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Antonio J. Nebro, Jesús Galeano-Brajones, Francisco Luna and Carlos A. Coello Coello

Is NSGA-II Ready for Large-Scale Multi-Objective Optimization?
Reprinted from: Math. Comput. Appl. 2022, 27, 103, doi:10.3390/mca27060103 . . . . . . . . . . . 121

Henrik Smedberg, Carlos Alberto Barrera-Diaz, Amir Nourmohammadi, Sunith Bandaru

and Amos Ng

Knowledge-Driven Multi-Objective Optimization for Reconfigurable Manufacturing Systems
Reprinted from: Math. Comput. Appl. 2022, 27, 106, doi:10.3390/ mca27060106 . . . . . . . . . . . 139

Octavio Ramos-Figueroa, Marcela Quiroz-Castellanos, Efrén Mezura-Montes and 
Nicandro Cruz-Ramı́rez

An Experimental Study of Grouping Mutation Operators for the Unrelated Parallel-Machine 
Scheduling Problem
Reprinted from: Math. Comput. Appl. 2023, 28, 6, doi:10.3390/mca28010006 . . . . . . . . . . . . . 157
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Preface to ”Evolutionary Multi-objective

Optimization: An Honorary Issue Dedicated to

Professor Kalyanmoy Deb”

This volume is a reprint of the Honorary Special Issue dedicated to the 60th birthday of Professor

Dr. Kalyanmoy Deb, published in the journal Mathematical and Computational Applications

(MCA). Kalyanmoy Deb is a pioneer and highly impactful and influential proponent of Evolutionary

Multi-objective Optimization (EMO) since 1994. He is currently a Koenig Endowed Chair Professor

and University Distinguished Professor in the Department of Electrical and Computer Engineering

at Michigan State University, USA, and holds additional appointments in Mechanical Engineering

and in Computer Science and Engineering. Professor Deb’s research interests are in evolutionary

optimization and its application in multi-objective optimization, modeling, machine learning, and in

multi-objective decision making. He has been a visiting professor at various universities across the

world, including IITs in India, Aalto University in Finland, the University of Skovde in Sweden,

and Nanyang Technological University in Singapore. He was awarded the IEEE Evolutionary

Computation Pioneer Award, the Infosys Prize, the TWAS Prize in Engineering Sciences, the CajAstur

Mamdani Prize, the Distinguished Alumni Award from IIT Kharagpur, the Edgeworth Pareto Award,

the Bhatnagar Prize in Engineering Sciences, and the Bessel Research Award from Germany. He is a

fellow of IEEE, ASME, and three Indian science and engineering academies.

He has published over 600 research papers, with Google Scholar citations of over 180,000 and

with an h-index of 131. More information about his research contributions can be found from

https://www.coin-lab.org. This volume contains one interview, one review paper, and 11 regular

papers. We briefly present all of these contributions in the following. The regular papers are

organized chronologically by their publication times in MCA.

In Chapter 1, Kalyanmoy Deb gives an interview to the guest editors of the Honorary Special

Issue. In this interview, Dr. Deb talks about formation, development and challenges of the

Evolutionary Multi-objective Optimization (EMO) community, important points in his career, and

issues he has faced in getting his work published.

In Chapter 2, Sinha and Wallenius first review the classic interactive approaches from the field

of Multiple Criteria Decision Making (MCDM), followed by the underlying idea and methods in the

field of EMO. Next, they consider and discuss several promising MCDM and EMO hybrid approaches

that aim to capitalize on the strengths of these two domains. Finally, they conclude with discussions

on important behavioral considerations related to the use of such approaches and possible paths of

future work.

In Chapter 3, Hernández Castellanos and Schütze propose a new bounded archiver,

ArchiveUpdateHD, aiming for Hausdorff approximations of the Pareto front of a multi-objective

optimization problem. It is shown that an application of this archiver yields, under certain (mild)

assumptions with a probability one after finitely many steps, a Δ+ approximation of the Pareto front,

where Δ+ is computed by the archiver within the run of the algorithm without any prior knowledge

of the Pareto front. Numerical results using ArchiveUpdateHD as an external archiver within state of

the art multi-objective evolutionary algorithms (MOEAs) indicate the benefit of the novel strategy.

In Chapter 4, Xing and Sun study a multi-objective optimization problem related to the viscous

boundary condition of an elastic rod. For the numerical treatment of this problem they use

the algorithm GA-SCN, a hybrid of the multi-objective evolutionary algorithm NSGA-II and cell

ix



mapping techniques. Finally, several optimal designs are illustrated and discussed.

In Chapter 5, Pannerselvam et al. use importance sampling to deal with scarce sample based

reliability estimation and optimization. More precisely, they propose to approximate the probability

density function and the cumulative distribution function using kernel functions and employ these

approximations to find the parameters of the importance sampling density to eventually estimate the

reliability. The proposed approach is finally tested on several benchmark reliability examples.

In Chapter 6, Nebro et al. investigate the applicability of the evolutionary algorithm NSGA-II

to larges cale multi-objective optimization problems. To this end, the authors use the automated

algorithmic tuning method irace together with a highly configurable version of NSGA-II available

in the jMetal framework. The resulting tuned algorithm is then tested on the continuous ZDT test

functions with up to 217 = 131, 072 decision variables and on a particular binary problem with

thousands of bits. Results show that significant improvements can be obtained compared to the

original NSGA-II.

In Chapter 7, Smedberg et al. investigate a novel knowledge driven optimization (KDO)

approach to speed up the convergence in reconfigurable manufacturing systems (RMS) applications.

This approach generates generalized knowledge from previous scenarios, which is then applied to

improve the efficiency of the optimization of new scenarios. The proposed approach is then applied

to a multi-part flow line RMS. The results demonstrate how a KDO approach leads to convergence

rate improvements in a real world RMS case.

In Chapter 8, Ramos Figueroa et al. present a comparative experimental study of different

mutation operators for a Grouping Genetic Algorithm 2 (GGA) designed to solve the parallel

machine scheduling problem with unrelated machines and makespan minimization. The focus

is on identifying the strategies involved in the mutation operations and their adaptation to the

characteristics of the studied problem. Experimental results indicate that the state of the art GGA

performance considerably improves by replacing the original mutation operator with the new one.

In Chapter 9, Wang et al. extend the recently proposed Hypervolume Newton Method (HVN) to

the treatment of constrained multi-objective optimization problems with in principle any number

of objectives. This Newton method is defined on the space of (vectorized) fixed cardinality sets

of decision space vectors for a given multi-objective problem (MOP) with the aim to maximize the

hypervolume indicator. Numerical results are presented of the method both as standalone algorithm

as well as local search engine within a multi-objective evolutionary algorithm.

In Chapter 10, Sinisterra Sierra et al. propose an evolutionary multi-objective algorithm based on

NSGA-II to guide the mining process in datasets. In particular they consider the dataset composed of

15.5 million records with official data describing the COVID-19 pandemic in Mexico. The proposed

algorithm generates, recombines, and evaluates patterns, focusing on recovering promising high

quality rules with actionable cause effect relationships among the attributes to identify which groups

are more susceptible to disease or what combinations of conditions are necessary to receive certain

types of medical care.

In Chapter 11, Wang and Jin propose a novel particle filter based multi-objective optimization

algorithm (PF-MOA) by transferring knowledge acquired from the search experience. The key insight

adopted here is that, if one can construct a sequence of target distributions that can balance the

multiple objectives and make the degree of the balance controllable, one can approximate the Pareto

optimal solutions by simulating each target distribution via particle filters. Experimental results on

several test functions show that PF-MOA achieves competitive performance compared to state of the

art MOEAs on most test instances.

In Chapter 12, Gaspar-Cunha et al. propose a novel machine learning methodology, called

x



FS-OPA, to reduce the number of objectives within a many-objective optimization problem. The 
new method is first assessed using the DTLZ benchmark problems, where the method shows good 
performance compared to similar algorithms. Finally, the strength of the method is demonstrated on 
a difficult real world application coming from polymer processing.

Finally, in Chapter 13, Biswas and Sharma propose a single loop multi-objective reliability based 
design optimization formulation that approximates 3 reliability analysis using Karush Kuhn Tucker 
(KKT) optimality conditions. Further, chaos control theory is used to avoid convergence issues. 
Numerical results demonstrate that the proposed method, MORBDO, is highly competitive to double 
loop variants of multi-objective differential evolution algorithms.

We warmly thank the authors who contributed to this special issue as well as the reviewers 
for their constructive comments. We hope the readers enjoy to study these works as much as we 
enjoyed editing them. Among others, these works demonstrate that Evolutionary Multi objective 
Optimization is still an active and fruitful research field after three decades of its existence.

Carlos Coello, Erik Goodman, Kaisa Miettinen, Dhish Saxena, Oliver Sch ̈utze and Lothar Thiele

Editors
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1. Introducing Kalyanmoy Deb

Kalyanmoy Deb was born in Udaipur, Tripura, the smallest state of India at the time,
in 1963. He is the eldest of four siblings. Like him, his other brothers are also engineers, one
in academics, one in an industry, and the other is a freelancer. Educated in the IIT system in
India, he worked for two years in a reputed engineering design company, before heading
for his graduate studies in the USA. After his return to India, he taught at IIT Kanpur for
20 years. He is currently a University Distinguished Professor and Koenig Endowed Chair
Professor in the Department of Electrical and Computer Engineering at Michigan State
University, USA. Prof. Deb’s research interests are in evolutionary optimization and its
application in multi-criterion optimization, modeling, and machine learning. He has been
a visiting professor at various universities across the world including the University of
Skövde in Sweden, ETH Zurich in Switzerland, Aalto University in Finland, Nanyang
Technological University in Singapore, and a few IITs in India. He was awarded the IEEE
Evolutionary Computation Pioneer Award for his pioneering work in EMO, Infosys Prize,
TWAS Prize in Engineering Sciences, CajAstur Mamdani Prize, Distinguished Alumni
Award from IIT Kharagpur, Edgeworth-Pareto Award, Bhatnagar Prize in Engineering
Sciences, and Bessel Research Award from Germany. He has received an honorary doctorate
degree from the University of Jyvaskyla, Finland. He is a fellow of ACM, ASME, IEEE,
and three Indian science and engineering academies. He has published over 600 research
papers. He is married to Debjani Sarkar, who is an academic specialist at Michigan State
University. Their son runs a start-up on AI and their daughter works in a reputed company
as a marketing manager.

2. Introducing Evolutionary Multi-Objective Optimization (EMO)

Multi-objective optimization (MO) problems give rise to not one, but a set of Pareto-
optimal solutions, each of which makes a trade-off among the associated objectives with
another solution. Between a pair of solutions, if one is better on one objective, it must be
worse in at least one other objective. Although a single solution is desired as an outcome of
a multi-objective optimization task, finding a representative set of Pareto-optimal solutions
can be helpful in the process of making a decision. There exist different scalarization-
based multi-objective optimization methods that scalarize multiple objectives into a single

Math. Comput. Appl. 2023, 28, 34. https://doi.org/10.3390/mca28020034 https://www.mdpi.com/journal/mca1
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parameterized one and apply a single-objective optimization method to find the respective
optimal solution. Most scalarization techniques ensure that the resulting optimal solution
is a Pareto-optimal one but the scalarization technique must be selected carefully to be able
to reach any Pareto-optimal solution.

Evolutionary multi-objective optimization (EMO) methods work with a population of
solutions in every iteration and can find multiple well-diversified solutions simultaneously.
Because of their heuristic nature, they cannot usually guarantee Pareto-optimality, but they
approximate Pareto optimal solutions. Early EMO methods could handle two and three
objectives well, but the new methods, known as evolutionary many-objective optimization
(EMaO) methods, are demonstrated to handle as many as 15 to 20 objectives. EMO and
EMaO methods use an implicitly parallel search process introduced by the evolutionary
operators, and a partial ordering and diversity-preserving-based selection mechanism.
Aided by modular and flexible structures, EMO and EMaO methods are regularly used to
solve challenging academic and industrial problems. They have also been commercialized
into software packages and public-domain codes for their use at large. The discovery of a
representative set of Pareto-optimal solutions has a number of advantages for users. First,
the set of solutions can be analyzed to understand the comprehensive nature of possible
variations of objectives and their trade-offs, which can provide useful information to the
users to follow an informed decision-making task for picking a single preferred solution for
deployment. Second, the knowledge of alternate Pareto-optimal solutions can utilize them
to use in a platform-based solution philosophy, in which every Pareto-optimal solution
can become a potential solution for a different hardware or system platform. Third, an
application of machine learning techniques to multiple Pareto-optimal solutions can bring
out essential common principles hidden in them. These common principles can reveal
valuable insights for constructing optimal solutions for a problem. Fourth, the EMO and
EMaO philosophies are increasingly being used to introduce helper objectives in the search
process to find optimal solutions for original objectives faster and with more accuracy.

EMO and EMaO methods have uniquely utilized evolutionary algorithm’s (EO) popu-
lation approach to finding and storing multiple optimal solutions. The matching of MO
and EO philosophies could not be any better. MO gives rise to multiple alternate solutions
and EO’s population approach provides a platform to find and capture them. For the past
three decades, EMO researchers have not only exploited this match to develop efficient MO
algorithms, but they also have launched various related studies to make EMO a field of
study with hundreds of PhD theses, commercial and public-domain software, dedicated
conference/seminar series, and a record number of publications. Many new ideas for
improving existing algorithms, new areas of applications, and new ways to utilize them for
various problem-solving areas are continuously emerging. EMO has undoubtedly become
a unique and ubiquitous medium for solving multi-objective problems.

It is perhaps an excellent time to celebrate the moment and recognize every EMO
researcher’s hard work, passion, and collaborative efforts over the past three decades.

3. Interview

The following is an interview with Prof. Kalyanmoy Deb. The editor’s question is
stated first, followed by Deb’s response.

1. Kalyan, thank you very much for taking some of your valuable time for this inter-

view that we are doing as part of the Special Issue dedicated to your 60th birthday. The

title of this SI is "Evolutionary Multi-objective Optimization" (EMO) which leads us

directly to the first questions, since you are a pioneer and highly impactful and influen-

tial proponent of EMO since 1994. Can you recall for us your first steps that, looking

back, helped in the formation of what we today call the EMO community?

First of all, I am touched and humbled by your initiative in compiling this Special
Issue for the occasion of my 60th birthday. It is a great honor for me. I also take this
opportunity to thank all authors and reviewers of the papers published in this Special
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Issue. My appreciation also goes to the MDPI journal on Mathematical and Computational
Applications for publishing this Special Issue.

It has been a long journey, hasn’t it! The birth of EMO studies and the start of my
academic career as an assistant professor at Indian Institute of Technology Kanpur (IITK)
in India, happened almost concurrently. After completing my graduate studies and a short
post-doctoral stay in the USA, I returned to India in early 1993 and took the Assistant
Professor position at IITK. During my graduate studies (1987–1991), I was fortunate enough
to have been exposed to genetic algorithms (GAs)—a fascinating concept for solving search
and optimization problems using principles of natural selection and genetics–from the
Evolutionary Computation pioneer David Goldberg. A 10-line outline of a plausible GA-
based multi-objective optimization algorithm in Goldberg’s 1989 pioneering book (Addison-
Wesley) caught my attention, while I took the GA course from Goldberg. In an earlier
attempt by David Schaffer in 1985, Goldberg observed that a proactive diversity-preserving
operator was missing in Schaffer’s vector-evaluated GA (VEGA). Having worked on niche-
based GAs in my master’s thesis, I immediately realized that Goldberg’s suggestion for
building a working EMO algorithm was just on the horizon. However, by that time, I
was already quite advanced with my PhD topic on the development of messy GAs—a
variable-length GA that could solve complex problems including deceptive problems,
which were found difficult to solve by standard GAs. I temporarily put off my interest
on multi-objective optimization research and waited until I had my first graduate student,
Nidamurthy Srinivas, at IITK, to begin working on Goldberg’s suggestion. The use of
non-domination sorting (NS) and niche- preservation based on a sharing function approach
in the GA’s selection operator confirmed Goldberg’s intuition. There came one of the
first EMO algorithms—NSGA. We submitted our paper to Evolutionary Computation
Journal of MIT Press in 1993 and the paper appeared in print in 1995. Those days, the
internet was not that accessible and soon thereafter I came across two other papers which
used Goldberg’s idea in slightly different ways and produced two other successful EMO
algorithms: multi-objective GA (MOGA) and niched Pareto GA (NPGA). Each of these
methods showed that a stable population of Pareto- optimal solutions could be found and
maintained for successive generations on two-objective problems. In my opinion, these
three studies during 1993–1995 have initiated the birth of the EMO field, although there
were a few other EMO studies that came soon thereafter which did not use Goldberg’s
idea literally.

Of course, a few papers or even one great idea does not often fan out to be a successful
field of research and application which has lasted for about three decades now. I narrate
some of the systematic and chronological developments in which I took a major part. First,
more efficient EMO algorithms with fewer tunable parameters and elite preservation ap-
peared. My 2002 NSGA-II paper (IEEE Transactions on Evolutionary Computation (TEVC))
is one such EMO algorithm, in addition to Zitzler and Thiele’s Strength Pareto Evolu-
tionary Algorithm (SPEA) and Knowles and Corne’s Pareto-Archived Evolution Strategy
(PAES). The simplicity and modularity in these algorithms and the availability of their
public-domain codes make EMO accessible to researchers and applicationists within and
outside the computer science and engineering communities. These algorithms have helped
mature the EMO field and attracted many newcomers. Second, with every new algorithm
being proposed, I started to realize the need for a test suite through which algorithms can
be tested and compared with each other. I found a mechanism in my 1999 test problem
construction paper (MIT Press’s ECJ) by which existing single-objective challenging test
problems can be channeled to construct similarly difficult test problems for multi-objective
optimization. That study led to a collaboration with Eckart Zitzler and Lothar Thiele to for-
mulate a two- objective Zitzler-Deb-Thiele (ZDT) test suite with discernable Pareto-optimal
fronts. Although largely concurred, ZDT problems are still used as the first problems to test
a new algorithm on. Third, with the existence of efficient algorithms to apply to challenging
test problems, researchers proposed various performance metrics to measure convergence
and diversity of obtained solutions. In my opinion, this three-pronged development of
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“Algorithm-Test-suite–Performance-metric” allowed more researchers to introduce new
ideas and industries to venture into solving their problems for multiple objectives. All
these activities started the EMO revolution, and there was no stopping it.

2. The growing interest in EMO even led to, among other things, a new conference

series dedicated to this topic, called Evolutionary Multi-Criterion Optimization. Its first

edition was held in Zurich (Switzerland) in 2001, and is since been held biannually and

very successfully until now. Can you tell us a bit about the evolutionary history of this

event series?

The opportunity offered by EMO algorithms to solve problems for multiple objectives
attracted many bright PhD students. Journals started to accept EMO papers and major
evolutionary computation (EC) conferences accepted EMO-related papers in their regular
tracks. It became clear to everyone that EC’s population approach provided a unique niche
for solving multi-objective problems and EMO was being flagged as a success story of EC.
To push the EMO activities further and to let everyone know about others’ work closely, I
realized that a dedicated conference on EMO was the need of the time. It was December of
1999 and I was on a flight from Delhi to travel to Zurich to examine the PhD thesis of Eckart
Zitzler. I pondered on how nice it would be to hold the first EMO conference in Zurich. I
expressed my thoughts to Eckart and Lothar, and before I realized it, Lothar was on the
phone to find an available date of ETH’s auditorium to host the proposed conference. The
first international conference on EMO was held in March of 2001 at ETH Zurich with about
50 papers presented. Springer agreed to publish the proceedings under its Lecture Notes in
Computer Science (LNCS) series. We prepared the conference for about 60 participants,
but 90+ participants attended the conference. If I recall correctly, we had to order extra
proceedings from Springer and post them later to many participants. The conference was a
huge success, and three proposals for hosting the second one were received. To involve
more key EMO researchers in the decision-making of future EMO conference events, Eckart,
Lothar and I decided to form an EMO Steering Committee with a total of seven members,
which has been recently extended to have 11 members. The steering committee decided
to host the conference every two years and adopted a couple of practices from the very
first EMO conference: (i) there will be no parallel sessions, so everyone is in the same room
for all presentations, thereby giving every paper a wide attention, and (ii) there will be
Multi-Criterion Decision-Making (MCDM) events within EMO conferences. Since 2001, the
EMO conference series has been held every odd year.

3. For the treatment of multi-objective optimization problems you mainly use evo-

lutionary techniques. However, you have always promoted the use of mathematical

programming and multi-criterion decision-making (MCDM) techniques within EMO,

which has had a significant impact on the formation of the community. Could you com-

ment on that?

I consider myself a problem solver rather than particularly an EC or an optimization
researcher. I strongly believe that a successful researcher should always acquire a good
knowledge of the fundamentals associated with the topic before starting to work on it.
This not only provides a deeper understanding of the topic for making any fundamental
changes, but it also paves the way to know other contemporary approaches as possible
alternatives. As you have correctly pointed out, mathematical programming and MCDM
fields are two related and contemporary fields which deal with multi-objective problem-
solving. While I understand that it is not easy and always uncomfortable to go out of one’s
own comfort zone and mingle with people in a different field to understand their trades,
the trouble is worth taking for two reasons. First, it allows one to evaluate one’s methods
with other competing methods, and the process can eventually motivate developing hybrid
methods. Second, it helps to propagate one’s methods to the other contemporary fields.
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It was evident from the beginning that multi-objective problem-solving tasks should
end up or involve somehow a decision-making activity in arriving at a single preferred
solution. I was fortunate to be invited to attend a few MCDM events in 1999 and the
years following thereafter, and I came to know the existence of an MCDM field which
had been addressing multi-objective problem solving since the early seventies. While they
were mainly interested in scalarizing multiple objectives into a single one and in involving
a decision-maker directly to provide preference information to move to new scalarized
problems iteratively, I realized that EMO studies could definitely benefit by working with
MCDM researchers. EMO’s ability to find multiple representative near-Pareto solutions
can be combined with MCDM-based preference incorporation ideas to make the whole
EMO-MCDM approach holistic. To create this merger, I planned a few events.

First, at the EMO-2001 conference, we invited two prominent MCDM researchers:
Kaisa Miettinen and Ralph Steuer, both being authors of popular MCDM books, to give a
tutorial and a keynote speech on MCDM topics for EMO researchers to be aware of. This
tradition has been followed in a number of future EMO conferences.

Second, in 2004, during my Bessel Research Prize visit to the University of Karlsruhe,
Germany, I joined hands with my hosts Juergen Branke and Hartmut Schmeck, along
with the above-mentioned MCDM researchers, to propose a Dagstuhl Seminar at Schloss
Dagstuhl, Saarbrucken, Germany by inviting 30 EMO and 30 MCDM researchers. It was
the first time these two groups met and openly exchanged ideas with each other. Of course,
EMO being about 20 years younger than MCDM in terms of its inception, EMO researchers
strikingly found that many of their ideas were already proposed by their elder counterparts.
However, the seminar provided a breeding ground for the two groups to plan future
collaborative studies. I must say that MCDM researchers were also exposed to the EMO
philosophy and the later publication records of some of the leading MCDM researchers
clearly support my assertion. The success of the first Dagstuhl seminar motivated us to
repeat it at regular intervals. The epitome of the merger was the publication of an edited
book (under Springer’s LNCS series, edited by four founding organizers) in which most
chapters were jointly written by EMO and MCDM authors.

Third, I was invited to visit Helsinki School of Economics (now Aalto University
School of Business) as a Finland Distinguished Professor for two years and to collaborate
with Kaisa Miettinen, Jyrki Wallenius and Pekka Korhonen – three stalwarts in the MCDM
community. With this collaboration, I had a better appreciation of the MCDM philosophy
and met other prominent MCDM researchers who regularly visited the university. I began
to combine EMO and MCDM methods, a process which resulted in reference-point-based
NSGA-II, reference-direction-based NSGA-II, light-beam-search-based EMO, progressively
interactive EMO, and others which also combined EMO with MCDM methods to find a
single preferred Pareto-optimal solution at the end.

Fourth, during my Helsinki visit, I also worked with Jyrki and others to make EMO
an area topic for the Journal of Multi-Criterion Decision Analysis (Wiley) and served as an
area editor from 2009 until 2018.

Fifth, in 2008, I worked with the International Society on MCDM to establish an EMO
track within their bi-annual MCDM conferences and reciprocated the same, with the advice
of the EMO steering committee, by instituting an MCDM track within EMO conferences
soon thereafter. I am happy that these practices are still being continued.

My quest for fundamental understanding has helped me tremendously in evaluating
EC’s scope as an optimization algorithm compared to mathematical optimization literature,
although I must admit that I do not have the adequate mathematical background to
understand all of their detailed theoretical intricacies. However, I have been fortunate
to have a few colleagues in mathematical optimization and operations research areas
with whom I have not only pursued some fundamental convergence studies, but also
co-taught multi-objective optimization courses, exposing students to both mathematical
and computational worlds of optimization. Using variational principles, we were able to
estimate a Karush-Kuhn-Tucker Proximity Measure (KKTPM) for any feasible or infeasible

5



Math. Comput. Appl. 2023, 28, 34

solution from the KKT-based Pareto-optimal set without actually knowing the location of
the Pareto-optimal set. Although the KKTPM measure requires computation of derivatives
of objective and constraint functions, the idea brought in useful EMO operators aiding
guaranteed convergence to EMO studies.

To reiterate the importance of associated knowledge around a field, the next example
is illustrative. I was exposed to a resource allocation problem from an industry which
involved about 50,000 integer decision variables. While it was a linear programming
problem, the integer restriction of variables made all the differences between a fast and
guaranteed solution methodology for the real-parameter version of the problem and an
exponentially worse algorithm for its integer version. Well-known operations research
software packages could not find the optimal solution for 2000 or more variables. We
developed a customized EC-based procedure that recombined two or more solutions
meaningfully in the context of the problem and used local adjustments to try to make
infeasible solutions feasible. The procedure not only found near-optimal solutions (within
a maximum of 0.03% deviation from the true optimum) in 2000 or even 50,000 variables,
but to a staggering one billion variable version of the problem in polynomial computational
time. I believe more such defining contributions are possible and are worth pursuing,
but this will require a good understanding of the associated literature and strengths and
weaknesses of various alternative methodologies.

4. How do you see the current development of the EMO community?

I am absolutely certain that the EMO field is in good hands. I am happy that a simple
idea on the use of a population-based optimization method to find multiple Pareto-optimal
solutions simultaneously survived almost three decades and provided EMO researchers
with plenty of opportunities to formulate new research ideas, extended to solve various
types of problems, and helped merge multiple fields together.

Looking at the recent publications, a major thrust in EMO research today is clearly in
the area of evolutionary many-objective optimization (EMaO), which focuses on addressing
four or more objectives. While several efficient EMaO algorithms are in place based on
reference vectors, the idea is interesting enough to be pursued further.

Another current development in EMO is in the use of machine learning (ML) methods
for enhancing performance of EMO and EMaO algorithms. In the past two decades,
ML has experienced a surge of activities, mainly due to the availability of data and the
need for finding intelligence from data. Evolving a population of solutions and their
objective/constraint values within an EMO algorithm can also be seen as a series of
evolving data. ML methods can mine the data to reveal interesting search patterns and
directions, which in turn can help make EMO methods faster and more reliable. Various
such efforts in utilizing ML to improve EMO are underway. On a different note, EMO
researchers should also find ways to utilize EC and EMO algorithms for enhancing ML’s
performance to make EMO an integral part of the current ML revolution.

Surrogate-assisted EMO is another area which is getting significant attention for its
own right. Optimizing for a budget of solution evaluations will keep EMO applications
practically viable.

Challenging test-problem development for benchmarking EMO algorithms should
always be a constant thrust of EMO researchers. I am happy to see the original ZDT and
DTLZ-based philosophies are being constantly extended to create more challenging test
problems and EMO algorithms are improving consistently as a result.

5. What do you think are the most important challenges EMO has to face in the future?

EMO and EMaO algorithms are now quite capable of addressing different kinds of
multi- and many-objective problems, although further improvements are always necessary.
They have performed well on challenging test problems and some small-sized engineering
problems, but their real test will come when they are extensively applied to large-scale real-
world problems. Industries are slowly but surely embracing EMO algorithms for solving
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two- and three- objective problems mostly (thanks to the use of dedicated commercial
software and public-domain codes on EMO!) and it may be a while before they move to
addressing more objectives. In the meantime, EMO researchers should advance the current
practices as well.

First, more representative problems from real-world problems need to be identified
and used to test our best EMaO algorithms for their working. In this direction, a direct
collaboration with commercial software companies and researchers in application industries
would be helpful.

Second, many-objective problems demand an easy and insightful visualization tech-
nique to understand trade-offs among Pareto-optimal solutions. There is a lack of a suitable
visualization technique for understanding trade-offs, feasible search spaces, Pareto bound-
aries, etc., conveniently. Let us accept that the standard parallel coordinate plot (PCP)
or radial visualization (RadViz) or scatter plots do not cut it. We may get influenced by
high-dimensional data analysis literature for a clue here, but let us understand that our
data have a special property – they possess a trade-off among the dimensions, in which
generic data analysis folks may not be particularly interested. Hence, EMO researchers may
have to find a solution for many-objective Pareto-optimal data visualization themselves.

Third, I strongly believe optimization algorithms must be customized for specific
problem classes to make them more efficient both in terms of computational time and
solution accuracy. While ML methods can be of help here (as alluded to before), practical
use of EMO algorithms must be accompanied by an interactive platform which enables
monitoring and aiding in the solution process by real users during the optimization process.
Users’ many years of experience on the problem can be utilized to customize an algorithm
on the fly. Optimization algorithms discover useful variable interactions and patterns
through their iterations, and a user’s interaction can be made more fruitful if such discov-
eries can be shared with the user for their feedback on the relevance of the discoveries.
Preference-related feedback can also be integrated here for multi-objective problems. We
should soon see more such interactive EMO platforms being developed.

In most EMO and EMaO studies, we have focused on developing selection mecha-
nisms for handling multiple objectives and have not spent much time on creation mecha-
nisms for finding new and effective solutions. Unless new and diverse solutions are created
by EMO’s generation process, the multi-objective selection operator cannot do much. We
should start focusing on hybrid genetic and local search methods and focus on creating
more solutions directly in places where there is a lack of non-dominated solutions in the
current population.

EMO has matured enough now to be applied to address large-scale societal and in-
dustrial problems. Problems affecting societies, such as climate change, obesity, forest
management, agricultural management problems involving water, energy and food, and
others, involve many conflicting objectives in terms of operating and installation costs,
environmental effects, sustainability issues, etc., having numerous variables that can be
adjusted with time and having constraints which must be satisfied to make a solution
implementable. Finding a few alternative Pareto-optimal solutions by EMO algorithms cus-
tomized to such problems can provide policy-makers with a new and transparent solution
approach. Industrial problems such as supply-chain management, large manufacturing
system operation, and integrated multi-level design tasks are other areas.

EMO algorithms, like single-objective EC methods, are stochastic and cannot ever
have a theoretical convergence proof for any arbitrary problem, as supported by the no-free-
lunch theorem. However, an EMO algorithm’s population approach and its recombination
operator help establish an implicit parallel search, which makes the EMO algorithm unique
and different from other optimization methods. Collectively, we should find and focus
on addressing problems that are difficult to solve by existing point-based methods, but a
clever design of an EMO method can help find acceptable solutions.

6. During your career, you have held numerous important positions. You have already

mentioned your times in Dortmund and the ETH Zurich as visiting professor. Your
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main affiliation has been at the IIT Kanpur in India. After 15 years of service you de-

cided to take a position in Helsinki (Finland). What was your main motivation for that?

I started my professional academic career at IIT Kanpur in India in 1993, when GAs
were then mostly unheard of and their practice was questioned in engineering departments.
I kept working on some key issues needed to popularize EC and make EC an effective tool
for search and optimization in practice. I am happy that a few of these contributions have
become popular over the years, including my parameter-less constraint handling approach,
real-parameter recombination (SBX) and polynomial mutation operators, multi-objective
optimization algorithm (NSGA series), multi-objective test problem construction, two
textbooks on optimization, and others. I had the good fortune to have extremely dedicated
students with excellent programming skills to help me execute these studies.

From time to time I realized that I needed to get feedback and have real discussions
with experts in the field. I took a few opportunities that came my way to visit and interact
with key EC experts: University of Dortmund with the Humboldt Fellowship from Alexan-
der von Humboldt Foundation, Germany during 1998–1999, ETH Zurich with visiting
professorship in 2001, University of Karlsruhe with Bessel Research Prize Award from
Alexander von Humboldt Foundation, Germany in 2003, Nanyang Technological Univer-
sity, Singapore with A* project visit in 2006, Helsinki School of Economics with Finland
Distinguished Professorship from the Academy of Finland during 2007–2009, and a number
of bilateral project visits between India and European countries. These extended visits not
only put me on the right track, but also exposed my work to experts in the field. Although
such frequent visits came at the expense of relocating my family, I would recommend to
young and isolated researchers to embrace such research visits as opportunities, rather than
a disadvantage. I thank my family for their sacrifice and adjustments which I sincerely
hope have given them better exposure and made them better individuals.

7. The next—and until now last—major change came in 2011 where you moved to East

Lansing (USA) to become Professor and Koenig Endowed Chair at Michigan State Uni-

versity, which definitely came with new challenges for you and your family.

The genetic algorithms research was started in Michigan in early sixties. Michigan
State University (MSU) is one of the few universities in USA which traditionally had
a strong focus in evolutionary computation field. The BEACON center for the study
of evolution in action funded by National Science Foundation (NSF) at MSU enabled
a major research collaboration opportunity in various aspects of evolution led by Prof.
Erik Goodman. When an endowed chair faculty position was offered to me at MSU, I
did not have any second thought. Thus, far, I had the opportunity to work with several
MSU colleagues from various disciplines, visiting researchers from various countries, and
automobile and chemical industries in Michigan to have a better fulfillment of my research
career. The move also provided great educational opportunities to my children at a critical
time of their careers.

8. Finally, we come to another topic that might be very interesting, in particular, for

younger scholars. We recall a Keynote Talk of yours where you presented a new evolu-

tionary algorithm for a particular resource allocation problem. While the results were

amazing, you mentioned that you have faced major issues to get the related paper pub-

lished. Many readers might assume that publication of a paper that contains such great

results and that comes from a renowned researcher like you should just be a formality.

Apparently, this is not always the case. Could you comment on that?

Most researchers may have faced such incidents in their careers. Since you mentioned
it, let me address it to hopefully make a remark on the current paper review system in our
field. What I thought was a great EC-application study which showcased an EC-based
solution methodology to solve a billion-variable resource allocation problem (never done
before), editors and reviewers of a leading EC journal suggested that I ‘compare’ my ap-
proach with a few recommended existing EC methods. Upon a survey, I found that the
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suggested EC methods addressed completely different kinds of problems having only 500
to 1000 variables. It was obvious that these methods were generic and would not have
worked on a specific problem class involving million to billion-variable integer variables.
We developed a customized EC algorithm for solving such large-scale problems and our
purpose was to demonstrate that the population-based approach with customized recombi-
nation and mutation operators was a better answer to this type of exa-scale optimization
problems rather than the standard point-based structured algorithms. I really wanted
the paper to appear in an EC-based journal so we, as a community, could celebrate and
propagate EC techniques with such defining studies. Anyway, the paper was eventually
published in a non-EC journal, after I withdrew the paper from the EC journal.

With this experience and from a few other recent reviews on my papers, I am increas-
ingly convinced that most of our current reviewers expect that every article, to be published,
must fall into certain patterns. A paper should have a new idea, but no matter how small
or incremental the idea is, it must be compared with many existing algorithms, it must
produce page-long tables presenting comparative results, and it must end by citing papers
from most renowned authors in the field. Such a mindset of reviewers is harmful for the
field in the long run. While there is a need for comparative studies, there is also a need
for new and direction-providing papers, addressing bigger issues of the field, providing
first-time ideas which cannot be compared with anything from the past, and defining appli-
cations that will keep EC alive and meaningful to practitioners. Let us be more inclusive
and open-minded.

9. NSGA-III is one of the most cited and most widely used multi-objective evolutionary

algorithms. Rumors say that it was also not easy for you to get the two initial works on

this algorithm published. Is this true?

It is true that the NSGA-III paper was rejected at first. Apparently, the paper exceeded
the strict maximum two-time review policy restriction. Apparently, we failed to follow the
suggestion of a reviewer to remove one of the three application problems, as the reviewer
thought the paper was too long. I blame it to the lack of patience everyone has these
days to pick signals from noise, but it is disturbing to think how many such trivial but
harsh decisions are ruining the fate of important studies. I am glad that the decision was
overturned eventually and the paper made its way to see the light of day, enriching the
journal and EMO community and receiving significant attention to date.

Another not-so-fortunate outcome occurred with the Deb-Thiele-Laumanns- Zitzler
(DTLZ) scalable test suite development paper, which never appeared in a journal due to
its rejection, but its book-chapter version is probably one of the most highly-cited EMO
articles today. I am sure everyone has such examples to cite, but we should all collectively
plan for ways and means to reduce such unfortunate events, as these important studies, if
can be envisioned by editors and reviewers about their possible future impact, could not
only help the field, they will enhance the citation profile of our journals and conferences.

10. Finally, do you have a message for the authors out there that are struggling to get

their research published?

I actually have messages for both authors, reviewers and editors. I believe as an author
of any work, we should first be “satisfied” and “happy” with our work. If the author is not
happy about its content, how can the author convince reviewers or readers to pay attention
to it? Thus, my message for authors is to keep improving your work until you think you
have tried enough to bring the work to a logical conclusion and in your opinion the work
contributes to advance the field. Then, look for a journal/conference which is most suitable
for the work. If you are a budding researcher, I understand that you need a good “quantity”
of papers, so work on as many ideas as you can, collaborate with as many researchers as
you can, and publish. However, once in a while, take a break, and think big and look at
your field from 10,000 feet above and identify areas that need deeper attention. Work on
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these challenging ideas and see if you can make a crack. These works will give you fame,
inspire you, and keep you alive.

As to the reviewers, my message is to have a bit of patience. Every article to be
conceived worked on and written needs a lot of effort, taking many months to years, which
every one of us has experience with. Treat others’ papers the same way you would expect
your articles to be treated. Here is an idea! Instead of assuming that the article you are
reviewing is a reject to start with and looking for positive aspects to decide if you would
accept the paper, think the other way. Assume every article is an accept to start with and
then evaluate to see if it has enough new messages/results for it to be an accept or reject.
Know that every author expects some constructive comments, particularly when the paper
is rejected. If you are rejecting the article, please provide enough feedback so that authors
find directions to modify it. As a reviewer, always know that you are in some sense in
charge of what should be published and what should not be. You need to elevate yourself
to decide the article’s contribution to the overall growth and advancement of the field. You
are a key component in this endeavor and everyone in the EMO community thanks you
profusely for your time and efforts.

In my opinion, editors of journals and proceedings are the most influential persons in
a field, indirectly controlling the focus of the field. They should not be intermediaries who
simply count the number of accepts and rejects to decide the fate of a submission. They
are the leaders of the field. They can judge a paper on their own very well and should be
courageous enough to change a reviewer’s comments and decisions if they think otherwise.
Let every stakeholder in the review system (authors, editors and reviewers) care only about
our field, its overall advancement and acceptance to contemporary other fields, rather than
any other matter.

We have come a long way with all-round and well-grounded activities. Let us all
together make the EMO research and application unbiased, top-notch, rewarding, and
enjoyable. Let us all feel proud to be a part of the EMO revolution.
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Abstract: Most of the practical applications that require optimization often involve multiple objectives.
These objectives, when conflicting in nature, pose both optimization as well as decision-making
challenges. An optimization procedure for such a multi-objective problem requires computing
(computer-based search) and decision making to identify the most preferred solution. Researchers
and practitioners working in various domains have integrated computing and decision-making tasks
in several ways, giving rise to a variety of algorithms to handle multi-objective optimization problems.
For instance, an a priori approach requires formulating (or eliciting) a decision maker’s value function
and then performing a one-shot optimization of the value function, whereas an a posteriori decision-
making approach requires a large number of diverse Pareto-optimal solutions to be available before a
final decision is made. Alternatively, an interactive approach involves interactions with the decision
maker to guide the search towards better solutions (or the most preferred solution). In our tutorial
and survey paper, we first review the fundamental concepts of multi-objective optimization. Second,
we discuss the classic interactive approaches from the field of Multi-Criteria Decision Making
(MCDM), followed by the underlying idea and methods in the field of Evolutionary Multi-Objective
Optimization (EMO). Third, we consider several promising MCDM and EMO hybrid approaches that
aim to capitalize on the strengths of the two domains. We conclude with discussions on important
behavioral considerations related to the use of such approaches and future work.

Keywords: evolutionary multi-objective optimization; multi-criteria decision making; interactive
optimization

1. Introduction

Multi-Criteria Decision Making (MCDM) as a scientific field is some 60 years old.
Its roots are in Goal Programming [1] and Multi-Attribute Utility Theory (MAUT) [2].
A subsequently popular subfield, interactive man–machine multi-objective optimization,
developed greatly during the 1970s. The common frameworks used a discrete set of
choices and a mathematical programming problem formulation (optimization) to solve
multi-objective problems. With the interactive approaches, phases of decision making and
computing would alternate. The aim was to converge towards the most preferred solution
on the Pareto-optimal frontier.

Independently from MCDM, the Evolutionary Multi-Objective Optimization (EMO)
approaches started developing during the 1980s [3]. Many of the EMO scholars had an
engineering or a computer science background. EMO algorithms [4,5] have been applied to
problems with multiple objectives for the task of finding a well-representative set of Pareto-
optimal solutions. These methods [6,7] have been successful in solving a wide variety of
problems with two or three objectives. However, these methodologies are criticized for
their excessive computational expense, and they often tend to suffer while solving problems
with objectives higher than three [8,9]. The major hindrances in handling a higher number
of objectives relate to stagnation in search, increased dimensionality of Pareto-optimal
front, large computational cost, and difficulty in visualization of the objective space. These
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difficulties are inherent to optimization problems having a large number of objectives
and are not easy to eliminate; rather, procedures to handle such difficulties need to be
explored. EMO methods that are better equipped at handling a larger number of objectives
are being continuously explored [10–12]. Some of these approaches aim for solutions that
are near Pareto-optimal and provide a discretized and diverse representation of the high-
dimensional frontier for many-objective (i.e., more than two or three objectives) problems.
However, the level of discretization for an accurate and well-represented many-objective
frontier would require a very large number of points. Even if a fine-grained discretization
is achieved with a large number of points, the decision-making challenges still remain.

The areas of MCDM and EMO were solving similar problems; therefore, the re-
searchers working in these domains decided to pursue active collaboration through formal
channels such as common conferences and seminars. As a result, Branke, Deb, Miettinen,
and Słowiński organized the first Dagstuhl seminar [13] in 2004 to allow collaboration
between the two communities. This led to researchers combining ideas from MCDM to
EMO and vice-versa. Since then, the Dagstuhl seminar has been organized every few years
to enhance the collaboration and flow of ideas from one research community to the other.
In this article, we evaluate the classic studies in MCDM and EMO and also the hybrid
approaches that have been proposed for handling many-objective problems. Some of the
review papers that talk about interactive multi-objective optimization are [14,15]. This
article takes a tutorial-cum-review approach to discuss the classic ideas published in the
areas of MCDM, EMO, and their intersection and is structured as follows. In Section 2,
we cover the theoretical concepts on optimization and decision making that arise in the
multi-objective literature. This is followed by Section 3, where we discuss how search and
decision making can be integrated together in various ways to find the most preferred point
for the decision maker (DM). Thereafter, we discuss the classic MCDM (Section 4), EMO
(Section 5), and hybrid (Section 6) approaches that have been discussed in the literature over
the past few decades. We conclude the article in Section 7 with discussions on behavioral
considerations and future work.

