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Summary 

 

Machine learning models have been widely used by 
geoscientists to accelerate their interpretation and highlight 

hidden patterns in their data. However, as the complexity of 

the model increases, the interpretation of the results can 

become quite challenging. The SHAP technique provides a 
measure of the importance of each of the input seismic 

attributes on the model’s output. We illustrate the value of 

the SHAP technique using a tree-based machine learning 

implementation trained to distinguish between Mass 
Transport Deposits (MTDs) and salt seismic facies in a Gulf 

of Mexico survey. 

 

Introduction 

 

In the last decade, supervised and unsupervised machine 

learning techniques such as Self-organizing Maps (SOM), 

Generative Topographic Maps (GTM), k-means, and neural 
networks (Hampson et al., 2001; Roy et al., 2014; Zhao et 

al., 2015; Gupta et al., 2018; Pires de Lima et al., 2019; 

Gupta et al., 2020) have been applied to classify seismic 

facies, core lithofacies, and to predict well log properties as 
well as several other applications. However, with the 

increasing complexity of these models, the interpretation of 

their results can become quite challenging.  

 
To address this situation, we apply a recently derived  

technique from the machine learning community called 

SHAP (Lundberg and Lee., 2017; Lundberg et al., 2018) to 

study the impact that a suite of candidate seismic attributes 
has in the predictions of a Random Forest architecture 

trained to differentiate salt from MTDs facies in a Gulf of 

Mexico seismic survey. 

 
SHapley Additive exPlanations (SHAP) 

 

Typically, machine learning models are viewed as ‘black-

box’ algorithms that tend to provide limited insight on input-
output relationships. There is a lack of interpretability and 

formalisms that demonstrate feature importance, both 

globally and locally, to supervised learning of labelled data.  

SHapley Additive exPlanations (SHAP) are a recent 
development that enable quantitative estimation of model 

interpretability (Lundberg and Lee, 2017, Lundberg et al., 

2018). 

SHAP use concepts from cooperative game theory, thereby 

assigning each attribute an importance value based on its 

impact on the model prediction when the feature is present 
or not during the SHAP estimation (Lundberg and Lee, 

2017; Lundberg et al., 2018; Lundberg et al., 2020; Molnar, 

2020). In order to explain complex models, SHAP use a 

linear additive feature attribute method as a simpler 
explanation model: 

 

                                                                                          (1)                                                                                                                                    

                                 

where, 𝑓(𝑎) is the original machine learning model we want 

to explain, 𝑔(𝑎′) is the simpler explanation model, J is the 

number of simplified input seismic attributes, ∅𝑗 are the 

SHAP values measured across all possible input orderings, 

𝑎′𝑗 is the simplified input vector that indicates if a particular 

seismic attribute is present or not during the estimation, and 

∅0 is associated with the model prediction when all the 

attributes are not considered in the estimation (Lundberg and 

Lee, 2017; Lundberg et al., 2018, Molnar, 2020). 

 

Data description 

 

The 3D seismic survey was acquired by PGS and is located 

in the Gulf of Mexico, offshore Louisiana, and covers an 

area of approximately 8000 km2 (3089 mi2) (Qi et al., 2016). 
For this study, the seismic volume was cropped, consisting 

of 500 inlines, 840 crosslines, and record length of 2 s. 

Figure 1 shows two salt diapirs (Salt #1 and Salt #2) 

characterized by low amplitude, chaotic reflectivity in the 
seismic survey. 

 

Workflow 

 
In order to perform our supervised seismic facies 

classification task to differentiate between salt and MTDs 

(Figure 2), we evaluate four candidate seismic attributes 

selected based on geologic insight: coherence, GLCM 
entropy, total energy, and reflector convergence. Following 

Qi et al. (2016) and Lubo-Robles et al. (2019), we apply a 

3D Kuwahara filter to the seismic attributes as a 

preconditioning step for classification to smooth the internal 
response of the seismic facies and better define the edges 

between them. 

 

𝑓(𝑎) = 𝑔(𝑎′) =  ∅0 +  ∑ ∅𝑗𝑎′𝑗

𝐽

𝑗=1
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Machine Learning model interpretability using SHAP values: application to a seismic facies classification task 
 

To generate the training dataset for our Random Forest 

classifier, we pick a suite of polygons enclosing the target 

facies. In Figure 1, we show a vertical section through the 
seismic volume in which we extract the training voxels of 

the salt diapirs (falling within the red polygons), and MTDs 

(falling within the blue polygons) seismic facies from the 

four candidate seismic attributes. 
 

