 74
Adding sub-menu to menu bar 22
application frame . 6
Armed gadget . 74

B
blank area . 46
building an application . 4

C
CLIM Debugger . 55
CLIM Listener . 70
Clipping region . 76
Clouseau . 56
command . 10, 34
command loop . 2
command processing . 21, 34
command table . 21
command tables . 21, 34

D
Debugger . 55
Device transformation . 74
Direct mirror . 74
display function . 12
drei . 44

E
event loop . 1

G
gadget . 6

I
incremental redisplay . 14, 35
input-editor . 44
inspector . 56
interface manager . 1

L
layout protocol . 30
Lisp Debugger . 55
Lisp Listener . 70
Listener . 70

M
make-pane and :scroll-bars obsolescence 28
Medium . 74
Medium transformation . 74
menu bar . 22
Mirror . 74
Mirror transformation . 75
Mirrored sheet . 74

N
Native coordinates . 75
Native region . 75
Native transformation . 75

O
output recording . 11

P
pane . 6, 27
Panes order . 29
Potentially visible area . 75
presentation type . 16

R
redisplaying panes . 29

S
sheet coordinate system . 25
sheet coordinates . 25
Sheet coordinates . 75
Sheet region . 75
Sheet transformation . 76
specification . 1

T
text-editor . 44
text-field . 44

U
User clipping region . 76
user coordinate system . 25
user coordinates . 25
User coordinates . 76
User transformation . 76

Concept index 80

V
view . 18
Visible area . 76

W
writing an application . 4

81

Function and macro and variable and type index

*
application-frame [clim] . 7

A
add-menu-item-to-command-table [clim] 23
add-output-record [clim] . 34
add-page [clim-tab-layout] . 48

C
call-without-noting-object-

occurrences [clouseau] . 67
clear-output-record [clim] 34
clim-extensions:note-frame-

command-table-changed . 44

D
debugger [clim-debugger] . 55
define-command-table [clim] 34
define-inspector-command [clouseau] 70
delete-output-record [clim] 34

F
find-command-table [clim] . 22
find-tab-page-named [clim-tab-layout] 48
font-face [clim-extensions] 49
font-face-all-sizes [clim-extensions] 50
font-face-family [clim-extensions] 50
font-face-name [clim-extensions] 50
font-face-text-style [clim-extensions] 50
font-family [clim-extensions] 49
font-family-all-faces [clim-extensions] 50
font-family-name [clim-extensions] 50
font-family-port [clim-extensions] 50
format-place-cells [clouseau] 68
format-place-row [clouseau] 69
formatting-place [clouseau] 67
frame-icon [clim-extensions] 43

I
inspect [clouseau] . 66
inspect-object [clouseau] . 69
inspect-object-briefly [clouseau] 69
inspect-object-using-state [clouseau] 67
inspect-place [clouseau] . 69
inspector-table [clouseau] 70
inspector-table-row [clouseau] 70
install-debugger [clim-debugger] 56
invoke-with-new-output-record [clim] 34
invoke-with-output-to-drawing-

stream [clime] . 51
invoke-with-standard-output

[clim-backend] . 40

L
line-style-effective-dashes

[clim-extensions] . 33
line-style-effective-thickness

[clim-extensions] . 32
load-afm-file . 41

M
make-command-table [clim] . 34
map-over-output-records [clim] 33
map-over-output-records-

containing-position [clim] 33
map-over-output-records-

overlapping-region [clim] 33
medium-miter-limit [clim-extensions] 32

N
note-frame-icon-changed [clim-extensions] . . . 43
note-frame-pretty-name-changed

[clim-extensions] . 44
note-object-occurrence [clouseau] 67
note-tab-page-changed [clim-tab-layout] 48

O
(setf output-record-parent) [clim] 33

P
page-final-position [clime] 45
page-initial-position [clime] 45
port-all-font-families [clim-extensions] 50

Function and macro and variable and type index 82

R
redisplay-frame-pane [clim] 30
redisplay-frame-panes [clim] 30
register-output-destination-

type [clim-backend] . 40
remove-menu-item-from-

command-table [clim] . 24
remove-page [clim-tab-layout] 48
remove-page-named [clim-tab-layout] 48
replay-output-record [clim] 33