2. Multi-Objective Optimization

Multi-objective optimization [4,16–18] involves two or more conflicting objectives that
are supposed to be simultaneously optimized subject to a given set of constraints. These
problems arise in various fields of science, engineering, economics, and mathematics and
have been widely studied in the literature. However, modern applications keep posing
challenges with an increasing level of complexity. The complexity depends on a number
of factors, such as number of objectives, number of decision variables, type of decision
variables (continuous, discrete), number of constraints, and functional form of the functions
in the optimization problems (linear, convex, non-convex, non-differentiable, etc.) that may
lead to non-separability and multi-modality. While many of the above difficulties are com-
mon to single-objective optimization as well, multi-objective optimization poses additional
challenges as such problems do not have a single solution which would simultaneously
maximize/minimize each of the objectives; instead, there is a set of solutions from which a
rational DM should choose. These solutions are called Pareto-optimal solutions. Choosing
the most preferred solution from the set of Pareto-optimal solutions requires an additional
step of decision making, which is often subjective and not straightforward to model. The
challenges posed by multi-objective optimization often include inability to generate a com-
plete ordering of points and requirement of maintaining a pool of non-dominated points.
A feasible point in multi-objective optimization is considered to be non-dominated within
a set when there does not exist any other feasible point that is better than the former in
terms of some objective and is not worse than the former in terms of other objectives. The
concept is discussed in detail in Section 2.1. Difficulty in representation and visualization
of the solutions in objective space, especially while working with many objectives, makes
decision making difficult, and therefore requires preference learning while searching for
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the point most preferred by the DM. Below, we describe a general multi-objective problem
(p ≥ 2):

Maximize f(x) =
(

f1(x), . . . , fp(x)
)

subject to g(x) ≥ 0, h(x) = 0

x(L) ≤ x ≤ x(U)
(1)

In the above formulation, x = (x1, x2, . . . , xn) is the n-dimensional decision variable
vector which represents the decision space. A search is expected to be performed within
the constrained region of the decision space that is determined by the inequality constraints
(g(x) ≥ 0), equality constraints (h(x) = 0) and box constraints (x(L) ≤ x ≤ x(U)). We
refer to the set of solutions which are feasible with respect to the constraints and are
non-dominated with respect to all feasible solutions, as Pareto-optimal solutions. Among
the Pareto-optimal solutions, the solution that is the most preferred by the DM will be
referred to as the most preferred solution. We provide formal definitions for these terms in
the next sections.

Note that the objective vector f(x) is the image of the decision vector x under the
objective function f. In a single-objective optimization (p = 1) problem, the feasible
set is completely ordered according to the objective function f(x) = f1(x), such that for
solutions, x(1) and x(2) in the decision space, either f1(x

(1)) ≥ f1(x
(2)) or f1(x

(2)) ≥ f1(x
(1)).

Therefore, for two solutions in the objective space, there are two possibilities with respect
to the ≥ relation. However, when several objectives (p ≥ 2) are involved, the feasible set is
not necessarily completely ordered but partially ordered. In multi-objective problems, for
any two objective vectors, f(x(1)) and f(x(2)), the relations = > and ≥ can be extended as
follows:

• f(x(1)) = f(x(2))⇔ fi(x
(1)) = fi(x

(2)) : i ∈ {1, 2, . . . , p}
• f(x(1)) ≥ f(x(2))⇔ fi(x

(1)) ≥ fi(x
(2)) : i ∈ {1, 2, . . . , p}

• f(x(1)) > f(x(2))⇔ fi(x
(1)) > fi(x

(2)) : i ∈ {1, 2, . . . , p}
While comparing the multi-objective scenario with the single-objective case, we find

that for two solutions in the objective space there are three possibilities with respect to
the ≥ relation. These possibilities are: f(x(1)) ≥ f(x(2)), f(x(2)) ≥ f(x(1)) or f(x(1)) �
f(x(2)) ∧ f(x(2)) � f(x(1)). If any of the first two possibilities are met, it allows to rank or
order the solutions independent of any preference information (or a DM). On the other
hand, if the first two possibilities are not met, the solutions cannot be ranked or ordered
without incorporating preference information (or involving a DM). Drawing analogy from
the above discussion, the relations < and ≤ can be extended in a similar way.

2.1. Dominance Concept

Based on the established binary relations for two vectors in the previous section, the
following dominance concept [16] can be constituted:

• x(1) strongly dominates x(2) ⇔ f(x(1)) > f(x(2));
• x(1) (weakly) dominates x(2) ⇔ f(x(1)) ≥ f(x(2)) ∧ f(x(1)) �= f(x(2));
• x(1) and x(2) are non-dominated with respect to each other ⇔ f(x(1)) � f(x(2)) ∧

f(x(2)) � f(x(1)).

In the case of weak dominance, it is common to drop the word weak and refer to it only
with dominance, which is why we use the word weak in brackets. Dominance of x(1) over x(2)

essentially means that no component of f(x(1)) is less than the corresponding component of
f(x(2)), and at least one component of f(x(1)) is greater than the corresponding component
of f(x(2)). The above dominance concept is also explained in Figure 1 for a two-objective
maximization case. In Figure 1, two shaded regions are shown in reference to point A. The
shaded region in the north-east corner (excluding the lines) is the region which strongly
dominates point A, the shaded region in the south-west corner (excluding the lines) is
strongly dominated by point A, and the non-shaded region is the non-dominated region.
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Therefore, point A strongly dominates point B, and points A, E, and D are non-dominated
with respect to each other. Note that point A weakly dominates point C. From hereon, we
only talk about dominance by avoiding the word weak.

Figure 1. Dominance concept for a maximization problem where A dominates B and C; A, D, and E
are non-dominated.

Many of the existing evolutionary multi-objective optimization algorithms use the
dominance principle to converge towards the Pareto-optimal set of solutions. The concept
allows us to partially order two decision vectors based on the corresponding objective
vectors in the absence of any preference information. The algorithms which operate with a
sparse set of solutions in the decision space and the corresponding images in the objective
space usually give priority to a solution which dominates another solution. The solution
which is not dominated with respect to any other solution in the sparse set is referred to as
a non-dominated solution within that set.

In case of a discrete set of solutions: the subset whose solutions are not dominated by
any solution in the discrete set is referred to as the non-dominated set within the discrete
set. When the set in consideration is the entire search space, the resulting non-dominated
set is referred to as a Pareto-optimal set, or the frontier formed with these points is referred
to as the Pareto-optimal front. To formally define a Pareto-optimal front, consider a set X

which constitutes the entire decision space with solutions x ∈ X. The subset X∗ : X∗ ⊂ X,
containing solutions x∗ which are not dominated by any x in the entire decision space,
forms the Pareto-optimal front.

The concept of a Pareto-optimal front and a non-dominated set are illustrated in
Figure 2. The shaded region in the figure represents f(x) : x ∈ X. It is the image in
the objective space of the entire feasible region in the decision space. The bold curve
represents the Pareto-optimal front for a maximization problem. Mathematically, this curve
is f(x∗) : x∗ ∈ X∗, which are all the optimal points for the two objective optimization
problem. A number of points are also plotted in the figure, which constitute a discrete
set. Among this set of points, the points connected by broken lines are the points which
are not dominated by any point in the discrete set. Therefore, these points constitute a
non-dominated set within the discrete set. The other points which do not belong to the
non-dominated set are dominated by at least one of the points in the non-dominated set.

In the field of MCDM, a Pareto-optimal point f(x∗) in the objective space is often
referred to as a non-dominated point, as it is not dominated by any feasible point in the
objective space. The corresponding decision vector x∗ is referred to as an efficient point.
Similarly, if f(z) is a dominated point in the objective space, then z would be referred to as
an inefficient point in the decision space. In other words, a point is efficient if and only if it is
the inverse image of a non-dominated objective vector, and it is inefficient if and only if it is
an inverse image of a dominated objective vector.
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Figure 2. Non-dominated set from a discrete set of points and a Pareto-optimal front that dominates
the entire search space.

2.2. Decision Making

Even though there are multiple potentially optimal solutions to a multi-objective
problem, there is often just a single solution which is of interest to the DM; which is termed
as the most preferred solution. Search and decision making are two intricacies [19] involved
in handling any multi-objective problem. Search requires an intensive exploration in the
decision space to get close to the Pareto-optimal solutions; on the other hand, decision
making is required to provide preference information over the available non-dominated
solutions in pursuance of the most preferred solution.

In a decision-making context, the solutions can be compared and ordered based on
the preference information, though there can be situations where strict preference of one
solution over the other is not obtained, and the ordering is partial. For instance, consider
two vectors, x(1) and x(2), in the decision space, having their images, f(x(1)) and f(x(2)), in
the objective space. A preference structure can be defined using three binary relations 
,
∼, and ‖. The meaning of the binary relations are provided below:

• x(1) 
 x(2) ⇔ x(1) is preferred over x(2);
• x(1) ∼ x(2) ⇔ x(1) and x(2) are equally preferable;
• x(1) ‖ x(2) ⇔ x(1) and x(2) are incomparable;

where the preference relation, 
, is asymmetric, the indifference relation, ∼, is reflexive
and symmetric, and the incomparability relation, ‖, is irreflexive and symmetric. A weak
preference  relation can be established as =
 ∪ ∼ such that

• x(1)  x(2) ⇔ x(1) is either preferred over x(2) or they are equally preferred.

As already mentioned, preference can easily be established for pairs where one solution
dominates the other. However, for pairs which are non-dominated with respect to each
other, a DM’s input is required to establish a preference. The following is the inference for
preference choice which can be drawn from dominance:

• If x(1) dominates x(2) ⇒ x(1) 
 x(2).

It is common to emulate a DM with a value function, V( f1(x), . . . , fp(x)), which is
scalar in nature and assigns a value or a measure of satisfaction to each of the solutions.
For two solutions, x(1) and x(2):

• If x(1) 
 x(2) ⇔ V(f(x(1))) > V(f(x(2)));
• If x(1) ∼ x(2) ⇔ V(f(x(1))) = V(f(x(2)));
• If x(1)  x(2) ⇔ V(f(x(1))) ≥ V(f(x(2))).

2.3. Preference Eliciting and Modeling

There are several ways of eliciting preference information from the DM that can be
used to create a preference model to be incorporated in the search process. Some of the
approaches are listed below:
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1. Asking about goals or aspiration levels for the objectives;
2. Pairwise comparisons of solutions in objective space;
3. Asking the DM which objectives and by how much they would be willing to worsen

to allow improvements in other objectives;
4. Asking the DM to specify exact marginal rates of substitution between objectives and

a reference objective (trade-offs);
5. Directly asking for the search direction;
6. Directly asking the importance of each objective to get an idea of weights or to rank

the objectives;
7. Yes–no questions, for instance: Do you like this search direction?

After the preferences are obtained from the DM, there are various ways in which the
information is incorporated in the search process. For instance, value functions could be
generated based on the preferences expressed by the DM. Methods differ based on the kind
of value function, i.e., linear or non-linear, that is chosen to model preference information.
While some methods generate a single maximum discriminating value function fitting
preference information, others generate multiple value functions fitting the same preference
information. Scalarizing functions (for example, see [20]), weighted sum of objectives
(similar to a linear value function), and the ε-constraint method [21] are other approaches
to convert the multi-objective problem into a single-objective problem that aligns with the
DM’s preferences. Sometimes, the dominance principle is modified to search in a region
that better fits the preferences of the DM.

There are other very interesting approaches to modeling preferences in MCDM. Such
approaches are outranking relations and rule-based models. Outranking methods were
developed by B. Roy in the late 1960s, originating from criticism of utility theory in solving
practical problems (see [22,23]). An outranking relation is a binary relation. It is based on
the ideas of concordance and discordance. “Loosely speaking”, alternative x outranks y,
if there are enough arguments (attributes favoring x over y) to declare that x is at least as
good as y while there is no essential reason to refute this statement. Decision rules are
expressions of the form “if, then” [24]. Procedures for generating decision rules use an
inductive learning principle. The authors distinguish three types of rules: certain, possible,
and approximate. Certain rules are generated from lower approximations of unions of
classes; possible rules are generated from upper approximations of unions of classes and
approximate rules are generated from boundary regions. To structure the data prior to the
induction of rules, the authors suggest using the Dominance-based Rough Set Approach
(DRSA) [25]. As an illustrative example, the authors consider the problem of evaluating
high school students based on performance in some of the subjects using “if, then” rules.
Multi-criteria classification and sorting are frequently considered problems in rule-based
preference modeling, although the ideas can be extended for the problem of identifying the
most preferred alternative. Both outranking relations and rule-base preference modeling
were originally developed for the problem of choosing among discrete (known) alternatives,
and not the mathematical programming or EMO context. Hence, we do not extensively
cover them in our survey and tutorial. There are some exceptions, though. For example,
the Light Beam search approach (which is based on utilizing outranking relations) was
developed for solving multi-objective mathematical programming problems [26]. In a later
section, we illustrate how the Light Beam approach is used in an EMO context.

In the later part of the paper, we discuss approaches that elicit and model the prefer-
ences of the DM in different ways while searching for the most preferred point.

3. Incorporating Decision Maker’s Preferences

Searching and decision making can be combined in various ways to generate proce-
dures which can be classified into three broad categories.
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3.1. A Priori Approach

In this approach, DM’s preferences are elicited before the start of the algorithm, then
the optimization algorithm is executed by incorporating the preference information, and the
most preferred solution is identified. Figure 3 shows the process followed to arrive at the
most preferred solution. This approach has been common among MCDM practitioners, who
realized the complexities involved in decision making for such problems. Their approach
to the problem is to ask simple questions from the DM before starting the search process.

Figure 3. A priori approach.

After eliciting information from the DM, the multi-objective problem is usually con-
verted into a single-objective problem. One of the early approaches, that is, MAUT [2], used
the initial information from the DM to construct a utility function which reduced the prob-
lem to a single-objective optimization problem. Scalarizing functions (for example, [20]) are
also commonly used by the researchers in this field to convert a multi-objective problem
into a single-objective problem.

Since information is elicited towards the beginning, the solution obtained after exe-
cuting the algorithm may not be close to the most preferred solution. Moreover, the DM’s
preferences might be different for solutions close to the Pareto-optimal front, and the initial
inputs taken from them may not conform to it. Therefore, relying on this approach, it may
be difficult to get close to the actual solution which meets the requirements of the DM.
The approach is also highly error-prone, as even slight deviations in providing preference
information at the beginning may lead to entirely different solutions. Such errors are
common because of the inability of the DM to reliably express preferences in case of not
knowing the solution space or having no precise understanding of own preferences at
the beginning of the preference elicitation process. To avoid the errors due to deviations,
researchers in the EMO field used the approach in a slightly modified way. They produced
multiple solutions in the region of interest to the DM (often close to the Pareto-optimal
front) [27–30], and then elicited the DM’s preferences. We discuss this approach next.

3.2. A Posteriori Approach

In this approach, after a set of (approximate) Pareto-optimal solutions are obtained
using an optimization algorithm, decision making is performed to find the most preferred
solution. Figure 4 shows the process followed to arrive at the final solution which is most
preferred to a DM. This approach is based on the assumption that a complete knowledge of
all the alternatives helps in taking better decisions. The research in the field of evolutionary
multi-objective optimization has been directed along this approach, where the aim is to
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produce all the possible alternatives for the DM to make a choice. Until relatively recently,
the community has largely ignored decision-making aspects and has been striving towards
producing all the possible optimal solutions.

Figure 4. A posteriori approach.

There are enormous difficulties in finding the entire Pareto-optimal front for a many-
objective problem. Even if it is assumed that an algorithm can approximate the Pareto-
optimal front for a high-objective problem with a huge set of points, the herculean task of
choosing the best point from the set still remains. For two and three objectives where the
solutions in the objective space could be represented geometrically, making decisions might
be easy (though even such an instance could be, in reality, a difficult task for a DM). Imagine
a multi-objective problem with more than three objectives for which an evolutionary multi-
objective algorithm is able to produce the entire front. The front is approximated with a
large number of points and high accuracy. Since a graphical representation is not possible
for the Pareto-points, how is a DM going to choose the most preferred point? There are
of course decision aids available, but the limited accuracy with which the final choice
could be made using these aids questions the purpose of producing the entire front with
high accuracy. Binary comparisons can be a solution to choose the best point out of a set,
but this can only be utilized if the points are very few in number. Therefore, offering the
entire set of Pareto-points should not be considered as a complete solution to the problem.
However, the difficulties related to decision making have been realized by EMO researchers
only after copious research has already gone towards producing the entire Pareto-front
for many-objective problems. Most of the EMO algorithms [6,7,10–12,31–33] that aim to
produce the entire Pareto-optimal front would lie in this category.

3.3. Interactive Approach

In this approach, the DM interacts with the optimization algorithm and has multiple
opportunities to provide preference information to the algorithm. The interaction between
the DM and the optimization algorithm continues until a solution acceptable to the DM is
obtained. The process is represented in Figure 5. Based on the type of interaction of the
DM with the optimization algorithm, this approach is often implemented in two ways.
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Figure 5. Interactive approach.

The first approach involves elicitation of preference information and execution of the
optimization algorithm to obtain one or many Pareto-optimal solutions. If a solution ac-
ceptable to the DM is obtained, the process is terminated; otherwise, the process is restarted
and continued until a satisfactory solution is found. In this approach, the progression
towards the most preferred solution may take place on the Pareto-optimal frontier. MCDM
researchers following an interactive approach usually elicit preference information and
find a solution conforming to the inputs given by the DM. They iterate this process until a
satisfactory solution is obtained. For example, when using a scalarization function, multiple
reference points (or starting points) could be provided by the DM. Once a reference point is
available, the computer provides a projection of that point on the Pareto-optimal frontier.
This process converts the problem into a single-objective optimization problem and pro-
duces one of the Pareto-optimal points as the solution. If the point finally produced is not
to the liking of the DM, the search is continued with new reference points and projections.
This process is continued until a solution acceptable to the DM is obtained. The iterations
of a simple algorithm using this approach are shown in Figure 6. The figure shows that a
DM is able to find a satisfactory solution in three iterations.

Figure 6. Interaction after a run.

EMO researchers have taken cues from their MCDM counterparts, wherein they used
the powerful evolutionary search tool to produce multiple solutions in the region of interest
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to the DM or generate a small part of the Pareto-front which the DM finds interesting.
This is a similar approach where interactions happen before and after a complete run of
the EMO. The algorithm produces multiple solutions in a particular region or multiple
regions of the Pareto-optimal front in a single run. Once the solutions are produced, another
decision-making task is performed, and the solution to the liking of the DM is chosen.
If none of the solutions are acceptable to the DM, the process of elicitation and search is
repeated until a satisfactory solution is found. Some examples of evolutionary procedures
which have used this approach are [34,35].

The second approach involves elicitation of preference information periodically from
a DM while the optimization algorithm is progressing towards the Pareto-optimal frontier.
In this approach, preference information is taken at the intermediate steps of the search
algorithm, and the algorithm proceeds towards the most preferred point. This is an effec-
tive integration of the search and decision-making process, as both work simultaneously
towards the exploration of the solution. Such an integration avoids multiple optimiza-
tion runs and is therefore preferable for problems that are computationally expensive. It
also allows the DM to better understand the consequences of their actions, as they can
immediately see how the convergence direction changes. Some previous works which
have been conducted in a similar vein in the MCDM field are [36,37], and in the EMO field,
are [38–44]. The iterations of an algorithm that uses this approach, commonly referred to
as a progressively interactive approach, is shown in Figure 7. The DM is presented with a
set of points and is expected to choose one of the points to start the search. The choice of
the DM gives clues to the search algorithm about the search direction, and the algorithm
progresses towards the most preferred solution. The DM may change their preference
structure as the search progresses, and the algorithm is able to adapt to such changes.

Figure 7. Progressive interaction during the run.

4. MCDM Interactive Techniques

Linear Programming (LP) was rather popular in large Western companies in the 1960s
and 1970s, as well as in Gosplan (central government agency) for government level planning
in the Soviet Union. To address the need to solve multi-objective LPs, Charnes and Cooper
developed Goal Programming [1] in late 1950s and coined the name in the early 1960s. In
Goal Programming, the DM is asked to specify aspiration levels in terms of objectives. The
algorithm then finds a feasible solution that would minimize the weighted deviations from
the aspiration levels. The original version of Goal Programming was for solving multiple-
objective LPs. Goal Programming was not an interactive approach, and there was not an
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option to update the aspiration levels. In multi-objective linear programs, the concept of an
optimum was being replaced by a “compromise” or a “non-dominated solution”.

With simultaneous advances in computer technology (teletypes accessing main frame
computers), the idea of interactively or progressively solving multi-objective optimization
problems was proposed in early 1970s. In the interactive approach:

1. Phases of computing and decision making would alternate: the human would guide
the computer (algorithm) towards the most preferred solution;

2. The human and the computer were performing tasks that they were good at;
3. Learning (of one’s preferences) was possible;
4. The ideas were based on using linear programming or non-linear programming;
5. Systematic progress towards the most preferred solution would take place;
6. The methods would generally operate with non-dominated solutions, in other words,

allow exploration of the Pareto-optimal (non-dominated) frontier.

We review the following classic interactive multi-objective optimization methods,
which all represented the state of the art at the time:

1. STEP method due to Benayoun et al. (1971) [45];
2. GDF method due to Geoffrion, Dyer, and Feinberg (1972) [36];
3. ZW method due to Zionts and Wallenius (1976) [37];
4. Reference point method due to Wierzbicki (1980) [20];
5. Reference direction method due to Korhonen and Laakso (1986) [46];
6. Pareto Race due to Korhonen and Wallenius (1988) [47];

4.1. STEP Method (Benayoun et al., 1971) [45]

The ancestor of the STEP method [45] was the Progressive Orientation Procedure (POP)
by Benayoun and Tergny [48]. In the POP method, a subset of efficient extreme points is
computed and presented to the DM for her evaluation. The DM can either choose the most
preferred solution, or choose an attractive subset, and so forth. The STEP method was one
of the first truly interactive approaches for solving multi-objective LPs. In this man–model
symbiosis, phases of computation alternate with phases of decision. The process allows the
DM to learn to recognize good solutions and the relative importance of the objectives.

In the STEP method, each objective is optimized one at a time to obtain the ideal point
of the problem. For a maximization problem, the components of the ideal point describe
the upper bounds of the individual objectives for the points corresponding to the Pareto-
optimal front. Similarly, the nadir point (not used in STEP method) is defined as the lower
bounds of the individual objectives for the points corresponding to the Pareto-optimal
front. Denote the ideal point as M = (M1, M2, . . . , Mp). At each iteration, the following LP
problem is solved to obtain the feasible compromise solution x(k) (k is the iteration counter),
which is nearest in the minimax sense to M:

Minimize q
subject to q ≥ (Mi − fi(x))λi ∀ i ∈ 1, . . . , p

x ∈ Bk

q ≥ 0

(2)

where Bk is the feasible region at iteration k, fi(x) is the function for the ith objective
at decision x, and λi is the set of normalized weights (not specified by the DM). At the
decision phase, the objective function vector associated with the compromise solution
x(k) is presented to the DM. Next, the DM must choose the objectives fi∗ (if any), where
i∗ ⊂ {1, . . . , p}, which they would be willing to worsen to allow an improvement in the
unsatisfactory ones. Then, the DM must specify the maximal amount of relaxation in the
above objectives. At the next iteration, the feasible region is modified as Bk+1 = {x : f j(x) ≥
fi(x

k)− Δ f j, fi(x) ≥ fi(x
k) ∀ i /∈ i∗, j ∈ i∗}. The weights of the objectives to be relaxed are

set to 0, and the next calculation phase is performed. The process is terminated as soon as
the DM has found a satisfactory solution. The solutions at termination are not necessarily
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always non-dominated, but with modifications, they can all be made non-dominated. Note
that the minimax operation corresponds to minimizing the Chebycheff norm.

4.2. GDF Algorithm (Geoffrion, Dyer, and Feinberg, 1972) [36]

In Geoffrion, Dyer, and Feinberg’s algorithm [36], the problem is formulated as follows:

Maximize U( f1(x), . . . , fp(x))
subject to x ∈ X

(3)

where X is the feasible set (convex and compact), fi are objective functions of the decision
vector x, and U is the overall utility (or value) function defined over the values of the
objectives, assumed to be concave (under maximization) and differentiable. Everything
else, except for U, is assumed to be explicitly known. U, however, is only assumed to
be implicitly known. (If U were explicitly known, the problem would be an ordinary
non-linear program.)

The GDF algorithm uses a modification of the Frank–Wolfe [49] algorithm from 1956.
Note that the Frank-Wolfe algorithm is a steepest ascent algorithm. Two problems alternate:
the direction-finding problem and the step-size problem. Let us ignore for the moment that
U is not explicitly known, then the algorithm progresses as follows:

1. Choose an initial solution x(1) ∈ X. Set k = 1 (iteration counter).
2. Determine an optimal solution y(k) of the direction-finding problem

Maximize ∇xU( f1(x), . . . , fp(x))y
subject to y ∈ X.

(4)

3. Set d(k) = y(k) − x(k). This step determines the “best” search direction based on a
linear (first-order Taylor expansion) approximation of U.

4. Next, solve the step-size problem for an optimal t:

Maximize U( f1(x
(k) + td(k)), . . . , fp(x(k) + td(k)))

subject to 0 ≤ t ≤ 1.
(5)

5. Set x(k+1) = x(k) + tkd(k), k = k + 1, and return to the direction-finding problem.
Theoretical termination criterion is satisfied if x(k) and x(k+1) are equal.

Now, assume that we do not know U. The gradient of U can be replaced with the sum
of the product of weights wk

i times the gradient of f in terms of x.

Maximize Σp
i=1wk

i∇x fi(x
(k))yi

subject to y ∈ X
(6)

where we define wk
i =

∂U/∂ f (k)i

∂U/∂ f (k)j

, i = 1, . . . , p with f j being arbitrarily chosen as the reference

criterion. The weights reflect the DM’s tradeoff between f j and fi (at the current point),
and must be elicited from the DM. We determine what change Δ f j in the reference criterion

exactly compensates for a change Δ fi: wk
i = −Δ f j

Δ fi
. This is the Marginal Rate of Substitution

(MRS) between the objectives.
The step-size problem must be solved directly by the DM. In early work, the computer

would tabulate the values of the objectives at selected intervals and let the DM choose from
this numerical display their most preferred solution.

4.3. ZW Method (Zionts and Wallenius, 1976) [37]

The Zionts–Wallenius method [37] is a simple-to-use multi-objective “simplex method”,
which companies could easily adopt for relatively large-scale problems. The authors ini-
tially made the assumption that the DM’s underlying (implicit) value function would be
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linear (in terms of the objectives). LP theory suggests that the optimal solution would be
a non-dominated extreme point solution. Hence, it would be sufficient to operate with
efficient extreme point solutions. The authors first developed a naïve approach, which starts
with an efficient extreme point and asks the DM about neighboring extreme points: Do you
prefer any of the neighboring points to the current point? If yes, the DM is moved to one of
the preferred neighbors and the method continues. If not, the optimal solution (or most
preferred solution) is assumed to be found. The problem with the naïve approach is that
the convergence was awfully slow for even moderately large problems. Therefore, a more
elaborate approach had to be thought through to make the algorithm more efficient.

In the elaborate approach, the process starts by assuming some arbitrary (positive)
weights for the objectives. If no other information exists, one may start with equal weights.
The method uses the current set of weights to generate a non-dominated solution, and then
asks the DM to tell whether any of the “efficient” neighboring solutions are preferred to
the current solution (or a unit movement in that direction = trade-offs). If not, the most
preferred solution is found, otherwise, the process continues. Note that the trade-offs can
be obtained from the simplex table corresponding to the objective function rows and the
non-basic variable columns.

The following so-called "λ-problem" tells how the weights are updated based on the
DM’s yes/no answers:

Maximize ε

subject to Σp
i=1λix

(r)
i − ε ≥ Σp

i=1λix
(s)
i ∀ x(r) ∈ Xr, x(s) ∈ Xs

Σp
i=1λi = 1

λi > 0, i ∈ 1, . . . , p

(7)

The sets Xr and Xs contain points where every element in Xr is preferred to every
element in Xs, i.e., x(r) 
 x(s) ∀ r, s. The updated weights are used to generate an improved
non-dominated extreme point solution and the process is repeated. The process terminates
when none of the neighboring extreme point solutions are preferred to the current solution,
which is assumed to be the optimal solution. Note that, in this approach, it is not necessary
to ask the DM about all neighboring extreme point solutions, but only the efficient ones.
The algorithm was tested for moderately sized LP problems with 3–4 objectives.

4.4. Reference Point Method (Wierzbicki, 1980) [20]

The Reference Point method [20] asks the DM to provide aspiration levels for the
objectives. The aspiration point is then projected to the non-dominated frontier. Note that it
does not matter whether the aspiration point provided by the DM is feasible or not. In the
projection, Wierzbicki used the so-called Achievement Scalarizing Function (ASF), which
was minimized as:

Min Maxp
i=1(

gi− fi(x)
wi

) + ρΣp
i=1

gi− fi(x)
wi

subject to x ∈ X
(8)

where wi > 0 is a set of weights, ρ is a small number, and gi is the vector of aspiration levels.
Note that when ρ = 0, the indifference contours being optimized are orthogonal (90 degree
angle); when ρ > 0, the indifference contours being optimized form an angle between 90
and 180 degrees. Once the non-dominated projection of the aspiration levels is found, the
method asks the DM to update the aspiration levels. The method stops when the DM is
satisfied with the solution. In contrast with the GDF and ZW methods, no assumptions of
U are made.
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4.5. Reference Direction Approach (Korhonen and Laakso, 1986) [46]

Instead of projecting a single reference point using Wierzbicki’s ASF, Korhonen and
Laakso [46] suggested projecting multiple directions to the efficient frontier. The projection
was determined by solving the following parametric program:

Min ε
subject to fi(x) + εwi ≥ qi + tdi, i ∈ 1, . . . , p

x ∈ X

(9)

where wi > 0 is a set of weights, qi is any vector in the criterion space, and di = gi − qi
is a reference direction, with gi being an aspiration level or a reference goal in the spirit
of Wierzbicki’s reference point approach. When the parameter t in the above problem is
varied from zero to infinity, an efficient curve emanating from point q is obtained.

The interface of the reference direction method is similar to the GDF method. When
the DM has identified the most preferred solution along the projection, then they are asked
to revise their aspiration point, and the process is repeated. An extension and application
of the reference direction approach on multi-objective quadratic linear programming can
be found in [50].

4.6. Pareto Race (Korhonen and Wallenius, 1988) [47]

Pareto Race [47] is a visual, dynamic search procedure for exploring the non-dominated
frontier of a multi-objective LP problem. It is based on the idea of projecting reference
directions on the efficient frontier. However, no aspiration levels are elicited from the DM.
Instead, if the DM wants to improve the value of a certain objective, they press the number
key (one or more times, depending on the relative desired improvement in that objective)
of the corresponding objective.

There is an analogy to driving an automobile (on the efficient frontier). The user sees
the objective function values on a display in numeric form and as bar graphs as they travel
along the non-dominated frontier. Keyboard controls include accelerator, gears, breaks,
and a steering mechanism. Technically, two parameters are used to control the motion:
the reference direction (direction) and step size (speed). Figure 8 shows the interactive
dashboard used in the Pareto Race approach.

Figure 8. Pareto Race interface.

5. EMO Introduction and History

An evolutionary algorithm is a general population-based optimization algorithm
which uses a mechanism inspired by biological evolution, i.e., selection, crossover, mutation,
and replacement. The common underlying idea behind an evolutionary technique is
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that, for a given population of individuals, the environmental pressure causes natural
selection, which leads to a rise in fitness of the population. A comprehensive discussion
of the principles of an evolutionary algorithm can be found in [51–55]. In contrast to
classical algorithms, which iterate from one solution point to the other until termination,
an evolutionary algorithm works with a population of solution points. Each iteration of
an evolutionary algorithm results in an update of the previous population by eliminating
inferior solution points and including the superior ones. In the terminology of evolutionary
algorithms, an iteration is commonly referred to as a generation and a solution point as an
individual. A pseudo-code for a general genetic algorithm, which is a type of evolutionary
algorithm, is provided below:

Step 1: Create a random initial population (i.e., a set of solution points in the decision space).

Step 2: Evaluate the individuals (i.e., the solution points) in the population with respect to
objective(s) and constraints, if present, and assign fitness (i.e., quality measure).

Step 3: Repeat the generations (i.e., iterations of the evolutionary algorithm) until termination.

Substep 1: Select the fitter individuals (referred to as parents) from the population
for reproduction (i.e., producing new solution points through genetic operators of
crossover and mutation).

Substep 2: Produce new individuals (referred to as offspring) through crossover and
mutation operators.

Substep 3: Evaluate the new individuals and assign fitness.

Substep 4: Replace the low-fitness individuals in the population with high-fitness
individuals that may have been generated through crossover and mutation.

Step 4: Report the highest fitness individual as the output.

Along with the pseudo-code presented above, a flowchart for a general evolutionary
algorithm is presented in Figure 9. In evolutionary algorithms, to begin with, a pool
of individuals is generated by randomly creating points in the search space, which is
called the population. Each individual in the population is evaluated on objective(s) and
constraints (if any) and is assigned a fitness. For instance, while solving a single-objective
maximization problem, a solution point with a higher function value is better than a
solution point with lower function value when both solutions are feasible. Therefore, in
such cases, the individual with higher function value is assigned a higher fitness. While
comparing two infeasible solutions, the solution with a smaller constraint violation is often
assigned a higher fitness as compared with the solution with larger constraint violation.
In the presence of multiple constraints, the constraint violation for a particular point is
defined as the sum of violation of those constraints that are infeasible with respect to that
point. While comparing a feasible solution against an infeasible solution, a feasible solution
is often assigned a higher fitness as compared with the infeasible solution. There can,
of course, be other ways to assign fitness. For an unconstrained maximization problem,
the function value itself can be treated as the fitness value and, for an unconstrained
minimization problem negative of the function value, may serve the purpose of fitness. In
all such cases, the algorithm searches for a higher fitness solution.

In a multi-objective context, the requirement is to produce a set of solutions that
approximate the Pareto-optimal front. Fitness assignment based on constraint violation
can be performed in the multi-objective case in a similar manner as the single-objective
case. Moreover, a feasible solution point which dominates another feasible solution point
can be assigned a higher fitness. However, fitness assignment for two solutions that are
non-dominated with respect to each other is tricky. In such cases, algorithms often consider
a measure of diversity or crowdedness [4] in the objective space to assign fitness and prefer
one solution over the other. The measure for crowdedness prefers solutions that are isolated
over solutions that are in crowded regions to enhance diversity in the population and to
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obtain a “well-spread” set of solutions approximating the Pareto-optimal front. A multi-
objective evolutionary procedure, therefore, assigns fitness to each of the solution points
based on their superiority over other solution points in terms of constraints, dominance,
and diversity in the objective space. Different algorithms use different quality functions
to assign fitness to an individual in a population. Once an initial population is generated
and the fitness is assigned, a few of the better candidates from the population are chosen as
parents. Crossover and mutation are performed to generate new solutions. Crossover is
an operator applied to two or more selected individuals and results in one or more new
individuals. Mutation is applied to a single individual and results in one new individual.
Executing crossover and mutation lead to offspring that compete, based on their fitness,
with the individuals in the population, for a place in the next generation. An iteration of
this process often leads to a rise in the average fitness of the population and, over iterations,
helps the algorithm converge towards the optimum in a single-objective case and towards
the Pareto-optimal front in a multi-objective case.

Figure 9. A flowchart for a general evolutionary algorithm.

Using the described evolutionary framework, a number of algorithms have been
developed which successfully solve a variety of optimization problems. Their strength
is particularly observable in handling two- to three-objective optimization problems and
generating the entire Pareto-front. The aim of an EMO algorithm is to produce solutions
which are (ideally) Pareto-optimal and uniformly distributed over the entire Pareto-front,
so that a complete representation is provided. In the domain of EMO algorithms, these aims
are commonly referred to as convergence and diversity. Figure 10 shows the working of a
typical EMO algorithm that starts with a random initial population and aims to converge to
the efficient frontier with a diverse set of solutions. The researchers in the EMO community
have so far regarded an a posteriori approach to be an ideal approach where a representative
set of Pareto-optimal solutions are found and then a DM is invited to select the most
preferred point. The assertion is that only a DM who is well-informed is in a position to
take a right decision. A common belief is that decision making should be based on complete
knowledge of the available alternatives; current research in the field of EMO algorithms
has taken inspiration from this belief. Though the belief is true to a certain extent, there are
inherent difficulties associated with producing the entire set of alternatives and performing
decision making thereafter, which many a time renders the approach ineffective.

26



Math. Comput. Appl. 2022, 27, 112

Figure 10. The working of a general evolutionary multi-objective optimization (EMO) algorithm.

The EMO approaches can be divided into three broad categories based on the idea
that they use to achieve convergence and diversity. The categories are:

1. Pareto-based Methods [6,7,31,32,56]
2. Indicator-based Methods [11,57–59]
3. Decomposition-based Methods [10,12,33,60,61]

While Pareto-based approaches have been popular for solving two- or three-objective
test problems, their efficiency deteriorates on problems with a higher number of objec-
tives. Many of these methods are based on the approach of non-dominated sorting of the
population as the primary driver. In problems with a large number of objectives, most
of the solutions generated by these approaches are non-dominated in the comparison set
leading to deterioration in progress towards the Pareto-frontier. Indicator-based approaches
attempt to optimize a particular indicator that accounts for both convergence and diversity
but did not become popular because of high computational costs involved in computing the
indicator metric (for example, Hypervolume or Inverted Generational Distance) in many-
objective problems. Despite these issues, both Pareto-based and indicator-based methods
still hold promise, as non-dominated sorting in Pareto-based approaches is one of the
fundamental ideas for partial ordering that cannot be ignored; similarly, faster computation
of indicator metrics would make the indicator-based approaches competitive.

An alternative to Pareto-based approaches and indicator-based approaches are
decomposition-based approaches, which have been effective in handling a larger num-
ber of objectives by decomposing the original problem into a set of subproblems, either
multiple single-objective problems or multiple simplified multi-objective problems. These
multiple problems are solved simultaneously in a collaborative manner and lead to better
convergence and diversity, as the convergence is guaranteed by ensuring that each sub-
problem is properly optimized, and diversity is guaranteed by implicitly distributing the
subproblems in an even manner. Interestingly, the decomposition-based methods utilize
MCDM approaches while decomposing the multi-objective problems into subproblems.
For instance, a distributed set of reference directions from the ideal point (or sometimes
from the nadir point) towards the Pareto-front would lead to a well-distributed set of
Pareto-optimal solutions if the front is uniform in shape. The methods that rely on decom-
position solve these subproblems in a parallel manner and differ mostly on the basis of
how the subproblems are created, how information between subproblems is shared during
the generations, and how the subproblems may adapt during intermediate generations.
However, note that if one considers a 10-objective problem, with a discretization of 10 along
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each objective, one would need 1010 points to approximate the frontier. Moreover, even
if the points are produced by a computationally efficient algorithm, the decision-making
challenge still remains. If the Pareto-front is not found with sufficient discretization, the
DM may expect the method to explore additional solutions. For the purpose of evaluating
the EMO approaches, a large body of literature exists on test problem toolkits [62–65]
and performance assessment metrics [66–70] that allow the developers to compare the
performance of various algorithms.

6. Hybrid Methods

In this section, we focus on hybrid approaches that incorporate decision making
within EMO. As already highlighted, the aim of the EMO algorithms is to find a diverse
set of solutions close to the Pareto-optimal front, and the DM is then expected to choose
the most preferred point from the objective space. However, approximating the entire
Pareto-optimal front with a set of points is not always easy and may not serve the purpose,
especially in the context of problems with a large number of objectives. To alleviate these
problems associated with a posteriori EMO approaches, some EMO researchers taking cues
from their MCDM counterparts have attempted an a priori approach, where a small set of
Pareto-optimal points in the region of interest to the DM is targeted. As soon as the region
of interest becomes smaller, certain problems associated with the high dimensionality of the
problem in the objective space gets alleviated. Greenwood et al. [30] used an evolutionary
approach to optimize a linear value function obtained from the DM through ranking of a few
alternatives. In this method, the preference information is employed before optimization,
and therefore this qualifies as an a priori method. Other studies in this direction are the
cone-dominance-based EMO [71], biased-niching-based EMO [27], the light beam approach
based EMO [35], and reference-point-based EMO approaches [28,29].

In [71], the authors modify the dominance principle based on interactions with the
DM. For every pair of objectives, the DM specifies maximally acceptable trade-offs, i.e.,
what is the improvement of one unit in one objective (say f1) worth in terms of degradation
of another objective (say f2). If the degradation is worth at most a12 in f2 when f1 improves
by unity, and at most a21 in f1 when f2 improves by unity, then the dominance scheme
x 
 y is modified as follows with a strict inequality in at least one case:

( f1(x) + a12 f2(x) ≤ f1(y) + a12 f2(y)) ∧ (a21 f1(x) + f2(x) ≤ a21 f1(y) + f2(y))

Incorporating the above principle in an EMO is straightforward, as one can simply
replace objectives f1 and f2 with Ω1 and Ω2, respectively, where Ω1 and Ω2 are defined
below, and solve the problem with the standard dominance principle.

Ω1(x) = f1(x) + a12 f2(x)

Ω2(x) = a21 f1(x) + f2(x)

The approach can be incorporated in any EMO and does not lead to any increase
in complexity.

Figures 11 and 12 indicate the working of the light beam approach based EMO [35]
and the reference-direction-based EMO [28,29] approaches, respectively. In their study,
Jaskiewicz and Branke [40] showed that it is difficult for an EMO algorithm alone to
find a good spread of solutions in five- to ten-objective problems, and when solutions
around the most preferred point are targeted, the hybrid approaches are able to find
satisfactory solutions.
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Figure 11. A light beam approach integrated within an EMO that finds a crowded set of points close
to the Pareto-frontier based on the aspirations of the DM.

Feasible reference point A

Infeasible reference point B

Figure 12. Projection of a feasible and infeasible reference point on the Pareto-optimal frontier within
an EMO.

Preference-based EMO algorithms can differ from each other based on the following
aspects:

1. Stage at which preference is incorporated;
2. Manner in which preference information is elicited;
3. Type of preference modeling performed;
4. Integration of preference model with EMO search;
5. Choice of the EMO, i.e., Pareto-based, indicator-based or decomposition-based.

Apart from a priori and a posteriori approaches, a more seamless and effective way to
incorporate DMs’ preferences in the EMO would be to collect and incorporate preferences
at the intermediate generations of the EMO algorithm to guide the search towards the most
preferred point. Such an approach is commonly referred to as a progressively interactive
EMO approach. We discuss, in detail, some of the progressively interactive techniques
studied in the literature.
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6.1. Phelps and Köksalan (2003) [38]

Phelps and Köksalan [38] presented one of the first hybrid approaches, where they
optimized a linearly weighted utility function during the iterations of an evolutionary algo-
rithm. The decision maker makes a number of binary comparisons that leads to the weights
of the utility function. For a given parameter t and ideal point f ∗k = Maxx∈X{ fk(x)}, the
authors solve the following optimization problem to obtain the weights wk, k = 1, . . . , p.