In the learning phase of the classifier, we use an 80-20 

train/test split, where 80% of the picked voxels are 

associated with the training data, while 20% of the voxels 
belong to the validation dataset. Furthermore, because 

seismic attributes are, in general, characterized by super-

Gaussian or Poisson distributions (Walden 1985; Honorio et 

al., 2014; Lubo-Robles and Marfurt, 2019), a robust 
normalization scheme is applied to avoid any bias related to 

different units between the candidate seismic attributes.   

 

In order to compute the SHAP values of the model, we use 
the TreeExplainer implementation developed by Lundberg 

et al. (2018), which provides a fast and exact computation of 

the Shapley values for tree-based machine learning 

implementations. 
 

Finally, we use SHAP force plots to analyze the model’s 

prediction at a particular voxel, and SHAP global feature 

importance and SHAP summary plots to study the global 
behavior of the model (Lundberg et al., 2018; Lundberg et 

al., 2020; Molnar, 2020). 

  

 

 

 

 

 

 

 

 

 
Figure 1. Training dataset generation. A suite of polygons is 

picked enclosing the target salt and MTDs seismic facies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SHAP workflow to analyze the model’s prediction.  

SHAP application 

 

After training our Random Forest classifier for 
differentiating between salt and MTDs, we obtain a robust 

model characterized by accuracy of 98% and 99.4%, and F1-

score of 99% and 99.6% in the validation and training 

dataset respectively. Therefore, the model has good Bias-
Variance and Precision-Recall tradeoffs.  

 

Global interpretability 

 

The SHAP global feature importance plot provides a means 

to analyze the importance of each input attribute in the 

classification by combining several local explanations of the 

model (Lundberg et al., 2020). Attributes associated with 
high average magnitude SHAP values have a greater impact 

on the classification than features characterized by low 

average SHAP values (Lundberg et al., 2020; Molnar, 2020).  

 
In Figure 3a, we show the SHAP global feature importance 

plot for our Random Forest classifier. We note that the four 

input candidate attributes have the same impact on both 

seismic facies. Moreover, the highest contribution to the 
classification is given by the total energy, followed by the 

coherence, GLCM entropy, and reflector convergence when 

differentiating between salt and MTDs. 

 
One intrinsic limitation of the SHAP global importance plot 

is that it does not take into consideration feature effects 

(Lundberg et al., 2020). To address this issue, we use the 

SHAP summary plot to analyze the attribute importance 
together with the magnitude and direction of an attribute’s 

effect (Lundberg et al., 2020; Molnar, 2020).  

 

In Figure 3b, we show the SHAP summary plot of the 
classifier for the salt seismic facies. The collection of dots in 

the figure represent individual data points. Each feature (or 

predictor) in the column is arranged in decreasing order of 

importance, so the SHAP values (on the x-axis) get 
progressively smaller down the column (Lundberg et al., 

2020; Molnar, 2020). To interpret Figure 3b, we focus on the 

variable total energy. The SHAP values corresponding to 

total energy range from negative to larger positive values for 
the different data points. For the positive SHAP values (these 

points have a strong influence on the classification of salt), 

the points are associated with low (colored blue) value of the 

feature. This indicates that low total energy values are a key 
characteristic of the salt seismic facies. 

 

Likewise low values of coherence and high values of GLCM 

entropy and reflector convergence are associated with 
positive SHAP values and therefore, the salt seismic facies 

On the other hand, high values of total energy and coherence, 

and low values of GLCM entropy and reflector convergence 
decrease the probability of a particular voxel being classified 

as salt, and increase the probability of having an MTD. 

 

Training data 
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Machine Learning model interpretability using SHAP values: application to a seismic facies classification task 
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
Figure 3. Global interpretation of the Random Forest classifier using SHAP values (a) SHAP global feature importance plot. From 

four candidate seismic attributes, the highest contribution is associated with the total energy, followed by the coherence, GLCM 

entropy, and reflector convergence when classifying between salt and MTDs seismic facies. Also, attributes show the same impact 

on both facies. (b) SHAP summary plot for the salt seismic facies. SHAP positive values increase the probability of having a salt 
seismic facies, and they are associated with low values of total energy and coherence, and high values of GLCM entropy and 

reflector convergence. Some outliers characterized by high coherence, or low GLCM entropy or reflector convergence are also 

visible (green arrows). 