S
sheet-icon [clim-extensions] 43
sheet-name [clim-extensions] 43
sheet-pretty-name [clim-extensions] 43, 44
sheet-to-page [clim-tab-layout] 48
shrink-mirror [clim-backend] 44
shrink-sheet [clim-extensions] 44
standard-output-recording-stream [clim] 33
stream-page-region [clime] 45
switch-to-page [clim-tab-layout] 48

T
tab-layout [clim-tab-layout] 46
tab-layout-enabled-page [clim-tab-layout] . . . 48
tab-layout-pages [clim-tab-layout] 47
tab-layout-pane [clim-tab-layout] 47
tab-page [clim-tab-layout] . 47
tab-page-drawing-options

[clim-tab-layout] . 47
tab-page-pane [clim-tab-layout] 47
tab-page-presentation-type

[clim-tab-layout] . 47
tab-page-tab-layout [clim-tab-layout] 47
tab-page-title [clim-tab-layout] 47

W
with-debugger [clim-debugger] 55
with-new-output-record [clim] 34
with-output-to-drawing-stream [clime] 51
with-output-to-output-record [clim] 34
with-tab-layout [clim-tab-layout] 47
with-temporary-margins [clime] 45
without-noting-object-

occurrences [clouseau] . 67

	Introduction
	Standards
	How CLIM Is Different

	1 User manual
	Building McCLIM
	Examples and demos
	Applications

	The first application
	A bit of terminology
	How CLIM applications produce output
	Panes and Gadgets
	Defining Application Frames
	A First Attempt
	Executing the Application
	Adding Functionality
	An application displaying a data structure

	Using incremental redisplay
	Using presentation types
	What is a presentation type
	A simple example

	Using views
	Using command tables
	Using menu bar
	Creating Menu bar
	Modifying Menu bar

	2 Reference manual
	Concepts
	Coordinate systems
	Arguments to drawing functions

	Sheet hierarchies
	Computing the native transformation
	Computing the native region
	Moving and resizing sheets and regions
	Scrolling

	Drawing functions
	Windowing system drawing
	CLIM drawing

	Panes
	Creating panes
	Pane names
	Redisplaying panes
	Layout protocol
	Space composition
	Space allocation
	Change-space Notification Protocol

	Output Protocol
	Command Processing
	Incremental redisplay

	3 Developer manual
	Coding conventions
	Packages
	Examples

	Pointer cursors
	Writing backends
	Different types of backends
	Backend protocol
	Event handling
	Graft protocol
	Medium drawing
	Medium operation
	Port protocol
	Frame manager, panes and gadgets
	Pointer protocol (events?)
	Text size
	Additional output destinations
	Miscellaneous
	Obsolete

	PostScript backend
	Postscript fonts
	Additional functions

	4 Extensions
	Frame redefinition semantics
	Frame and sheet icons
	Frame and sheet names
	Frame and sheet shrinking
	Frame command table change
	Text editor substrate
	Extended text formatting
	Page abstraction
	FILLING-OUTPUT extension

	Extended blank area presentation type
	Tab Layout
	Fonts and Extended Text Styles
	Extended Text Styles
	Listing Fonts

	Raster Images
	Drawing backends
	Interactive backend as a medium
	PostScript
	PDF
	SVG
	RasterImage
	Adding new backends

	Additional arguments to drawing functions
	Gestures and Gesture Names extensions

	5 Applications
	Debugger
	Debugger usage
	Keyboard shortcuts
	Debugger API

	Inspector
	Usage
	Quick Start
	The Inspector Window
	Objects and Places
	Evaluating Forms
	Navigating
	Handling of Specific Object Types
	Updating the Inspected Object

	Extending Clouseau
	Running Example
	State and Style of Presented Objects
	Defining Inspection Methods for Objects

	API
	Functions for Invoking Clouseau
	Functions for Extending Clouseau
	Other Functions
	Deprecated Functions

	Listener
	Usage
	Quick start
	Commands

	The #! macro character
	Calling commands from lisp
	Command output destinations
	Debugger integration

	Auxiliary material
	Glossary
	Development History

	Concept index
	Function and macro and variable and type index