Max ε

s.t. ∑
p
k=1 wk = 1

∑
p
k=1 wk

(
f ∗k − fk

(
x(i)
))t ≤ ∑

p
k=1 wk

(
f ∗k − fk

(
x(j)
))t − ε ∀ x(i) > x(j)

wk ≥ ε ∀ k = 1, . . . , p

The above problem is an LP that leads to w∗ used in calculating the fitness of each
point using the following utility function:

U(x) = −
p

∑
k=1

w∗k ( f ∗k − fk(x))
t

The preference from the DM is taken initially or during the execution of the algorithm
to modify the fitness function. The authors considered linear utility functions in their study.

To incorporate the properties of an implicit quasi-concave utility function into an EMO,
Fowler et al. [39] developed an interactive EMO approach using convex preference cones.
They used feasibility, dominance, and preference cones to order the population members
and used that information for fitness calculation. They tested their algorithm on multi-
dimensional (up to four dimensions) knapsack problems using a similar interactive genetic
algorithm framework to that of Phelps and Köksalan [38]. Jaszkiewicz [40] constructed
an achievement scalarizing function using random weights. The random weights are
preferred if the scalarizing function generated conforms to the preference information
provided by the DM. The EMO search is then guided by the scalarizing function generated
with random weights.

6.2. Branke, Greco, Słowiński, and Zielniewicz (2009) [41]

Branke et al. [41] implemented the GRIP [72] methodology, in which the DM-provided
pairwise information is used to find all possible compatible additive value functions (not
necessarily linear). A preference-based dominance relationship and a preference-based
diversity preserving operator is used in an EMO to find new solutions for the next few
generations. In their approach, they make pairwise comparisons after every few generations
in order to develop the preference structure. It is also possible for the DM to specify the
intensities of preference. The authors use robust ordinal regression on information obtained
through interaction with the DM to determine the set of all compatible value functions.
Thereafter, the EMO procedure performs a parallel search for all non-dominated solutions
that are preferred with respect to the compatible value functions. The authors demonstrated
their procedure on a two-objective test problem. The study was later extended to solve
up to five-objective test problems in [73]. The study takes a robustness approach to avoid
arbitrary selection of a value function, which makes it different from most of the other
studies that determine the single most discriminating value function. The use of preference
information in a robust manner in EMO is a significant contribution of this study. Other
recent studies that use a set of instances of the preference model compatible with the
DM’s preference information are [74,75]. These studies generate multiple instances of
the preference model using Monte Carlo simulation and utilize the instances as search
directions in a decomposition-based EMO approach.
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6.3. Deb, Sinha, Korhonen, and Wallenius (2010) [42]

Based on earlier interactive MCDM approaches [76,77], this paper proposes a preference-
based EMO to guide a DM to the most preferred solution by creating non-linear value
functions in the intermediate generations of the algorithm. The approach accepts preference
information in the form of complete or partial ranking, i.e., the DM may prefer one solution
over the other or the DM may be indifferent between two solutions. The authors do not
consider the situation where the DM is unable to compare two solutions. Through an
extensive computational study on two- to five-objective problems, the authors evaluated
the performance of their approach when the DM interacts less/more frequently with the
EMO approach, as well as the impact on the quality of the solution produced when the DM
provides erroneous preference information. The approach utilized the approximated value
function in an innovative manner by partitioning the objective space into two areas using
the value function. They also utilized the value function for performing local search and
termination of the method.

In this paper, the authors fit a polynomial value function with the following structure
for two objectives.

V( f1, f2) = ( f1 + k1 f2 + l1)( f2 + k2 f1 + l2)
where f1, f2 are the objective functions
and k1, k2, l1, l2 are the value function parameters

For a higher number of objectives, they use a higher-order polynomial function of the
following kind:

V(f) =
p

∏
i=1

(
p

∑
j=1

[
kij f j + ki(p+1)

])

where ∑
p
j=1 kij = 1 for all i, and kij ≥ 0 for j ≤ p and for all i. The value function is fitted by

solving the following optimization problem with respect to the value function parameters
when preference information is available:

Maximize ε

subject to V is non-negative at every point x(i)

V is strictly increasing at every point x(i)

V(x(i))−V(x(j)) ≥ ε, for all (i, j) pairs satisfying x(i) 
 x(j)∣∣∣V(x(i))−V(x(j))
∣∣∣ ≤ δV , for all (i, j) pairs satisfying x(i) ∼ x(j)

A look into the above optimization problem reveals that it attempts to find a value
function for which the minimum difference in the value function values between the
ordered pairs of points is maximum. At the same time, it also ensures that the difference in
the value function values for a pair of indifferent points is smaller than a threshold that is
proposed to be δV = 0.1ε. Figures 13 and 14 show how the preference structure is captured
using the value function when points have a complete or a partial order, respectively. An
extension of this study suggested a generalized polynomial value function [78]; however,
any attempt to fit a very complex value function to user preference is not always advisable.
Unless there are errors or conflicts in preference information, the preference structure in a
region can often be captured using relatively simple value functions.
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Figure 13. Value function fitting when the points are ordered.

Figure 14. Value function fitting when the points are partially ordered.

6.4. Sinha, Deb, Korhonen, and Wallenius (2014) [43]

In this study, Sinha et al. [43] generate the most preferred solution on the Pareto-
optimal frontier in a fixed budget of decision-making calls. Most of the earlier hybrid
approaches did not assume that the DM will be available for providing preferences only
for a fixed number of times. In fact, in most of the procedures, there is no control on the
number of DM calls, or the DM calls are not utilized effectively. The assumption in most
of the interactive approaches is that the DM would be available for as many interactions
as desired by the method until a satisfactory solution is found; however, this is not a
wise assumption to make. The approach discussed in this section attempts to address
this concern by solving the problem in a fixed number of interactions with the DM. The
study also deviated from constructing value functions and, instead, suggested constructing
polyhedral cones heuristically to guide the EMO. The authors tested their approach on
two- to five-objective test problems and studied the impact of increasing or decreasing
the budget of DM calls on the performance of the algorithm in getting close to the most
preferred point.

The algorithm requires the ideal point at start. Once the ideal point is known, the
initial random population is created, and the point in the initial population closest to the
ideal point is chosen. Let the distance be denoted as DI . This distance DI is divided into
certain equal parts (say dI) based on the budget of DM calls available. Thereafter, the EMO
run starts, and preference from the DM is elicited only after a progress of dI has been made.
During the progress, the algorithm stores all non-dominated solutions produced in an
archive set, and preference from the DM is taken in terms of the most preferred point from
the archive set.

The method heuristically constructs a polyhedral cone using the most preferred so-
lution suggested by the DM from the archive set and the end points along each of the
objectives. For a p-objective problem, a polyhedral cone is formed using p + 1 points.
Figures 15 and 16 show the construction of cones in two and three dimensions. Once the
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polyhedral cone is determined, it provides an idea for a search direction. The normal unit
vectors (Vi) of all the p hyperplanes can be summed up to obtain a heuristic search direction
(�W = ∑

p
i=1 Vi), which is used in the algorithm for the purpose of local search.

As an extension, a mathematically driven preference-cone-based approach was later
proposed in [79], where the user’s preferences were assumed to follow an unknown quasi-
concave and increasing value function. In addition to considering the preference cones as
a tool for eliminating non-preferred solutions, the authors also presented how the cones
could be leveraged in approximating the steepest ascent direction to guide an evolutionary
algorithm. A merit function is proposed that the authors use for fitness calculations in
the algorithm. In addition to test problems, a mixed-integer facility location problem was
solved in the later study.

Figure 15. Polyhedral cone in 2 dimensions.

Figure 16. Polyhedral cone in 3 dimensions.

7. Interaction Styles, Behavioral Considerations, and Future Work

Given that preferences can be elicited in a number of ways, developers of a specific
method normally think that the interaction style embedded in their approach is the best.
However, we need more research to answer what kind of cognitive load is caused by
the interaction style (preference elicitation) and which interaction style leads closer to
the true most preferred solution. An interesting approach is to use neuro-physiological
measurement instruments to measure the DM’s cognitive and emotional load. Scholars in
the 1970s pioneered the idea of interactively solving multi-objective problems, which was
remarkable considering the state of the art of computer technology in the early to mid 1970s.
No personal computers, nor computer graphics capabilities, were available before the early
1980s. Scholars had to access the main frame computer via teletypes (time sharing). Their
contribution was not the development of the concept of efficient or Pareto-optimal solution,
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rather, it was Pareto who introduced the ideas of non-dominance. However, the scholars
during the period made it possible to explore or move around the non-dominated frontier
in an effective way. Problems studied were largely limited to LP framework (convex and
compact feasible sets).

With computation becoming faster, newer applications arising in practice, and numer-
ical or computational techniques for more general classes of problems being developed,
researchers started looking beyond LPs. However, the decision-making difficulties did not
receive the attention they deserved. For instance, there has been only limited effort in trying
to solve multi-objective problems in a fixed number of interactions with the DM [43,80]. The
decision-making calls are often assumed to be an unlimited resource, with the expectation
that the DM is available for a large number of interactions.

Termination criterion for methods involving human–machine interaction is a challenge.
Optimization methods may terminate based on gradient-based criterion, Karush–Kuhn–
Tucker-based criterion, or improvement-based criterion. However, with the DM interacting
with the method, it is difficult to terminate the process, as one does not know in advance
the proximity of the current best solution for the DM to the true most preferred solution.
Effort is also required on visualization techniques to reduce the burden on the DM during
the decision-making process. Many of the visualization techniques focus on commonly
used descriptive approaches, such as scatter plots, bar charts, value plots, etc. However,
very few of the techniques offer an immersive experience to the DM, where the DM can
easily navigate in the search space, understand trade-offs, possible improvements, and
then make a decision. A comprehensive review of visualization-based approaches can be
found in [81,82].

Other challenges in the decision-making context which have led to difficulties in
preference modeling are as follows:

1. DM providing erroneous preferences;
2. DM providing conflicting or inconsistent preferences;
3. DM preference structure changing in different regions of the objective space;
4. DM preference structure changing as a function of learning;
5. DM becoming biased (anchored) based on the initial set of options presented;
6. DM unable to compare two options in terms of either dominance or indifference.

Significant effort is still required towards developing decision-making and search
techniques that are robust to the above mentioned issues.

Author Contributions: Authors A.S. and J.W. have contributed equally in conceptualization, investi-
gation and writing of the manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Charnes, A.; Cooper, W. Management models and industrial applications of linear programming. Manag. Sci. 1957, 4, 38–91.
[CrossRef]

2. Keeney, R.L.; Raiffa, H. Decisions with Multiple Objectives: Preferences and Value Tradeoffs; Wiley: New York, NY, USA, 1976.
3. Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the First International

Conference of Genetic Algorithms and Their Application; Psychology Press: New York, NY, USA, 1985, pp. 93–100.
4. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; Wiley: Chichester, UK, 2001.
5. Coello, C.A.C.; VanVeldhuizen, D.A.; Lamont, G. Evolutionary Algorithms for Solving Multi-Objective Problems; Kluwer: Boston,

MA, USA, 2002.
6. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective

Optimization. In Proceedings of the Evolutionary Methods for Design, Optimization and Control with Applications to Industrial
Problems, Athens, Greece, 19–21 September 2001; pp. 95–100.

7. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and Elitist multi-objective Genetic Algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

34



Math. Comput. Appl. 2022, 27, 112

8. Deb, K.; Saxena, D. Searching for Pareto-Optimal Solutions through Dimensionality Reduction for Certain Large-Dimensional
Multi-Objective Optimization Problems. In Proceedings of the World Congress on Computational Intelligence (WCCI-2006),
Vancouver, BC, Canada, 16–21 July 2006; pp. 3352–3360.

9. Knowles, J.; Corne, D. Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective Optimization. In
Proceedings of the Fourth International Conference on Evolutionary Multi-Criterion Optimization (EMO-2007), Matsushima,
Japan, 5–8 March 2007; pp. 757–771.

10. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007,
11, 712–731. [CrossRef]

11. Bader, J.; Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76.
[CrossRef] [PubMed]

12. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting
approach, Part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2013, 18, 577–601. [CrossRef]
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73. Branke, J.; Greco, S.; Słowiński, R.; Zielniewicz, P. Learning value functions in interactive evolutionary multiobjective optimization.
IEEE Trans. Evol. Comput. 2015, 19, 88–102. [CrossRef]
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Abstract: Multi-objective evolutionary algorithms (MOEAs) have been successfully applied for the
numerical treatment of multi-objective optimization problems (MOP) during the last three decades.
One important task within MOEAs is the archiving (or selection) of the computed candidate solutions,
since one can expect that an MOP has infinitely many solutions. We present and analyze in this
work ArchiveUpdateHD, which is a bounded archiver that aims for Hausdorff approximations of the
Pareto front. We show that the sequence of archives generated by ArchiveUpdateHD yields under
certain (mild) assumptions with a probability of one after finitely many steps a Δ+-approximation of
the Pareto front, where the value Δ+ is computed by the archiver within the run of the algorithm
without any prior knowledge of the Pareto front. The knowledge of this value is of great importance
for the decision maker, since it is a measure for the “completeness” of the Pareto front approximation.
Numerical results on several well-known academic test problems as well as the usage of Archive-
UpdateHD as an external archiver within three state-of-the-art MOEAs indicate the benefit of the
novel strategy.

Keywords: evolutionary multi-objective optimization; archiving; convergence

1. Introduction

This work is dedicated to the 60th birthday of Professor Kalyanmoy Deb, a pioneer and
highly impactful and influential proponent of Evolutionary Multi-Objective Optimization
(EMO) for the last three decades. In particular, the seminal work Combining Convergence
and Diversity in Evolutionary Multiobjective Optimization by Marco Laummans, Lothar Thiele,
Kalyanmoy Deb, and Eckart Zitzler [1] has been a motivation of the second author to
consider the challenging and fruitful field of archiving in EMO.

Multi-objective optimization problems (MOPs), i.e., problems where several con-
flicting objectives have to be optimized concurrently, naturally arise in many real-world
applications (e.g., [2–8]). While one can expect one optimal solution if “only” one objective
is being considered, the solution set of an MOP (the so-called Pareto set, respectively, its
image, the Pareto front) typically forms at least locally a manifold of a certain dimension [9].
One important task in multi-objective optimization (MOO) is hence to identify a “suitable”
finite size approximation of these solution sets. Multi-objective evolutionary algorithms
(MOEAs) represent an important class of algorithms for the numerical treatment of such
problems. MOEAs have caught the interest of researchers and practitioners due to their
global nature and robustness and since they require only minimal assumptions on the
model (e.g., [2,10]). The process to elect a subset of the candidate solutions generated by
the MOEA is called selection or archiving. Existing archiving/selection strategies can be
roughly divided into two classes (see subsequent section for more details): (i) mechanisms
that maintain sets those cardinalities are equal or do not exceed a certain pre-defined
cardinality—which we will call bounded archivers in the following—and (ii) archivers that
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are based on the concept of ε-dominance. Such archivers generate sequences of archives Ai
with monotonic behavior, i.e., no deterioration of cyclic behavior can be observed during
the run of an algorithm. Furthermore, for i → ∞, these archives yield certain limit approx-
imation qualities that can be adjusted a priori, mainly by choosing the values of ε ∈ Rk

which comes rather naturally at least if the MOP arises from a real-world application. On
the other hand, the magnitudes of the final archives are entirely determined by ε and some
other design parameters, which are set a priori and are supposed to remain fixed during
the computation, and the size of the Pareto front, which is a priori of course unknown. It
has turned out that most EMO researchers prefer to have a fixed number of elements in the
archives, e.g., for the sake of a better comparison to other methods but also to avoid the
necessity of storing an unexpected large amount of candidate solutions. The latter problem
is apparently by construction not given by bounded archives. For most strategies from
class (i), however, no theoretical analyses such as convergence properties are known. For
many distance-based methods, it is further known that cyclic behavior and deterioration
can occur during the run of the algorithm. It is hence fair to say that these methods do not
tap the full potential, since any MOEA using such a strategy will not converge regardless
of the regions they explore during the run of the algorithm. An exception is the bounded
archive proposed in [11], which yields under certain (mild) assumptions and with the
probability of one ε-Pareto set in the limit, where ε ∈ R is the smallest possible value with
respect to to the bound of the archives.

In this paper, we propose a bounded archiver that is based on distance, dominance
and ε-dominance that offers quasi-monotonic behavior and yields approximation qualities
in the limit. More precisely, ArchiveUpdateHD aims for Hausdorff approximations of the
Pareto front (i.e., evenly spread solutions along the Pareto front). Under certain (mild)
assumptions on the generation process, it will be shown that the Hausdorff distances of
the images of the archives F(Ai) and the Pareto front F(PQ) are bounded by a value Δ+,
which is computed by the archiver during the run of the algorithm. Numerical experiments
show that this value indeed represents a good approximation of the actual Hausdorff
distance (while a better strategy is proposed for bi-objective problems). During the run
of the algorithm, two design parameters are adjusted adaptively during the run of the
algorithm (one being the value of ε for the ε-dominance). Since these values will become
stationary during the search process, one can expect monotonic behavior from a certain
stage of the search process. The knowledge of the Hausdorff distance of F(Ai) and F(PQ) is
important information for the decision maker (DM), since it represents the maximal error in
the approximation. If not needed (i.e., depending on the chosen initial design parameters),
the magnitudes of the archivers will not reach the pre-defined size N. Else, the value Δ+

computed by the archiver is an important piece of information, since it tells the DM if the
approximation is “complete enough” or not. In the latter case, the computation may have to
be repeated using an increased value of N. A preliminary version of this work can be found
in [12], which is restricted to bi-objective problems and contains fewer empirical results.

The rest of this document is structured as follows: Section 2 briefly summarizes the
background that is required for the understanding of the sequel and presents the related
work. In Section 3, the new archiver ArchiveUpdateHD is discussed and analyzed, first
for bi-objective problems and after that for the general number of objectives. In Section 4,
some numerical results and comparisons are presented and discussed. Finally, in Section 5,
conclusions are drawn, and possible paths for future research are mentioned.

2. Background and Related Work

Here, we consider continuous multi-objective optimization problems (MOPs) that can
be expressed as follows:

min
x∈Q

F(x). (MOP)
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The map F is defined by the individual objective functions fi, i.e.,

F : Q → Rk, F(x) = ( f1(x), . . . , fk(x))T , (1)

where each fi : Q → R, i = 1, . . . , k, is assumed to be continuous. We stress, however, that
the archiver presented below can also be applied to discrete problems. Q is the domain
or feasible set of the problem, which is typically expressed by equality and inequality
constraints. We assume Q to be compact (i.e., closed and bounded). If k = 2 objectives are
considered, the problem is also termed a bi-objective problem (BOP).

In order to define optimality in multi-objective opimization, the concept of dominance
can be used: for two vectors x, y ∈ Rk we say that x is less than y (x <p y) if xi < yi,
i ∈ {1, . . . , k}, analogously for the relation ≤p. We say that y ∈ Q is dominated by x ∈ Q
(x ≺ y) with respect to (MOP) if F(x) ≤p F(y) and F(x) �= F(y), else we say that y is
non-dominated by x. Finally, x∗ ∈ Q is called Pareto optimal or simply optimal with respect
to (MOP) if there exists no y ∈ Q that dominates x. The Pareto set PQ is the set of all optimal
solutions with respect to (MOP), and its image F(PQ) is called the Pareto front. One can
expect that both the Pareto set and Pareto front are from at least locally objects of dimension
k− 1, where k is the number of objectives considered in the MOP [9].

For the convergence analysis, we will consider a very general class of algorithms,
called Generic Stochastic Search Algorithm (GSSA), first considered by Laumanns et al. [1].
An algorithm of this class consists of a process to generate new candiate solutions together
with an update strategy. Algorithm 1 shows the pseudocode of GSSA.

Algorithm 1 Generic Stochastic Search Algorithm

1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do
4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

In the following, we define the Hausdorff distance dH and the averaged Hausdorff
distance Δp, which we will use to assess the approximation qualities of the obtained Pareto
front approximations (toward the actual Pareto fronts).

Definition 1. Let u ∈ Rn and A, B ⊂ Rn. The semi-distance dist(·, ·) and the Hausdorff
distance dH(·, ·) are defined as follows:

(a) dist(u, A) := inf
v∈A
‖u− v‖∞

(b) dist(B, A) := sup
u∈B

dist(u, A)

(c) dH(A, B) := max{dist(A, B), dist(B, A)}

Definition 2 ([13]). Let A, B ⊂ Rn be finite sets. The value

Δp(A, B) = max(GDp(A, B), IGDp(A, B)), (2)

where

GDp(A, B) =

(
1
|A| ∑

a∈A
dist(a, B)p

)1/p

IGDp(A, B) =

(
1
|B| ∑

b∈B
dist(b, A)p

)1/p

,

(3)
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and p ∈ N, is called the averaged Hausdorff distance between A and B.

We further define some objects that specify certain approximation qualities of Pareto
front approximations. All of these objects are based on the concept of ε-dominance, which
we will define first.

Definition 3 (ε-dominance). Let ε = (ε1, . . . , εk)
T ∈ Rk

+ and x, y ∈ Rn. x is said to ε-dominate
y (in short: x ≺ε y) with respect to (MOP) if

F(x)− ε ≤p F(y) and F(x)− ε �= F(y). (4)

Definition 4 (ε-(approximate) Pareto front, [1]). Let ε ∈ Rk
+ and A ⊂ Rn.

(a) F(A) is called an ε-approximate Pareto front of (MOP) if every point x ∈ Q is ε-dominated
by at least one a ∈ A, i.e.,

∀x ∈ Q : ∃a ∈ A : a ≺ε x. (5)

(b) F(A) is called an ε-Pareto front if F(A) is an ε-approximate Pareto front and if every point
a ∈ A is a Pareto point of (MOP).

Definition 5 (Δ-tight ε-(approximate) Pareto front, [14]). Let ε ∈ Rk
+ and A ⊂ Rn.

(a) F(A) is called a Δ-tight ε-approximate Pareto front of (MOP) if A is an ε-approximate
Pareto front of (MOP) and if in addition

dist(F(PQ), F(A)) ≤ Δ. (6)

(b) F(A) is called a Δ-tight ε-Pareto front if A is an ε-Pareto front of (MOP) and if in addition

dH(F(PQ), F(A)) ≤ Δ. (7)

The archiver we propose in this work, ArchiveUpdateHD, aims for Δ-tight ε-Pareto
fronts for particular values of Δ and ε. The sole usage of ε-dominance for the Pareto front
approximations may lead to gaps in particular when parts of the front are flat. The Δ-tight
ε-(approximate) Pareto fronts also take into account the distance of the Pareto front toward
the candidate set, leading to better approximations in the Hausdorff sense (see Figure 1).

Figure 1. Gaps in the approximation can occur when ε-dominance is used exclusively in the selec-
tion/archiving of the candidate solutions (left). Δ-tight ε-(approximate) Pareto fronts also consider
the distance of the Pareto front toward the archive (right).

Since one can expect infinitely many solutions for a continuous MOP, it is inevitable
in (continuous) evolutionary multi-objective optimization (EMO) that not all promising
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solutions can be kept during the run of an algorithm. Instead, one has to elect a subset of
candiate solutions in each iteration so that this sequence eventually leads to a “suitable”
representation of the Pareto set/front of the given problem. This process is typically
called “selection” within MOEAs and “archiving” if an external set of candidate solutions
(archive) is maintained during the run of a MOEA (though of course both terms can be
used interchangeably).

Three main classes of MOEAs exist: (a) dominance-based [15–18], (b) decomposition-
based [19–25], and (c) indicator-based [26–30] algorithms. The selection strategies for
MOEAs of class (b) or (c) are rather straightforward: the selection in a decomposition-
based MOEA is done implicitly by the chosen scalarizing functions, and the selection in
an indicator-based MOEA is typically handled via considering the indicator contributions.
These two approaches come on the one hand with a monotonic behavior of the sequence
of approximations (i.e., no deterioration can occur). On the other hand, these selection
strategies do not guarantee convergence toward the best approximation (e.g., [29,31]).
The selection of the first dominance-based MOEAs is based on non-dominated sorting in
combination with niching techniques (e.g., [32–34]). Due to missing elite preservation, none
of these methods converge in the mathematical sense. Later MOEAs such as SPEA [35],
PAES [18], SPEA-II [16], and NSGA-II [15] include such elite preservation leading to much
better overall performance. However, also for these algorithms, no convergence properties
(again, in the mathematical sense) are known. Rudolph [36–39] and Hanne [40–43] have
studied convergence properties of MOEA frameworks. These studies are mainly concerned
with the convergence of individuals of the populations toward the Pareto set/front, while
the magnitudes and the distributions of the resulting populations are not considered.

Archiving strategies with bounded archive size based on adaptive grid selection have
been considered in [44–46]. Bounded archivers in particular for hypervolume approxi-
mations have been proposed in [47,48]. Both archivers yield monotonic behavior in the
approximation qualities of the obtained sequence of archives.

Laumanns et al. considered the class of algorithms GSSA as described above [1,49]
which allows to focus on the archiver under certain (mild) assumptions on the generator. In
both studies, archivers were considered, aiming for several ε approximations of the Pareto
front, where finitely many iterations were considered. Later, further archivers have been
proposed based on ε-dominance using the framework of GSSA to perform convergence
analysis [14,50–54].

In [11], Laumanns and Zenklusen propose two bounded archivers that use adaptive
schemes to obtain ε approximations of the Pareto front. Another adaptive archiving strategy
is proposed in [55] that utilizes a particular discretization of the objective space of the given
problem. A strategy that is based on the convex hull of individual minima in order to
increase diversity of the solutions is proposed in [56].

Recently, the use of external archives has become more popular [57–62] in particular
for the treatment of real-world applications where function evaluations are expensive, and
where it is hence advisable to maintain all promising candidate solutions. Consequently,
most of these archivers are unbounded [63–67]. For the treatment of in particular MOPs
with many objectives—also called many objective problems—MOEAs have been proposed
that utilize two archives, one aiming for convergence and one aiming for diversity [68,69].

3. ArchiveUpdateHD

We will in this section propose and discuss the novel archiver ArchiveUpdateHD.
Since the considerations of the distances as well as the Hausdorff approximations can be
done more accurately for k = 2—where we can assume the Pareto front to locally form
a curve, and hence, the elements of the approximations can be arranged via a sorting in
objective space—we first address the bi-objective case and will afterwards consider the
archiver for problems with k > 2.
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3.1. The Bi-Objective Case

The pseudocode of ArchiveUpdateHD for bi-objective problems is shown in
Algorithm 2. This archiver aims for approximations of the Pareto front of a given BOP
in the Hausdorff sense (i.e., for solutions that are evenly spread along the Pareto front).
The archiver is based (i) on the distances among the candidate solutions (lines 18–36 of
Algorithm 2), (ii) “classical” dominance or elite preservation (lines 5 and 9) as well as (iii)
the concept of ε-dominance (line 5). The archiver can roughly be divided into two parts: an
acceptance strategy to decide if an incoming candidate solution p should be considered
(line 5), and a pruning technique (mainly lines 18–36, but also lines 11–14) which is applied
if the size of the archive has exceeded a predefined budget N of archive entries.

In the following, we will describe ArchiveUpdateHD as in Algorithm 2 in more detail.
This algorithm contains several elements that have to be incorporated in order to guarantee
convergence. After the convergence analysis (Theorem 1), we will discuss more practical
realizations of the algorithm.

In line 5, it is decided if a candidate solution p should be (at least temporarily) added
to the existing archive A. This is the case if (a) none of the entries a ∈ A Θε-dominates p
(Θ ∈ (0, 1) being a safety factor needed to guarantee convergence, see below for practical
realizations), or if (b) none of the entries a ∈ A dominates p and for none of the entries a ∈ A
the distance ‖F(a)− F(p)‖ is less or equal than ΘΔ. Throughout this work, ‖ · ‖ denotes the
Euclidean norm. We stress that this acceptance strategy is identical to the one of the archiver
ArchiveUpdateTight2 [14], which we will need for the upcoming convergence analysis.

If the candidate solution p is accepted, it will be added to A. Next, all other entries
a ∈ A dominated by p will be discarded (lines 8–10). Hence, all archives generated by
ArchiveUpdateHD only contain mutually non-dominated elements (elite preservation). If
the distance ‖F(p)− F(a)‖ is larger than ε for any of these dominated archive entries a,
a “reset” is executed for Δ and ε: Δmin is set to κΔmin (where κ > 1 another safety factor).
Next, Δ and ε are updated using this new minimal value. The idea behind this reset is as
follows: if p ≺ a and the distance of F(a) and F(p) is larger than Δ, then p and a could be
located in different connected components of the set of (local) solutions of the bi-objective
problem. Since the values both of Δ and ε are determined by the length of the (known)
Pareto front, their values have to be set back, since a “jump” to a new connected component
may lead to a new length. See Figure 2 for a hypothetical scenario. The value of Δmin has to
be (slightly) increased in each reset in order to avoid the possible of a cyclic behavior in the
sequence of archives (which, in fact, has not been observed in our computations).

If |A| exceeds the predefined magnitude N, it is decided in lines 18–36 which of the
elements of A has to be discarded (pruning). For k = 2 objectives, we can order all the
entries of the archives (e.g., as done here: in ascending order wrt objective f1). Then, the
vector d ∈ RN of distances can be simply computed via:

di := ‖F(ai+1)− F(ai)‖, i = 1, . . . , N. (8)

For an index m chosen from arg min d, either am or am+1 is then removed from A, which
is done in lines 23–33. The aim of ArchiveUpdateHD is to maintain good approximations
of the end points of the Pareto front. Accordingly, a2, respectively, aN , are always discarded
instead of a1 and aN+1, respectively (lines 23–26). The rationale behind the selection in
lines 28–33 is to keep the archive of size N with the most evenly distributed elements.
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Algorithm 2 ArchiveUpdateHD

Require: Problem (MOP), where k = 2, P: current population, A0: current archive, Δ0 > 0:
current value of Δ, Δmin: minimal value of Δ, Θ ∈ (0, 1), κ > 1: safety factors, N: upper
bound for archive size

Ensure: updated archive A, updated values for Δ, Δmin, and ε
1: A := A0
2: Δ := Δ0
3: ε := (Δ, . . . , Δ)T

4: for all p ∈ P do
5: if � ∃a ∈ A : a ≺Θε p, or � ∃a ∈ A : a ≺ p and ∀a ∈ A : ‖F(a)− F(p)‖ > ΘΔ then
6: A := A ∪ {p}
7: end if
8: for all a ∈ A do
9: if p ≺ a then

10: A := A ∪ {p}\{a}
11: if ‖F(p)− F(a)‖∞ > Δ then � reset Δ and ε
12: Δmin := κΔmin
13: Δ := Δmin
14: ε := (Δ, . . . , Δ)T

15: end if
16: end if
17: end for
18: if |A| = N + 1 then � apply pruning
19: Δ := N+1

N Δ
20: ε := N+1

N ε
21: sort A (e.g., according to f1)
22: compute d ∈ RN as in (8)
23: choose m ∈ arg min d
24: if m = 1 then
25: A := A\{a2} � remove 2nd entry
26: else if m = N then
27: A := A\{aN} � remove 2nd but last entry
28: else
29: dl := ‖F(am+1)− F(am−1)‖
30: dr := ‖F(am+2)− F(am)‖
31: if dl < dr then
32: A := A\{am}
33: else
34: A := A\{am+1}
35: end if
36: end if
37: end if
38: end for
39: return {A, ε, εmin, Δ}

45



Math. Comput. Appl. 2022, 27, 48

Figure 2. A hypothetical scenario that can happen for multi-modal problems: first, a front that is
only locally optimal is detected by the search process and approximated by the archiver. If later, a
candidate p is computed such that F(p) lies on a “better” front, the current values of Δ and ε may not
be adequate any more to suitably approximate this front.

In the following, we investigate the limit behavior of ArchiveUpdateHD.

Theorem 1. Let (MOP) be given and Q ⊂ Rn be compact, and let there be no weak Pareto points
in Q\PQ. Furthermore, let F be continuous and injective, and

∀x ∈ Q and ∀δ > 0 : P(∃l ∈ N : Pl ∩ Bδ(x) ∩Q �= ∅) = 1. (9)

Then, an application of Algorithm 1, where ArchiveUpdateHD (Algorithm 2) is used to update
the archive, leads to a sequence of archives Al , l ∈ N, where the following holds:

(a) There exists a l1 ∈ N and Δ+ > 0 such that

Δl = Δ+, ∀l ≥ l1, with probability one.

(b) There exists with probability one a l2 ∈ N such that Al is a Δ+-tight ε-approximate Pareto
front with respect to (MOP) for all l ≥ l2, where ε = (Δ+, . . . , Δ+)T.

(c)
lim
l→∞

dist(Al , PQ) = 0, with probability one.

(d) There exists a l3 ∈ N such that

dH(F(Al), F(PQ)) ≤ Δ+, ∀l ≥ l3, with probability one.

Proof. We first show that during the run of the algorithm, only finitely many changes
of the value of Δ (and hence also of ε) can occur. Since F is continuous and the domain
Q ⊂ Rn is compact, also the image F(Q) is compact, and hence, in particular bounded.
ArchiveUpdateHD changes the value of Δ in two cases: if (i) a reset of Δ and ε is executed
(line 12) or if (ii) the pruning technique is applied (line 19). In case of (i), the value of Δmin is
increased by a constant factor κ > 1. The value of Δ after the i-th reset is hence equal to or
larger than κiΔ0

min, where Δ0
min > 0 denotes the value of Δmin at the start of the algorithm.

A reset is applied if the distance of the image of the candidate solution p to the image of an
archive element a is larger than the current value of Δ (line 11). Since F(PQ) is bounded,
only a finite number of such resets can be applied during the run of the algorithm.

Case (ii) happens if the magnitude of the current archive is N + 1. New candidate
solutions p are added to the archive in lines 5 and 6 and lines 9 and 10. Lines 9 and 10
describe a dominance replacement which does not increase the magnitude of the archive.
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Hence, such replacements do not lead to an application of the pruning. A candidate p can
be further added to the current archive A if one of the following statements is true (line 5):

E1 � ∃a ∈ A : a ≺Θε p, or

E2 � ∃a ∈ A : a ≺ p and ∀a ∈ A : ‖F(a)− F(p)‖ > ΘΔ
(10)

Since F(Q) is bounded, there exists for every a ∈ Q a (large enough) Δa > 0 so that a ≺Θε p,
where ε = (Δa, . . . , Δa)T . Similarly, ‖F(a)− F(p)‖ < ΘΔa if Δa is large enough. Since in
each pruning step, the value of Δ is increased by the factor of (N + 1)/N and since only
finitely many resets are executed, also only finitely many prunings can be applied during
the run of the algorithm.

Note that ArchiveUpdateHD differs from ArchiveUpdateTight2 in two parts: the reset
strategy (lines 11–15) and the pruning technique (lines 18–37), and that both these parts
come with a change of the values of Δ and ε. In other words, ArchiveUpdateHD is identical
to ArchiveUpdateTight2 as long as no change in Δ and ε occurs. For this case, we can
hence apply the theoretical results on ArchiveUpdateTight2 for ArchiveUpdateHD. Now,
consider a fixed value of Δ (and hence also ε). During the run, it can either be the case
that (i) all magnitudes of Al are less than or equal to N (i.e., no pruning is applied), or
that (ii) this magnitude is N + 1 at one point, leading to an application of the pruning
technique. In case (i), we can use Theorem 7.4 of [54] on ArchiveUpdateTight2: there exists
with probability of one a t̄ ∈ N such that the sets F(Al) form a Δ-tight ε-approximate Pareto
front for all l ≥ l̄. Note that once F(Al) forms such an object, no more resets can occur:
assume there exists a candidate solution p that dominates an element a ∈ Al , and where
‖F(p)− F(a)‖∞ > Δ. The latter means that

max
i=1,...,k

fi(a)− fi(p) > Δ (11)

which in turn means that a does not ε-approximate p, which is a contradiction to the
assumption on Al . In case of (ii), the value of Δ is simply not large enough for the N-
element archive to form a Δ-tight ε- approximate Pareto front. Again, by Theorem 7.4
of [54], there exists in this case with a probability of one a finite iteration number where the
magnitude will exceed N. As discussed above, the pruning can only be applied finitely
many times during the run of the algorithm. Hence, the value of Δ will, with a probability
of one, stay fixed from one iteration onwards, which proves part (a).

Parts (b) and (c) follow from Theorem 7.4 of [54] and part (a), and finally, part (d)
follows from parts (b) and (c) and the definition of the Hausdorff distance.

Remark 1. (a) Equation (9) is an assumption that has to be made on the generation process. It
means that every neighborhood of every feasible point x ∈ Q will be “visited” with probability
one by Generate() after finitely many steps. For MOEAs, this, e.g., ensured if Polynomial
Mutation [70,71] is used or another mutation operator for which the support of the probability
density functions equal to Q (at least for box-constrained problems). We hence think that this
assumption is rather mild.

(b) The complexity of the consideration of one candidate solution p is O(Nlog(N)), which is
determined by the sorting of the current archive A in line 20.

(c) Θ ∈ (0, 1) and κ > 1 are safety factors needed to guarantee the convergence properties. In
our computations, however, we have not observed any impact of these values if both are chosen
near to one. We hence suggest to use Θ = κ = 1 (i.e., practically not to use these safety
factors).

(d) The above consideration is done for ε = (Δ, . . . , Δ)T ∈ Rk, i.e., using the same value for
all entries of ε. If the values for the objectives along the Pareto front differ significantly, one
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can of course instead use Δ = ε = (Δ1, . . . , Δk)
T using different values Δi. In that case, the

following modifications have to be done: (i) the last condition in line 5 has to be replaced by

� ∃a ∈ A : | fi(a)− fi(p)| ≤ Δi, i = 1, . . . , k.

Furthermore, (ii) the condition for the reset in line 11 has to be replaced by

∃i ∈ {1, . . . , k} : | fi(p)− fi(a)| > Δi.

(e) The value of Δ computed throughout the algorithm yields an approximation quality of the
archivers in the Hausdorff sense. The theoretical upper bound of the final value Δ+ is twice
the value of the actual Hausdorff approximation as the following discussion shows (refer to
Figure 3): assume we are given a linear front with slope −1, and we are given a budget of
N = 2 elements (the discussion is analog for general N). The ideal archive as computed by
ArchiveUpdateHD is in this case A = {a1, a2}, where the ai’s are the end points of the Pareto
set. Assume we have F(a1) = (0, 1)T and F(a2) = (1, 0)T; then, the Hausdorff distance of
the Pareto front and A is 1/2 determined by the point ym = (1/2, 1/2)T. Given this archive,
for any value Δ < 1 and assuming that F(Q) is large enough, there exists a candidate p such
that p is not dominated by a1 or a2 and that ‖F(ai)− F(p)‖ > Δ, i = 1, 2. Hence, p will be
added to the archiver—and later on discarded (lines 23–26). The latter leads to an increase
of Δ.
On the one hand, one suggesting strategy would be to take 1

2 Δ+ as a Hausdorff approximation
of the Pareto front in particular, since most Pareto fronts have at least one element where
the slope of the tangent space is −1. On the other hand, the use of ε-dominance prevents
that the images F(a), a ∈ A, are perfectly evenly distributed along the Pareto front so that
1
2 Δ+ is not that accurate for some problems. In fact, this factor of two can only be observed
for linear fronts, while Δ+ already yields a good approximation in general (see, e.g., the
subsequent results for MOPs with more than two objectives). However, we have observed that
the following estimation gives even better approximations of the Hausdorff distances: given
A = {a1, . . . , aN}, which is sorted (e.g., according to objective f1), the current Hausdorff
approximation h is computed as follows:

d̃i :=

{ ‖F(ai+1)− F(ai)‖, if ‖F(ai+1)− F(ai)‖ ≤ 2Δ

0, else
, i = 1, . . . , N − 1

h :=
1
2

max
i=1,...,N−1

d̃i.

(12)

Note that the distance is set to 0 if the distance between two neighboring candidate solutions
is larger or equal to 2Δ, which has been done to take into account approximations of Pareto
fronts that fall into several connected components.

(f) Several norms are used within the algorithm. While one is—except in line 11, see the above
proof—in principle free for the choice of the norms, we suggest taking the infinity norm in line
5 in order to reduce the issue mentioned in the previous part, and the 2 norm in lines 28 and
29 in order to obtain a (slighly) better distribution of the entries along the Pareto front.

Algorithm 3 shows the modifications of ArchiveUpdateHD discussed above, which
have been used for the calculations presented in this work. Hereby, Δmin ∈ Rk

+ denotes the
vector of minimal elements for each entry Δi.
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Figure 3. Linear Pareto front with slope −1. If for N = 2, the archive is given by A = {a1, a2} such
that F(a1) and F(a2) are the end points of the Pareto front, then the Hausdorff distance of A and
the Pareto front is given by h = ‖F(a1)− ym‖∞, where ym is the arithmetic mean of F(a1) and F(a2).
For Δ < 2h, there may exist candidate solutions p that will be considered by the archive (line 5 of
Algorithm 1) but discarded in the same step (lines 23 to 26 of Algorithm 1), leading to an increase
of Δ.

Remark 2. For the performance assessment of MOEAs, it is typically advisable to take instead of
the Hausdorff distance dH the averaged Hausdorff distance Δp. The main reason for this is that
MOEAs may compute a few outliers in particular if the MOP contains weakly dominated solutions
that are not optimal (also called dominance resistance solutions [72]). On the other hand, we stress
that Δp, opposed to dH, is not a metric in the mathematical sense, since the triangle inequality does
not hold. We refer, e.g., to [13,38,73,74] for more discussion on this matter.

In the following, we discuss one possibility to obtain an approximation of the value of Δp
from a given archive A. To this end, we first investigate the value of Δp if the elements of A are
perfectly located around a linear connected Pareto front (if N is large enough, we can expect that
this approximation works fine for any connected Pareto front). That is, all ai values are optimal.
Furthermore, if A is sorted, F(a1) and F(aN) are the end points of the Pareto front, and the distance
of two consecutive elements F(ai) and F(ai+1) is given by 2h (leading to dH = h). Since all the ai
values are optimal, the Δp value is hence given by the value of IGDp, which can be computed as
follows:

Δp(F(A), F(PQ)) = IGDp(F(A), F(PQ)) =

(
1

F(aN)− F(a1)

∫ F(aN)

F(a1)
dist(t, F(A))pdt

) 1
p

=

(
1

(N − 1)2h
2(N − 1)

∫ h

0
tpdt
) 1

p

=

(
1
h

[
1

p + 1
tp+1

]h

0

) 1
p

=

(
1
h

1
p + 1

hp+1
) 1

p

= p

√
1

p + 1
· h

(13)

Hereby, we have used the formulation of IGDp for continuous Pareto fronts as discussed in [73].
It remains to compute h. Since the assumption that all the images of the ai values are evenly spread
is ideal, we cannot simply take 1

2‖F(ai+1)− F(ai)‖ for an arbitrarily index i ∈ {1, . . . , N − 1}.
Instead, it makes sense to use the average of these distances:
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h ≈ ∑N−1
i=1 d̃i

2m
, (14)

where d̃i is as in (12) and m denotes the number of elements of d̃i that are not equal to zero. This
leads to the approximation dp of the averaged Hausdorff distance Δp of the Pareto front by a given
archive A:

dp := p

√
1

p + 1
· ∑N−1

i=1 d̃i

2m
. (15)

In order to obtain a first impression on the effect of the archiver, we apply it to several
test problems. More precisely, we use ArchiveUpdateHD together with the generator,
which is simply choosing candidate solutions uniformly at random from the domain of
the problem. As test problems, we use CONV (convex front), DENT ([75], convex-concave
front), RUD1 and RUD2 (disconnected fronts), LINEAR (linear front) and RUD3 (convex
front). The first five test problems are uni-modal, while RUD3 has next to the Pareto front
eight local fronts. RUD3 is taken from [76], and RUD1 and RUD2 are straightforward
modifications of RUD3 to obtain the given Pareto front shapes.