 

Finally, some outliers characterized by high coherence, or 

low GLCM entropy or reflector convergence (Figure 3b, 

green arrows) might be classified as salt. 

 
Local interpretability 

 

Local explanations allow to analyze the model classification 

for selected data points (Lundberg et al., 2020). These are 
illustrated with SHAP force plots (Lundberg et al., 2018). 

Following Molnar (2020), SHAP values are associated with 

different “forces” that increase or decrease the model’s 

prediction. Each prediction starts from the base value, which 
is given by the average of all probabilities for each seismic 

facies present in the dataset if none of the input attributes are 

known (Lundberg and Lee, 2017; Molnar, 2020). In this 

study, the salt and MTDs seismic facies have a base value 
probability of 0.82 and 0.18 respectively. 

 

Analyzing the force plot of sample #15 for the salt seismic 

facies (Figure 4a), we observe that with no inputs 
whatsoever, the probability of sample #15 being a salt is 

82%. This is where the plot begins. Adding reflector 

convergence (R.C.) slightly increase the probability of 

sample #15 being a salt facies. Adding coherence (Coh.) 
pushes the probability to 87%, adding GLCM entropy 

(GLCM Ent.) pushes it further to 93% and adding total 

energy (T.E.) pushes it to 100%. It is important to note that 
the classification of sample #15 as a salt was aided by low 

values of total energy and coherence, and high values of 

GLCM entropy and reflector convergence (Table 1). 

In Figures 4b and 4c, we study a false negative sample where 

its actual class is salt, but it was classified as MTD with a 

66% probability. We note that this sample is characterized 

by relatively high values of coherence and total energy and 
low values of GLCM entropy and reflector convergence, 

which matches the general behavior expected by an MTD 

(Figure 3b). For this reason, in Figure 4b, we observe that 

reflector convergence, GLCM entropy, and total energy 
push the prediction up from 18 to 66% of being an MTD, 

while pushing the prediction of being a salt facies from a 

base value of 82% to a 34% (Figure 4c).  

 
Finally, in sample #256, we note that a value of coherence 

above the mean tends to push the classification towards the 

seismic facies. Further research is needed in order to explain 

how the interaction between coherence with the other 
candidate seismic attributes tends to increase the probability 

of having a salt seismic facies in this sample.  

 

Attribute Mean 

Total energy 112380 

Coherence 0.58 

GLCM entropy 3.78 

Reflector convergence 0.22 

 

Table 1.   Mean values for each seismic attribute in the 

training dataset sorted by their importance obtained after 
implementing SHAP. Values are shown without robust 

normalization for interpretation purposes.

Mean (|SHAP value|) (average impact on model output magnitude) 
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Machine Learning model interpretability using SHAP Values: application to a seismic facies classification task 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
Figure 4. SHAP forces plots for local interpretability (a) Force plot for sample #15 classified correctly as a salt facies. Low values 

of total energy and coherence and high values of GLCM entropy and reflector convergence push the probability up from 82 to 

100% (b) Force plot for sample #256, which is classified as MTD with 66%, but belongs to salt seismic facies. This sample is 

characterized by relatively high values of coherence and total energy, and low values of GLCM entropy and reflector convergence 
matching the expected behavior of an MTD (c) Force plot for sample #256 showing a 34% probability of having a salt facies. A 

coherence value above the mean is pushing the classification towards the salt seismic facies. Further study is required to explain 

the interaction between the seismic attributes. Attribute values are shown without robust normalization for interpretation purposes. 

 

Conclusions and future work 

 

We successfully applied a SHAP implementation to a 

Random Forest classifier trained to differentiate between salt 
and MTDs in a Gulf of Mexico dataset as a means to study 

seismic attribute importance and the machine learning model 

predictions. From four input candidate attributes, we 

determined that the most significant impact in the model is 
given by the total energy followed by the coherence, GLCM 

entropy, and reflector convergence. Moreover, we analyze in 

detail how each attribute’s effect impacts the model’s output 

at a local scale, where low values of total energy and 
coherence and high values of GLCM entropy and reflector 

convergence tend to increase the probability of particular 

sample of being classified as a salt seismic facies.  

 
For future work, we will include other texture, non-

parallelism, and spectral attributes in the classification to 

analyze how they affect the model prediction. Also, we will 

study the force plots of correctly classified MTD and false 
positive samples, where MTDs are being misclassified as 

salt by the model. Moreover, we plan to study the SHAP 

dependence plots to examine how the input seismic 

attributes interact with each other, and we will apply SHAP 

to non-binary tasks. 
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