Figure 4 shows the final approximations of the fronts using N = 30 for the archive
size and initial values of Δ small enough so that this threshold is reached for all problems.
As it can be seen, in all cases, evenly distributed solutions along the Pareto fronts have
been obtained. Figure 5 shows the actual Hausdorff and averaged Hausdorff values of the
computed archives in each step for one run of the algorithm (dH and Δ2, i.e., p = 2 has been
used for the averaged Hausdorff distance), together with their approximations h and d2.
For all problems, the archiver is capable of quickly determining a good approximation of
both dH and Δ2 during the run of the algorithm. Tables A1 and A2 show the approximation
qualities averaged over 30 independent runs, which support the observations from Figure 5.
Figure 6 shows the evolution of the value of Δ during one run of the algorithm for DENT
and RUD3. For the uni-modal problem DENT, the value of Δ is essentially increasing
monotonically (i.e., not counting the first few iteration steps), while for the multi-modal
problem RUD3, more than 10 restarts occur. Nevertheless, in both cases, a final value Δ+ is
reached, which is in accord with Theorem 1.

Figure A1 shows the box collections

C(A f ) :=
⋃

a∈A f

BΔ f (F(a)) (16)

of the final archives A f and the final value Δ f for the test problems, where BΔ(x) denotes
the Δ-ball around x using the maximum norm. The figure indicates that the Hausdorff
distance of F(A f ) and the respective Pareto fronts is indeed less or equal to Δ f for all
problems.
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Algorithm 3 {A, Δ, h} := ArchiveUpdateHD(P, A0, Δ0, N)

Require: Problem (MOP), where k = 2, P: current population, A0: current archive,
Δ0 ∈ Rk

+: current values of Δ, N: upper bound for archive size
Ensure: updated archive A, updated values for Δ, Hausdorff approximation h

1: A := A0
2: Δ := Δ0
3: ε := Δ
4: for all p ∈ P do
5: if � ∃a ∈ A : a ≺ε p, or � ∃a ∈ A : a ≺ p and � ∃a ∈ A : | fi(a)− fi(p)| ≤ Δi,

i = 1, . . . , k then
6: A := A ∪ {p}
7: end if
8: for all a ∈ A do
9: if p ≺ a then

10: A := A ∪ {p}\{a}
11: if ∃i ∈ {1, . . . , k} : fi(a)− fi(p) > Δi then � reset Δ and ε
12: Δ := Δmin
13: ε := Δ
14: end if
15: end if
16: end for
17: if |A| = N + 1 then � apply pruning
18: Δ := N+1

N Δ
19: ε := N+1

N ε
20: sort A (e.g., according to f1)
21: compute d ∈ RN as in (8)
22: choose m ∈ arg min d
23: if m = 1 then
24: A := A\{a2} � remove 2nd entry
25: else if m = N then
26: A := A\{aN} � remove 2nd but last entry
27: else
28: dl := ‖F(am+1)− F(am−1)‖2
29: dr := ‖F(am+2)− F(am)‖2
30: if dl < dr then
31: A := A\{am}
32: else
33: A := A\{am+1}
34: end if
35: end if
36: end if
37: end for
38: sort A (e.g., according to f1) � compute Hausdorff approximation
39: compute d̃i, i = 1, . . . , |A| − 1 as in (12)
40: h := 1

2 maxi=1,...,|A|−1 d̃i
41: return {A, Δ, h}
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(a) CONV (b) DENT

(c) RUD1 (d) RUD2

(e) LINEAR (f) RUD3
Figure 4. Numerical results of ArchiveUpdateHD on six BOPs with different shapes of the Pareto fronts.
For the sake of clarity, we omitted the fronts that already become apparent by the approximations.
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(a) CONV (b) DENT (c) RUD1

(d) RUD2 (e) LINEAR (f) RUD3

Figure 5. Hausdorff and averaged Hausdorff approximations (dh and Δ2, respectively) obtained by
ArchiveUpdateHD for one single run for six bi-objective problems (see Figure 4) together with their
approximations h and d2. dH is plotted black solid, h is black dashed, Δ2 is blue solid, and d2 is blue
dashed.

(a) DENT (b) RUD3

Figure 6. Evolution of the value of Δ for one run of the algorithm on DENT and RUD3.

3.2. The General Case

Next, we consider the archiver for MOPs with more than two objectives. Algorithm 4
shows the pseudocode of ArchiveUpdateHD for such problems. The archiver is essentially
identical to the one for BOPs; however, it comes with two modificatons, since one cannot
expect the Pareto front to form a one-dimensional object any more and another one prevents
too many unnecessary resets during the run of the algorithm.
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1. The distances cannot be be sorted any more as in (8). Instead, one has to consider the
distances

di,j = ‖F(ai)− F(aj)‖, i, j = 1, . . . , |A|, j > i, (17)

for a given archive A. Furthermore, more sophisticated considerations of the distances
as, e.g., in lines 27 and 28 of Algorithm 3 cannot be considered any more. Instead, we
have chosen to first compute

dim ,jm ∈ arg min
i,j=1,...,N+1

j>i

di,j, (18)

and then to remove al from the archiver, where l is chosen randomly from {im, jm}.
Similar as for the bi-objective case, an exception can of course be made for the best
found solutions for each objective value.

2. The approximation of the Hausdorff distance cannot be done as in (12) any more.
Instead, we choose the value of Δ as an approximation for dh(F(A), F(PQ)), which is
motivated by Theorem 1.

3. The reset is completed if there exists an entry a of the current archive A and a candidate
solution p that dominates a and

fi(a)− fi(p) > Δi i = 1, . . . , k.

That is, the improvement is larger than Δi for all objectives. It has been observed that
if one only asks for an improvement in one objective (as done for the bi-objective case),
too many resets are performed in particular for MOPs that contain a “flat” region of
the Pareto front.

Note that none of these changes affects the statements made in Theorem 1. Hence, the
statements of Theorem 1 also hold if Algorithm 4 is used for MOPs with k > 2 objectives.
We stress that this algorithm can of course also be used for the treatment of BOPs; however,
in that case, Algorithm 3 seems to be better suited, since both distance considerations and
Hausdorff approximation are more sophisticated.

Figure 7 shows an application of Algorithm 4 on the test function DTLZ2 with three
objectives (concave and connected Pareto front) for N = 300 and N = 500. The evolution
of the approximated value Δ of the Hausdorff distance dh(F(A), F(PQ)) together with
the real value can be found in Figure 8. Hereby, we have used ArchiveUpdateHD as the
external archiver of NSGA-II. The same result could have been obtained using randomly
chosen test points within the domain Q, however, for a much higher amount of test points.
Figures 9 and 10 show the respective results for DTLZ7, whose Pareto front is disconnected
and convex-concave. In all cases, the archiver is capable of finding evenly spread solutions
along the Pareto front, and the value of Δ is already after some iterations quite close to the
actual Hausdorff distance. In order to suitably handle weakly optimal solutions, we have
used the approach we describe in the following remark.

Remark 3. It is known that distance-based archiving/selection for MOPs that contains weakly
optimal solutions that are not optimal (dominance-resistant solutions) may lead to unsatisfactory
results, since candidates may be included in the archive that are far away from the Pareto front.
In [77], it has been suggested to consider the modified objectives

f̃i(x) = (1− α) fi(x) +
α

m

k

∑
i=1

fi(x), i = 1, . . . , k, (19)

where α > 0 is “small”, instead of the orginal objectives fi, i = 1, . . . , k. We have adopted this
approach for the treatment of the ZDT and DTLZ functions in this work, using α = 0.02.
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Algorithm 4 {A, Δ} := ArchiveUpdateHD(P, A0, Δ0, N)

Require: Problem (MOP), P: current population, A0: current archive, Δ0 ∈ Rk
+: current

value of Δ, N: upper bound for archive size
Ensure: updated archive A, updated value of Δ

1: A := A0
2: Δ := Δ0
3: ε := Δ
4: for all p ∈ P do
5: if � ∃a ∈ A : a ≺ε p, or � ∃a ∈ A : a ≺ p and � ∃a ∈ A : | fi(a)− fi(p)| ≤ Δi, i =

1, . . . , k then
6: A := A ∪ {p}
7: end if
8: for all a ∈ A do
9: if p ≺ a then

10: A := A ∪ {p}\{a}
11: if fi(a)− fi(p) > Δi, i = 1, . . . , k, then � reset Δ and ε
12: Δ := Δmin
13: ε := Δ
14: end if
15: end if
16: end for
17: if |A| = N + 1 then � apply pruning
18: Δ := N+1

N Δ
19: ε := N+1

N ε
20: compute di,j as in (17)
21: choose dim ,jm ∈ arg min i,j=1,...,N+1

j>i
di,j

22: choose l randomly from {im, jm}
23: A := A\{al}
24: end if
25: end for
26: return {A, Δ}

(a) N = 300 (b) N = 500

Figure 7. Results of ArchiveUpdateHD on DTLZ2 for different values of N.
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(a) N = 300 (b) N = 500

Figure 8. Real (blue) and approximated (red) Hausdorff distances during the run of one algorithm
for DTLZ2.

(a) N = 300 (b) N = 500

Figure 9. Results of ArchiveUpdateHD on DTLZ7 for different values of N.

(a) N = 300 (b) N = 500

Figure 10. Real (blue) and approximated (red) Hausdorff distances during the run of one algorithm
for DTLZ7.
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Remark 4. We finally stress that the archiver A only reaches the magnitude N if Δ (and hence
ε) is chosen “small enough”, which does not represent a drawback in our opinion. In real-world
applications, the values of Δ have a physical meaning. As a hypothetical example, consider that
one objective in the design of the car is its maximal speed (e.g., f1 = smax), and the decision maker
considers two cars to have different maximal speeds if smax differs by at least 10 km/h. In this case
Δ1 = 10 is a suitable choice for ArchiveUpdateHD. Hence, depending on these values and the size
of the Pareto front, it may happen that less than N elements are needed to suitably represent the
solution set. In turn, if Δ+ is (significantly) larger than the target values, this gives a hint to the
decision maker that N has to be increased and that the computation has to be repeated in order to
obtain a “complete” approximation. Figure 11 shows two results of ArchiveUpdateHD on CONV
for two different starting values of Δ.

(a) Δ0 = 0.01 (b) Δ0 = 0.05

Figure 11. Results of ArchiveUpdateHD on CONV for two different initial values of Δ using N = 30.
For Δ0 = 0.01, the final archive contains 30 elements, while there are only 28 elements for Δ0 = 0.05.
The solutions on the left are more evenly spread along the Pareto front due to distance considerations
in the pruning technique. For the solution on the right, no pruning technique has been applied during
the run of the algorithm.

4. Numerical Results

In this section, we show some more numerical results to further demonstrate the
advantage of the proposed archiver. As base MOEAs, we have chosen to take the state-
of-the-art algorithms NSGA-II (dominance based), MOEA/D (decomposition based), and
SMS-EMOEA (indicator based). We have used the implementations of the algorithms as
well as the reference fronts provided by PlatEMO [78]. For sake of a fair comparison, we
will in the following equip these MOEAs with ArchiveUpdateHD as an external archiver,
where the upper bound N is chosen equal to the population sizes. For each run of an
algorithm, we have fed the archiver with exactly the same candidate solution as for the
respective base MOEA.

Motivated by Theorem 1 and by the discussion made in Remark 2, we will primarily
use Δp (p = 2) for the performance assessment of the MOEA results. However, we will also
use the Hpyervolume indicator [79], leading to some surprising results.

We first make a comparison with NSGA-II to investigate possible cyclic behavior
during the run of an algorithm. It is known that distance-based selection/archiving
strategies may lead to such cyclic behavior, which means that from a certain stage of
the search, no more improvements can be expected (and in particular no convergence).
The selection strategy of NSGA-II is mainly distance based (since from a certain point
on, all individuals of the population are mutually non-dominated). For this, we have
set both population size and N to 50 and have run NSGA-II for 1000 generations, using
Pc = 1 and ηc = 20 for SBX, and Pm = 1/N and ηm = 20 for polynomial mutation.
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For ArchiveUpdateHD, we have chosen the first ε0 small enough so that archive size
|A| = N was reached for all problems. In Figure 12, typical evolutions of the values of
the approximation qualities Δp are shown over time for six selected BOPs (similar plots
are obtained for all problems considered in this study). Hereby, “NSGA-II” stands for the
population of the MOEA, and “NSGA-II-A” stands for the respective archive that was fed
with the same candidate solutions as NSGA-II. While NSGA-II reveals clear cyclic behavior
in all cases, this is not the case for NSGA-II-A. The latter is due to the acceptance strategy
of ArchiveUpdateHD that is based on ε-dominance. As discussed above, the value of Δ
(and hence also of ε) will become large enough during the run of the algorithm so that only
dominance replacements will occur, which, however, cannot lead to cyclic behavior.

Apart from the “quasi-monotonic” behavior, one can also observe that the Δ2 values
of NSGA-II-A are for all test problems significantly lower than the ones of NSGA-II.

(a) CONV (b) DENT (c) RUD1

(d) RUD2 (e) ZDT1 (f) ZDT3

Figure 12. Approximation qualities of the Pareto fronts (measured by Δ2) during one run of the
algorithm for NSGA-II (blue) and the archives NSGA-II-A (black) for six selected BOPs.

Next, we investigate the performance of ArchiveUpdateHD as an external archive for
the three MOEAs using an extended set of test functions. We first consider bi-objective
problems. For this, we have chosen the ZDT problems [80], where we have used the
modified objectives as expressed in (19) using α = 0.02 to handle weak Pareto optimal
solutions that are not optimal. Next to these six test problems, we have taken another four
BOPs, which were selected due to the shapes of their fronts: LIN ([81], linear front), CONV
(convex front), as well as DENT and SSW [82], which have both convex–concave Pareto
fronts. The boxplots of the results are shown in Figures 13 and 14, based on 30 independent
runs, for each using 1000 generations and a population size of 50. The Wilcoxon rank-sum
is shown in Table 1. In the following, we will compare the results of the base algorithms
against the respective solutions that use ArchiveUpdateHD.
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(a) ZDT1 (b) ZDT2 (c) ZDT3

(d) ZDT4 (e) ZDT5 (f) ZDT6

Figure 13. Boxplots for the obtained results for the ZDT test functions.

(a) DENT (b) SSW

(c) CONV (d) LIN

Figure 14. Boxplots for the obtained results for DENT, SSW, CONV and LIN.
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The performance of the external archives is better in 10 out of 10 cases for NSGA-II, in
9 out of 10 cases for MOEA/D, and in 8 out of 10 cases for SMS-EMOA. ArchiveUpdateHD
loses against the MOEA/D and SMS-EMOA on test problem LIN, which has a linear
and thus most possible regular Pareto front. Both MOEA/D and SMS-EMOA are able
to compute perfect solutions for this problem. Such perfect approximations cannot be
expected from ArchiveUpdateHD due to its acceptance strategy. While this strategy is
responsible for suppressing any cyclic behavior, it also prevents that all the solutions even
of the limit archive are perfectly evenly spread along the Pareto front. For more complex
Pareto fronts, the situation, however, changes. Figures A2 and A3 show the average results
obtained by the different methods on problems DENT and ZDT, respectively. For DENT,
the use of ArchiveUpdateHD leads in all three cases to significantly better Pareto front
approximations. This is similar to ZDT3, while the improvements are less, since all three
base MOEAs can already detect very good approximations.

Table 1. Comparison (wins/ties/losses) of the results of the base MOEAs against their archive
equipped variants on the bi-objective test problems. The Wilcoxon rank-sum test has been used for
statistical significance, where p-value < 0.05.

Method 1 Method 2 Wins Ties Losses

NSGA-2 NSGA-2-A 0 0 10
MOEA/D MOEA/D-A 1 0 9
SMS-EMOA SMS-EMOA-A 2 0 8

In a next step, we investigate the effect of ArchiveUpdateHD on several test problems
with k = 3 objectives. For this, we have chosen the seven DLTZ test problems, the test
functions IDTLZ1 and ITDLZ2 [21] with “inverted” fronts, and MaF1 to 5 [83]. Table 2
shows the Wilcoxon rank-sum for these 14 test problems using the indicators Δp, HV, as
well as the classical Hausdorff distance dH . Figure A4 shows the boxplots for all algorithms
and test problems for Δp, Figures A5 and A6 show the results of the algorithms on IDTLZ1
and MaF2, respectively, and Figure A7 shows the selected behaviors of the Hausdorff
approximations. For the latter, we have taken the median runs with respect to Δp. As it
can be seen from Table 2, the use of ArchiveUpdateHD as the external archiver is highly
beneficial in almost all cases. More precisely, starting with Δp, NSGA-II-A is better than
NSGA-II in 12 out of 14 cases, and it only becomes (slightly) beaten on DTLZ5 and 6, which
is likely owed to the degeneration the Pareto fronts of these two test problems (which has to
be investigated in more detail in the future). MOEAD-A is superior to MOEAD in 10 out of
14 cases with one tie (DTLZ4) and 3 losses (DLTZ1-3), which is due to the regular structure
of these Pareto fronts where MOEA/D can hardly be beaten. Finally, SMS-EMOA-A yields
better results in all of the 14 cases. The situation is quite similar when considering the other
two performance indicators. While this was expected for dH , the results are surprising for
HV: note that SMS-EMOA-A also outperforms SMS-EMOA on all of the 14 test functions
when considering the hypervolume indicator.

Finally, Figures A8 and A9 show evolutions of the obtained Hausdorff distances of
NSGA-II-A for the same test problems but now using k = 4 and k = 5 objectives. The
results already give evidence that the values of Δ obtained by ArchiveUpdateHD yield
satisfying approximations of the actual values of dH also for problems with more objectives.
The only exceptions are DTLZ5 and DTLZ6 (both for four and five objectives) as well as
MaF4 for k = 5. By Theorem 1, we know that the runs of the algorithms have simply not
been long enough, while it is in turn unclear how long these runs should have been. While
these results are satisfying, more investigation has to be done in particular for the treatment
of many objective problems, which we leave for future study.
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Table 2. Comparison (wins (1) / ties (0) / losses (−1)) of the results of the base MOEAs against their
archive equipped variants on the 14 three-objective test problems. The Wilcoxon rank-sum test has
been used for statistical significance, where p-value < 0.05.

Indicator Method 1 Method 2 Result GroupCount

Δ2 NSGA-2 NSGA-2-A −1 12
Δ2 NSGA-2 NSGA-2-A 0 0
Δ2 NSGA-2 NSGA-2-A 1 2

Δ2 MOEAD MOEAD-A −1 10
Δ2 MOEAD MOEAD-A 0 1
Δ2 MOEAD MOEAD-A 1 3

Δ2 SMS-EMOA SMS-EMOA-A −1 14
Δ2 SMS-EMOA SMS-EMOA-A 0 0
Δ2 SMS-EMOA SMS-EMOA-A 1 0

HV NSGA-2 NSGA-2-A −1 11
HV NSGA-2 NSGA-2-A 0 1
HV NSGA-2 NSGA-2-A 1 2

HV MOEAD MOEAD-A −1 9
HV MOEAD MOEAD-A 0 1
HV MOEAD MOEAD-A 1 4

HV SMS-EMOA SMS-EMOA-A −1 14
HV SMS-EMOA SMS-EMOA-A 0 0
HV SMS-EMOA SMS-EMOA-A 1 0

dH NSGA-2 NSGA-2-A −1 13
dH NSGA-2 NSGA-2-A 0 1
dH NSGA-2 NSGA-2-A 1 0

dH MOEAD MOEAD-A −1 10
dH MOEAD MOEAD-A 0 1
dH MOEAD MOEAD-A 1 3

dH SMS-EMOA SMS-EMOA-A −1 14
dH SMS-EMOA SMS-EMOA-A 0 0
dH SMS-EMOA SMS-EMOA-A 1 0

5. Conclusions and Future Work

In this paper, we have presented and analyzed the archiving strategy ArchiveUp-
dateHD for use within set-based stochastic search algorithms such as multi-objective evolu-
tionary algorithms (MOEAs) for the treatment of multi-objective optimization problems
(MOPs). ArchiveUpdateHD is a bounded archiver that is based on distance dominance,
ε-dominance and the distances among the candidate solutions and that aims for evenly
spread solutions along the Pareto front of a given MOP. We have shown that the images
F(Ai) of the sequence of archives Ai generated by this archiver form under certain (mild)
conditions of the process to generate candidate solutions with a probability of one of a
Δ+-approximation of the Pareto front in the Hausdorff sense, and all entries of Ai converge
to Pareto optimal solutions with a probability of one and for i → ∞. Furthermore, the
value Δ+ is computed by ArchiveUpdateHD during the run of the algorithm (without
any prior knowledge of the Pareto front). Since this value represents the maximal error
in the representation, it is of important value for the decision maker (DM). In particular,
if the magnitude of the archives reaches the pre-defined value N, the value of Δ+ gives a
feedback if the approximation is “complete enough” or not. Empirical studies on several
benchmark test problems have shown the benefit of the novel strategy, among others, that
the obtained value Δ+ gives a good approximation of the actual Hausdorff approximation.
For bi-objective problems, we have presented an alternative way to compute this value,
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which can even be considered to be tight from the practical point of view. Finally, we have
used ArchiveUpdateHD as the external archiver for three state-of-the-art MOEAs (NSGA-II,
MOEA/D, and SMS-EMOA), indicating that it is capable of significantly improving the
overall performance of these algorithms.

One important next step which we will leave for future work is to use the mechanisms
behind ArchiveUpdateHD as the selection strategy within an MOEA. If an external archiver
is used, two archives (instead of only one) have to be maintained, leading to an additional
overhead, which could be avoided. It is hence intended to utilize ArchiveUpdateHD to
design a new class of MOEAs that aims for (averaged) Hausdorff approximations of the
Pareto fronts (as, e.g., done in [84–86]).
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Appendix A

Table A1. Hausdorff distances dH and approximations h computed by ArchiveUpdateHD for the six
bi-objective problems.

Problem Mean dH std dH Mean h std h

CONV 0.0345 0.0014861 0.036105 0.0016771
DENT 0.15428 0.012059 0.15872 0.0091187
RUD1 0.11337 0.0075653 0.10027 0.024311
RUD2 0.11295 0.0083812 0.085445 0.038149
LINEAR 0.02094 0.0019671 0.01977 0.0068899
RUD3 0.035354 0.0023404 0.025694 0.011484

Table A2. Averaged Hausdorff distances Δ2 and approximations d2 computed by ArchiveUpdateHD
for the six bi-objective problems.

Problem Mean Δ2 std Δ2 Mean d2 std d2

CONV 0.016626 0.00021014 0.01602 4.9072 × 10−5

DENT 0.070802 0.00075385 0.069309 0.00036096
RUD1 0.052171 0.00072633 0.050631 0.0022879
RUD2 0.050967 0.00068389 0.049108 0.00034928
LINEAR 0.014494 0.00033184 0.013892 0.00018454
RUD2 0.016653 0.00028272 0.01595 0.00034355
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(a) CONV (b) DENT

(c) RUD1 (d) RUD2

(e) LINEAR (f) RUD3

Figure A1. The box coverings C(A f ) for the final archives incidate that the Hausdorff distance
between F(A f ) and the Pareto fronts is less than the final value Δ f computed by ArchiveUpdateHD
for all test problems.
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(a) NSGA-II (b) NSGA-II-A

(c) MOEA/D (d) MOEA/D-A

(e) SMS-EMOA (f) SMS-EMOA-A

Figure A2. Numerical results of the different algorithms and archiving/selection strategies on DENT.
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(a) NSGA-II (b) NSGA-II-A

(c) MOEA/D (d) MOEA/D-A

(e) SMS-EMOA (f) SMS-EMOA-A

Figure A3. Numerical results of the different algorithms and archiving/selection strategies on ZDT3.
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(a) DTLZ1 (b) DTLZ2 (c) DTLZ3 (d) DTLZ4

(e) DTLZ5 (f) DTLZ6 (g) DTLZ7 (h) IDTLZ1

(i) IDTLZ2 (j) MaF1 (k) MaF2 (l) MaF3

(m) MaF4 (n) MaF5

Figure A4. Boxplots for the considered three-objective test functions.
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(a) NSGA-II (b) NSGA-II-A

(c) MOEA/D (d) MOEA/D-A

(e) SMS-EMOA (f) SMS-EMOA-A

Figure A5. Numerical results of the different algorithms and archiving/selection strategies on IDTLZ1
for k = 3.
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(a) NSGA-II (b) NSGA-II-A

(c) MOEA/D (d) MOEA/D-A

(e) SMS-EMOA (f) SMS-EMOA-A

Figure A6. Numerical results of the different algorithms and archiving/selection strategies on MaF2
for k = 3.
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(a) DTLZ1 (b) DTLZ2 (c) DTLZ3 (d) DTLZ4

(e) DTLZ5 (f) DTLZ6 (g) DTLZ7 (h) IDTLZ1

(i) IDTLZ2 (j) MaF1 (k) MaF2 (l) MaF3

(m) MaF4 (n) MaF5

Figure A7. Evolution of the Hausdorff distances dH(F(A), F(PQ)) of NSGA-II-A and the computed
approximations Δ for several test functions, using k = 3 objectives.
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Figure A8. Evolution of the Hausdorff distances dH(F(A), F(PQ)) of NSGA-II-A and the computed
approximations Δ for several test functions, using k = 4 objectives.
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Figure A9. Evolution of the Hausdorff distances dH(F(A), F(PQ)) of NSGA-II-A and the computed
approximations Δ for several test functions, using k = 5 objectives.
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Abstract: In this paper, we study the multi-objective optimization of the viscous boundary condition
of an elastic rod using a hybrid method combining a genetic algorithm and simple cell mapping
(GA-SCM). The method proceeds with the NSGAII algorithm to seek a rough Pareto set, followed
by a local recovery process based on one-step simple cell mapping to complete the branch of the
Pareto set. To accelerate computation, the rod response under impulsive loading is calculated with
a particular solution method that provides accurate structural responses with less computational
effort. The Pareto set and Pareto front of a case study are obtained with the GA-SCM hybrid method.
Optimal designs of each objective function are illustrated through numerical simulations.

Keywords: multi-objective optimization; genetic algorithm; simple cell mapping; rod vibration;
mass–damper–spring termination; impulse response

1. Introduction

Structures with viscous boundaries have been applied to diverse areas for vibration
reduction [1], sound absorption [2], and boundary control [3]. One recent example is the
railway bridge design for high-speed trains where the soil interacting with the bridge has
been modeled as mass–damper–spring terminations of the structure [4]. The best design
of structures has always been the pursuit of engineers. The optimal structural design
must usually accommodate multiple objectives such as the settling time of vibrations, the
response amplitude, and the shaping of the frequency response, leading to multi-objective
optimization problems (MOPs). This paper presents a study of the multi-objective optimal
design of a one-dimensional elastic rod with a mass–damper–spring termination.

The multi-objective nature of the optimization problem leads to a set of optimal
solutions called the Pareto set, making set-oriented methods such as simple cell mapping
(SCM) [5] suitable for solving such problems. The cell mapping method was initially
developed by Hsu [6] for investigating the global behavior of nonlinear dynamical systems,
then extended by Sun and his coworkers [7–9] for MOPs. The method seeks optimal
solutions by constructing cell mappings based on the local dominance relation of cells in
the discretized design space until the optimal solutions are achieved. Although the method
is effective for low-dimensional problems, it suffers from the curse of dimensionality for
high-dimensional problems because the searching space grows exponentially with the
increase of the dimensions.

In terms of solving MOPs with relatively high dimensions, the evolutionary algo-
rithms such as the genetic algorithm (GA) [10], immune algorithm [11], particle swarm
optimization (PSO) [12], and ant colony optimization [13] are the mainstream methods
for MOPs. The evolutionary algorithms are stochastic methods that mimic the biological
evolutionary process using the evolution laws defined based on the Pareto dominance
of fitness functions. Such methods can escape the local optima and rapidly discover the
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domains containing the solutions. However, the results of evolutionary algorithms can be
sensitive to the selection of the hyperparameters.

Recently, Sun and colleagues [5,14] proposed a hybrid method that incorporates
NSGAII and simple cell mapping (SCM). The method begins with NSGAII to generate a
rough set from several generations such that the domains containing optimal solutions can
be outlined. Using the rough set, SCM performs a local recovery method to complete the
branches of the Pareto set through iterative refinement of the design space. With the power
of NSGAII, the searching domain of the simple cell mapping method has been substantially
reduced, making it possible to apply SCM for high-dimensional problems. On the other
hand, the SCM method can complement the GA since obtaining outlined optimal domains
using the GA is not very sensitive to the selection of the hyperparameters and is much
easier than obtaining detailed Pareto optimal solutions using the GA. This can reduce the
burden of parameter tuning with the GA. This paper will present a new case study of MOPs
by the hybrid GA-SCM method. For more discussions on the advantage of the GA-SCM
method and a comparison with different methods, the reader is referred to [5] and the
references therein.

To accelerate the MOP algorithms for structural design, a fast and accurate solver
that can predict structural response under external loading is needed. Traditional meth-
ods such as the finite-element method for calculating structural response can result in
considerable computational load. However, obtaining such a solver for structures with
viscous terminations is not an easy task. This is because viscous boundary conditions
lead to non-self-adjoint boundary value problems that cannot be solved by the traditional
method of eigenvalue expansion. To address this issue, several analytical methods have
been developed. Hull et al. [15] presented a method that applies modal expansion in the
augmented spatial interval where orthogonal eigenmodes exist. Jayachandran and Sun [16]
transformed the problem into a self-adjoint boundary value problem in Hilbert space.
Oliveto et al. [17] proposed a complex modal expansion method, which requires formulat-
ing new orthogonality conditions. Jovannovic [18] formulated the steady-state solution in
the form of Fourier series in the state space by reconstructing the differential operator of
the equations of motion. Recently, Xing and Sun [19] applied a particular solution method
to study the impulsive response of a 1D elastic rod subject to a mass–damper–spring
termination.

In this study, we will continue the effort in [19] to optimize the viscous termination
of a 1D elastic rod under impulsive loading using the GA-SCM method. The solution
of this problem has many potential applications in structural and acoustic design. The
dynamic response of the rod will be predicted by the particular solution method. Firstly,
we will define the multi-objective optimization problem, followed by the introduction
of the GA-SCM hybrid method. Then, we will formulate the impulse response of the
structural problem using the particular solution method and introduce the multi-objective
functions for the structural optimization problem. We will demonstrate the effectiveness of
the GA-SCM method through a case study.

2. Multi-Objective Optimization

A continuous multi-objective optimization problem (MOP) can be defined as

min
x∈Rn

F(x),

with gi(x) ≤ 0, i = 1, . . . , l,

hj(x) = 0, j = 1, . . . , m,

(1)

where x is a variable of the design space and gi and hj are the design constraints. F is a map
comprised of objective functions fi (i = 1, 2, . . . , k), i.e.,

F(x) = { f1(x), . . . , fk(x)}, (2)
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where fi : Q → R. Herein, Q is the feasible set represented by

Q = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . , l,

and hj(x) = 0, j = 1, . . . , m}. (3)

The optimal solution of the multi-objective problem is defined in the sense of Pareto
optimality, which requires the introduction of the following definitions.

Definition 1 (Dominance relation [5]).

(a) A vector y ∈ Q is called strictly dominated (or simply dominated by a vector x ∈ Q (x ≺ y)
if

F(x) <p F(y) and F(x) �= F(y),

where <p is an elementwise less-than-or-equal-to relation.
(b) A vector y ∈ Q is called weakly dominated by a vector x ∈ Q (x � y) if F(x) ≤p F(y).

The dominance relation defines the “good” solution in the sense of Pareto optimality.
This is a strong relation, which can lead to many optimal solutions, because objective func-
tions are considered as equally “good” solutions when they partially satisfy the inequality
relations. To define the sets of optimal solutions and their objective functions, we introduce
the Pareto set and Pareto front.

Definition 2 (Pareto point, Pareto set, Pareto front [5]).

(a) A point x ∈ Q is called Pareto optimal or a Pareto point of (1) if there is no y ∈ Q that
dominates x.

(b) A point x ∈ Q is called locally (Pareto) optimal or a local Pareto point of (1) if there exists a
neighborhood Nx of x such that there is no y ∈ Q ∩ Nx that dominates x.

(c) A point x ∈ Q is called a weak Pareto point or weakly optimal if there exists no y ∈ Q such
that F(y) <p F(x).

(d) The set of all Pareto optimal solutions is called the Pareto set, i.e.,

P = PQ := {x ∈ Q : x is a Pareto point of (1)}. (4)

(e) The image F(P) of P is called the Pareto front.

3. GA-SCM Hybrid Method

We apply a hybrid method combining genetic algorithms (GAs) and cell mapping
methods [14] to solve an MOP with multi-objective performance indices to be defined in
Section 4. The hybrid method is initiated with a genetic algorithm (NSGAII) to generate a
rough Pareto set in the design space, which is then used by a cell-mapping-based recovery
method to seek a complete branch of the Pareto set through iterative refinement of the
cellular space of the design parameters, which will be defined in Section 5. The pseudo
code of the GA-SCM method is listed in Algorithm 1. The pseudo code for recovering the
Pareto optimal solution is listed in Algorithm 2.

As shown in Algorithm 2, the recovery process firstly discretizes the design space and
then iterates through elements of the rough Pareto set from the GA or the previous cell
partition, performing a one-step simple cell mapping to search local Pareto points. If a cell
is mapped to itself (i.e., a local sink is found), then the cell is pushed into the candidate set,
followed by an operator to gather nearby solutions into the set to be visited (Stovisit) as long
as they dominate some elements in the Pareto set Ps. Otherwise, the destination cell of the
cell mapping is pushed to Stovisit. Then, the same iterative procedure will be performed on
the set Stovisit until no new cells can be brought into Stovisit. At last, a dominance check is
carried out to remove non-dominant points from the Pareto set. More detail on the method
can be seen in [5].
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Algorithm 1 GA-SCM algorithm.

Input: Design space Q, cell space partition N, refinement partition sub, GA population
size n, objective functions F, refinement number k

Output: Pareto set Ps, Pareto front P f
1: Initialization Sr ←− GA(n, Q) {finding a rough candidate set using the GA}
2: Sc ←− cell creation(Sr, F)
3: while i ≤ k do {seeking Pareto set and front using SCM-based local recovery processes}
4: Ps, P f ←− recover(Sc, F, N, Q)
5: Sc ←− refine(Ps, N, sub)
6: N ←− N × sub {refining cell space}
7: i ←− i + 1
8: end while

Algorithm 2 SCM-based recovering algorithm.

Input: Rough Pareto setPs, rough Pareto frontP f , objective functions F, cell space partition
N, design space Q, max iteration n

Output: Pareto set Ps, Pareto front P f (under the cell space partition N)
1: Initialization Discretize design space Q based on the cell space partition N
2: Svisiting, Svisited ←− Ps, Sc ←− ∅ {Sc stores candidate solutions.}
3: while Svisiting �= ∅ do
4: Stovisit ←− ∅
5: for q ∈ Svisiting do
6: Cd ←− simple cell mapping(q, Svisited)
7: if Cd �= q and Cd /∈ Ps then
8: Stovisit ←− Stovisit ∪ {Cd}
9: else

10: Sc ←− Sc ∪ {Cd}
11: Stovisit ←− Stovisit ∪ {x|x ∈ neighbor(q) and x ≺ y where y ∈ Ps} {collecting

neighbors that dominate some element(s) in Ps}
12: end if
13: end for
14: Svisiting ←− Stovisit
15: Ps ←− Ps ∪ Sc, P f ←− P f ∪ F(Sc)
16: end while
17: Ps,P f ←− dominance check(Ps, P f )

The detail of the one-step simple cell mapping algorithm is listed in Algorithm 3. The
method finds the local optimal solution by checking the dominance relation between a cell
and its neighbor. The optimal solution is defined as the most distant cell that dominates
the source cell.

Algorithm 3 Simple cell mapping algorithm.

Input: Objective functions F, cell Cs, visited cell set Svisited
Output: Destination cell Cd, visited cell set Svisited

1: Snbr ←− neighbor(Cs)
2: for N in Snbr do
3: if N ≺ Cs and constraints satisfied then {F(N) can be fetched from visited set directly

if N is visited.}
4: Store N
5: Svisited ←− Svisited ∪ {N}
6: end if
7: end for
8: Cd ←− arg{max‖qs − qnbr‖2} {qs and qnbr are the cell centers of Cs and Snbr}
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Given the numerical computation of the impulse response of the rod is the most
time-consuming subroutine in this problem, we record all visited cells using a dictionary
structure, whose key is the cell index and whose values consist of the multi-objective
functions. This way, the algorithm can search for the values in the dictionary with a time
complexity O(1), eliminating the repeated computation for cells that have been visited. In
addition, the key of a dictionary is unique. Pushing a visited cell to the dictionary will
automatically replace the repeated one. Therefore, our implementation, different from that
in [14], does not require combining the repeated cells in the visited set.

4. Multi-Objective Optimization of Mass–Damper–Spring Termination

4.1. Impulse Response

The one-dimensional elastic rod with a mass–damper–spring termination is shown in
Figure 1. An impact loading f (t) = f0δ(t) is applied to its free end. Young’s modulus, the
cross-section area, and the length of the rod are denoted by E, A, and L, respectively. We
split total response u(x, t) into the sum of rigid-body and elastic responses such that

u(x, t) = ur(x, t) + ue(x, t), with 0 ≤ x ≤ L, t ≥ 0. (5)

where ur is the rigid-body response and ue is the elastic response. From [19], the equations
of motion of the system in Figure 1 are in the form

ρALür + Mür + cu̇r + kur+ (6)

ρA
∫ L

0

∂2ue(x, t)
∂t2 dx + Müe(L, t) + cu̇e(L, t) + kue(L, t) = 0,

c2
p

∂2ue

∂x2 = ür +
∂2ue

∂t2 , (7)

where ρ is the density and cp =
√

E/ρ is the speed of the longitudinal stress wave. The
corresponding boundary conditions are

EA
∂ue(0, t)

∂x
= 0, (8)

EA
∂ue

∂x
(L, t) = −M[ür +

∂2ue

∂t2 (L, t)]

− c[u̇r +
∂ue

∂t
(L, t)]− k[ur + ue(L, t)]. (9)

M

k

c

E, A
f(t)

x=0

L

Figure 1. A uniform elastic rod with a mass–damper–spring termination. An impact loading f (t) is
applied to the free end. The material coordinate system is fixed to the free end of the rod.

The non-homogeneous boundary condition of Equation (9) leads to a non-orthogonal
eigenvalue problem. We attack this problem using a method of a particular solution, which
expresses the elastic motion ue(x, t) in the form

ue(x, t) = uh(x, t) + up(x, t), (10)

where uh(x, t) is the homogeneous solution with free–free boundary conditions such that
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uh(x, t) =
n

∑
i=1

φi(x)yi(t), (11)

where ∫ L

0
φi(x)φj(x)dx = δij, (12)

and up(x, t) is the particular solution such that

up(x, t) =
( x

L

)2
α(t). (13)

Substitution of Equations (10)–(13) into Equations (5)–(9) yields a state space form [19]

Ż = AZ, (14)

where
Z = [z(t); ż(t)], (15)

A =

[
0 I

−M−1K −M−1C

]
, (16)

z(t) = [ur(t), α(t), y1(t), y2(t), . . . , yn(t)]. (17)

The formal solution of Equation (14) reads

Z(t) = eAtZ0, (18)

where Z0 is the initial condition generated from the impulsive input (see Appendix A). The
numerical error analysis of the method was performed in [19]. We incorporate this method
into the GA-SCM method to optimize the termination of the structure.

4.2. Objective Functions

We define the multi-objective performance indices of terminal response as

F = (te3
s , |u(L)|max, 1/δ), (19)

where te3
s is the settling time of the third elastic mode, |x(L)|max is the maximal absolute

displacement at termination, and δ is the log decrement of the strain response at termination.
te3
s is an indirect indicator for the settling time of the rod response. The reason for using

te3
s is twofold. Firstly, the settling time of higher modes produced by the model cannot

properly capture the physical phenomena that the response of high-frequency modes
usually decays more rapidly than that of low-frequency modes. Secondly, identifying the
settling time of the total response from the numerical simulation could lead to extensive
computational load. Therefore, the settling time of the third elastic mode is used and
defined in the form

te3
s =

4
|Real(λe3)|

, (20)

where e3 stands for the third elastic mode. The selection of the third mode is based on trial
and error.

δ is also an indirect indicator to estimate the decay of the impact wave. After the
impact load is applied, an impulsive wave will be produced at the left terminal and a
response wave due to the rigid-body motion will be generated at the right terminal. The
two waves will propagate along the rod and be reflected at both ends. Although the strain
response is the superposition of two waves, the impact wave dominates the response when
it is propagated to the right terminal for the first few times. We define δ in the form
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δ =
1

n− 1
log
|ux(t1, L)|
|ux(tn, L)| , (21)

where t1 and tn represent the first and n-th time when the impulse wave is propagated to
the right end, respectively. The larger δ is, the more the impact wave is suppressed. We let
n = 3 in this study.

5. A Case Study

We considered an elastic rod with Young’s modulus E = 10, density ρ = 10, length
L = 2, cross-section area A = 0.1, and excitation force magnitude f0 = 1.0. The design
space was chosen as

Q = {x|x ∈ [0.1, 2.0]× [1.0, 6.0]× [10, 20]}, (22)

subject to a constraint
δ > 0, (23)

where x is the tuple (m, c, k). We calculated the first 15 s rod response under the impact
loading through the numerical integration of Equation (14), because the max displacement
appears quickly after impact, and the impact wave dominates the terminal response when
it is propagated at the right end during this time period. Thirty elastic modes were adopted,
which, based on our observation, are sufficient to approximate the values of performance
indices within the design space.

We first discover a rough Pareto set using the NSGAII algorithm with a population size
1000, number of generations 10, and mutation rate 0.05. Other configurations of NSGAII
can be seen in Table 1. With the numerical predictor, the NSGAII algorithm was completed
in 66 s on a desktop with an Intel core i-7 CPU, producing a rough Pareto set as the input
to the SCM method. In the SCM method, the m− c− k design space is discretized into a
10× 20× 20 cellular grid as shown in Table 2. The elements of the Pareto set are the cells in
the design space. The local search and recovery algorithm are performed twice, the first
time with the initial grid and the second time with the refined grid, which divides the initial
grid by three. We stop the program after the refinement because the desired resolution 0.06
× 0.08 × 0.166 in the parameter space is achieved. The computational time was 36 s with
the initial grid and 2000 s with the refined grid.

Table 1. Configuration of NSGAII.

Encoding Population Mutation Rate Crossover Generation Number

Binary 1000 0.05 two-point 10

Table 2. Configuration of SCM.

Initial Cell Partition Sub Partition

10 × 20 × 20 3

There are 5392 cells in the Pareto set. The Pareto set and front of the mass–damper–
spring termination are presented in Figure 2. Generally, either larger stiffness or damping
will lead to better design. The majority of optimal design is achieved with either moderate
or small mass. The Pareto front can be divided into three regions, labeled in Figure 2b.
Region 1 minimizes displacement at the cost of long settling time and moderate damping
performance. Region 2 balances the performance of three objective functions. Region
3 achieves premium damping performance at the expense of large displacement and
moderate settling time.
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Mass, m

(a)

t
s

1

2

3

(b)

Figure 2. The Pareto set and front of the m− c− k termination design of the elastic rod. (a) Pareto set.
(b) Pareto front. Design parameters m ∈ [0.1, 2.0], c ∈ [1.0, 6.0], k ∈ [10.0, 20.0]. The labels “1”, “2”,
and “3” indicate the regions where optimal terminal displacement, balanced performance of objective
functions, and optimal damping performance are achieved.

The optimal designs of each performance index are presented in Figures 3–5. The
corresponding design parameters, as well as performance indices are listed in Table 3.

Table 3. Design parameters and performance indices of optimal designs in Figures 3–5.

Figure
Design Parameters Performance Indices

M c k δ te3
s |u(L)|max

3 1.4617 4.9583 18.7500 0.1103 103.4239 0.0482
4 1.0183 1.0416 19.9167 0.2428 324.5931 0.0648
5 0.1316 5.9583 19.9167 0.0414 724.9264 0.0088

84



Math. Comput. Appl. 2022, 27, 94

(a)

(b)

Figure 3. The optimal design of settling time. The corresponding (a) terminal displacement and
(b) strain responses of the rod. The response is computed with N = 30.

5.1. Optimal Design: Minimal Settling Time

Figure 3 shows the optimal design of the settling time. The settling time of the
total response approximates 1200 s. While the performance index of the settling time is
significantly smaller than this number, it still correctly reflects the trend of the settling time
change in comparison to other designs such as those in Figures 4 and 5. The large mass in
this design can increase the portion of energy transmitted to the mass after impact, which
can be more effectively dissipated through the heavily damped boundary condition.

5.2. Optimal Design: Maximal Decay of Impact Wave

The time response of the optimal design maximizing the decay of the impact wave is
presented in Figure 4. The impact wave propagates to the right end when t = 2, 6, 10 . . .. The
suppression of the impact wave is evident. However, this is at the cost of at least a five-times
longer settling time and a slight increase of the maximal displacement. When compared
to the other two designs, this design considerably reduces the damping coefficient. This
could be attributed to the velocity change of the mounted mass in response to the impact
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wave hitting the terminal. Such a change will immediately alter the viscous force produced
by the damper, which in turn can lead to higher strain at the terminal. A small damping
coefficient can reduce the magnitude of the reflected impact wave.

(a)

(b)

Figure 4. The optimal design of the decay of the impact wave. The corresponding (a) terminal
displacement and (b) strain response of the rod. The response is calculated with N = 30.

5.3. Optimal Design: Minimal Peak Displacement at Termination

The optimal design of terminal peak displacement in Figure 5 has the same stiffness,
but much smaller mass and larger damping as the design in Figure 4. This makes sense
because the terminal displacement is identical to the displacement of the mounted mass.
Using small inertia and large stiffness and damping, one can effectively reduce the maximal
terminal displacement. However, smaller inertia also leads to less energy distributed to the
mass. Because the energy can only be dissipated through the damper attached to the mass,
this choice can also significantly amplify the settling time.
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(a)

(b)

Figure 5. The optimal design of the maximal terminal displacement. The corresponding (a) terminal
displacement and (b) strain responses of the rod. The response is calculated with N = 30.

6. Conclusions

In this paper, a multi-objective optimization problem of the terminal response of an
elastic rod with a viscous boundary condition was formulated. The terminal response of
the rod was predicted through a computationally effective and accurate particular solution
method. The Pareto set and front of the MOP were obtained with the GA-SCM hybrid
method. The proposed objective functions can effectively capture the dynamic response of
the structure. The optimal design strategies were presented and analyzed. The amount of
energy distributed to the terminal mass after impact was significant for the optimization of
the terminal design.

The computational load of this work was due to the repeated computations of the
impulse response with different parameter sets. Although the solver adopted in this paper
can be computationally more effective and accurate than finite-element methods, it still
requires a sufficient number of modes to capture the non-smooth impulsive response when
highly accurate results are desired. The computational load can be further reduced using a
surrogate (metamodel) model [20]. One future direction is to use neural operators such as
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DeepONet [21] to approximate the impulsive response, with the neural operator trained
using data from the adopted solver.
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Appendix A

From [19], the initial conditions of Equation (18) are

ρALu̇r0 + Mu̇r0 = f0, (A1)

u̇r0 +
n

∑
i=1

φi(0)ẏi0 =
f0

ρA
, (A2)

ur0 +
n

∑
i=1

yi0 +
( x

L

)m
α0 = 0, 0 ≤ x ≤ L, (A3)

n

∑
i=1

φi(x)ẏi0 +
( x

L

)m
α̇0 = 0, 0 < x ≤ L, (A4)

where ur0 = ur(0), α0 = α(0), and yi0 = yi(0). Equation (A1) leads to

u̇r0 = f0/(ρAL + M). (A5)

By uniformly sampling spatial points on the rod and applying the least-mean-squares
method, the initial conditions of the particular solution and response of elastic modes can
be obtained in the form

ẏ0 = (ΦTΦ)−1ΦTF, (A6)

where ẏ0 = [ȧ0, ẏ10, · · · , ẏn0], F = [ f0/(ρA)− u̇r0, 0, 0, ...0]T and

Φ =

⎡⎢⎢⎢⎣
0 φ1(0) φ2(0) · · · φn(0)

(x1/L)m φ1(x1) φ2(x1) · · · φn(x1)
...

...
...

. . .
...

(L/L)m φ1(L) φ2(L) · · · φn(L)

⎤⎥⎥⎥⎦. (A7)
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Abstract: Importance sampling is a variance reduction technique that is used to improve the efficiency
of Monte Carlo estimation. Importance sampling uses the trick of sampling from a distribution,
which is located around the zone of interest of the primary distribution thereby reducing the number
of realizations required for an estimate. In the context of reliability-based structural design, the
limit state is usually separable and is of the form Capacity (C)–Response (R). The zone of interest
for importance sampling is observed to be the region where these distributions overlap each other.
However, often the distribution information of C and R themselves are not known, and one has only
scarce realizations of them. In this work, we propose approximating the probability density function
and the cumulative distribution function using kernel functions and employ these approximations to
find the parameters of the importance sampling density (ISD) to eventually estimate the reliability.
In the proposed approach, in addition to ISD parameters, the approximations also played a critical
role in affecting the accuracy of the probability estimates. We assume an ISD which follows a normal
distribution whose mean is defined by the most probable point (MPP) of failure, and the standard
deviation is empirically chosen such that most of the importance sample realizations lie within the
means of R and C. Since the probability estimate depends on the approximation, which in turn
depends on the underlying samples, we use bootstrap to quantify the variation associated with the
low failure probability estimate. The method is investigated with different tailed distributions of
R and C. Based on the observations, a modified Hill estimator is utilized to address scenarios with
heavy-tailed distributions where the distribution approximations perform poorly. The proposed
approach is tested on benchmark reliability examples and along with surrogate modeling techniques
is implemented on four reliability-based design optimization examples of which one is a multi-
objective optimization problem.

Keywords: reliability; importance sampling; scarce data; surrogate; RBDO; MOO

1. Introduction

Reliability-based design optimization (RBDO) is a design approach that is used to
generate reliable designs by accounting for uncertainties in the system variables such as ma-
terial properties, loading conditions and geometry. Probabilistic approaches use probability
distributions to model the uncertainties. In such approaches, the reliability of the system is
measured as the probability of failure to satisfy a performance criterion. Mathematically,
this involves calculating the hyper-volume of a multi-dimensional probability density
function (PDF) under the failure region. This calculation becomes infeasible when the
number of dimensions are large. Even in low dimensions, this calculation could become
intractable due to complicated geometry of the failure region [1]. Attractive alternatives are
analytical methods or sampling-based approaches.

Analytical methods, such as first-order and second-order reliability methods (FORM
and SORM), transform the probability distributions to standard normal space and use
linear or quadratic approximations of the performance function to estimate the failure
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probability at the most probable point (MPP) of failure [2–4]. In essence, analytical
methods can estimate failure probability within a reasonable number of evaluations for
linear or slightly non-linear performance functions. However, if the failure boundary
is highly non-linear, analytical approaches are likely to lead to erroneous estimation.
Additionally, other factors, such as island failure regions and multiple failure modes,
limit their performance [5,6].

Sampling-based approaches such as Monte Carlo methods are highly effective for com-
plex failure boundary problems and multi-modal failure problems [7]. In high-reliability
applications where the failure probability is very low, MCS requires a very large number
of model evaluations to obtain an accurate estimate. Most RBDO applications involve
evaluating high-fidelity models which are computationally expensive, thus rendering MCS
prohibitive for reliability estimation.

The computational burden of RBDO can be reduced by using surrogate-based methods
wherein surrogate models which are cheaper to evaluate are constructed using limited
high-fidelity model evaluations. Uncertainty from the random variables is then propa-
gated through these surrogate models to obtain reliability estimates. Various surrogate
modeling approaches, such as polynomial response surface (PRS), radial basis function
(RBF), support vector machine (SVM) and Kriging among others have been adopted for
reliability estimation [8]. Li and Xiu [9] proposed using cheaper to evaluate surrogates away
from the limit state and high-fidelity model evaluations close to the limit state to improve
accuracy and reduce cost. Dai et al. [10] proposed an SVM-based radial basis function
to approximate the limit state function which is then used to estimate failure probability.
Dubourg et al. [11] used error measure derived from Kriging to refine the surrogate during
subset-simulation-based reliability estimation. Reliability estimation using surrogates may
carry forward the bias from the surrogate approximation [12]. Surrogate modeling can also
be used to build approximation models for reliability metrics instead of limit state function.
Foschi et al. [13] used the combination of response surface, FORM and importance sampling
to perform reliability estimation. Qu and Haftka [14] compared the accuracy of surrogates
of different reliability metrics, such as failure probability, reliability index and probabilistic
sufficiency factor (PSF) during RBDO. They conclude that inverse measure, such as PSF
operating in performance space, performs better compared to a classical reliability metric.
A survey of various surrogate-based RBDO frameworks is provided in [15]. The choice
between surrogate for reliability estimation versus surrogate for limit state is a trade-off
based on the number of design variables and the number of random variables as well as
the cost of building the surrogate and cost of reliability estimate [16].

Employing variance reduction techniques to improve the efficiency and accuracy of
Monte Carlo estimations is another way to alleviate the computational burden of RBDO.
Several variance reduction techniques, such as importance sampling (IS) [17–19], subset
simulation (SS) [1,20] and separable Monte Carlo (SMC) [21,22], are used to improve the
accuracy of failure probability estimates while reducing the required number of high-fidelity
model evaluations.

Importance sampling improves the accuracy of the estimate by drawing the sample
realizations of the input random variables that have greater impact on the estimate, more
often. In order to do that, an alternate sampling density known as importance sampling
density (ISD) is chosen which enables sampling the important values more frequently. This
introduces a bias in the estimator which is corrected by weighing the sample realizations.
A good choice of ISD is proven to improve accuracy and in contrast, incorrect choice of ISD
could lead to spurious estimates. Hence, the choice of ISD is critical, and several approaches
have been explored to find the optimal ISD. Melchers [17] applied importance sampling for
assessing reliability of parallel and series structural systems, where a multi-normal PDF
centered at MPP was chosen as the ISD. Using the original distribution shifted to MPP,
multivariate normal distribution located at MPP with various choices for the co-variance
matrix ranging from the same as the original distribution to using only diagonal elements
of the original co-variance matrix have been studied [23].
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In cross-entropy-based methods [24], ISD is found by minimizing the Kullback–Leibler
(KL) divergence between theoretical optimal ISD and a chosen family of distributions. Kurtz
and Song [25] used a Gaussian mixture to obtain a non-parametric multi-modal PDF for ISD.
It was observed that the coefficient of variation of the failure probability estimate converged
as the number of Gaussian densities in the mixture increased. Cao and Choe [26] used an
expectation-maximization (EM) algorithm to obtain a Gaussian mixture as the near optimal
ISD. Cross-entropy information criterion (CIC) was used to select the number of Gaussian
densities in the mixture. Geyer et al. [27] proposed a modified version of EM algorithm for
updating the Gaussian-mixture-based ISD. For selecting the number of distributions in the
mixture, density-based spatial clustering of applications with noise (DBSCAN) algorithm
was used. In cross-entropy-based IS, one still requires the joint PDF of the original random
variables to compute the near optimal ISD.

Kernel-based IS is another way to obtain the alternate sampling density wherein
a kernel sampling density is constructed instead of choosing from a family of distribu-
tions [28,29]. Au and Beck [30] proposed Markov Chain Monte Carlo (MCMC) to distribute
samples asymptotically according to the optimal ISD, and subsequently a kernel sampling
density is constructed from these samples. Dai et al. [31] proposed a wavelet density esti-
mation technique to construct the ISD from the MCMC samples. Botev et al. [32] proposed
combining MCMC and IS to address the issues of biased sampling estimators that result
from MCMC. Various adaptive importance sampling procedures have gained popularity
recently. Dalbey and Swiler [33] proposed a Gaussian-process-based adaptive importance
sampling where a Gaussian process surrogate is used to identify the likely regions of failure
to adaptively improve the sampling density estimate. Zhao et al. [34] constructed a Kriging
surrogate from the initial MCMC samples which is improved using an active learning
process, and subsequently the surrogate is used for limit state evaluations for adaptive
improvement of ISD. Wang and Song [35] used cross-entropy-based adaptive importance
sampling for high-dimensional reliability analysis. Here, ISD is obtained by minimizing
the KL divergence between a von Mises–Fisher mixture model and near optimal ISD.

In all the literature discussed above, while employing IS, determination of the ap-
propriate ISD is considered to be the challenge. The probabilistic distributions and the
corresponding parameters of the original random variables, however, are assumed to be
known [22,36]. However, this is not necessarily always true. Here, we propose a frame-
work to employ the importance sampling method for separable failure boundary of the
form Capacity (C)–Response (R) using only scarce realizations of the R and C where no
information about their distributions is known. We make use of tail-modeling techniques
to approximate the cumulative distribution function (CDF) of the capacity and response.
These approximations are used to locate a Gaussian ISD whose standard deviation is
empirically chosen. Sample realizations drawn from the ISD are used to compute the
failure probability. During this computation, kernel density estimates of PDF of response
are utilized along with CDF approximation of capacity. Furthermore, bootstrap samples
are generated from the original scarce samples of R and C. The proposed framework
is applied on the bootstrap samples to obtain the confidence bounds for the reliability
estimate. Reliability estimates obtained from scarce samples using the proposed approach
are used to construct a surrogate of reliability index which is used for constraint evaluation
during RBDO.

The rest of the paper is organized as follows. Section 2 presents the theoretical
background of importance sampling in the context of reliability estimation. In Section 3,
the methodology is discussed, and in later sections we present the results from the proposed
method when applied to test cases and RBDO applications including a multi-objective opti-
mization (MOO) application. Appendices A and B are used to provide short descriptions
of kernel density estimation (KDE) and the third-order polynomial normal transformation
(TPNT) technique.
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2. Reliability Estimation Using Importance Sampling for Separable Limit States

In structural engineering, limit states are useful in prescribing performance require-
ments of a design. Thus, a limit state decomposes the design space of a system into safe
and failure regions. Violation of a limit state is considered to be failure. and reliability is a
measure of probability of such violations. For most structural problems, limit state can be
expressed as the difference of Capacity (C) and Response (R), as presented in Equation (1),
where R and C are functions of independent sets of random variables. This is referred to as
a separable limit state [21,22,37], and we consider such limit states in this work.

G(C, R) = C− R (1)

The system is said to fail when C ≤ R and safe when C > R. When either capacity or
response or both are functions of variables that are random, a probabilistic measure such as
the probability of failure is as presented in Equation (2)

p f =
∫∫

G≤0

fCR(c, r) dc dr (2)

where fCR is the joint probability distribution function (PDF), and G ≤ 0 is the failure
region. In the case of separable limit state, the joint PDF of capacity and response can be
decomposed into the product of the marginal PDFs of capacity and response as presented
in Equation (3)

p f =

∞∫
−∞

c≤r∫
−∞

fC(c) fR(r) dc dr (3)

p f =

∞∫
−∞

FC(x) fR(x) dx (4)

where fC(c) and fR(r) are the marginal density functions of C and R, respectively.
Equation (3) can also be written in a single integral form as presented in Equation (4).
Here, FC(c) is the cumulative distribution function (CDF) of capacity. For low failure prob-
abilities of order 10−4, to obtain a Monte Carlo estimate with 10% coefficient of variation,
the sample size required is 100× 1

p f
= 106. Generating 106 instances of expensive computer

models is not feasible. To reduce such computational burden, importance sampling is used
as in Equation (5).

p fIS =

∞∫
−∞

FC(x) fR(x)
hx(x)

hx(x) dx (5)

where hx(x) is the alternate sampling density, and p fIS is the failure probability com-
puted using the importance sampling approach. It is the expectation of the integrand
FC(x) fR(x)

hx(x) computed with respect to the ISD, hx. Consequently, if x1, x2, . . . , xN is an inde-
pendent identically distributed (i.i.d.) random sample from hx, then the expectation has an
unbiased estimator:

p̂ f IS =
N

∑
i=1

FC(xi) fR(xi)

hx(xi)
, xi ∼ hx (6)

Alternatively, if the marginal distribution of the response ( fR(r)) is integrated in
Equation (3), then the importance sampling estimator of p f would be expressed as:

p̂ f IS =
N

∑
i=1

(1− FR(xi)) fC(xi)

hx(xi)
, xi ∼ hx (7)
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As mentioned in Section 1, in most of the literature, importance sampling is used when
the distributions of R and C are known, and it becomes computationally expensive to draw
samples in the region where tails of R and C overlap. Figure 1 presents a schematic of such
a scenario where the limit state is of the separable form. Here, the region of interest lies in
the tails of the distributions of R and C, and it contains the most probable point (MPP) of
failure. Hence, it is only logical to locate the ISD at the MPP [3,17,22].

Figure 1. Basic C–R problem: a schematic of importance sampling.

Figure 1 depicts a Gaussian ISD for which MPP serves as the mean of the distribution
and is usually found by solving a constrained optimization problem. Once the mean
of the ISD is determined, the spread of the distribution needs to be chosen. In order to
have a finite variance for the importance sampling estimator, the ISD should not have a
lighter tail than the original distribution [38]. In the literature [22,23], using the same
co-variance matrix and sometimes using strictly the diagonal elements of the co-variance
matrix of the original distribution is suggested. This has been shown to work for a range
of possible limit states. However, sometimes a designer does not necessarily know the
original distributions of input variables but has only a few realizations of R and C either
through expensive computer simulations or physical experiments. Generally, response
is considered to be the source of randomness since it is a measured quantity. However,
capacity can also be a random variable. For instance, an example of capacity is yield
strength which is a measured quantity. We know that it is random and hence modeled
using probability distributions [39,40]. Other examples of capacity that are considered
to be random include: member capacity under seismic loading [41], maximum flow
capacity in measuring hydraulic reliability of water distribution system [42], and material
fatigue properties [43,44].

In this work, we first characterize the distributions of R and C from limited sam-
ples and use the concept of importance sampling to estimate low failure probabilities.
A Gaussian distribution is chosen as the ISD which is fully described by its two parameters,
the mean and variance. Section 3 describes the procedure employed to identify the param-
eters of ISD. In the proposed framework, to demonstrate the methodology, distribution
information of original input random variables is used only to generate the initial limited
samples. However, the distribution information is not utilized anywhere afterwards.
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3. Identifying Parameters of Gaussian ISD

Figure 2 presents an example scenario [23] of a separable limit state where the re-
sponse and capacity follow normal distributions. It can be observed that the functional
FC fR integrated in Equation (4) is maximum at the point (x ∼ 11.55), near the point of
intersection between the PDF of response and the CDF of capacity, i.e., fR(x) = FC(x).
In importance sampling, MPP is used to locate the ISD to maximize sampling of the failure
probability content. Hence, it is only logical to define this point of intersection as the MPP
and use it as the mean of Gaussian ISD.

Figure 2. Probabilistic view of MPP for a separable limit state scenario.

This point can be anywhere within the bounds of capacity and response. In high-
reliability scenarios, it is located at the tails of one of the distributions or both, so we need
to extrapolate into the tails of R and C. The available PDF approximation methods capture
the central part of the distribution better than the tails, whereas the main focus of the tail
modeling techniques applied for CDF estimation is at the tails of the distribution. Hence,
we can reduce the errors in finding the MPP by using the intersection of 1− FR and FC
instead of the intersection point of the curves fR and FC. Here, 1− FR is the complementary
CDF of R. It is to be noted that the suitability of such a modification has been tested for
only uni-modal type response. For multi-modal response, using a single MPP will only
capture partial failure region. However, the approach can be extended by using a mixture of
Gaussian distributions by using a summed failure probability integral as described in [45].
Algorithm 1 presents the bracketing procedure followed in the current work to find the
MPP, while the same process is visually presented in Figure 3.

In Steps 3 and 6 of Algorithm 1, it is stated that the CDF approximations of capacity (F̂C)
and response (F̂R) are obtained through a TPNT technique (details provided in Appendix B);
however, it is an independent block in the proposed approach and hence can be replaced by
any other suitable technique based on user discretion. In effect, the MPP finding problem
reduces to finding the zeroes of the function F̂C(x) − (1− F̂R(x)). Hence, root finding
algorithms can also be applied to find the MPP. However, it is advised to use derivative-free
approaches to avoid numerical issues.
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Algorithm 1 Finding μh.

1: Obtain samples of response r = {r1, r2, . . . , rM} and capacity c = {c1, c2, . . . , cN} as in
Figure 3a.

2: for i = 1, 2, . . . , M do
3: F̂C(ri), F̂R(ri)← TPNT approximations of CDF of response and capacity at response

sample r.
4: Obtain point A in Figure 3b←maximum of rx = {ri|F̂C(ri)− (1− F̂R(ri)) < 0}.
5: for i = 1, 2, . . . , N do
6: F̂C(ci), F̂R(ci)← TPNT approximations of CDF of response and capacity at capacity

sample c.
7: Obtain point B in Figure 3c←minimum of cx = {ci|F̂C(ci)− (1− F̂R(ci)) > 0}.
8: Generate a set of evenly spaced points x = {xi : i = 1, 2, . . . , 100} between points A

and B.
9: Obtain mean of ISD, μh ←maximum of x = {xi|F̂C(xi)− (1− F̂R(xi)) < 0}. (Alterna-

tively, minimum of x = {xi|F̂C(xi)− (1− F̂R(xi)) > 0} can also be used.)

(a) (b)

(c) (d)

Figure 3. Procedure for identifying mean of Gaussian ISD (μh). (a) Scarce samples of R and C.
(b) Finding point A using response sample ri as per Step 4 in Algorithm 1. (c) Finding point B using
capacity sample ci as per Step 7 in Algorithm 1. (d) μh identified between points A and B as per
Step 9 in Algorithm 1.

In very low failure probability estimation, the region corresponding to the estimation
is quite small, and it has been observed that aspects such as non-uniqueness of MPP and
non-linearity of the limit states have little effect on the estimation [5]. Similarly, we find
that errors in the MPP estimation have lesser effect on the reliability estimation compared
to a poor choice of standard deviation.

The standard deviation of the ISD determines the importance ascribed to region
around the MPP during sampling. The region of sampling itself could be bounded by
the supports of capacity and response distributions. Different measures of spread could
be applied based on the available knowledge. In this work, a 10% coefficient of variation
(CoV) was used to calculate the standard deviation of the ISD to investigate the effect.
Such a measure was found to be suitable for scarce samples of normally distributed
capacity and response. Different measures of spread were investigated while testing the
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formulation on samples simulated to be belonging to a different distribution. The spread
parameter obtained through Equation (8) was found to be appropriate as such a measure
allows one to restrict 68% percent of importance sample realizations within the means of
capacity and response.

σh =
x̄C − x̄R

2
(8)

where x̄C is the sample mean of capacity, and x̄R is the sample mean of the response.

4. Estimation of Reliability and Its Confidence Bounds

p̂ f =
N

∑
i=1

F̂C(xi) f̂R(xi)

hx(xi)
, xi ∼ hx : N (μh, σ2

h ) (9)

Using the now defined ISD, sample points are drawn at which the PDF of response
and CDF of capacity are obtained to be used in the computation of failure probability as per
Equation (6). However, instead of the actual values, approximations F̂C(xi), f̂R(xi) are used
during the computation as presented in Equation (9). As mentioned earlier, TPNT is used
to approximate CDF (F̂C), whereas for PDF approximation ( f̂R) an adaptive kernel density
estimation method is employed. Both of these methods are distribution-free methods;
however, other suitable methods of approximation [46,47] can also be used. Despite the
accuracy of the method chosen, errors from the approximations are bound to result in loss
of accuracy in the failure probability estimate. Hence, it becomes necessary to quantify the
confidence on the estimate. Here, confidence bounds on the estimate are computed using a
non-parametric bootstrap method.

Figure 4. Schematic representation of bootstrapping.
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The underlying idea of a non-parametric bootstrap method is to recreate samples
from the original sample by sampling with the replacement. The sample size of bootstrap
samples must be the same as the original sample. From each of the bootstrap samples,
a statistical quantity of interest (such as failure probability) can be estimated. By repeating
the process many times (say B times), one can obtain a distribution around the estimate
from the original sample. In the current work, the proposed approach is applied to the
bootstrap samples of C and R to obtain confidence bounds on the reliability estimate. Since
the original samples of C and R are themselves scarce, this process of bootstrapping is
repeated for T (=100) original samples of C and R. Thus, the quantiles of β̂ obtained from T
(=100) iterations are compared with mean and standard deviation of quantiles of β̂boot from
the bootstrap samples. Figure 4 presents a schematic representation of the bootstrapping
procedure followed in the current work.

In order to test the efficacy of the formulation, different tails for capacity and response
were considered. To simulate samples of response and capacity belonging to different tail
types, generalized extreme value (GEV) distribution is used which takes the shape parame-
ter (ξ) as an input along with location (θ) and scale (σ) parameters. Shape parameter or
tail index is a measure of heaviness of tails of a distribution. In GEV distributions, the shape
parameter affects the lower-tail and upper-tail differently. In this study, the parameters are
chosen such that response distributions are positively skewed, while capacity distributions
are negatively skewed to better simulate the difficulties of sampling in tails. Individually,
the shape parameters (ξr, ξc) correspond to three types of tail heaviness: heavy, medium
and light. Here, tail heaviness is considered for the upper-tail of R and the lower-tail
of C. The location parameter of the capacity distribution (θc) is changed while keeping
the response location (θr) stationary so that each combination corresponds to a failure
probability of 10−4. Nine study cases result because of the different combination of tails
possible for both R and C. The parameters for the nine study cases are presented in Table 1.
The distribution parameters are only utilized to generate scarce samples of R and C. It is to
be noted that the GEV distributions used here are continuous over the real line (R) and can
have negative values. Though this does not reflect the real-world scenario, it does not deter
in evaluating the performance of the proposed formulation.

Table 1. GEV distributions parameters of R and C for nine study cases.

Response Tail ξr , θr , σr Capacity Tail ξc, θc, σc

Heavy (−1.8, 1, 33.5)
Heavy (0.2, 1, 0) Medium (−1, 1, 26.5)

Light (−0.52, 1, 26.2)

Heavy (−1.8, 1, 30)
Medium (0, 1, 0) Medium (−1, 1, 10.7)

Light (−0.52, 1, 9.5)

Heavy (−1.8, 1, 30)
Light (−0.12, 1, 0) Medium (−1, 1, 9.4)

Light (−0.52, 1, 6.4)

To capture sampling variability, multiple iterations are carried out, and the procedure
employed for identifying the variability in the estimates and bootstrap bounds is presented
in Algorithm 2.

99



Math. Comput. Appl. 2022, 27, 99

Algorithm 2 Confidence bounds using bootstrap.

1: for j = 1, 2, . . . , T do
2: rj×M ∼ GEV(ξr, θr, σr), cj×N ∼ GEV(ξc, θc, σc) ← Generate samples of response

and capacity.
3: p̂ f j ← Estimate failure probability by applying proposed approach to samples rj×M

and cj×N .
4: for i = 1, 2, . . . , B do
5: rbi×M, cbi×N ← Generate bootstrap samples from original samples rj×M and

cj×N .
6: p̂ f bi ← Estimate failure probability by applying proposed approach to bootstrap

samples rbi×M and cbi×N .
7: 25th, 50th, 75th percentiles← { p̂ f }T×1.
8: 25th1×T , 50th1×T , 75th1×T percentiles← { p̂ f b}B×T .

β IS = Φ−1(1− p̂ f ) (10)

The failure probability estimates calculated through Algorithm 2 for each study case
are converted into reliability indices using Equation (10). To facilitate comparison, the es-
timates are divided by the actual reliability index (βa = 3.71). For all nine study cases,
the sample size of response (M) and capacity (N) are considered to be 50. The results
of applying the formulation to each study case are presented in Table 2. Values under
the ‘Original sample’ column represent the percentiles of ratio of the estimates from the
original samples (from Step 7 of Algorithm 2) repeated for T (=100) iterations. Mean and
standard deviation of the percentiles (from Step 8 of Algorithm 2) from the bootstrap
repetitions (B = 100) are presented under the ‘Bootstrap’ column. An accurate estimate
of the reliability index would be indicated with a value of one, and high precision is
indicated by low variability between the percentiles and low standard deviation in the
bootstrap percentiles. It is observed that the estimation is poorer in the case of heavy-tailed
response and medium-tailed capacity and heavy-tailed response and light-tailed capacity.
In both these cases, the failure region is situated further into the tail of the heavy-tailed
response where the scarce sample-based PDF estimation is prone to high errors. In many
instances, the probability density drops to zero prematurely which results in overestimation
of reliability.

Table 2. Both R and C unknown case: percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile
Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 0.96 1.10 (0.26) 1.21 1.42 (0.29) 1.79 2.08 (0.61)
50th 1.06 1.17 (0.29) 1.50 1.54 (0.32) 2.13 2.46 (0.89)
75th 1.22 1.36 (0.31) 1.76 1.77 (0.33) 2.59 3.08 (1.31)

Medium R
25th 0.93 1.03 (0.20) 0.85 0.95 (0.18) 1.01 1.09 (0.21)
50th 1.02 1.09 (0.21) 0.97 1.01 (0.19) 1.13 1.20 (0.25)
75th 1.18 1.25 (0.23) 1.08 1.14 (0.22) 1.30 1.40 (0.32)

Light R
25th 0.91 1.04 (0.23) 0.78 0.85 (0.14) 0.85 0.91 (0.12)
50th 1.01 1.10 (0.25) 0.88 0.91 (0.14) 0.94 0.98 (0.13)
75th 1.18 1.28 (0.26) 0.99 1.04 (0.17) 1.03 1.09 (0.18)

In certain reliability applications, either fR or fC is known, or it is easier to obtain
samples from one of the distributions of R and C. The proposed method is tested for such
scenarios where only one of the distributions is unknown, and during this exercise, the same
combinations of tails for R and C are assumed. Tables 3 and 4 present the results for R
unknown and C unknown cases, respectively, using the proposed approach. From Table 3,
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it is observed that both the accuracy and precision of the estimation improved for most of
the tail combinations compared to both R and C unknown cases. In the case of heavy-tailed
response and medium-tailed and light-tailed capacity, and in addition, medium-tailed
response and light-tailed capacity, the bias in the estimate has increased. This is again
due to the erroneous PDF estimation of heavier-tailed response distribution using a scarce
sample. Lesser bias in both R and C unknown cases is due to the interaction between the
PDF and CDF approximation.

In Table 4, larger errors are observed for heavy-tailed capacity and medium-tailed
response and heavy-tailed capacity and light-tailed response. This suggests that estimat-
ing heavy-tailed distribution further into the tails results in larger errors; this is akin to
the observations made for the R unknown case. Furthermore, the largest errors observed
in the C unknown case are smaller compared to the largest errors from the R unknown
case which suggests that TPNT is a better approximation for CDF of heavy tailed dis-
tributions compared to adaptive KDE used for PDF approximation. To demonstrate
that this is indeed the case, the alternate form of the importance sampling estimator pre-
sented in Equation (7) is used for the R unknown scenario, wherein CDF of the response
distribution is approximated instead of the PDF. Table 5 presents the results, from which
it is observed that the bias has reduced compared to the PDF approximation-based
estimation. However, this also results in underestimation of reliability in the case of
light-tailed response and light-tailed capacity. This is a trade-off between the choice
of adaptive-kernel-based PDF approximation and TPNT-based CDF approximation.
From these observations, it can be surmised that it would be beneficial to know the
heaviness of R and C so that appropriate estimator can be chosen based on the efficacy
of the approximation methods available.

Table 3. R unknown case: failure probability estimated as per Equation (6); (PDF approximation of
R): percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile
Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 1.02 1.02

(9× 10−3) 1.67 1.71 (0.15) 3.16 3.63 (0.66)

50th 1.03 1.03
(7× 10−3) 1.78 1.72 (0.15) 3.64 3.67 (0.67)

75th 1.04 1.04
(5× 10−3) 1.81 1.79 (0.06) 4.00 4.09 (0.30)

Medium R
25th 0.99 0.99

(2× 10−3) 1.02 1.03 (0.06) 1.25 1.32 (0.20)

50th 1.00 1.00
(2× 10−3) 1.05 1.04 (0.05) 1.37 1.34 (0.20)

75th 1.00 1.00
(2× 10−3) 1.08 1.07 (0.03) 1.45 1.51 (0.14)

Light R
25th 0.99 0.99

(2× 10−3) 0.99 0.99 (0.02) 0.98 1.03 (0.10)

50th 1.00 1.00
(2× 10−3) 1.00 1.00 (0.02) 1.07 1.06 (0.10)

75th 1.00 1.00
(2× 10−3) 1.02 1.01 (0.02) 1.12 1.13 (0.07)

An additional observation is that for one (either R or C) unknown case, the bootstrap
standard deviation is larger when the bias in the estimates from the original samples are
larger and smaller for more accurate cases. Thus, in practice where there is no actual value
to compare with, bootstrap standard deviation can be used to discern the accuracy of the
estimate. However, this does not track well in the case of both R and C unknown.
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Table 4. C unknown case: failure probability estimated as per Equation (6); (CDF approximation of
C): percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile
Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 0.96 0.98 (0.10) 0.99 0.99

(6× 10−3) 1.00 1.00
(2× 10−3)

50th 1.03 1.00 (0.08) 1.00 1.00
(3× 10−3) 1.00 1.00

(2× 10−3)

75th 1.06 1.04 (0.05) 1.00 1.00
(2× 10−3) 1.00 1.00

(2× 10−3)

Medium R
25th 0.93 1.13 (0.31) 0.87 0.92 (0.12) 0.96 0.96 (0.05)
50th 1.12 1.24 (0.35) 0.96 0.96 (0.11) 0.99 0.98 (0.04)
75th 1.42 1.52 (0.33) 1.03 1.02 (0.07) 1.00 1.00 (0.02)

Light R
25th 0.91 1.05 (0.23) 0.82 0.90 (0.13) 0.87 0.89 (0.09)
50th 1.03 1.12 (0.25) 0.93 0.95 (0.14) 0.94 0.94 (0.09)
75th 1.20 1.29 (0.29) 1.03 1.06 (0.14) 1.00 0.99 (0.08)

Table 5. R unknown case: failure probability estimated as per Equation (7); (CDF approximation of
R): percentiles of β IS/βa.

Heavy C Medium C Light C

Percentile
Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Original
Sample

Bootstrap
Mean (Std)

Heavy R
25th 0.95 0.96 (0.09) 0.95 1.14 (0.29) 0.92 1.13 (0.31)
50th 1.02 0.99 (0.07) 1.13 1.22 (0.31) 1.11 1.23 (0.35)
75th 1.03 1.03 (0.02) 1.43 1.42 (0.30) 1.38 1.51 (0.41)

Medium R
25th 0.99 0.99 (0.02) 0.84 0.89 (0.12) 0.77 0.89 (0.18)
50th 0.99 0.99 (0.01) 0.94 0.94 (0.11) 0.93 0.96 (0.20)

75th 1.00 1.00
(2× 10−3) 1.02 1.01 (0.09) 1.08 1.11 (0.21)

Light R
25th 0.99 0.99

(2× 10−3) 0.91 0.93 (0.07) 0.79 0.84 (0.12)

50th 1.00 1.00
(1× 10−3) 0.97 0.96 (0.06) 0.87 0.90 (0.12)

75th 1.00 1.00
(1× 10−3) 1.00 0.99 (0.04) 0.99 0.98 (0.12)

Tail-Index Estimation

Estimation of tail index is sometimes part of the distribution identification process
and in turn CDF estimation where methods such as Hill estimator [48], Pickands estimator,
Generalized Pareto fits and others are applied. Hill estimator considers k upper order
statistics from a sample to evaluate the tail heaviness. Equation (11) presents the estimator
for a positive sample of size n with the order statistics, X1,n ≤ X2,n ≤ . . . Xn,n.

Hk,n =
1
k

k−1

∑
i=0

log
Xn−i,n

Xn−k,n
(11)

The estimate of tail heaviness is sensitive to the number of order statistics (k) used
and shifting of sample. Different modifications that address such sensitivity issues exist in
the literature [49,50]. As we only require comparing between tails of R and C, especially
when they are very different, obtaining exact estimates is of low priority. Hence, a modified
Hill estimator is used where the sample is mean-shifted, and k is considered to be 10%
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of the sample size. For upper-tail estimation, the largest k values are used and for lower-
tail estimation, the absolute values of the smallest k values are used. The Modified Hill
estimator is applied to assess the tail-heaviness of upper-tail of response and lower-tail of
capacity, and the sample with the heavier tail is chosen for CDF approximation, and thereby
the appropriate form of the estimator is chosen for failure probability estimation.

In both unknown scenarios, the heavy-tailed R and the light-tailed C which showed
the largest deviation from the actual value was chosen to test the tail index estimate-
based improvement on the proposed formulation. Results presented in Table 6 show the
use of tail index estimation improved the estimates. It is to be noted that the modified
Hill estimator was successful in contrasting between heaviness of tails of R and C 81 out
of 100 iterations.

Table 6. Heavy R and light C: Percentiles of β IS/βt from tail estimation-based improved formulation.

Percentile Original Sample
Bootstrap

Mean (Std)

25th 0.93 1.19 (0.39)
50th 1.12 1.32 (0.53)
75th 1.39 1.70 (1.02)

5. Reliability Estimation Examples

Based on the flowchart of the proposed approach in Figure 5, benchmark reliability
estimation examples are tested in this section. In all examples, to account for sample
variability 100 iterations are used with samples of size 50 for R and C in each iteration.
For each iteration, bootstrap samples for R and C are generated 100 times.

Figure 5. Flowchart representing failure probability estimation using proposed IS approach.

5.1. Example 1: Concave Limit State 1

This is a concave limit state example taken from [51].

G = 2.62− u2 − 0.15u1
2 (12)

Both u1 and u2 are standard normal variables, and the concave limit state is of the
separable form. Here, R is taken as 0.15u1

2, and C is taken as 2.62− u2.
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Table 7. Concave limit state-1: percentiles of β IS/βt for βt = 2.39.

Percentile Original Sample
Bootstrap

Mean (Std)

25th 0.84 0.96 (0.20)
50th 0.96 1.03 (0.20)
75th 1.12 1.20 (0.22)

Note: βt is computed through MCS with 108 samples.

From tail-index estimates in 88 out of 100 iterations, response R is determined to be
heavier-tailed than C which is consistent with the analytical form of R and C. The response
distribution resulting from squaring a standard normal variable is an χ2-distribution with
one degree of freedom. In this case, the χ2-distribution has a heavier tail than the standard
normal distribution.

Table 7 provides the results obtained for a target reliability βt = 2.39. It is observed
that the true value is contained within the percentile bounds (0.84–1.12) from the original
sample estimates, and the bootstrap bounds obtained for each percentile also contain
the true value. The variability of the estimates from the original sample is high, and the
standard deviation computed from the bootstrap estimates is reflective of the variability
presented in the original sample estimates.

5.2. Example 2: Concave Limit State 2

Example 2 is a concave limit state taken from [51].

G = u1
2 − 5u2

2 + 45 (13)

Both u1 and u2 are standard normal variables, and the concave limit state is of the
separable form where R is taken as 5u2

2 and C is taken as u1
2 + 45.

Table 8 presents the numerical results obtained for this example by applying the
proposed IS approach. From tail-index estimates, in 100 out of 100 iterations, response R is
determined to be heavier-tailed than C. Here, both the response and capacity distributions
resulting from squaring standard normal variables u1 and u2 are χ2-distributions. However,
the upper tail of response is heavier because scaling a χ2-distribution results in an increase
of tail heaviness.

Table 8. Concave limit state-2: percentiles of β IS/βt for βt = 2.82.

Percentile Original Sample
Bootstrap

Mean (Std)

25th 0.82 0.89 (0.16)
50th 0.90 0.95 (0.16)
75th 1.02 1.08 (0.19)

Note: βt is computed through MCS with 108 samples.

The percentiles of β IS/βt from the original samples show that the target value is con-
tained within the first and third quartile bounds. For all the percentiles, it is observed that
the bootstrap bounds also contain the target reliability.

5.3. Example 3: Roof Truss Example

This example is discussed as a case study for reliability estimation in [45]. The schematic
in Figure 6 presents a roof truss subjected to a uniformly distributed load q which is trans-
formed into the nodal load P = ql

4 . Equation (14) presents the limit state constructed for
perpendicular deflection ΔC at node C as:

G(x) = 0.03− ΔC (14)
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where

ΔC =
ql2

2

(
3.81
AcEc

+
1.13
AsEs

)
(15)

Here, Ac and As are areas of cross sections of the concrete reinforced bars and steel bars,
respectively. Similarly, the variables Ec and Es represent the moduli of elasticity, while l
denotes the length. The input variables are considered to be mutually independent random
variables, distributed normally. The parameters of their distributions are as presented in
Table 9.

Figure 6. Schematic of roof truss.

Table 9. Mean and SD of random variables for roof truss example.

Random Variable Mean (SD)

q (N/m) 20,000 (1600)
l (m) 12 (0.24)
As (m2) 9.82× 10−4 (5.89× 10−5)
Ac (m2) 0.04 (0.008)
Es (N/m2) 1.2× 1011 (8.4× 109)

Ec (N/m2) 3× 1010 (2.4× 109)

The limit state is transformed into G(C, R) = C− R form where C = 0.03
q and R = ΔC

q
becomes a function of five random variables that correspond to the geometry and material
properties of the truss members.

Table 10 provides the estimates of reliability and the corresponding bootstrap bounds
for a target reliability of βt = 3.4. It is observed that at each of the percentiles, the bootstrap
bound captures the target reliability. From tail-index estimates, in 77 out of 100 iterations,
response R is determined to be heavier-tailed than C.
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Table 10. Roof truss example: percentiles of β IS/βt for βt = 3.4.

Percentile Original Sample
Bootstrap

Mean (Std)

25th 0.84 0.94 (0.17)
50th 0.94 1.02 (0.20)
75th 1.07 1.18 (0.29)

Note: βt is computed through MCS with 108 samples.

5.4. Example 4: Propped Cantilever Beam Example

Figure 7 presents the schematic of the example which is taken from [52]. Equation (16)
presents the original limit state for the maximum deflection of the beam νmax against the
maximum allowable deflection νcrit:

G = νmax − νcrit (16)

where deflection of the beam ν(x) is measured as per Equation (17), and for the considered
loading condition, the maximum deflection (νmax) is obtained at x = 0.5528L.

ν(x) =
q0x2

120LEI
(4L3 − 8L2x− 5Lx2 − x3) (17)

where

I =
b f d3 − (b f − tw)(d− 2t f )

3

12
(18)

Figure 7. Propped cantilever beam with triangular distributed loading.

The limit state is modified to convert into G(C, R) = C − R form,where
C(νcrit, E) = νcritE, and R is a function of remaining seven random variables. Mean
and standard deviation (SD) of the normally distributed random variables is presented in
Table 11. The critical displacement νcrit is changed between 4–5 mm to generate three target
reliability situations.
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Table 11. Mean and SD of random variables for propped cantilever beam example.

Random Variable Mean (SD)

q0 (kN/m) 20 (2)
L (m) 6 (0.3)
E (GPa) 210 (10)
d (cm) 25 (0.5)
b f (cm) 25 (0.5)
tw (cm) 2 (0.2)
t f (cm) 2 (0.2)

Note: All random variables follow normal distribution.

Table 12 presents the results obtained from the proposed IS formulation for different
target reliability indices (βt). As the target reliability increases, the variability from both
the original sample estimates and bootstrap sample estimates remain similar.

Table 12. Propped cantilever beam: percentiles of β IS/βt for different νcrit and βt.

νcrit = 4.0 mm , βt = 2.98 νcrit = 4.5 mm , βt = 3.50 νcrit = 5.0 mm , βt = 3.97

Percentiles Original
Bootstrap

Mean (Std)
Original

Bootstrap
Mean (Std)

Original
Bootstrap

Mean (Std)

25th 0.84 1.03 (0.30) 0.82 0.99 (0.27) 0.81 0.99 (0.30)
50th 0.99 1.13 (0.36) 0.99 1.09 (0.32) 0.96 1.12 (0.39)
75th 1.29 1.31 (0.42) 1.24 1.29 (0.44) 1.26 1.35 (0.52)

Note: βt values are computed through MCS with 108 samples.

6. Application to RBDO Examples

The proposed importance sampling approach is demonstrated on two benchmark
and two real-world RBDO examples. Algorithm 3 delineates the steps followed to
perform RBDO using the proposed approach of reliability estimation. For the benchmark
examples, efficiency between the proposed approach and a crude Monte Carlo approach
is compared using the total number of limit state evaluations which is computed as
Ndoe × Nis for the proposed approach and Ndoe × Nmcs for the MCS-based approach.
For the real-world examples, MCS is used only to validate the optima obtained through
the proposed approach.

Algorithm 3 RBDO using proposed importance sampling approach.

1: d = {d1, d2, . . . , dNdoe} ← Generate a design of experiment (DoE) in design variable
space.

2: for i = 1, 2, . . . , Ndoe do
3: Propagate uncertainty at DoE points.
4: r, c ← Obtain response and capacity samples through simulations or physical

experiments. In the examples, analytical functions are utilized.
5: p̂ f i ← Apply proposed importance sampling formulation to samples r, c.
6: β ISi ← Transform failure probability to reliability index using (10).

7: fîIS ← Construct surrogate model for reliability index using {β ISi} and d.
8: d∗ ← Optimization using fîIS for evaluation of reliability constraint.

6.1. Cantilever Beam Example

This is a standard RBDO example taken from [53]. In this example, the weight of a
cantilever beam (shown in Figure 8) is minimized while considering two failure modes:
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bending stress does not exceed yield strength (19) and the tip displacement does not exceed
the allowable displacement limit of 2.5 in (20).

Gs = σy − 6L
wt

(
X
w

+
Y
t

)
(19)

Gd = D0 − 4L3

Ewt

√(
Y
t2

)2
+

(
X
w2

)2
(20)

The length of the beam (L) and the density are held constant, while the width (w) and
thickness (t) of the beam are allowed to change which transforms the objective function
from weight to area of cross section, A = wt. The horizontal (X) and vertical (Y) loads
along with modulus of elasticity (E) are random variables whose uncertainty characteristics
are presented in Table 13.

Figure 8. Cantilever beam under horizontal and vertical loads.

Table 13. Random variables for cantilever beam example.

Random Variable Mean (SD)

X (lb) 500 (100)
Y (lb) 103 (100)
σy (psi) 4× 104 (2× 103)
E (psi) 2.9× 107 (1.45× 106)

Note: All random variables follow normal distribution.

RBDO of the cantilever beam requires that the failure probability of both the limits
states does not exceed 1.35× 10−3 which translates to a target reliability index βt ≥ 3. Thus,
the optimization is formulated as:

min
w,t

A = wt

s.t. g1 = Φ−1(1− Pr(Gs ≤ 0)) ≥ 3

g2 = Φ−1(1− Pr(Gd ≤ 0)) ≥ 3

(21)

As stated in Algorithm 3, a DoE of size (Ndoe = 40) is created in d = (w, t) space
using latin hypercube sampling (LHS). Additionally, four corner points are added to the
DoE. At each design point (di), samples of response and capacity for both limit states are
obtained by simulating uncertainty as per Table 13, considering a sample size of Nis = 50.
For limit state Gs, σy is considered as capacity, while the rest of the equation is considered
as a response. Similarly, for limit state Gd, D0 × E is taken as capacity by regrouping the
random variables in the limit state function to convert it into a separable form [54]. Using
these samples, failure probability estimates for both limit states are obtained through the
proposed approach. A surrogate model for reliability index β is constructed, and this
surrogate is used for constraint evaluation during optimization.

In a similar fashion, MCS-based failure probability estimates are also obtained at
the design points using samples of size Nmcs = 106. A surrogate model using the MCS
estimates is constructed for a reliability index, and optimization is carried out. At design
points that are closer to the lower and upper bounds, failure probability estimates could be
either zeros or ones. These estimates when converted into reliability indices become −∞
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and ∞; hence, these are modified during surrogate construction. These singularities are
more common in the case of MCS estimation compared to IS estimation.

The optima obtained from both MCS and IS are compared in Table 14. As the cost of the
knowledge of random variables is not quantified, computational cost is only compared with
MCS. Additionally, different surrogate choices, such as PRS, RBF, Kriging and weighted
average surrogate (WAS), were considered for fî construction, and the optima obtained
by using WAS model are presented. The accuracy of the surrogate for both constraints is
evaluated using a generalized mean square error (GMSE) metric. GMSE for constraint g1
using IS-based estimates is reported as 0.91 (mean of reliability estimates = 2.21), whereas
the error from the MCS-based surrogate is 0.09 (mean of reliability estimates = 1.97).
For constraint g2, GMSE (vs. mean) is reported as 0.70 (vs. 1.98) for the IS surrogate and
0.12 (vs. 1.41) for the MCS surrogate.

To validate the results, at the optima, a reliability index is calculated using MCS with
sample size of 107 which is also presented in the Table 14. It is observed that the surrogate
from IS estimates has less global accuracy. However, reliability indices obtained at the
optima using MCS (βMCS at d∗) suggest that the surrogate is reasonably approximated at
the constraint boundaries. The optima obtained from IS and MCS are very close, but the
computational savings are hugely in favour of IS (50 vs. 106).

Table 14. RBDO results of cantilever beam example.

Surrogate Model
for β Constraints

Reliability
Estimation

Optima (d∗) Objective
Function Value

β̂ at d∗ βMCS at d∗

w (in) t (in) A (in2) g1 g2 g1 g2

WAS IS 2.59 3.74 9.69 3.00 3.64 3.25 3.69
MCS 2.59 3.66 9.50 3.00 3.44 2.95 3.39

6.2. Bracket Structure Example

This is originally from [55] where a bracket structure is subjected to a tip load (P) in
addition to its own weight due to gravity (g) as presented in Figure 9. The weight of the
bracket structure is optimized while considering two failure modes:

(i) Maximum bending stress of beam CD at point B (σB) does not exceed its yield strength
( fy),

(ii) Maximum axial load on beam AB (FAB) does not exceed the Euler critical buckling
load (Fbuckling).

Figure 9. Bracket structure subjected to a tip load.
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Equations (22) and (23) present the limit states as:

GCD = fy − σB, where (22a)

σB =
6MB

wCDt2 (22b)

MB =
PL
3

+
ρgwCDtL2

18
(22c)

GAB = Fbuckling − FAB, where (23a)

Fbuckling =
π2Etw3

AB9 sin θ2

48L2 (23b)

FAB =
1

cos θ

(
3P
2

+
3ρgwCDtL

4

)
(23c)

During RBDO of the bracket structure, the target reliability index for both limit states is
β ≥ 2, and the design parameters are means of the geometrical parameters of the structure:
width of CD (μwCD ), width of AB (μwAB) and thickness of AB and CD (μt) which are
bounded between 50 mm and 300 mm. The uncertainty characteristics of the random
variables is presented in Table 15. Thus, the RBDO is formulated as:

min
wCD ,wAB ,t

C = μρμtμL

(
4
√

3
9

μwAB + μwCD

)
s.t. g1 = Φ−1(1− Pr(GCD ≤ 0)) ≥ 2

g2 = Φ−1(1− Pr(GAB ≤ 0)) ≥ 2

50 ≤ μwCD , μwAB , μt ≤ 300 (in mm)

(24)

Table 15. Random variables for bracket structure example.

Type Variable Distribution Mean C.o.V

Random P (kN) Gumbel 100 15%
E (GPa) Gumbel 200 8%
fy (MPa) Lognormal 225 8%
ρ (kg ·m−3) Weibull 7860 10%
L (m) Gaussian 5 5%

Design wAB (mm) Gaussian μwAB 5%
wCD (mm) Gaussian μwCD 5%
t (mm) Gaussian μt 5%

The steps enumerated in Algorithm 3 are followed using a DoE of size (Ndoe = 60),
and scarce sample sizes of R and C during the IS approach are considered as Nis = 75, while
Nmcs = 106 realizations are used in MCS. The RBDO results are presented in Table 16 which
has the same format as the first example. GMSE (vs. mean) for constraint g1 using IS-based
estimates is reported as 0.58 (1.37), whereas the error from the MCS-based surrogate is
0.24 (1.02). For constraint g2, GMSE (vs. mean) is reported as 0.97 (vs. 3.72) for the IS
surrogate and 0.30 (vs. 3.08) for the MCS surrogate. It is observed that the IS estimate-based
surrogate has less global accuracy; however, the MCS-based reliability indices computed at
the optima show that it approximates reasonably well near the constraint boundaries. It is
to be noted that in both engineering examples, we assume that both R and C are unknown.
Any knowledge of the uncertainty characteristics of either R or C will only improve the
accuracy of the reliability estimates.
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Table 16. RBDO results of bracket structure example.

Surrogate Model
for β Constraints

Reliability
Estimation

Optima (d∗) Objective
Function Value

β̂ at d∗ βMCS at d∗

wAB (mm) wCD (mm) t (mm) Weight (kg) g1 g2 g1 g2

WAS IS 58 89 300 1576 2.00 2.00 2.59 2.87
MCS 62 77 300 1474 2.00 2.00 2.02 3.55

6.3. Torque Arm Example

This example presents RBDO of torque arm where the mass of the component is to be
minimized adhering to a probabilistic constraint on the allowable stress. Unlike previous
examples, there is no analytical expression available for limit state evaluation in this case. It is
a shape optimization problem originally from Bennett and Botkin [56]. Researchers have used
it as a benchmark example for reliability estimation [52,57]. Rahman and Wei [58] perform
RBDO where a constant allowable stress limit is considered.

In the current study, seven design variables (see Figure 10) as per [59] are considered
for altering the shape of the torque arm. Figure 11 presents the base design of the
torque arm around which the optimization is to be performed. Here, a horizontal load
(Fx = −2789 N) and a vertical load (Fy = 5066 N) are applied at the right hole while
the left hole is fixed. The torque arm has modulus of elasticity E = 207× 105 N · cm−2,
density ρ = 7.850× 10−3 kg · cm−3 and Poisson’s ratio ν = 0.3.

Figure 10. Design variables used to modify the shape of the torque arm [59].

Figure 11. Loading and boundary conditions with base design parameter values (in cm) [59].
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Equation (25) presents the limit state equation for the torque arm.

G = σmax(di, Fx, Fy)− σall (25)

where σmax is the maximum von Mises stress developed in the torque arm, and σall is the
allowable stress limit. Since there is no analytical expression that relates the design variables
with the response σmax, finite-element analysis is used to compute the stresses developed in
the torque arm for a given loading condition. A MATLAB finite-element toolbox developed
by CALFEM [60] is used for this purpose. The thickness of the finite-elements in the mesh
is considered to be 0.3 cm. At the end of each finite-element analysis, the maximum of the
stresses is used as σmax in Equation (25).

For RBDO, the design variables (d1 to d7), loads (Fx and Fy) and the allowable stress
(σall) are considered to be uncertain. Each design point (di) is considered to be normally
distributed about itself with a coefficient of variation of 10%. The uncertainty characteristics
of the remaining random variables is presented in Table 17.

Table 17. Mean and SD of random variables in torque arm example.

Random Variable Distribution Type Mean; SD

Fx(N) Normal −2789; 278.9
Fy(N) Normal 5066; 506.6
σall(MPa) Lognormal 800; 80

Equation (26) presents the RBDO formulation of the torque arm where a target relia-
bility index of three is considered.

min
{d1,...,d7}

Mass

s.t. g = Φ−1(1− Pr(G ≤ 0)) ≥ 3
(26)

As per Algorithm 3, a DoE of size (Ndoe = 200) is generated where reliability is
estimated using an IS approach. Sample sizes of R = σmax and C = σall during IS approach
are considered as Nis = 100. An RBF-based surrogate is constructed using IS-based
reliability estimates. The error (GMSE vs. range) for the RBF surrogate of β is found
to be 6% which indicates a good fit. This surrogate is used for constraint (g) evaluation
during optimization.

The stress contour of the torque arm design obtained as a result of the optimization
is presented in Figure 12. Here, mean values for design parameters and mean loading
condition are considered. The maximum von Mises stress is observed to be 523.92 MPa for
the optimum design. The optimal mass of the torque arm is 0.801 kg. It can be observed
that the mass is distributed to meet the target reliability. An MCS (with 105 sample size) is
used to validate the reliability of RBDO optima obtained from the IS approach, and it is
observed that βMCS = 3.00. For the Monte Carlo simulation of 105 simulations, it took 8.7 h
using parallel computing toolbox of MATLAB on a system with the following specifications:
Intel Xeon 10 Core 2.20 GHz 64 bit processor, with 32GB RAM. Table 18 presents the design
variable bounds and the optimum design obtained from RBDO.

Though the errors in the individual reliability estimations are quantified via bootstrap,
they were not propagated into the surrogate model during RBDO. Using the surrogate
model for reliability index evaluation instead of direct evaluation enabled the smoothing of
noise from the IS-based estimation which leads to better convergence during optimization.
From MCS validation at the optima, it is observed that the proposed approach results in
heavier but safer designs. Further analysis is required to understand the error propagation
from different stages of the proposed approach.
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Figure 12. Stress (von Mises stress in MPa) contour of optimum design with mean design parameters
(d∗) and loading condition of Fx = −2789 N and Fy = 5066 N.

Table 18. Design variable bounds and optimum design of torque arm (in cm).

DV dL dU
d∗

(Optimum)

d1 1.80 3.20 2.15
d2 1.25 1.60 1.28
d3 1.20 4.60 1.59
d4 −0.10 0.40 −0.09
d5 −0.30 0.30 0.30
d6 −0.90 0.80 0.30
d7 0.40 1.80 0.54

Figure 13. Pareto optimal front corresponding to different values of reliability index estimated
through polynomial response surface (PRS).

6.4. Car Side-Impact Problem—A Multi-Objective Reliability-Based Design Optimization
(MORBDO) Example

We demonstrate the proposed methodology on an MORBDO example taken from [61].
In this example, the objective is to minimize the weight ( f1) of a car as well as the average
rib deflection ( f2) during a crash. A car is subjected to a side-impact based on European
Enhanced Vehicle-Safety Committee (EEVC) procedures. The effect of the side-impact on
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a dummy in terms of head injury criteria, load in the abdomen, pubic symphysis force,
viscous criterion, and rib deflections at the upper, middle and lower rib locations are
considered as constraints. The MORBDO formulation is made up of seven uncertain design
variables (x1, . . . , x7) and four random variables (p1, . . . , p4). Equation (27) presents the
optimization formulation of the car side-impact problem:

min
μx

f1 = f (μx, μp)

min
μx

f2 =
g2(μx, μp) + g3(μx, μp) + g4(μx, μp)

3

s.t. Φ−1
(

1− Pr
(

gi(x,p)
) ≤ bi

)
≥ βt,

i = 1, . . . , 10.

(27)

where

g1(x,p) ≡ Abdomen load ≤ 1 kN

g2(x,p) ≡ Upper rib deflection ≤ 32 mm

g3(x,p) ≡Middle rib deflection ≤ 32 mm

g4(x,p) ≡ Lower rib deflection ≤ 32 mm

g5(x,p) ≡ Upper viscous criteria ≤ 0.32 m/s

g6(x,p) ≡Middle viscous criteria ≤ 0.32 m/s

g7(x,p) ≡ Lower viscous criteria ≤ 0.32 m/s

g8(x,p) ≡ Pubic symphysis force ≤ 4.0 kN

g9(x,p) ≡ Velocity of B-pillar at middle point

≤ 10 mm/ms

g10(x,p) ≡ Velocity of front door at B-pillar

≤ 15.7 mm/ms;

1.0 ≤ x1 ≤ 1.5, 0.45 ≤ x2 ≤ 1.0, 0.5 ≤ x3 ≤ 1.5,

0.5 ≤ x4 ≤ 1.5, 0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6 ≤ 1.2,

0.4 ≤ x7 ≤ 1.2, μp1 = 0.345, μp2 = 0.192, μp3 = μp4 = 0.

Analytical expressions of the objective functions and constraints as well as the physical
descriptions of the design variables (x1− x7), and random variables (p1− p4) are presented
in Appendix C.

In order to solve the MORBDO problem as per Algorithm 3, a DoE of size (Ndoe = 200)
is generated within the design bounds where reliability of the ten constraints (g1, . . . , g10) is
estimated using the IS approach. In this example, the number of design variables is seven;
hence, 27 = 128 corner points have been sampled. Next, we performed a space-filling
sampling using LHS. In each dimension, we sampled 10 points (in total 7× 10 = 70) using
LHS design as per a thumb rule in DoE sampling [62]. Without loss of generalization, we
added two to make a round sampling number. Sample sizes of response and capacity during
IS are considered as Nis = 50. PRS surrogate for reliability indices of the ten constraints
is constructed using the IS-based estimates. In order to improve the surrogate accuracy,
an additional DoE of size 200 is generated within adjusted design bounds. The final
surrogate errors (GMSE vs. range) for all constraints is found to range between 3.76% and
8.38%. Using these surrogates for constraint evaluation, the MOO problem presented in
Equation (27) is solved using NSGA-II [63].

The Pareto optimal front corresponding to the different target reliability indices
(βt = [2.5, 3.0, 3.5]) along with the deterministic Pareto optimal front is presented in
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Figure 13. The NSGA-II algorithm is applied for the four instances using the population
size of 200 for 100 generations. The GA uses the following parameters: number of
offspring is 50, probability (pc) of simulated binary crossover (SBX) is 0.9, crossover
parameter (ηc) is 20, probability of mutation (pm) is 0.9, and the mutation parameter (ηm)
is 50.

It is evident from Figure 13 that as the targeted reliability increases, the respective
reliable Pareto optimal front shifts inside the feasible criterion space and away from the
deterministic Pareto optimal front to ensure more reliable solutions. The Pareto solutions
were further validated using MCS (Nmcs = 106), and all the solutions were found to meet
the target reliability.

7. Conclusions

A scarce sample-based importance sampling approach to estimate reliability is
proposed when there is little or no information about the uncertainty characteristics
of the random variables involved. The proposed formulation was tested on different
tail heaviness for R and C distributions. In the case of one of the distributions being
heavy-tailed, a tail-index estimate-based improvement to choose between PDF and CDF
approximation was employed and shown to improve the accuracy (50th percentile by
1.9 times). Confidence bounds on the reliability estimate obtained through the bootstrap
procedure have been shown to be indicative of the accuracy of the estimate. The proposed
IS approach has been applied for reliability estimation and RBDO examples and found
to be effective in terms of computational savings (50× 44 = 2200 for cantilever beam and
75× 60 = 4500 for bracket structure example) as compared to MCS where the sample size
for each reliability estimate was 106. The approach is demonstrated on a non-analytical
RBDO example which yielded a design that met the target reliability index (validated
by MCS). The proposed approach has also been demonstrated on the car side-impact
problem which is a multi-objective reliability-based design optimization example.

While the tail-index estimate-based alternative reduces the errors from the approxima-
tion, establishing the superiority of CDF approximation versus PDF approximation was
only achieved through post-analysis of results for the specific methods used in this work.
Future work could include incorporating region-wise best methods for both PDF and CDF
approximation, using a suite of methods assessed through cross-validation errors. Active
learning approaches could be employed during optimization to further reduce the number
of design points, thereby reducing the number of reliability estimations required to obtain
the optima.
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Appendix A. Kernel Density Estimation (KDE)

Let (x1, x2, ..., xn) be an i.i.d. sample from a distribution with a PDF ( f ), then the
kernel density estimate of f is given as

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(A1)

where h is a smoothing parameter called bandwidth, n is the sample size, and K(.) is
a kernel, which is non-negative, integrates to one and is centered at zero. Different
kernel functions can be used, such as normal, uniform, Epanechnikov, triangle and
others, and the bandwidth is selected based on the sample data chosen. The choice of
the bandwidth influences the variance and the bias of the estimator. The performance of
the kernel density estimator is more dependent on the choice of the bandwidth rather
than kernel choice. Despite being the most popular non-parametric approach to density
estimation, there are some implementation issues, such as bandwidth selection, local
adaptivity and boundary bias. While KDE works well for data following a normal
distribution, it performs poorly while estimating heavy-tailed distributions, especially
in the tail region which is our region of interest, hence adaptive KDE proposed by [64] is
chosen. The Matlab® implementation of adaptive KDE for 1D [65] was employed in the
current work for PDF approximation.

Appendix B. Third-Order Polynomial Normal Transformation Technique (TPNT)

Hong and Lind [66] proposed this method of approximating a CDF where given the
order statistics ζ1 ≤ ζ2 ≤ . . . ≤ ζN obtained from a sample realization of a random variable
Z, through “sample rule” the fractiles are constrained in the following manner:

{ζi, FZ(ζi)} = {ζi,
i

N + 1
}, i = 1, 2, . . . , N (A2)

where FZ(.) is the cumulative distribution function of Z. In this method, a third-order
polynomial relationship between ζ and a normal transformation of FZ(ζ) is assumed as
presented in Equation (A3)

ζ =
3

∑
k=0

akηk (A3)

where
η = Φ−1(FZ(ζ)) (A4)

Here, Φ−1(.) is the inverse of the standard normal distribution function. The coeffi-
cients of the polynomial in Equation (A3) are found through least squares minimization of
the error, ε:

ε = ∑
j∈Js

(
ζ j −

3

∑
k=0

ak(ηj)
k

)
(A5)

where Js is a set of data points chosen for the parameter estimation which is usually the
same as sample size N. Two constraints a2

2 − 3a1a3 > 0, a3 > 0 are imposed to ensure
monotonicity in the third-order polynomial curve.

At a new fractile ζ0, the probability FZ(ζ0) is determined through Φ(η0), where η0 is
obtained by solving Equation (A3), with substitution of ζ by ζ0.
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Appendix C. Car Side-Impact Problem

The analytical expression of the objective function and constraint functions are given
below:

f1(x) = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4+

1.78x5 + 0.00001x6 + 2.73x7,

g1(x,p) = 1.16− 0.3717x2x4 − 0.00931x2 p3−
0.484x3 p2 + 0.01343x6 p3,

g2(x,p) = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5 p3

+ 6.63x6x9 − 7.7x7x8 + 0.32p2 p3,

g3(x,p) = 33.86 + 2.95x3 + 0.1792p3 − 5.057x1x2−
11x2 p1 − 0.0215x5 p3 − 9.98x7 p1 + 22p1 p2,

g4(x,p) = 46.36− 9.9x2 − 12.9x1 p1 + 0.1107x3 p3,

g5(x,p) = 0.261− 0.0159x1x2 − 0.188x1 p1 − 0.019x2x7+

0.0144x3x5 + 0.0008757x5 p3 + 0.08045x6x9+

0.00139p1 p4 + 0.00001575p3 p4,

g6(x,p) = 0.214 + 0.00817x5 − 0.131x1 p1 − 0.0704x1 p2+

0.03099x2x6 − 0.018x2x7 + 0.0208x3 p1

+ 0.121x3 p2 − 0.00364x5x6 + 0.0007715x5 p3−
0.0005354x6 p3 + 0.00121p1 p4+

0.00184x9 p3 − 0.018x2x2,

g7(x,p) = 0.74− 0.61x2 − 0.163x3 p1 + 0.001232x3 p3−
0.166x7 p2 + 0.227x2x2,

g8(x,p) = 4.72− 0.5x4 − 0.19x2x3 − 0.0122x4 p3+

0.009325x6 p3 + 0.000191p4 p4,

g9(x,p) = 10.58− 0.674x1x2 − 1.95x2 p1 + 0.02054x3 p3−
0.0198x4 p3 + 0.028x6 p3,

g10(x,p) = 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432p2 p3−
0.0556p2 p4 − 0.000786p4 p4.

Description of the design variables (x1 − x7) and random variables (p1 − p4) (standard
deviation in bracket)

x1 = Thickness of B-Pillar inner (0.03),

x2 = Thickness of B-Pillar reinforcement (0.03),

x3 = Thickness of floor side inner (0.03),

x4 = Thickness of cross members (0.03),

x5 = Thickness of door beam (0.05),

x6 = Thickness of door belt line reinforcement (0.03),

x7 = Thickness of roof rail (0.03),

p1 = Material of B-Pillar inner (0.006),

p2 = Material of floor side inner (0.006),

p3 = Barrier height (10),

p4 = Barrier hitting position (10).
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Abstract: NSGA-II is, by far, the most popular metaheuristic that has been adopted for solving
multi-objective optimization problems. However, its most common usage, particularly when dealing
with continuous problems, is circumscribed to a standard algorithmic configuration similar to the
one described in its seminal paper. In this work, our aim is to show that the performance of NSGA-II,
when properly configured, can be significantly improved in the context of large-scale optimization.
It leverages a combination of tools for automated algorithmic tuning called irace, and a highly
configurable version of NSGA-II available in the jMetal framework. Two scenarios are devised: first,
by solving the Zitzler–Deb–Thiele (ZDT) test problems, and second, when dealing with a binary real-
world problem of the telecommunications domain. Our experiments reveal that an auto-configured
version of NSGA-II can properly address test problems ZDT1 and ZDT2 with up to 217 = 131, 072
decision variables. The same methodology, when applied to the telecommunications problem, shows
that significant improvements can be obtained with respect to the original NSGA-II algorithm when
solving problems with thousands of bits.

Keywords: NSGA-II; auto-configuration and auto-design of metaheuristics; large-scale multi-objective
optimization; real-world problems optimization

1. Introduction

Since the publication of the seminal paper of Deb et al. [1] presenting the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) over twenty years ago, this algorithm
has become the standard metaheuristic for solving multi-objective optimization problems.
Since then, NSGA-II has been included in a large number of works as a reference against
which newly proposed approaches are compared (e.g., [2–4]). Additionally, it is normally
the first-choice solver for dealing with real-world problems [5–8]. Its popularity can be
easily assessed by looking at the number of citations to [1] (e.g., in Google Scholar or
Clarivate Analytics).

NSGA-II is a generational genetic algorithm characterized by applying a dominance
ranking scheme to foster convergence and the crowding distance density estimator to
promote diversity. These components are used in the replacement step prior to building up
the population for the next generation of the algorithm. In most of the studies involving
NSGA-II, particularly when continuous problems are tackled, it is configured according
to a parameterization mimicking the one used when it was originally introduced in [1],
namely: population and offspring population size of 100, Simulated Binary Crossover
(probability: 0.9, distribution index: 20.0), and Polynomial-based Mutation (probability:
1/L, where L is the number of decision variables of the problem, distribution index: 20.0).
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It is well known that the performance of metaheuristics in solving a given problem
depends, to a large extent, on its correct parameter settings [9], so the motivation behind
this work is to carry out an experimental study to determine to what extent the search
capacity of NSGA-II can be improved if it is properly configured. We focus this study on
the context of large-scale optimization problems, i.e., those problems having more than
100 decision variables.

The methodology that we have applied consists, first, of using a highly configurable
version of NSGA-II, which is available in jMetal, a Java-based optimization framework [10,11].
We assume that any multi-objective genetic algorithm using dominance ranking and the
crowding distance in the replacement step is an NSGA-II variant. That version, referred to
as AutoNSGA-II, has been made more extensible and flexible so that: (i) it can adopt an
external archive to store the non-dominated solutions, (ii) the offspring population size can
be different from the population size, and (iii) the variation operators can be taken from
an extended set of different crossover and mutation operators besides Simulated Binary
Crossover and Polynomial-based Mutation. Second, we use the irace tool [12] to automat-
ically find the best AutoNSGA-II configurations from a set of training instance problems.

We are going to consider two scenarios, one consisting of solving the Zitzler–Deb–
Thiele (ZDT) [13] test suite, starting with 2048 decision variables and another one dealing
with a real-work binary telecommunication problem where the solutions can have thou-
sands of bits, which aims to minimize the energy consumption and increase the provided
bandwidth in an ultra-dense 5G (fifth generation) network. It is important to emphasize
that the purpose of this work is not to compare NSGA-II against state-of-the-art algorithms
designed to solve large-scale multi-objective problems but to empirically assess up to what
extent the performance of NSGA-II can be enhanced when properly configured in the two
scenarios previously considered.

The rest of this paper is organized as follows. The next section reviews the related
literature and identifies the research gap covered in this work. Section 3 elaborates on
the components required to auto-configure NSGA-II with irace, as well as the two target
scenarios used to assess the performance of AutoNSGA-II. The results obtained in the
experiments conducted are analyzed in Section 4. Finally, Section 5 discusses the main
conclusions drawn and proposes some lines for future research.

2. Related Work

The auto-configuration (or auto-tuning) of metaheuristics is an open research field
that studies the design of tools that follow the machine learning approach of, given a set
of problems used as a training set, automatically finding an accurate parameterization
of the algorithm that it is expected to work well on a validation test and, consequently,
on similar problems. A further step is the auto-design of metaheuristics, which, given a
set of components, is able to create a full algorithm specifically tailored to the training and
validation sets. In the field of multi-objective metaheuristics, these issues have been studied
in several papers, such as in [14–16].

Focusing on NSGA-II, the idea of auto-tuning a configurable version of it by combining
jMetal and irace was presented in [17], where the Walking Fish Group (WFG) [18] test
suite was used as the training set, and the resulting NSGA-II variant was validated with the
same problems plus the Deb–Thiele–Laumanns–Zitzler (DTLZ) [19] test suite. The reported
results showed that that version globally outperformed the original NSGA-II in most of the
problems when applying four quality indicators. A similar approach has been used in this
paper to address large-scale multi-objective optimization problems.

Indeed, the context of large-scale multi-objective optimization is a hot research topic
that is mainly motivated because many real-world problems contain hundreds or even
thousands of decision variables (e.g., the training of deep neural networks). Consequently,
the search space becomes huge and traditional metaheuristics have difficulties finding
accurate solutions. One of the first works in this line is [20], where eight multi-objective
metaheuristics, including NSGA-II, were tested on the ZDT problems scaling the variables
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up to 2048. Paper [21] presents a survey of recent proposals, but none of them is based on
applying auto-configuration to an existing algorithm.

3. Materials and Methods

In this section, we describe the configurable version of NSGA-II available in jMetal
and the experimental methodology adopted, which includes the two scenarios considered,
the auto-configuration process with irace, and the computing environments.

3.1. Component-Based NSGA-II

The implementations of NSGA-II in jMetal have evolved over time. Keeping as a
reference the behavior of a generic evolutionary algorithm, following the pseudo-code
included in Algorithm 1, the first implementation provided by the release presented in [10]
was based on a single and large method (130 lines of Java code) that contained all the steps
of the algorithm. In the jMetal 5 release [11], this approach was replaced by an abstract class
that closely mimicked the pseudo-code, which improved the modularity and reusability
of the code. The last implementation, presented in [17], is based on a component-based
architecture, where all the steps of an evolutionary algorithm are objects; this scheme offers
an enhanced degree of flexibility that allows the generation of evolutionary algorithms
in a dynamic way from a repository of components. This architecture is the basis of the
AutoNSGA-II algorithm that we will use in this work.

Algorithm 1 Pseudo-code of an evolutionary algorithm.

1: P(0)← GenerateInitialSolutions()
2: t ← 0
3: Evaluation(P(0))
4: while not TerminationCriterionIsMet() do
5: P′(t)← Selection(P(t))
6: Q(t)← Variation(P′(t))
7: Evaluate(Q(t))
8: P(t + 1)← Replacement(P(t), Q(t))
9: t ← t + 1

10: end while

The component types and some of the available instances are shown in Table 1.
Therefore, we see that there are three strategies to create a population of solutions: random,
Latin hypercube sampling, and the strategy used in some scatter search algorithms (e.g.,
AbySS [22]). The evaluation of a population can be performed sequentially or in parallel
using the processor cores (multithreaded evaluation). We can observe that there are four
components to indicate the stopping condition, ranging from the typical computation of a
maximum number of evaluations to reach a certain level in a quality indicator; in the latter
case, a maximum number of evaluations must also be set to cope with situations where the
stopping condition is never fulfilled. The most commonly used selection scheme in NSGA-
II is a binary tournament, but we have generalized it to an n-ary tournament and added
a random selection. As NSGA-II is a genetic algorithm, the variation component applies
both crossover and mutation, and the replacement component characterizing NSGA-II is
the one based on ranking and a density estimator.
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Table 1. Component catalog in jMetal for evolutionary algorithms.

Solutions Creation Evaluation Termination

- Random
- Latin hypercube sampling
- Scatter search

- Sequential
- Multithreaded

- By evaluations
- By time
- By keyboard
- By quality indicator

Selection Variation Replacement

- N-ary tournament
- Random
- Neighbour
- Differential evolution

- Crossover and mutation
- Differential evolution

- Ranking and density estimator
- (μ + λ)

- (μ, λ)

3.2. Parameter Space for Auto-Configuring NSGA-II

The automatic configuration of our AutoNSGA-II is based on a parameter space that
is composed of several elements coming both from the particular selected components
and from specific algorithmic parameters. We have to take into account that a number
of components are fixed: the evaluation is sequential, the termination is by evaluations,
and the replacement is performed based on a ranking procedure (non-dominated sorting)
and the use of a density estimator (crowding distance).

Currently, the implementation of AutoNSGA-II can deal with both continuous and
binary problems. The full parameter space for solving both types of problems is detailed
in Table 2. There is a first group of common parameters that is not dependent on the
encoding, and then we include those that are specific for either continuous or binary
decision variables.

Given a population size, which we have fixed to 100 solutions, the algorithm can
optionally use an external archive to store the non-dominated solutions of capacity 100;
in that case, the result of the algorithm will be either the external archive or, otherwise,
the population. Furthermore, when using an archive, the population size can vary from 10
to 200, and the crowding distance estimator is used to promote diversity when the archive
is full (i.e., the solution having the lowest crowding distance value is removed). While the
standard NSGA-II is a generational evolutionary algorithm, we can configure the offspring
population size from 1 (i.e., steady-state) to a maximum of 400 solutions.

Next, we describe the parameters for real-coded multi-objective optimization problems.
As commented in the previous section, there are three possible strategies for creating the
initial population (random, Latin hypercube sampling, and scatter search). The variation
component can choose between two crossover operators (SBX and BLX_ALPHA) and
four mutation operators (uniform, polynomial, linked polynomial, and non-uniform).
The operators can have common parameters (e.g., the crossover probability) and specific
parameters (e.g., the distribution index for the SBX crossover is a value in the range [5.0,
400.0]). The mutation probability is problem-dependent, usually set to 1/n (where n is
the number of decision variables), so we consider a mutation probability factor, which is a
value between 0.0 and 2.0, in such a way that the effective mutation probability will be the
multiplication of that factor and 1/n. The repair strategies (random, round, bounds) are
applied when a variation operator produces values out of bounds:

• random: the variable takes a random value within the bounds.
• bounds: if the value is lower/higher than the lower/upper bound, the variable is

assigned the lower/upper bound.
• round: if the value is lower/higher than the lower/upper bound, the variable is

assigned the upper/lower bound.
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Table 2. Parameter space of AutoNSGA-II for real- and binary-coded problems.

Parameter Domain

algorithmResult {externalArchive, population}
populationSizeWithArchive [10, 200] s.t. algorithmResult == externalArchive

externalArchive crowdingDistanceArchive s.t. algorithmResult == externalArchive
offspringPopulationSize [1, 400]

selection {tournament, random}
selectionTournamentSize (2, 10) s.t. selection == tournament

Real-coded variables

createInitialSolutions {random, latinHypercubeSampling, scatterSearch}

variation crossoverAndMutationVariation
crossover {SBX, BLX_ALPHA}

crossoverProbability [0.0, 1.0]
crossoverRepairStrategy {random, round, bounds}

sbxDistributionIndex [5.0, 400.0] s.t. crossover == SBX
blxAlphaCrossoverAlphaValue [0.0, 1.0] s.t. crossover == BLX_ALPHA

mutation {uniform, polynomial, linkedPolynomial, nonUniform}
mutationProbabilityFactor [0.0, 2.0]

mutationRepairStrategy {random, round, bounds}
polynomialMutationDistributionIndex [5.0, 400.0] s.t. mutation ∈ {polynomial, linkedPolinomial}

uniformMutationPerturbation [0.0, 1.0] s.t. mutation == uniform
nonUniformMutationPerturbation [0.0, 1.0] s.t. mutation == nonUniform

Binary-coded variables

createInitialSolutions random

variation crossoverAndMutationVariation
crossover {singlePoint, HUX, uniform}

crossoverProbability [0.0, 1.0]
mutation {bitflip}

mutationProbabilityFactor [0.0, 2.0]

The operators and parameters used to solve binary problems include single-point,
HUX, and uniform crossover, while the mutation operator is bit-flip. We have also used
here a mutation factor between 0.0 and 2.0 to modulate the effect of the mutation operator.

3.3. Experimental Methodology

Our aim in this paper is to carry out an empirical study to determine if NSGA-II
can address large-scale multi-objective optimization problems if it is properly configured.
To this end, we designed two trial scenarios (a real-coded benchmark problem and a
binary-coded real-world problem) and conducted a set of experiments divided into two
phases, namely, auto-configuring NSGA-II with irace with a simple set of instances
and performance assessment over a wider testbed.

3.3.1. Scenarios

The first scenario faces continuous benchmark problems; concretely, we have chosen
the ZDT instances. These problems were used in the scalability study presented in [20],
where a number of algorithms, including NSGA-II, were applied to optimize the problem
family configured with up to 2048 variables. In that work, the solvers stopped the search
when they found an approximated front whose Hypervolume (HV) was higher than
95% of the HV of the front used as reference. Those algorithms requiring the fewest
number of evaluations to fulfill that condition were considered the fastest. A limit of
ten million evaluations was also set so that an algorithmic execution reaching such a
limit before obtaining an acceptable front was considered unsuccessful. In our scenario,
we keep the same stopping condition, but the limit for failed executions is raised to
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25 million evaluations and we configure ZDT instances starting from 2048 variables until
131,072 variables.

The second scenario considers a binary real-world problem from the domain of
telecommunications, specifically in the context of 5G networks. A key enabling tech-
nology for these networks to meet their expected performance in terms of data rates,
latency, etc. [23], lies in deploying many small base stations (SBS) close to end-users, which
allows better re-use of the electromagnetic spectrum, as well as improving the signal quality
and reducing the communication latency [24]. They are known as Ultra-Dense Networks
(UDNs). Dimensioned to satisfy a given demand, UDNs incur considerable power con-
sumption because of the number of SBSs that are operating. If no action is taken, this
energy consumption also appears even in periods of low demand (e.g., commercial centers,
office buildings, out of business hours, etc.). A well-known and standardized approach to
reducing the electricity bill is to switch off a subset of the SBSs when they are underutilized.
This poses a multi-objective optimization problem, named CSO (cell switch-off), which,
given a set of SBSs, has to determine which subset must be turned on/off (binary decision)
in order to minimize the power consumption and maximize the capacity provided to the
users [25–27]. A detailed definition of the problem can be found in Appendix A. Recall
that this is a large-scale multi-objective optimization problem, as seminal studies have
anticipated that deployments with SBS every few meters might be required [24]. We have
scaled up to about 12,000 cells per km2 in this work. Figure 1 shows an example of a UDN
deployment with macro and micro base stations and small cells, where the on-off state of
each one corresponds to one bit of the solutions.

Macro and Micro Base Stations

Small Base Stations

User Equipment

Wireless link

Figure 1. An example of a UDN.

3.3.2. Auto-Configuration and Performance Assessment

We now describe the phases of the experiments, namely, the use of irace to approxi-
mate the best configurations of AutoNSGA-II and the comparison of the obtained NSGA-II
versions with the original one. We would like to point out that irace uses an iterative
approach that samples the space of all possible configurations defined in Table 2 according
to a particular distribution, selects the best configurations from the newly sampled ones
by means of racing, and updates the sampling distribution to bias the sampling towards
the best configurations. Therefore, it is a heuristic algorithm that does not guarantee the
global optimal algorithmic configuration is found, as the sampling is limited to a maximum
number of evaluations for which the algorithm is run with the sampled configuration on a
given instance.

In order to use irace, a number of inputs are required:

• A file describing the parameter space included in Table 2.
• A set of problems used for training.
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• An executable program that, for each combination of problem and configuration
selected by irace, returns an indicator value so that irace can compare different
configurations.

• The total number of different configurations to generate. The default value is 100,000.

In the continuous benchmark problem scenario, common parameters for real-coded
variables are used. The training set consists of five ZDT problems with their default
number of decision variables: 30 for ZDT1, ZDT2, and ZDT3, and 10 for ZDT4 and
ZDT6. The executable is a jar file including jMetal code that, after solving a problem
with a particular AutoNSGA-II configuration, applies the hypervolume quality indicator
by using a reference front for the problem (as the ZDT are synthetic problems, reference
fronts representing a subset of the Pareto fronts are available). Once irace has found a
compromised configuration for AutoNSGA-II for the training set, this version of NSGA-II
is compared with the original NSGA-II.

In the case of the CSO problem, irace receives the common and binary-coded pa-
rameters of Table 2. Evaluating a typical instance of this problem requires a significant
amount of time, so generating and evaluating 100,000 configurations is infeasible. Our
approach has been to define a small instance (with 1170 bits) that is used for training. As the
Pareto front for this problem is unknown, we have defined a reference point (which is
the requirement to apply the hypervolume) after inspecting several approximated fronts
reached in a number of pilot tests. We have taken the extreme points of these fronts and
added an offset in a conservative way to ensure that any approximated front computed by
AutoNSGA-II would dominate those points. The reference point is then the result of taking
the highest values per dimension of the extreme points. As with benchmark problems,
the configuration found for AutoNSGA-II will be compared with the standard NSGA-II on
a set of realistic problem instances.

3.3.3. Computing Environments

Running irace for algorithm auto-configuration can require a significant amount
of computer power. The experiments on the ZDT problems have been executed in a
virtualization environment located at the Ada Byron Research Center at the University of
Málaga (Spain). We have used a virtual machine with Intel(R) Xeon(R) Platinum 8358 CPU
@ 2.60 GHz processor (64 cores) and 64 GB of RAM. The operating system is Ubuntu 21.04,
and the versions of Java and irace are, respectively, JDK 14 and 3.4.1. The version of jMetal
is 6.0-SNAPSHOT.

The experimentation conducted on the CSO problem, which is very computationally
demanding, has been deployed on the facilities of the Supercomputing and Bioinformatics
Center of the Universidad de Málaga, named Picasso. It is a heterogeneous computing
platform composed of several clusters with up to 30.616 computing cores. The full hardware
description can be found at http://www.scbi.uma.es/site/scbi/hardware, accessed on
25 October 2022. As the stopping condition here is to reach a predefined number of
function evaluations because the true Pareto front is not known for this real-world problem,
executions can be performed in this heterogeneous environment because runtimes are not
relevant for this study. As such, each of these executions is submitted to Picasso using
slurm, a cluster job manager, which allocates them to the first available computing core.

4. Results

In this section, we present and analyze the results obtained after applying the experi-
ments in the two scenarios described above.

4.1. ZDT Benchmark

In Table 3, we include the default settings of NSGA-II and the configuration of
AutoNSGA-II found by irace. If we compare the two algorithms, we observe that none of
the default parameters of NSGA-II is kept by AutoNSGA-II. The auto-configured algorithm
uses an external archive with population and offspring populations sizes of 56 and 14,
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respectively (the default values are 100 in both populations). It is worth noting that the
traditionally used Simulated Binary Crossover (SBX) and Polynomial-based Mutation are
replaced by BLX_alpha crossover and non-uniform mutation. The configuration obtained
by irace sets a value of α = 0.94 for BLX_alpha, which introduces an additional diversity
in the population that aims to properly integrate the controlled effect of the non-uniform
mutation with the 1/n scheme used for the mutation rate in the search, and both the
perturbation = 0.3 and the mutation factor of 0.45.

Table 3. Settings of NSGA-II and AutoNSGA-II for the ZDT problems.

Default Settings for NSGA-II Settings of AutoNSGA-II

algorithmResult: population algorithmResult: externalArchive
populationSize: 100 populationSizeWithArchive: 56
offspringPopulationSize: 100 offspringPopulationSize: 14
variation: crossoverAndMutationVariation variation: crossoverAndMutationVariation
crossover: SBX crossover: BLX_ALPHA
crossoverProbability: 0.9 crossoverProbability: 0.88
crossoverRepairStrategy: random crossoverRepairStrategy: bounds
sbxDistributionIndexValue: 20.0 blxAlphaCrossoverAlphaValue: 0.94
mutation: polynomial mutation: nonUniform
mutationProbabilityFactor: 1 mutationProbabilityFactor: 0.45
mutationRepairStrategy: random mutationRepairStrategy: round
polynomialMutationDistributionIndex: 20.0 nonUniformMutationPerturbation: 0.3
selection: tournament selection: tournament
selectionTournamentSize: 2 selectionTournamentSize: 9

We have executed both NSGA-II variants in the first scenario. The results obtained
are presented in Table 4, which includes the computing times and evaluations required to
reach the stopping condition. It is worth mentioning that we conducted a set of preliminary
experiments, which revealed that the computing times and a number of evaluations per
algorithm–problem combination were roughly similar, so performing a number of inde-
pendent runs and reporting mean values would not add relevant information. This has
to be taken into account, as it should be noted that some runs take hours or even days to
complete. Consequently, the figures in Table 4 are the result of single executions.

If we focus on ZDT1 and 2048 variables, we observe that AutoNSGA-II needs 182,356
evaluations against the 1,250,500 required by NSGA-II. As a consequence, the computing
times are reduced from 0.13 to 0.02 h (453 and 87 s, respectively), so the AutoNSGA-II is
about 4.6 times faster than NSGA-II. This behavior continues until the number of variables
increases up to 16,384, as NSGA-II is unable to solve ZDT1 with 32,768 variables; however,
AutoNSGA-II is able to reach an approximated front that satisfies the stopping condition for
the 131,072 decision variables of ZDT1 (95% of the HV of the reference front). The figures
of ZDT2 are similar to those of ZTD1.

In the case of ZDT3, the number of evaluations decreases for NSGA-II compared
to the ones of ZDT1 and ZDT2, while they increase for AutoNSGA-II, which is around
4.2 times faster. For this problem, NSGA-II fails to solve ZDT3 with 32,768 variables, while
AutoNSGA-II is not capable of doing so with the largest number of variables. The results
for ZDT6 reveal that AutoNSGA-II is about 18 times faster than NSGA-II in solving the
problem with up to 65,356 variables, while NSGA-II can only solve it with 8192. The ZDT4
problem deserves special attention. Neither algorithm was able to solve it for 2048 variables,
so we decided to re-run the auto-configuration process by using only ZDT4 as the training
set. The settings obtained by irace are similar to those shown in Table 3 except for the
mutation operator, which is linked polynomial mutation [28] (distributed index = 18.49,
mutation probability factor = 0.28, and mutation repair strategy = random). With these
parameter values, AutoNSGA-II has been able to solve ZDT4 with 2048 variables in less
than 25 million evaluations.
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Table 4. Results for NSGA-II and AutoNSGA-II on the ZDT benchmark. The last row shows the time
and evaluations of AutoNSGA-II using a specific configuration for the ZDT4 problem.

Time (h) Evaluations

Problem Variables NSGA-II AutoNSGA-II NSGA-II AutoNSGA-II

ZDT1 2048 0.13 0.02 1,250,500 182,356
4096 0.51 0.12 2,906,100 484,356
8192 2.40 0.50 6,622,600 1,039,156

16,384 11.19 2.15 14,741,200 2,180,656
32,768 - 9.04 - 4,605,556
65,356 - 31.66 - 9,494,556

131,072 - 120.02 - 19,359,356
ZDT2 2048 0.14 0.02 1,472,800 164,756

4096 0.62 0.10 3,433,100 429,156
8192 2.77 0.49 7,676,600 986,556

16,384 12.30 2.28 17,059,600 2,358,056
32,768 - 9.28 - 4,736,056
65,356 - 39.19 - 10,081,856

131,072 - 138.85 - 21,703,556
ZDT3 2048 0.10 0.03 1,089,800 253,356

4096 0.47 0.16 2,514,200 610,956
8192 2.08 0.62 5,463,000 1,267,656

16,384 9.18 2.68 11,877,500 2,820,556
32,768 - 11.39 - 6,158,256
65,356 - 40.69 - 11,912,856

131,072 - - - -
ZDT4 * 2048 - 2.62 - 21,746,882
ZDT6 2048 0.45 0.04 5,401,100 291,856

4096 1.82 0.16 11,482,400 659,956
8192 7.16 0.66 24,897,300 1,374,056

16,384 - 3.08 - 3,221,156
32,768 - 15.51 - 7,941,156
65,356 - 63.79 - 17,685,556

131,072 - - - -
* This instance has used a specifically tuned configuration by irace.

From these results, we can state that the use of auto-configuration for NSGA-II pro-
duces a variant that is not only faster than NSGA-II on all problems except for ZDT4 but
is also capable of scaling up to more than 100,000 variables in the case of problems ZDT1
and ZDT2, which is a remarkable outcome of our study. Using the five instances as a
training set for the auto-configuration process has had the consequence of finding a suitable
parameterization for four problems at the expense of a detriment in ZDT4.

The ZDT benchmark was proposed more than 20 years ago, and its problems are
considered easy to solve, so we could consider our findings as a kind of lower bound
of the capabilities of NSGA-II to solve scalable problems. We could also argue that the
time required to solve ZDT1 and ZDT2 with 131,072 variables is more than four days,
but we have to consider that we have used virtual machines and we have not applied any
optimization technique (e.g., parallelism), so those times could be significantly reduced.

4.2. The CSO Problem

The resulting configuration of AutoNSGA-II and how it contrasts with the typical
NSGA-II settings for binary encodings is shown in Table 5. In this case, the main differences
are again the presence of an external archive, the size reduction in the two populations
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(from 100 to 93 and 32 individuals, respectively), almost doubling the mutation impact (to
1.7) and higher selection pressure since a tournament size of 9 is adopted instead of 2.

Table 5. Settings for NSGA-II and AutoNSGA-II for the CSO problem.

Default Settings for NSGA-II Settings of AutoNSGA-II

algorithmResult: population algorithmResult: externalArchive
populationSize: 100 populationSizeWithArchive: 93
offspringPopulationSize: 100 offspringPopulationSize: 32
variation: crossoverAndMutationVariatio variation: crossoverAndMutationVariation
crossover: singlePoint crossover: singlePloint
crossoverProbability: 0.90 crossoverProbability: 0.89
mutation: bitFlip mutation: bitFlip
mutationProbabilityFactor: 1 mutationProbabilityFactor: 1.7
selection: tournament selection: tournament
selectionTournamentSize: 2 selectionTournamentSize: 9

In this experimental scenario, the goal is not to reach an approximated Pareto front
with a given quality level but to approximate the best possible set of non-dominated
solutions. To do so, we have used nine different families of CSO instances with an increasing
density, not only in the SBSs deployed in the network (i.e., the problem size) but also in the
number of existing users that represents the actual demand for data traffic. Three density
levels for each parameter have been considered, namely Low, Medium, and High (L, M,
and H, respectively), whose full specification is included in Table A1 in the Appendix.
The combination of these density levels results in nine families of instances that have
already been addressed in previous works [26,27]. We would like to emphasize that we
have used the term “family” because the generation of these instances involves random
processes for the deployment of both users and SBSs. To address this issue, we have
considered here the same 50 random seeds for the two algorithms so that both NSGA-II
and AutoNSGA-II face exactly the same generated instances. Two statistical measures
of the HV indicator of the approximated Pareto fronts are computed: the mean and the
standard deviation (see Table 6). Finally, as we do not have the true Pareto front for this real-
world problem, the stopping condition is slightly different from that of the benchmarking
problems addressed in the previous section. In fact, a maximum number of function
evaluations has been used, which increases with the size of the instances: 100,000, 150,000,
and 250,000 for L{X}, M{X}, and H{X}, respectively, with X = {L,M,H}. To obtain a reliable
value of the HV indicator, we have first composed a reference Pareto front composed of all
the non-dominated solutions found by all the algorithms for each instance, and then we
have normalized each approximated front prior to computing the HV value, thus avoiding
the effect of the different scaling in the problem objectives.

Table 6. HV indicator for the nine CSO problem families (Mean±Standard deviation).

NSGA-II AutoNSGA-II

LL 0.733±0.074 0.857±0.041

LM 0.726±0.077 0.834±0.044

LH 0.707±0.116 0.814±0.071

ML 0.619±0.084 0.871±0.030

MM 0.659±0.098 0.843±0.048

MH 0.685±0.099 0.823±0.067

HL 0.699±0.080 0.868±0.034

HM 0.644±0.128 0.792±0.119

HH 0.725±0.103 0.812±0.086
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The HV values reached by NSGA-II and AutoNSGA-II are shown in Table 6, where we
have used a gray background to highlight the best (highest) value of the indicator. The con-
clusion is clear: AutoNSGA-II consistently outperforms NSGA-II in all combinations of
densities in the UDN. These differences are remarkable, considering the normalization
of the approximated fronts. If we analyze the effect of the density in more detail, we can
also observe that when the density of users is Low, i.e., families {X}L (rows 1, 4 and 7),
the average HV improvement of AutoNSGA-II is 0.18 over NSGA-II, whereas it is slightly
lower for families {X}M and {X}H, which is 0.15 and 0.11, respectively. This showcases
a very interesting point for the radio network designer (the decision-maker in the CSO
problem) because substantially improved solutions can be reached in periods of very low
demand, thus saving more energy consumption. All these results are shown to have statis-
tical significance at a 95% level using either an ANOVA I or a Kruskal–Wallis depending on
the normality of the samples, which is checked beforehand by a Kolmogorov–Smirnov test.

In order to better support these claims, in Figure 2, we also show the 50%-attainment
surfaces [29] of the nine families of CSO instances. It can be seen that, averaged over all
the approximated fronts, the attainment surfaces of AutoNSGA-II cover regions of the
solution space with very large energy savings (left-hand side of the plots), where NSGA-II
is unable to reach. This particularly holds in the plots of the first column (i.e., families {X}L),
corroborating the previous analysis of the HV values. Note that this is a key issue in the
deployment of 5G networks, as this problem objective actually computes the instantaneous
power consumption, so even small reductions have a deep impact on the electricity bill
over a month/year timeframe for a network operator.
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Figure 2. Attainment surfaces for the nine CSO instance families.
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5. Conclusions

This work has shown how a well-designed optimization software in combination with
an automatic configuration tool such as irace allows tuning the NSGA-II algorithm to
deal with large-scale multi-objective optimization problems. By properly adjusting the
algorithm components in a methodology that involves not only updating the application
rates but also the type of operators used, the auto-configured version of NSGA-II, named
AutoNSGA-II, has been successfully evaluated over fairly different scenarios. On the one
hand, AutoNSGA-II has been able to address instances of the continuous ZDT problem
family (ZDT1 and ZDT2) with up to 217 = 131, 072 decision variables, being considerably
faster (in terms of the number of function evaluations and thus the execution time) than the
canonical NSGA-II in reaching approximated Pareto fronts with 95% of the HV indicator of
the true Pareto front. On the other hand, in a more application-oriented context, AutoNSGA-
II has been able to improve upon NSGA-II when addressing a combinatorial optimization
problem in ultra-dense 5G networks, where a subset of cells have to be selected to be
switched off in order to reach a trade-off between energy consumption and quality of
service. The newly algorithmic configuration has been able to reach approximated Pareto
fronts with, specifically, higher energy-efficient solutions than those computed by the
standard NSGA-II.

A line of work that is worth addressing in the future is to repeat our experiments with
the ZDT problems but using each problem separately as a training set aimed at determining,
first, whether the performance of AutoNSGA-II can be improved (in terms of reducing the
number of evaluations and then reducing the computing time) and, second, to analyze the
obtained NSGA-II configurations for each problem to detect common parameter values
or components.

The usefulness of using a methodology for automated algorithm tuning, such as
NSGA-II, makes sense in the context of dealing with real-world problems, as our study
with the CSO has shown. The application of this approach with our combination of jMetal
and irace to other problems is also further research work.
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Appendix A. UDN Modeling and Instances

This work considers a service area of 500× 500 meters, which has been discretized
using a grid of 100× 100 points (also called “pixels” or area elements), each covering a
25 m2 area, where the signal power is assumed to be constant. In addition to that, vertical
densification has been taken into account by considering three vertical area elements, i.e.,
25 m of height.
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Ten different regions have been defined with different propagation conditions. To com-
pute the received power at each point, Prx[dBm], the following model has been used:

Prx[dBm] = Ptx[dBm] + PLoss[dB] (A1)

where Prx is the received power in dBm, Ptx is the transmitted power in dBm, and PLoss is
the global signal losses, which depend on the given propagation region, and are computed as:

PLoss[dB] = GA + PA (A2)

where GA is the total gain of both antennas, and PA is the transmission losses in space,
computed as:

PA[dB] =
(

λ

2 · π · d
)K

(A3)

where d is the Euclidean distance to the corresponding sector at the SBS, and K is the
exponent loss, which randomly ranges in [2.0, 4.0] for each of the 10 different regions.
The Signal-to-Interference plus Noise Ratio (SINR) for UE k, is computed as:

SINRk =
Prx,j,k[mW]

∑M
i=1 Prx,i,k[mW]− Prx,j,k[mW] + Pn[mW]

(A4)

where Prx,j,k is the received power by UE k from the cell j, the summation is the total
received power by UE k from all the cells operating at the same frequency that j, and Pn is
the noise power, computed as:

Pn[dBm] = −174 + 10 · log10 BWj (A5)

where BWj is the bandwidth of cell j, defined as 10% of the SBS operating frequency, which
is the same for all the cells it deploys (see Table A1).

Finally, the UE’s capacity has been calculated according to the MIMO depicted in [30].
Thus, we assume that the transmission power from each antenna is Ptx/ntx, where ntx
indicates the number of transmitting antennas. Then, if we consider the subchannels to be
uncoupled, their capacities can add up, and the overall channel capacity of the UE k can be
estimated using the Shannon capacity formula:

Cj
k[bps] = BWj

k[Hz] ·
r

∑
i=1

log2

(
1 +

SINRk · λi
ntx

)
(A6)

where
√

λi is the singular value of the channel matrix H, of dimensions nrx × ntx (i.e., #
receiving antennas × # transmitting antennas). Note that both nrx and ntx depend on the
cell type (see Table A1). BWj

k is the bandwidth assigned to UE k when connected to cell j,
assuming a round-robin schedule, that is:

BWj
k =

BWj

Nj
(A7)

where Nj is the number of UEs connected to cell j, and the UEs are connected to the cell
that provides the highest SINR, regardless of its type.

In order to build a heterogeneous network, three different types of cells of increasing
size and decreasing frequency are considered: femtocells, picocells, and microcells. Recall
that these cells are generated by the antennas installed in a given sector of an SBS. Figure A1
illustrates the three configurations used in our modeling. In the first row, the three SBSs
have the three sectors, and all their cells switched on (in operation). Thus the mapping to
the binary string that represents a tentative solution, included below each subfigure, does
have all the genes set to 1. In the second row, we have included several solutions with a
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subset of cells switched off, with the corresponding genes set to 0. It should also be noted
that the number of transmitting antennas of each cell type increases with frequency, being
8, 64, and 256 transmitting antennas, respectively, for micro, pico, and femtocells. In the
same way, we assume that high-capacity UEs, which will preferably connect to small cells
(pico and femtocells), will implement a higher number of receiving antennas (4 and 8 for
pico and femtocells, respectively).
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Figure A1. Configuration of the SBSs, sectors, and cells used in this work, as well as its mapping into
a binary encoded representation.

With the system configuration described above, the actual deployment of the cells is
carried out via the placement of SBSs in the working area, using a random rotation angle
for the sectors, which determines the orientation of the different cell beams. Then, both
SBSs and UEs are deployed using independent Poisson Point Processes (PPP) with different
densities, defined by λCells

P and λUE
P ), respectively.

The power consumption of a transmitter is computed based on the model presented
in [31], which considers that the device is transmitting over the fiber backhauling. Therefore,
the regular power consumption of cell j, Pj, is expressed as:

Pj = α · P + β + δ · S + ρ (A8)

where P denotes the transmitted or radiated power of the transmitter, coefficient α repre-
sents the efficiency of the transmission power produced by a radio frequency amplifier and
feeder losses, the power dissipated due to signal processing and site cooling is denoted
by β, and the dynamic power consumption per unit of data is given by δ, where S is the
actual traffic demand provided by the serving cell. Finally, the power consumption of the
transmitting device is represented by the coefficient ρ. However, in order to consider an
accurate power consumption model, the power consumed by the air conditioning and
power supply of the SBS should also be taken into account [32]. This has been called
maintenance power and is set to 2W/SBS for any SBS containing at least one active cell.

The detailed parametrization of the scenarios addressed is included in Table A1,
in which the column equation links the parameter to the corresponding equation in the for-
mulation detailed above. The names in the last nine columns, XY, represent the deployment
densities of SBSs and UEs, respectively, so that X = {L, M, H}, meaning either low, medium,
or high-density deployments (λCell

P parameter of the PPP), and Y = {L, M, H}, indicate a low,
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medium, or high density of deployed UEs (λUE
P parameter of the PPP), in the last row of

the table. The parameters Gtx and f of each type of cell refer to the transmission gain and
the operating frequency (and its available bandwidth) of the antenna, respectively, where
ntx and nrx are the number of transmitting and receiving antennas. Finally, the parameters
of the previously described power consumption model are also included. Nine instances
have been, therefore, used in this work in order to assess the performance of the different
metaheuristics and their hybridization with the problem-specific operators.

Table A1. Model parameters for users and base stations.

Cell Parameter Equation LL LM LH ML MM MH HL HM HH

Micro

Gtx (A2) 12
f (A5) 5 GHz (BW = 500 MHz)
α (A8) 15
β (A8) 10000
δ (A8) 1
ρ[W] (A8) 1
ntx 8
nrx 2
λmicro

P (Cells/km2) 300 300 300 600 600 600 900 900 900

Pico

Gtx (A2) 20
f (A5) 20 GHz (BW = 2000 MHz)
α (A8) 9
β (A8) 6800
δ (A8) 0.5
ρ[W] (A8) 1
ntx 64
nrx 4
λ

pico
P (Cells/km2) 1500 1500 1500 1800 1800 1800 2100 2100 2100

Femto

Gtx (A2) 28
f (A5) 68 GHz (BW = 6800 MHz)
α (A8) 5.5
β (A8) 4800
δ (A8) 0.2
ρ[W] (A8) 1
ntx 256
nrx 8

λ
f emto
P (Cells/km2) 3000 3000 3000 6000 6000 6000 9000 9000 9000

UEs λUE
P (UE/km2) 1000 2000 3000 1000 2000 3000 1000 2000 3000

Problem Formulation and Objectives

Let B be the set of randomly deployed SBSs. A solution to the CSO problem is a binary
string s ∈ {0, 1}|B|, where si indicates whether the cell i of a given SBS is activated or not.
The first objective to be minimized is, therefore, computed as:

min fPower(s) =
|B|
∑
i=1

si · Pi (A9)

where Pi is the power consumption of SBS i (Equation (A8)). Note that Pi includes both the
transmission power of every cell i in the SBSs and its maintenance power.

Let U be the set of UEs also deployed, as described in the previous section, and U be
the entire set of cells contained in B. Subsequently, in order to compute the total capacity of
the system, UEs are first assigned to the active cell that provides it with the highest SINR.
Let A(s) ∈ {0, 1}|U|×|C| be the matrix where aij = 1 if sj = 1 and the Cell j serves UE i
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with the highest SINR, and aij = 0 otherwise. Then, the second objective to be maximized,
which is the total capacity provided to all UEs, is calculated as:

max fCap(s) =
|U |
∑
i=1

|C|
∑
j=1

sj · aij · BWj
i (A10)

where BWj
i is the shared bandwidth of cell j provided to UE i (Equation (A7)). We would

like to remark that these two problem objectives are clearly conflicting with each other since
switching off base stations leads to a reduction in the power consumption of the network,
but it also damages the capacity received by the user, as the UE–cell distance increases
(rising the propagation losses) at the same time as the available bandwidth to serve users
is reduced.
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Abstract: Current market requirements force manufacturing companies to face production changes
more often than ever before. Reconfigurable manufacturing systems (RMS) are considered a key
enabler in today’s manufacturing industry to cope with such dynamic and volatile markets. The
literature confirms that the use of simulation-based multi-objective optimization offers a promising
approach that leads to improvements in RMS. However, due to the dynamic behavior of real-world
RMS, applying conventional optimization approaches can be very time-consuming, specifically when
there is no general knowledge about the quality of solutions. Meanwhile, Pareto-optimal solutions
may share some common design principles that can be discovered with data mining and machine
learning methods and exploited by the optimization. In this study, the authors investigate a novel
knowledge-driven optimization (KDO) approach to speed up the convergence in RMS applications.
This approach generates generalized knowledge from previous scenarios, which is then applied
to improve the efficiency of the optimization of new scenarios. This study applied the proposed
approach to a multi-part flow line RMS that considers scalable capacities while addressing the tasks
assignment to workstations and the buffer allocation problems. The results demonstrate how a KDO
approach leads to convergence rate improvements in a real-world RMS case.

Keywords: multi-objective optimization; knowledge discovery; reconfigurable manufacturing system;
simulation

1. Introduction

Current trends in the manufacturing industry are challenging companies to cope
with demand variations and fluctuating production volumes. Companies are required to
rapidly adjust the functionalities of their manufacturing systems to critically manage the
needs of this dynamic market to stay competitive [1]. By implementing Reconfigurable
Manufacturing Systems (RMSs), companies can efficiently meet the requirements of the
competitive market [2]. RMSs enable cost-effective means to meet dynamic market de-
mands by reconfiguring, among other aspects, their resources (e.g., machines, operators,
buffers, etc.) and the process plan of the manufacturing system [3].

Today’s manufacturing industry is affected by disruptions and shortages of com-
ponents caused by extraordinary situations such as a global pandemic or war. These
disruptions, combined with an increasingly shortened product life-cycle trend, mean that
manufacturing organizations are required to ramp up and down products more frequently
by modifying their production volumes more often than ever before [4]. Therefore, find-
ings regarding how dynamic market demands of today can be addressed more efficiently
constitutes a crucial research area in the RMS community.

Although an RMS may be able to meet the dynamic requirements in the market,
designing and configuring the RMS is no trivial task. Simulation techniques, particularly
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discrete event simulation, have proven to be a powerful tool for the manufacturing industry
to assess the capabilities of their production systems [5,6]. Often, several conflicting
objectives are used to simultaneously measure the quality of the system. Combining
simulation techniques with Multi-Objective Optimization (MOO), i.e., Simulation-based
Multi-objective Optimization (SMO), has been a successful approach for optimizing RMSs
in the literature [4,7,8]. A general Multi-Objective Optimization Problem (MOOP) can be
defined as:

Minimize: F(x) = [ f1(x), . . . , fM(x)]T

Subject to: x ∈ S

for M number of objective functions, in the constrained and feasible search space S, where
x = [x1, . . . , xN ]

T is a vector of N decision variables. Due to the structure of MOOPs, a
MOOP solution can be seen to inhabit two distinct spaces: the decision space and the objec-
tive space, and the objective functions can be seen as a mapping from the decision space to
the objective space. The goal of MOO is to find a set of solutions that together represent the
so-called Pareto-optimal front—the set of solutions that outperform or dominate all other
solutions to the MOOP in S.

Due to complex aspects, such as the stochastic failures of resources and equipment
that can be modeled using simulation techniques, exact methods are often omitted from
consideration when optimizing SMO problems; instead, evolutionary algorithms are used.
Multi-Objective Evolutionary Algorithms (MOEAs) are optimization techniques that are
developed to mimic fundamental principles of evolution found in nature such as the well-
known algorithm Non-dominated Sorting Genetic Algorithm II (NSGA-II) [9], which is
inspired by Darwinian survival of the fittest and evolves a population of solutions over a
number of generations to converge on the Pareto-optimal front.

Although MOEAs are a powerful tool to solve all kinds of MOOPs, they generate many
non-optimal solutions during the optimization process. Since these are largely eliminated
during optimization and rarely considered in the decision-making process, one can see the
wasted computational effort in evaluating them, specifically given the very time-consuming
simulations in SMO. After the observation that most of the analysis of MOOP solutions is
focused solely on the objective space, and mostly disregarding the dominated solutions,
the authors of [10] present Knowledge Driven Optimization (KDO), which is the idea to
employ knowledge discovery methods to describe decision-makers (DMs) preferences in
the objective space, in terms of knowledge about the solutions in the decision space, and
then use this knowledge to drive the search towards faster convergence on more optimal
solutions. This can be achieved in two ways, either offline where knowledge is generated
related to a previous scenario or case, and used to improve the convergence in a future
scenario, or online where knowledge discovery is integrated into the optimization process
as part of the MOEA itself to drive the search towards better convergence in the current
scenario. In this paper, we investigate an offline KDO approach.

In this work, we employ a knowledge-driven NSGA-II for a real-world Multi-Part
Flow Line (MPFL) to optimize the RMS configuration by considering scalable capacities
and fluctuating production volumes. The MOOP formulation addresses task allocation
to workstations as well as buffer allocation while maximizing throughput (THP) and
minimizing total buffer capacity (TBC). In Section 5, we show how the new approach is
able to speed up the convergence towards non-dominated solutions for new scenarios by
utilizing knowledge discovered from initial scenarios. The scope of the paper is limited
to proposing and showcasing this knowledge-driven approach and comparing the effects
of utilizing knowledge in the form of decision rules discovered from one variant of the
considered RMS, to speed up the convergence rate of another variant of the same RMS.

2. Background

Simulation and optimization techniques have successfully been used in the context of
manufacturing in the literature. However, the analysis of solutions is often limited to manual
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methods and mostly focus on the objective space. This section offers a background of simula-
tion and optimization, knowledge discovery in MOO, and knowledge-driven optimization.

2.1. Simulation and Optimization in Manufacturing Systems

Regardless of the benefits of RMS compared to traditional manufacturing systems
in achieving demand and capacity fluctuations, the design and management of these
systems are considered a complex combinatorial NP-hard problem which therefore can
be handled by the employment of simulation and optimization tools [7,11,12]. When it
comes to RMS problems, meta-heuristic methods such as genetic algorithms have become
very popular in the literature because they have shown better performance in generating
near-optimal solutions [7]. In addition, simulation has been a satisfactory tool to support
the modeling and analysis of manufacturing systems for many years [13]. Because of
the complexity and dynamism inherent in manufacturing systems, engineers and DMs
supported by simulation tools can perform better analysis and, therefore, obtain a better
understanding of the real-world systems [14]. Concerning RMS, simulation has been
identified in the literature as a supportive technique to handle the uncertainty found
in these types of dynamic, evolving systems [15]. Still, considering that the complexity
of today’s manufacturing systems is growing and that they need to consider a range of
possible scenarios with a large number of variables to model and analyze, the use of
simulation tools becomes nonfunctional. Alternatively, optimization methods could be
employed to solve larger-scale NP-hard problems [7]. However, the majority of prior
studies that applied optimization methods to RMS reduced the problem by excluding
variability and stochasticity (e.g., machine failures) and therefore providing imprecise
solutions. Therefore, studies that employed simulation and optimization separately have
shown some of the above-mentioned shortcomings. Against these drawbacks, simulation-
based optimization combines the benefits of simulation and optimization. In the literature,
simulation-based optimization has successfully led to improvements in manufacturing
systems. Consequently, SMO could lead to improvements in current RMSs [11,13].

RMSs need to address three main challenges, namely: (i) the system configuration,
(ii) the process planning, and (iii) the components of the system [3]. The system configura-
tion targets the physical arrangement of the resources (e.g., operators, machines, etc.) in
the system [2]. This challenge is usually addressed by optimizing the resource assignment
to workstations (WSs). The process planning targets the task allocation and balancing
throughout the WSs [16]. This challenge is usually addressed by optimizing the work
tasks allocation. Lastly, the components of the system address the appropriate number
and type of components (e.g., buffers, operators, machines, etc.) in the system to reach
the established capacity goal [13]. This challenge is usually addressed by optimizing the
number of resources to perform the tasks. Although simulation-based optimization has
been employed to address RMS problems previously in the literature, the use of SMO to
address several or all of these challenges simultaneously is sporadic.

2.2. Knowledge Discovery in MOO

Methods for knowledge discovery in the decision space of MOO solutions are not
conventional in the multi-criteria decision-making literature, which mostly focus on manual
methods for analyzing the solutions in the objective space. However, Ref. [10] offers
a survey of data mining and machine learning methods that have been employed for
knowledge discovery to support decision-making in MOO. The process of innovization [17]
was developed as a way of finding innovative design principles to describe the Pareto-
optimal front. Innovization was initially described as a manual process of formulating
relationships between correlated regions of the objective space using appropriate regression
models; however, it has since been automated using genetic programming [18]. Simulation
Based Innovization (SBI) is another method for knowledge discovery in MOO [19,20].
SBI trains a decision tree with the distance to a user-defined reference point (a point
describing a DMs aspiration) in the objective space as the regression target. The DM then
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chooses a threshold for the distance to the reference point to find rules that describe the
decision space for the solutions within this threshold. A further application of knowledge
discovery methods used in the analysis of solutions is offered by [21] where the authors
used clustering in both the objective and decision spaces, as well as association rule analysis
in cantilever design optimization problems.

Flexible Pattern Mining

Although previous approaches have successfully utilized common data mining and
machine learning methods for knowledge discovery, these methods were not developed
specifically for the indented use in MOO, and may not fully be able to manage the typical
characteristics of MOOP solutions, such as different variable types (continuous, discrete
and ordinal, and nominal) [10]. However, a method that has been specifically developed for
knowledge discovery in MOO is Flexible Pattern Mining (FPM) [22]. FPM was developed to
extend sequential pattern mining [23] using the a priori algorithm [24] for finding decision
rules. While sequential pattern mining finds rules of the form {xi = c} for a variable xi
and constant value c, FPM is further able to find rules on the forms {xi �= c}, {xi < c},
{xi ≤ c}, {xi > c} and {xi ≥ c}. To run FPM, the DM is required to supply a selected
and an unselected set of solutions, and these selections are made in the objective space.
With these selections as input, FPM then generates rules that separate the selected set from
the unselected set in terms of the variables in the decision space. Typically, the DM may
choose the non-dominated solutions as the selected set and the remaining solutions as
the unselected set. Each rule generated by FPM has an associated significance or sig value,
which is the fraction of solutions in the selected set that are covered by the rule, and a
similar unselected significance or unsig for the fraction of solutions in the unselected set. An
interesting and meaningful FPM-rule would have a high sig while having a low unsig, and
thereby be describing only the solutions in the selected set. Rule interactions can also be
considered by combining several FPM-rules and evaluating their combined sig and unsig.
The three individual rules {x1 < c1}, {x2 > c2} and {x3 = c3} can be combined into the
three-level rule interaction {x1 < c1 ∧ x2 > c2 ∧ x3 = c3}.
2.3. Knowledge-Driven Optimization

Knowledge discovery methods can be a powerful tool in decision-making; however,
in this manner, the knowledge is only used by the DMs. The term Knowledge-Driven
Optimization (KDO) is used when knowledge discovered from good or preferred MOOP
solutions is fed back into the optimization algorithm to affect the convergence behaviour, or
used to update the MOOP formulation itself to make the search more efficient. The former
is called online KDO, while the latter refers to offline KDO [10].

A key difference between online and offline KDO is that, since the knowledge used for
the former is discovered during the search process from the best-so-far solutions, it does
not necessarily describe the optimal solutions to the MOOP. On the other hand, with the
assumption that an optimizer converges close to the Pareto-optimal front, offline KDO has
access to “pure” knowledge directly describing the optimal (or preferred) solutions.

2.3.1. Online KDO

Online KDO in a MOEA involves a specific knowledge discovery step to generate
knowledge from previous or current solutions, and is able to use this knowledge to affect
the convergence behaviour and more effectively generate better or preferred solutions.
Online KDO algorithms have been implemented to involve an additional step after the
ordinary evolutionary process that finds knowledge for feeding into the evolutionary
operators for the next generation. An example of an approach like this is shown in [25,26],
where FPM rules are generated to build a distribution over the preferred solutions close to
the reference point in preference-based MOO. This distribution is then sampled in a new
mutation operator for the next generation of solutions. Another approach using FPM rules
is presented in [27], where the rules are used as constraints in the decision space.
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Approaches that train a classifier between good and bad solutions have also been
proposed. In [28], a classifier was trained online to differentiate between dominated
and non-dominated solutions, and in [29], a classifier is trained online to find constraint
violating solutions. In both papers, the classifier was used before the solutions were
evaluated, in order to save time by not evaluating poor solutions. Recently, approaches
that use innovization online have also been proposed [30,31].

2.3.2. Offline KDO

Offline KDO refers to when knowledge about MOOP solutions is generated offline,
after an optimization run has finished and is used to benefit future optimizations of the
same or similar cases, or to give insights that can lead to an updated MOOP formulation.
Only when DMs fully understand the MOOP and its solutions are they able to make an
informed decision.

In [32], SBI was used to find decision rules about solutions close to a user-defined
reference point, and then used as constraints in a second optimization run, to generate more
non-dominated solutions. This method served both as a way to discover more preferred
solutions, but also to validate the method and show that it generates actionable knowledge.
Previously, it has also been found that leveraging domain knowledge can also greatly
benefit the optimization [33,34]. This type of knowledge is not generated from previous
optimizations, but from the experience and intuitions of veteran DMs. In [35], domain
knowledge was used to develop specialized design heuristics to speed up the convergence
of a multi-objective satellite design system problem.

Offline KDO is similar to the concept of transfer learning in the machine learning
literature [36], where a model able to perform a specific task is also able to perform or
jump-start the learning process of another related task. In this paper, we focus on using
offline KDO in order to generate knowledge from an initial scenario that can be applied to
benefit the search in a new scenario. In the next section, we present an illustration of how
offline KDO can be implemented.

3. Illustration of Offline KDO

Knowledge generated from MOOP solutions obtained in one scenario may be ben-
eficial for future scenarios of similar MOOPs. Preferred solutions in the objective space
may have a certain structure in the decision space that can be exploited to ensure a faster
convergence towards the Pareto-optimal front or a greater density of preferred solutions.
In this paper, we consider the knowledge generated through the FPM procedure [22] and
the openly available implementation in the web-based decision support system Mimer
(Mimer: https://assar.his.se/mimer/, accessed on 6 October 2022).

In this section, we want to showcase an example of how simple knowledge about
non-dominated solutions can help to speed up the convergence and generate even more
non-dominated solutions. We show how knowledge in the form of FPM-rules can be
applied as constraints in the decision space to focus the search for non-dominated solutions
in different parts of the Pareto-front.

Illustrative Example

We showcase an example of offline KDO on the RE3-5-4 problem from the RE suite of
real-world (inspired) test-problems [37]. We show how it is possible to use FPM to generate
rules that describe non-dominated solutions, and then use these rules as box-constraints
for the decision variables of the MOOP for a different optimization run. Without first
generating knowledge about an initial solution set, this approach would not be possible.
We also compare this offline approach with simply constraining the decision space to focus
the search without relying on any knowledge.

The RE3-5-4 is a three-objective engineering problem with a mathematical formulation,
based on the vehicle crash-worthiness design problem described in [38]. The objectives
to RE3-5-4 are: ( f0) minimize the weight of the vehicle, ( f1) minimize the acceleration
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characteristics in the crash, and ( f2) minimize the toe-board intrusion during the crash,
while the variables (x0–x4) each relate to the thickness of a different support member in the
frontal structure in the vehicle.

Figure 1 shows non-dominated solutions generated from a single run on the RE3-5-4
problem with a budget of 6000 function evaluations, which resulted in 2344 non-dominated
solutions. The structure of the objective space clearly shows three distinct, disconnected
clusters of solutions. A DM would not only be interested in what causes solutions to end
up in these different clusters in terms of the decision space, but also how to focus the search
to further saturate these regions with more trade-off solutions. We can use FPM for each of
the clusters, to find knowledge for the respective solutions in terms of the decision space.
The FPM procedure requires a selected and an unselected set of solutions. We run FPM
three times using Mimer, each time with the non-dominated solutions from one of the
clusters as the selected set and the remaining solutions from the entire solution set as the
unselected set, thus finding rules that describe the non-dominated solutions in each cluster.
The resulting FPM rules are shown in Table 1.

6
8

10

1,660

1,680

0.1

0.2

f0f1

f 2

Figure 1. Non-dominated solutions from RE3-5-4.

Table 1. Rule interactions found by using FPM for each of the clusters shown in Figure 1.

Cluster Rule Interaction Sig Unsig

1 x2 > 2.01∧ x3 < 1.06∧ x0 < 1.08∧ x1 > 2.63 100% 10.91%
2 x2 < 1.03∧ x3 < 1.49∧ x0 < 1.93 100% 22.68%
3 x1 > 2.99∧ x4 > 2.78∧ x2 < 1.02∧ x0 > 1.02∧ x3 < 2.53 100% 5.12%

FPM was run with a minimum significance of 100% in each case, meaning that all
discovered rules completely covered the selected set, and the results still show that the rules
discriminate between the selected and unselected set, given the low unselected significance.
However, the rule interaction found for cluster 2 had an unsig of 22.68%. This means that
the rule interaction also describes 22.68% of the solutions in the unselected set, which
would lead to a lower search pressure towards the non-dominated solutions within this
cluster when used for offline KDO.

With this knowledge about the different clusters in hand, we run additional optimiza-
tions, focusing on each of these clusters separately. We used the rule interactions found
using FPM as bounds to constrain the decision space, and ran an optimization with a total
of 2000 function evaluations for each respective rule interaction. These three solution sets
where then combined, and the non-dominated solutions from these combined runs are
shown in Figure 2. This offline approach resulted in 3070 non-dominated solutions, with
the same total function evaluations (6000) as the original run.
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Figure 2. Non-dominated solutions from RE3-5-4 using offline KDO.

We also compare this offline KDO approach with the crude method of simply con-
straining the objective space to focus the search on the three clusters. The clusters can be
classified by the objective space bounds shown in Table 2. To be fair against the offline
KDO approach, we gave this crude method a budget of 4000 function evaluations for each
cluster since the offline KDO approach was able to utilize knowledge from an initial 6000
solutions. We combined the final solutions sets from each cluster into one. This approach
resulted in 2858 total non-dominated solutions, which are shown in Figure 3.

Table 2. Objective space bounds for each of the clusters as shown in Figure 1.

Cluster Bounds

1 f2 > 0.13
2 f2 < 0.13∧ f0 < 1680
3 f2 < 0.13∧ f0 > 1680
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Figure 3. Non-dominated solutions from RE3-5-4 using bounded objective space.

We compare the baseline run with the offline KDO approach and the bounded ob-
jective space approach, by using the hypervolume metric (HV) [39] and by counting the
contribution of each run to the composite front produced by combining the solutions from
the three approaches. The composite front is shown in Figure 4 and the resulting HV and
contribution to the composite front is shown in Table 3. The offline KDO approach resulted
in a slightly greater HV and a greater contribution to the composite front, meaning that
this approach gives superior performance over the other approaches.
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Figure 4. Composite front of the solutions from Figures 1–3.

Table 3. HV score and contribution to composite front of the three approaches.

Approach HV Contribution (n) Contribution (%)

Baseline 1.034324 1134 20.38
Offline KDO 1.037663 2542 45.68

Bounded objective space 1.037533 1889 33.94

Since the offline KDO approach is utilizing knowledge discovered from a previous
run, it is expected to have a higher performance. However, this example demonstrates that
simply adding knowledge as box constraints in the decision space is enough to greatly
improve the performance of an optimization run. This example also highlighted that
applying a similar approach, by constraining the objective space, is not as effective as
this offline KDO approach. This example shows the potential of incorporating offline
knowledge into a MOO pipeline by spending a portion of the function evaluation budget
on generating solutions, then finding knowledge about high performing solutions, and
then utilizing this knowledge offline, for the remaining function evaluation budget, to
reach a faster convergence on more preferred solutions.

4. Real-World RMS Problem

The considered RMS comes from a MPFL setup implemented in a truck manufacturer
in Sweden. The case is based on a pedal car production, where two product families are
manufactured. The MPFL is composed of three reconfigurable WSs able to add, relocate,
or remove operators from them in order to cope with production changes (e.g., volumes
or capacity changes). Both products need to be produced at specific volumes. As the
total production capacity or the production volumes fluctuate, the system configuration,
the process plan, and the components of the systems change to meet the new scenario.
The changes include the number of operators employed, the assignments of operators to
the WSs, the tasks’ assignments to WSs, and the buffers’ capacities. The company was
interested in different scenarios. Initially, they wanted to investigate the system’s capacity
with seven operators for the specific production volumes, 70/30 and 30/70. These different
proportions of production volumes determine the total proportion to be produced of the
two product parts. For example, a proportion of 70/30 refers to the fact that 70% of the
total parts produced should be of part A, and the remaining 30% should be of part B.
Furthermore, the company also wanted to investigate how much capacity could be gained
by adding one and two extra operators to the system, including the information regarding
how to reconfigure the system, how to re-balance the tasks, and a re-assessment of the
capacities of the buffers. Therefore, as the proportion and volume changes, the RMS evolve
accordingly. The assumptions of the RMS are:

• A MPFL consisting of several WSs produce several products under different volumes;
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• The resources of the RMS are subjected to disturbances, such as breakdowns, setup
times, and variability of the tasks;

• Each WS has a number of parallel and identical resources that execute the same
sequence of tasks;

• Each WS has reserved space for adding or reallocating resources;
• There are buffers with variable capacity in-between the WSs;
• The manufacturing tasks of the considered products are subjected to a precedence rela-

tionship and technological constraints that ensure a feasible sequence to be performed
in each WS.

The mathematical problem formulation for the considered MPFL-RMS is detailed
in [40].

In this paper, we consider an SMO problem using Throughput (THP) and Total Buffer
Capacity (TBC) as objectives while striving for the optimal buffer and tasks allocation for
the different scenarios. The total manufacturing time for the production is 336.38 s for part
A and 293.38 s for part B divided into 29 and 24 tasks, respectively. The tasks precedence
relations for both products are shown in Figure 5. Note that each task can be assigned to
only one WS.
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Figure 5. Precedence relation of the tasks for both products.

SMO Approach

The architecture of the SMO approach used can be divided into two major compo-
nents: the simulation engine and the optimization engine, which are tightly integrated.
For the simulation engine, the discrete event simulation software FACTS Analyzer [41]
was employed for modeling the production system and simulating the studied scenarios.
The optimization engine was implemented in the well-known platform MATLAB. The
integration between the simulation and optimization engines allows an accurate represen-
tation of a realistic production line involving many types of model variables regardless of
their nature (e.g., failure, availability, mean time to repair, process time) while avoiding the
simplification found in other production line optimization studies. The process begins in
the optimization engine where custom-made encoding and decoding mechanisms generate
feasible RMS solutions to, later on, be automatically mapped to the simulation engine.
The simulation engine then uses the received combination of input variables to run the
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simulation on the model. The results from the simulation experiments are fed back to the
optimization engine in order to be evaluated by the optimization algorithm in terms of the
designated conflicting objectives. This process in which the optimization engine evaluates
the output of the optimization for instructing a new combination of input parameters to be
simulated is repeated until the results converge to a set of optimal solutions or the stopping
criterion is reached (i.e., a predefined number of generations).

Due to the outstanding performance in handling up to three conflicting objectives
and being known as an effective MOEA when handling complex combinatorial problems,
a customized NSGA-II with specific encoding and decoding mechanisms for RMS was
implemented within the optimization engine to generate feasible solutions [4,12]. There
are three main factors behind the success of NSGA-II, the fast non-dominated sorting
which establishes a dominance relationship between each pair of solutions, the elitism
mechanism to keep the best solutions, and the crowding distance calculation that ensures
that ranks the solutions of each individual front maintaining diversity. The general steps of
the customized NSGA-II for RMS are shown in Algorithm 1.

Algorithm 1 Enhanced SMO-NSGA-II

Require: Generation limit Gmax; Population size; Precedence relation; RMS inputs regard-
ing WSs, buffers, resources and constraints

1: Create a population of priority-based representation vectors
2: Initialize generation counter g
3: while g ≤ Gmax do
4: Using the custom-made encoding and decoding mechanisms, ensure a population of

RMS feasible solutions
5: Use the simulation engine to evaluate the fitness functions for all solutions
6: Rank the solutions using fast non-dominated sorting
7: Calculate the crowding distance of each solution in each individual front
8: Select parents for crossover using tournament selection
9: Using crossover and mutation operators, generate a new set of offspring

10: Using elitist replacement mechanism, preserve best individuals
11: Increment g
12: end while
13: return The Pareto-optimal solutions for RMS

Due to the differences in how the considered RMS is encoded from a standard MOOP
solved by NSGA-II, the variables for the number of WSs, and task- and buffer assignment
are encoded as random keys in the enhanced algorithm, and on Line 4, they are decoded as
feasible input for the simulation model. On Line 5, these decoded solutions are sent to and
evaluated by the simulation engine, and the objective values are sent back to the algorithm.
A complete description of the enhanced algorithm is provided in [40].

5. Experimental Results

In this section, we present the results from the initial optimizations, the knowledge
we were able to discover from the solutions to these optimizations, and new results from
an offline KDO study using this discovered knowledge. We investigate the improvement
in convergence towards the Pareto-optimal front by applying FPM rules as constraints in
the decision space. All optimizations refer to the real-world RMS problem described in
Section 4. All knowledge discovery was performed using the openly available web-based
decision-support system Mimer, enabling the knowledge discovery framework described
in [42].

5.1. Optimization Results

We ran six optimizations initially, one scenario for each pair of number of operators (7,
8, 9) and proportion (70/30, 30/70). Each optimization run had a budget of 500 generations
and a population size of 50. The resulting non-dominated solutions from these runs are
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shown in terms of their task allocation in Figure 6, where each row represents one solution
and each column represents one task for either product A or B, and the color of the cell
shows the WS it was assigned to. In total, 72 non-dominated solutions were found in these
scenarios altogether.

A1 A8 A16 A24 B1 B8 B16 B24

9

8

7

WS1 WS2 WS3

70/30

30/70

70/30

30/70

70/30

30/70

Figure 6. Task allocations from the non-dominated solutions from all scenarios in the initial optimizations.

From the figure, it is clear that most of the non-dominated solutions in each scenario
share common task allocations. However, all solutions shown in Figure 6 are distinct and
have varying buffer allocations which are not shown here.

The number of non-dominated solutions from each scenario is shown in Table 4, where
we can see that the number of non-dominated solutions in each scenario varies from 10–19,
except for the scenario of nine operators with a proportion of 70/30 where only one non-
dominated solution was found. The objective space of the non-dominated solutions from
all scenarios is also shown in Figure 7, where it is very clear how increasing the number of
operators, as expected, has a definite impact on the throughput.

Table 4. Number of non-dominated solutions found for each scenario in the initial optimizations.

NO Proportion Solutions (n)

7 30/70 13
7 70/30 19
8 30/70 10
8 70/30 18
9 30/70 11
9 70/30 1

5.2. Knowledge Discovery

Due to the ability of the system to both increase and decrease the number of operators
and to change the proportion between the two parts, in this paper, we are interested in
finding generalized knowledge about each of the different number of operators and the
different proportions. In other words, if we can generate knowledge from the previous
scenarios with seven operators that can be generalized to improve the optimization process
for future scenarios with seven operators but new proportions, and if we can generate
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knowledge from the scenarios with a proportion of 30/70 and use it in future scenarios
with different numbers of operators, and so on for each group of scenarios.

5 10 15 20 25 30 35 40
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Figure 7. Objective space of the non-dominated solutions from all scenarios in the initial optimizations.

We generate knowledge in the form of decision rules using the FPM procedure. From
the initial results, we are interested in five groups of scenarios to generate knowledge
from. The scenarios wherein the numbers of operators equal 7, 8, and 9, and where the
proportions equal 30/70 and 70/30. In order to run FPM, we merged the solutions from
all optimization scenarios into one combined dataset so that the different scenarios can
take all cases into account. For each group, we ran FPM with the non-dominated solutions
from the scenarios in the group as the selected set, and all remaining solutions (dominated
and non-dominated) from all scenarios as the unselected set. In this way, the generated
knowledge is general between scenarios in the MOOP.

For this knowledge discovery, we only focus on the task allocation. Even so, the num-
ber of decision variables is high (53) which affects the run-time of the FPM procedure. For
this reason, the maximum level of rule interactions was limited to 4, i.e., only interactions of
four FPM-rules are considered. As we can see in Figure 6, many non-dominated solutions
in one scenario share the same task allocations for many tasks. Therefore, FPM is expected
to find many rules with high significance. However, it is the rules that have a high signifi-
cance while simultaneously having a low unselected significance, which are descriptive,
since these rules more accurately distinguish between the selected and unselected sets
of solutions.

Table 5 shows the FPM rules discovered for each scenario, indicating the tasks that
distinguish the non-dominated solutions in the groups of scenarios more from the other
solutions. For all groups, the parameter for the minimum required significance was kept
constant at 90% when running the FPM procedure. For the scenarios with seven operators,
a rule interaction was found with a significance of 100% and an unselected significance of
10.13%, meaning that all non-dominated solutions in the scenarios support the rules, while
only 10.13% of the solutions in the unselected set support the rules. The rule interaction
with the highest ratio between significance and unselected significance was found in the
scenarios with nine operators, perhaps indicating that the non-dominated solutions in these
scenarios are easier to distinguish from the rest. The scenarios with the lowest ratio are
where the proportion is 30/70, perhaps indicating that the non-dominated solutions in
these scenarios are more difficult to distinguish.
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Table 5. Rule interactions found by using FPM for each of the scenarios from the initial optimization.

Group
Rule Interaction Sig Unsig

NO Proportion

7 A10 = 2∧ B4 �= 3∧ B5 = 2∧ B23 = 1 100% 10.13%
8 A17 = 2∧ A27 �= 3∧ B7 = 1∧ B16 = 2 96.43% 12.89%
9 A28 = 1∧ B7 = 1∧ B8 = 3∧ B9 �= 1 91.67% 4.89%

30/70 A14 = 3∧ B3 = 1∧ B10 �= 1∧ B23 �= 3 97.06% 29.23%
70/30 A14 = 2∧ A17 = 2∧ B4 �= 3∧ B11 �= 2 92.11% 10.89%

5.3. Offline Knowledge-Driven Optimization

The rules for the different groups were applied to ten new scenarios, using the propor-
tions of 40/60 and 60/40 between parts A and B for 7, 8, and 9 operators, and using 6 and
10 operators with the proportions of 30/70 and 70/30. We compare standard optimization
runs for the new scenarios versus runs using the offline KDO approach of applying the rules
presented in Table 5 as constraints in the decision space. Due to the high computational
cost involved in the evaluation of each solution, each scenario was given an evaluation
budget of 2500 solutions (50 generations with a population size of 50).

We compare the rate of convergence of the standard MOO approach and the offline
KDO approach in each separate scenario by plotting the Hypervolume (HV) [39] contribu-
tion at each generation. Figure 8 shows the convergence plots for all scenarios. We also
consider the Area Under the Curve (AUC) of the convergence plots as a quantitative score
for the convergence rate. The AUC scores for all scenarios are shown in Table 6.
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Figure 8. Convergence plots of the scenarios with 7 operators (top left), 8 operators (top center),
9 operators (top right), 6 operators (lower left), and 10 operators (lower right).

The results show that the offline KDO approach leads to faster convergence in all
scenarios with operators equal to 7, 8, and 9 and the new proportions of 40/60 and 60/40
compared with the standard approach, and most of the scenarios using the proportions
of 30/70 and 70/30 and the new numbers of operators of 6 and 10. In fact, only in the
scenario with 10 operators and a proportion of 30/70 did the offline KDO approach not lead
to faster convergence. However, the convergence plots for six operators are very similar
for both approaches. This indicates that the offline KDO approach leads to an improved
convergence rate for the current RMS MOOP when considering new proportions for the
initial assignment of 7, 8, or 9 operators, but may be slightly less fruitful for scenarios with
new numbers of operators and the original proportions.
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Table 6. Area Under the Curve (AUC) of the convergence plots shown in Figure 8 for the different
cases of Number of Operators (NO), proportion, and optimization approach.

NO Proportion Standard Offline KDO

7 40/60 5.649 × 101 5.804× 101

60/40 5.688 × 101 5.802× 101

8 40/60 5.650 × 101 5.836× 101

60/40 5.644 × 101 5.883× 101

9 40/60 5.580 × 101 5.776× 101

60/40 5.507 × 101 5.772× 101

6 30/70 5.759 × 101 5.781× 101

70/30 5.617 × 101 5.750× 101

10 30/70 5.729× 101 5.474 × 101

70/30 5.727 × 101 5.786× 101

Bold values indicate higher AUC scores.

6. Discussion

The initial results provided solutions found for six different scenarios from the same
real-world RMS MOOP involving task allocation. The approach presented in this paper
demonstrates the use of a knowledge discovery method to generate decision rules which
are applied in future, different scenarios to help the optimization algorithm reach faster
convergence on non-dominated solutions. We grouped scenarios where the numbers
of operators were the same and proportions were different, in order to find if there is
generalized knowledge that can be applied across scenarios with the same number of
operators as well as the same for scenarios with the same proportions and different numbers
of operators.

Although the initial optimization runs had a very high evaluation budget, they did
not produce many non-dominated solutions in each scenario. In the scenario with nine
operators and a proportion of 70/30, only a single non-dominated solution was found.
This means that the optimization did not find a diverse set of solutions for this scenario,
which might in turn means that the knowledge generated is not general enough. However,
despite this, as shown in Figure 8 and Table 6, the offline KDO approach did result in faster
convergence compared to the standard approach for both scenarios with nine operators.

To generate knowledge about the different scenarios, we used Flexible Pattern Mining
(FPM) to find decision rules. However, the number of aspects in terms of decision variables
considered by this study increases the complexity of the SMO and its knowledge discovery
post-optimal analysis exponentially. For this reason, the number of rule interactions
considered in each scenario was limited to four. Nonetheless, the rules extracted reveal
knowledge regarding which tasks are more important and therefore need to be prioritized
for finding competitive solutions with respect to different criteria. However, finding more
complex rule interactions could potentially lead to more precise knowledge which might
be of further benefit.

FPM is expected to identify the rules that are the most interesting to the decision-maker.
Considering the rules discovered by FPM and shown in Table 5, we can see that, out of all
groups of scenarios, some tasks are repeated in the rule interactions, namely A14, A17, B4,
B7 and B23. Indicating that these tasks have higher importance for more general scenarios,
however, since no rules are common in all scenario groups, likely no rule describes a
completely general scenario for the considered RMS MOOP. Only half of these tasks (A17,
B4, B7) have the same rule in the different scenario groups.

In the presented offline KDO approach, we applied the discovered rule as hard
constraints in the decision space by limiting the values that the corresponding variables
could take on. Although this approach did result in faster convergence in most cases, it
does not guarantee that the solutions found are Pareto-optimal since it limits the search
space. Secondly, the significance of the rule interactions used might also impact the quality
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of the final non-dominated solutions found. This point is driven further by the possibility
that the solutions found in the initial optimization runs did not convergence close to the
true Pareto-optimal front. However, in the case of SMO where each evaluation can take a
very long time, decision-makers are more interested in finding good enough solutions fast
rather than finding the true Pareto-optimal solutions.

We used knowledge found from six initial scenarios to drive the search for faster
convergence in 10 new scenarios. The results show a bigger increase in the convergence
rate in the scenarios with the initial numbers of operators and different proportions than
the scenarios with the initial proportions and different numbers of operators, when using
the offline KDO approach. This indicates that, for the considered MOOP, more general
knowledge may be derived for the scenarios grouped by considering the different numbers
of operators. The rule interactions also confirm this for the scenarios grouped by the
proportion of 30/70, where the unselected significance is high compared to the rest of the
scenario groups. This implies that it was more difficult to find rules that distinguish this
group. One possible explanation for why the offline KDO approach did not lead to more of
an improvement in a convergence rate for these scenarios is that no simple rule interaction
is able to capture the distinguishing features regarding the proportions in the initial results.
Tasks that are more important for changes in the proportion may be overshadowed by tasks
more important for differences in the number of operators.

In this paper, we only considered the variables related for task allocation in the
knowledge discovery and offline KDO approach. However, it would also be interesting
to investigate the possible convergence rate improvement by generating knowledge also
about the operators’ assignments to WSs and the capacities of the inter-station buffers.

7. Conclusions

In this paper, we propose the use of an offline KDO approach for increased convergence
rates in a real-world reconfigurable manufacturing system simulation-based multi-objective
optimization problem. We first showcase an offline KDO approach for populating non-
dominated solutions in the real-world inspired test problem RE3-5-4, by dividing found
solutions into different clusters and finding specific knowledge for each cluster. This
knowledge was then used to constrain the decision space to guide the optimization to
converge on more non-dominated solutions. This approach was also shown to outperform a
crude approach of constraining the objective space. We use a similar offline KDO approach
on the real-world RMS problem.

RMSs are considered a key enabler for manufacturing systems to produce the required
capacity and volume when needed. However, prior research in real-scale industrial appli-
cations is sporadic and seemingly ignores the importance of post-optimal analysis on the
combined decision-objective space for supporting decision-making about the requirements
of the future system. The use of offline KDO on SMO data sets of RMS is a novel area
that can support the RMS research community, and accordingly, this paper illustrates an
example of how it can be achieved.

In this paper, we considered knowledge discovery through the FPM procedure to
generate if-then decision rules about the decision variables in relation to selections made
in the objective space of the solutions. We considered variables related to task assignment
in workstations. The results show how the offline KDO approach was able to lead the
optimization to faster convergence in the majority of tested scenarios of new proportions
and numbers of operators; however, for the considered MOOP, the offline KDO approach
leads to a greater improvement in scenarios based on new proportions.

In additional to offline KDO, rules discovered through the FPM procedure can also be
used to inform the decision-maker about various aspects about the MOOP and the solutions.
Actionable insights from a post-optimal analysis using FPM for knowledge discovery may
lead to improvements in the MOOP formulation and be a tool in decision-making.

For the future work, we would like to further investigate how the qualities of the
generated rules correlate with the convergence when using offline KDO on more real-world
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applications. In this study, only knowledge in the form of FPM-rules was considered for
offline KDO. Future work should also be focused on finding other appropriate knowledge
representations for RMS applications.
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Abstract: The Grouping Genetic Algorithm (GGA) is an extension to the standard Genetic Algorithm
that uses a group-based representation scheme and variation operators that work at the group-level.
This metaheuristic is one of the most used to solve combinatorial optimization grouping problems. Its
optimization process consists of different components, although the crossover and mutation operators
are the most recurrent. This article aims to highlight the impact that a well-designed operator can
have on the final performance of a GGA. We present a comparative experimental study of different
mutation operators for a GGA designed to solve the Parallel-Machine scheduling problem with
unrelated machines and makespan minimization, which comprises scheduling a collection of jobs in
a set of machines. The proposed approach is focused on identifying the strategies involved in the
mutation operations and adapting them to the characteristics of the studied problem. As a result of
this experimental study, knowledge of the problem-domain was gained and used to design a new
mutation operator called 2-Items Reinsertion. Experimental results indicate that the state-of-the-art
GGA performance considerably improves by replacing the original mutation operator with the new
one, achieving better results, with an improvement rate of 52%.

Keywords: grouping genetic algorithm; grouping mutation operator; grouping problem; unrelated
parallel-machine scheduling

1. Introduction

Over the last decades, the interest of the scientific community in solving Combinatorial
Optimization Problems (COPs) has grown considerably since these types of problems
emerge in many practical issues in industry, logistics, and engineering. In general, the
optimization of a COP comprises the search of the suitable values for a set of discrete
variables, so that the objective function is optimized, satisfying the given conditions and
constraints. Thus, the solution of this type of problems can involve a feasible disposition,
grouping, order, or selection of discrete objects that typically are finite in number [1]. It is
well-known that many COPs have high complexity, and in the worst-case scenario, there is
no efficient algorithm that solves all their possible cases optimally. Such problems belong
to the NP-hard class [2]. In this order of ideas, this work focuses on grouping problems,
a special type of COPs that in general consist of looking for an efficient arrangement of
a set of elements among a collection of groups [1].

Parallel-Machine Scheduling (PMS) is a classical NP-hard grouping problem, consist-
ing of looking for the most efficient sequential scheduling of a set of n jobs N = {j1, . . . , jn}
among a collection of m parallel-machines M = {i1, . . . , im}, in such a way that each ma-
chine i can process only one job j at a time, and each job j must be processed by a single
machine i [3].

The PMS variants can consider different parameters in the problem definition, such
as resource and scheduling environments, job characteristics, and optimization criteria,
among others. The most general classification of PMS problems is according to the machine
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environment. In this sense, this work focuses on a variant that belongs to the class with
unrelated machines, i.e., each machine can require a different time to process each job,
and there is not a behavior pattern with respect to the speed of the machines with a ma-
chine always being the fastest or the slowest one (Unrelated Parallel-Machine Scheduling,
UPMS). This problem family has received much recognition due to its numerous real-world
applications [4–6]. Although a large number of mathematical models have been proposed,
the exact approaches can solve only small instances in a reasonable time [7]. Given the
complexity of several UPMS variants, most approaches are metaheuristic algorithms, such
as local searches, swarm intelligence, and evolutionary algorithms. The state of the art
contains local searches such as the Hill Climbing [8], the Iterated Greedy Algorithm [9], the
Variable Neighborhood Descent [10], and the GRASP Algorithm [11]. In the same spirit, the
literature includes several swarm intelligence algorithms, such as the Worm Optimization
Algorithm [12], the Firefly Algorithm [13], the Artificial Bee Colony [14], and the Fruit Fly
Optimization Algorithm [15]. Additionally, we identified several evolutionary algorithms
such as the Genetic Algorithm [16], the Genetic Programming [17], and the Imperialist
Competitive Algorithm with memory [18]. Finally, the specialized literature includes some
memetic algorithms [19,20]. The literature review reveals that there are a wide variety of
UPMS problems, each with particular characteristics and challenges. Given the increasing
appearance of these problems, there exists a trend to explore the algorithmic behavior of
different metaheuristic approaches that can work well or badly according to the properties
of the variant of the problem to solve. One of the main challenges in the development of
high-performance algorithms for UPMS problems is the design of efficient strategies that
work together with the features of the problem variant to find high-quality solutions.

This work addresses the UPMS variant known as the R||Cmax problem, where the
machines {i1, . . . , im} are unrelated, jobs {j1, . . . , jn} have no-preemptions, and the objective
of interest is the reduction of the maximum completion time Cmax, i.e., the processing time
Ci required by the machine i that finishes at the end.

It is well-known that the problem R||Cmax belongs to the class NP-hard [2]. Hence,
over the past forty years, different approaches have been studied to try to solve it efficiently.
The specialized literature includes deterministic methods [21,22], two-phase algorithms (or
rounding methods) [23,24], and branch and bound algorithms [3,25]. The literature also
includes distinct metaheuristic algorithms for R||Cmax, covering proposals based on local
searches [3,26], the swarm intelligence algorithm Particle Swarm Optimization (PSO) [1],
the Genetic Algorithm (GA) [27], and some hybrid approaches [3]. According to the scope
of this review, the approaches based on local searches have shown the best performance
on solving the problem R||Cmax. The state of the art highlights the results reached by the
Iterated Greedy Local Search (NVST-IG+) proposed by Fanjul-Peyro and Ruiz in 2009,
considered one of the best solution methods designed for the problem of interest so far.
The success key of the NVST-IG+ performance is the incorporation of some techniques to
control the way in which the jobs and machines are selected and manipulated during the
construction of the neighborhoods [26].

In [1], we presented one of the most recent related works; the experimental results
suggested that a GA with a group-based representation GGA has a better performance than
a GA with an extended permutation solution encoding and a PSO with a machine-based
representation scheme for the 1400 test instances studied. Such GGA was an adaptation
of the GGA-CGT designed by Quiroz-Castellanos et al. for the Bin Packing Problem [28].
According to Quiroz-Castellanos et al., the performance of the GGA-CGT is related mainly
to the mutation operator, which alone is capable of finding quality solutions. The mutation
is one of the most used genetic operators in GGAs. Commonly, mutation operators promote
the exploration of the search space by slightly altering the solution genetic material. This
behavior is useful for a GGA mainly when it is converging to a local optimum since
it provides the capacity to redirect the search to other areas. Section 2.5 includes an
experimental study with different parameter configurations that allows observing how
the performance of the GGA proposed in [1] is mainly related to the crossover operator,
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while the mutation operator has a low impact. The above motivates this work that aims to
study the performance of different grouping mutation operators to identify the strategies
that they use and that positively impact their performance, to employ them in the design
of a new operator, and to incorporate that operator into the GGA in order to improve its
performance when solving R||Cmax.

This paper continues as follows. Section 2 describes the components and the problem-
domain heuristics of the GGA for R||Cmax. Section 3 reviews the state-of-the-art grouping
mutation operators. Section 4 contains the experimental design proposed to analyze the
impact of different strategies in the performance of grouping mutation operators. Section 5
compares the GGA performance with the new and the old mutation operators to analyze
the improvement rate. Finally, Section 6 summarizes the conclusions and future paths
of research.

2. Grouping Genetic Algorithm for R||Cmax

The state of the art suggests that the GGA is one of the most used metaheuristics
to solve grouping problems. Such popularity is related to its promising results and its
flexibility to adopt new ideas to handle the constraints and conditions of the problem to be
solved [1,29,30].

The GGA is an extension to the standard GA; therefore, it has a similar procedure.
The GGA starts with the generation of the initial population, generally in a random way.
Next, selection strategies and variation operators, mainly crossover and mutation, are
used iteratively so as to find better solutions. Each iteration represents a generation that
starts utilizing a selection strategy to pick some individuals of the population based on
their fitness values; then, the genetic material of the selected individuals is recombined
with the crossover operator to generate offspring. Subsequently, the offspring are added
to the population using a replacement strategy. Finally, some individuals, chosen with
a selection strategy, are slightly modified with the mutation operator. In this way, the GGA
iterates performing the before-mentioned procedure until some stopping criterion (e.g., the
maximum number of generations, the maximum search time, convergence of solutions, or
finding an optimal solution) is met.

One of the main features of the GGA is the group-based scheme that it uses to encode
and manage solutions in the search space. According to Falkenauer, this is a more natural
way of representing solutions to grouping problems. Moreover, it helps to reduce the
search space since it produces fewer isomorphic solutions than a traditional representation
scheme [31]. In this encoding, each gene represents a group that contains the collection of
elements that correspond to it. Therefore, the length of a solution is equal to the number of
groups that it includes.

Another important aspect to consider when developing a GGA is the design of vari-
ation operators such as crossover and mutation since they must work at the group level.
With this feature, operators can perform procedures in a more controlled way, determining
which groups and elements vary according to the constraints and objectives of the problem
to solve. The crossover operator uses two or more solutions of the current population to
recombine their genetic material, creating offspring with new characteristics. This operator
is used to give GGA the ability to converge on the most promising areas identified during
the search. One of the advantages of crossover operators for the group-based encoding is
that they can use the quality of the groups to determine how parents transmit the genetic
material to their offspring to perform a more controlled search. On the other hand, the
mutation operator provides GGA the ability to explore new areas of the search space,
producing small modifications to the genetic material of some solutions. This procedure
is helpful for a GGA, mainly to address highly constrained grouping problems, where
there are large possibilities of converging to local optimums. These slight alterations per-
formed by the mutation operator can generate solutions in other regions of the search space,
avoiding premature convergence [32].
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The next sections describe the elements of the state-of-the-art GGA for R||Cmax, the
object of study in this work, including the population initialization strategy, the variation
operators, selection and replacement strategies, and the problem-domain heuristics. This
algorithm is an adaptation of the Grouping Genetic Algorithm with Controlled Gene
Transmission (GGA-CGT) introduced by Quiroz-Castellanos et al. to solve the Bin Packing
problem [28]. The details of the heuristic used to generate the initial population, as well
as the mutation and crossover operators appear in the work of Ramos-Figueroa et al. [1],
while the remaining mechanisms and operators, as well as the parameter settings can be
consulted in the work of Quiroz-Castellanos et al. [28].

2.1. Genetic Encoding, Fitness Function, and Initial Population

The GGA uses the group-based representation scheme to encode and manipulate
solutions, where each machine i is a gene (or group) Gi that will include a set of jobs.
Therefore, all solutions have the same number of genes, equal to the number of machines
m. The quality of each machine i is equal to the time it takes to process its assigned jobs,
denoted as Ci. Thus, the quality of a solution Cmax is equal to the Ci value of the machine
with the longest processing time. The initial population is generated in a random manner
by running the well-known Min() heuristic on random permutations of the n jobs [33].
For each job j, Min() calculates the equation Ci = Ci + pij for all the machines, where pij
indicates the time that the machine i needs to process the job j. In this way, Min() assigns
the job j to the machine i that generates the lowest Ci value.

Figure 1 describes the procedure followed by the population initialization strategy. To
give a comprehensive description, Figure 1a includes an example instance I represented as
a matrix with m = 4 machines depicted by the columns and n = 10 jobs represented by the
rows. Thus, the example starts from a permutation (Figure 1b) of the ten jobs, {j9, j5, j2, j6, j3,
j8, j4, j7, j1, j10}, used to generate the partial solution, shown in Figure 1c. The construction
of the partial solution can be calculated from the first nine jobs in the permutation, {j9, j5,
j2, j6, j3, j8, j4, j7, j1,} and the instance I using the heuristic Min(). To exemplify how this
heuristic Min() works, Figure 1d shows a complete solution, resulting from the assignment
of the last job in the permuted list (i.e., j10) to the solution. Therefore, following the Min()
procedure mentioned above, the processing time Ci of each machine plus the time that
they require to process the job j10 results in the following way: C1 = 26 + 8, C2 = 25 + 20,
C3 = 20 + 18, and C4 = 10 + 28. Hence, Min() assigned the job j10 to the machine i1 since it
generated the lowest Ci value. It is important to note that if two or more machines produce
the same Ci value, this allocation heuristic assigns the job in turn to the machine i that
appears first from i1 to im. Finally, Figure 1d also shows the fitness value of the generated
solution that is equal to the longest processing time Ci, in this case, the C1 = 34, outlined
in bold.

Figure 1. Population initialization strategy.

2.2. Adapted Gene-Level Crossover Operator

The GGA uses the Adapted Gene-Level Crossover (AGLX) operator, a variant of
the GLX operator proposed by Quiroz-Castellanos et al. [28] that produces two children
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solutions by using two parent solutions. Algorithm 1 presents the procedure of AGLX.
We denote S

′
= Sort(S) the solution derived from S by sorting its machines in increasing

order concerning its Ci values (lines 1 and 2). Thus, AGLX first transmits the machines that
process their jobs fastest and then the slowest ones (lines 3–6). In this way, the first child
C1 starts inheriting the fastest machine from the first parent S1, next the fastest machine
from the second parent S2, then the second-fastest machine from the first parent S1, and so
on (line 4). Similarly, the second child C2 receives genes alternately from both parents but
starting with the fastest machine from the second parent S2 (line 5). We denote C = Inherit(C,
ia, ib) the child solution C upgraded with the machines ia and ib, one for each parent. It
is important to remark that before inheriting each machine, the Inherit() function verifies
that it has not already been transmitted by the other parent to the child C. Otherwise, the
machine is discarded. Likewise, before inheriting each job, this function validates that it
has not already been transmitted. Otherwise, it is discarded to avoid infeasible solutions.
It is important to note that in most of cases this procedure generates infeasible solutions,
since some jobs can be missed during the crossover process. Therefore, it is necessary to
re-insert the jobs to transform the solutions into feasible ones (lines 7 and 8). We denote
MJ[] = MissedJobs(C) the set of jobs missed during the genetic material transmission of
a child C. Finally, the missed jobs MJ are permuted and re-inserted with the Min() heuristic
described above (lines 9–12). We denote MJ[]

′
=Permute(MJ[]) the set of jobs derived from

MJ[] by permuting it with a uniform distribution and C
′

= Min(C, MJ[]
′
) the child solution

obtained from the re-insertion of the jobs in MJ[]
′

to the solution C.

Algorithm 1 AGLX operator
Input: Two parent solutions S1 and S2, and the number of machines m.
Output: Two offspring solutions C

′
1 and C

′
2.

1: S
′
1 = Sort(S1);

2: S
′
2 = Sort(S2);

3: for each machine i in S
′
1 and S

′
2 do

4: C1=Inherit(C1, S
′
1[i], S

′
2[i]);

5: C2=Inherit(C2, S
′
2[i], S

′
1[i]);

6: end for
7: MJ1[]=MissedJobs(C1);
8: MJ2[]=MissedJobs(C2);
9: MJ1[]

′
=Permute(MJ1[]);

10: MJ2[]
′
=Permute(MJ2[]);

11: C
′
1=Min(C1, MJ1[]

′
);

12: C
′
2=Min(C2, MJ2[]

′
);

13: end process.

Figure 2 describes the process of the AGLX operator with an example that contains
two parent solutions for the test instance of Figure 1a with four machines (groups). The ten
jobs, from j1 to j10, are distributed among the four machines, from i1 to i4, and the time that
each machine i requires to process its assigned jobs from C1 to C4 is stored in the vector Ci.
Figure 2a depicts the transmission process. Therefore, it shows the two parents with their
groups in increasing order, which indicates the gene transmission sequence, i.e., from best
(Lowest Ci) to worst (Highest Ci). Figure 2b indicates the way the repeated genetic material
is handled. Thus, it contains the two solutions produced during the transmission process,
which only keep the machine i of the parent in which it appears first according to the gene
transmission sequence. Furthermore, this figure includes the repeated jobs, highlighted in
bold, that must be removed from the machine with the highest processing time Ci. Lastly,
this figure shows a list with the jobs missed MJ during the transmission process. Figure 2c
contains the partial solution resulting from the transmission process without the repeating
genetic material, as well as a permutation of the jobs in MJ. Finally, Figure 2d shows the
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complete solutions resulting from the assignment of the missed jobs with the heuristic
Min(). The processing time Ci of each machine i, as well as the operations performed by
the Min() heuristic to assign the missed jobs, can be calculated using the example instance
presented in Figure 1a.

Given two parent solutions for the test instance of Figure 1a, the Adapted Gene-level crossover 
operator (AGLX) proposed by Ramos-Figueroa et al. [ ] works as follows:
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Figure 2. AGLX operator.

2.3. Download Mutation Operator

The GGA includes the Download mutation operator that uses two phases to modify
two genes in a solution. Algorithm 2 contains the procedure of the Download mutation
operator. In the first stage, called download, the operator clusters the genes (machines)
among two sets, W and O (line 1). We denote W, O = Cluster(S) the sets derived by
grouping the machines in the solution S, in such a way that W includes the machines with
a processing time Ci equal to the makespan Cmax, while O holds the ones with an assigned
processing time Ci less than the makespan Cmax. Next, from each set (W and O), one
machine (w and o) is randomly selected (lines 2 and 3). We denote i=Pick(M) the machine i
randomly selected from the set of machines M with a uniform distribution. Subsequently,
the jobs in the selected machines are released (line 4). We denote S

′
, RJ[]= Download(S,

w, o) the solution derived by releasing the jobs of the machines o and w, which are placed
in the set RJ[]. Finally, the arrangement of the jobs in RJ[] is modified with the permute()
function mentioned above, giving rise to the set RJ

′
[] (line 5). Later, in the second stage,

the released jobs are redistributed among the selected machines w and o with the heuristic
Best() (lines 6–8). We denote S

′′
= Best(S

′
, j, w, o) the solution obtained by applying the

Best() heuristic. For each job j, this heuristic calculates the equations Cw = Cw + pwj and
Co = Co + poj, where Cw and Co represent the assigned processing time of machines w
and o, respectively, and pwj and poj the processing time required for machines w and o
to process the job j. In this way, Best() assigns j to the machine that generates the lowest
Ci value. It is important to highlight that the main difference between the reassignment
heuristics Min() and Best() is that Min() re-inserts the jobs considering all the machines,
while Best() re-inserts them by considering only the two selected machines o and w.
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Algorithm 2 Download mutation operator
Input: A solution S.
Output: A mutated solution S

′′
.

1: W, O= Cluster(S);
2: w= Pick(W);
3: o= Pick(O);
4: S

′
, RJ[]= Download(S, w. o);

5: RJ
′
[]= Permute(RJ[]);

6: for all job j ∈ RJ
′
[] do

7: S
′′

= Best(S
′
, j, w, o);

8: end for
9: end process.

Figure 3 describes the mutation process of the Download operator with an example
that contains an initial solution for the instance presented in Figure 1a with four genes
(groups). The ten jobs, from j1 to j10, are distributed among four groups, from i1 to i4, and
the time that each group i requires to process its assigned jobs from C1 to C4 is stored in the
vector Ci. Figure 3a shows the result of clustering the machines with processing time Ci
equal to the makespan Cmax in the set W = {i1} and the remaining machines in set O = {i2, i3,
i4}. Figure 3b indicates the machines w = i1 and o = i4, outlined in bold, randomly selected
from the sets W and O, respectively. Figure 3c contains the solution with the selected
machines to be altered, outlined in bold, downloaded by releasing their jobs and placing
them in the box of released jobs RJ. Finally, Figure 3d shows a permutation of the jobs in RJ
and the result of reinserting them with the allocation heuristic Best(). The calculation of the
processing time Ci of each machine i, as well as the operations performed by the allocation
heuristic Best() to assign the released jobs, can be calculated using the example instance
I presented in Figure 1a. As this example shows, the quality of the mutated solution is
better than that of the initial solution, demonstrating the effectiveness of the Download
mutation operator.

Given the following potential solution for the test instance of Figure 1a: 

The Download mutation operator proposed by Ramos-Figueroa et al. [ ] works as 
follows:
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Figure 3. Download mutation operator.
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2.4. Selection and Replacement Strategies

The GGA employs an adaptation of the controlled reproduction technique proposed
by Quiroz-Castellanos et al. [28], which uses an elitist approach together with two inverted
rankings to give all the solutions a chance to contribute to the next generation but forcing
the survival of the best solutions. The replacement strategy preserves the population
diversity and the best solutions by replacing duplicated fitness individuals and the worst
fitness solutions with new offspring. Algorithm 3 contains the procedure of the ranking
strategy. First, this algorithm ranks the population (line 1). We denote P

′
= Rank(P) the

individuals arranged by sorting them from best to worst according to their fitness. Next, if
there are solutions with repeated fitness, only one solution is kept in the ranked, and the
others are placed at the end of the ordered list (line 2). We denote P

′′
= Rearrange(P) the

population rank resulting from placing the similar solutions at the end of the ordered list.
Subsequently, the solutions in P

′′
are distributed among the sets G, R, and B (line 3). We

denote G, R, B = Distribution(P
′′
) the sets obtained by placing the ranked solutions in the

sets G, R, B. In this way, G includes the best nc solutions, where nc is a parameter to be
configured that determines the number of individuals selected for the crossover process
of each generation. On the other hand, the set R contains the solutions in the population
P
′′

without the best nc/2 solutions. Finally, the set B holds the best |B| individuals, called
elite solutions, that receive special treatment since they have the best characteristics of the
population. Therefore, |B| is another parameter to be configured.

Algorithm 3 Ranking strategy
Input: The population P.
Output: The population rearranged en sets the G, R, and B.

1: P
′
= Rank(P);

2: P
′′
= Rearrange(P);

3: G, R, B= Distribution(P
′′
);

4: end process.

Given this solution hierarchical structure, nc/2 parent solutions are randomly taken
from the set G, and the remaining nc/2 parents are randomly picked up from the solutions
in the set R. In this way, each pair of parents is created with a parent selected from the set G
and the other one from the set R. Hence, it is necessary to validate that parent pairs do not
have the same solution since some solutions can be selected more than once. After applying
the crossover operator to each pair of parents, the new individuals are incorporated into
the ranked population P

′′
in the following way. Half of the generated children replace

the parents selected from the set R, and the remaining offspring replace first the solutions
with repeated fitness and then those with worse fitness, i.e., the solutions at the end of the
ranked population P

′′
.

Once the replacement strategy is applied, the population is rearranged again with the
same ranking strategy, described in Algorithm 3, to later select the best nm solutions for
mutation, where nm is a parameter to be configured that determines the number of mutated
solutions each generation. When applying the mutation operator, if a solution belongs to
the elite group B, the solution is first cloned and later mutated. The clones can be entered
into the population, replacing first the solutions with repeated fitness and then those with
worse fitness.

2.5. Impact Analysis of Crossover and Mutation Rate on GGA

In order to identify the impact of each variation operator (crossover and mutation)
on the GGA performance, an experimental study was performed by using three different
values for the number of individuals selected for the crossover process (nc) and the number
of solutions to be mutated (nm): 20, 40, and 60. In this way, GGA was run with the 9 config-
urations (Con f ) generated from all possible combinations of these three parameters: Con f1:
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nc = 20, nm = 20, Con f2: nc = 20, nm = 40, . . . Con f9: nc = 60, nm = 60. Figure 4 shows
a bar graph of the results obtained from this study, where each bar represents 1 of the 9 con-
figurations grouped according to the number of mutated solutions (nm), and each pattern
indicates the number of selected individuals for the crossover process (nc): squares = 20,
waves = 40, and circles = 60. As Figure 4 indicates, the GGA performance tends to im-
prove (lower error rate) as the number of individuals considered for the crossover and
mutation processes increases, although the crossover operator shows a higher impact on its
performance. This behavior is different from the one presented by the GGA-CGT, where
the mutation operator has the greatest positive impact on the final performance of this
algorithm. The results and conclusions obtained from this study motivated the review of
the mutation operator, exploring different strategies to include those that contribute to
the impact improvement of this operator on the GGA final performance on solving the
R||Cmax problem.

Figure 4. Impact analysis of the parameters: number of individuals selected for crossover nc and
number of mutated solutions nm in the GGA final performance.

3. Grouping Mutation Operators

The mutation is a genetic operator generally used to control population diversity
during the GGA search process. The mutation operators for the GGA are called grouping
mutation operators since they work at the group level. That is, they select g groups
using some criterion (such as selecting the best, the worst, or random groups) to slightly
modify them employing different operations. According to Ramos-Figueroa et al. [32], the
specialized literature holds seven mutation operators designed for GGAs in addition to
the Download operator. Three of them, the Swap, the Insertion, and the Item Elimination,
perform small alterations in the solutions with operations directly applied to some items
of the selected groups. In contrast, the remaining operators, called Elimination, Creation,
Merge and Split, and Reordering, promote more severe disturbances in solutions since they
perform operations involving all the items of the selected groups.

The seven mutation operators have been used to solve a wide variety of grouping
problems with different conditions and constraints. Due to these differences, mutation
operators must be adapted to the characteristics of the problem to be solved. As a result,
grouping mutation operators for the R||Cmax problem can differ in the tactics that they
use to select the jobs and machines involved in the mutation operations, the strategies
employed to handle the jobs and the selected machines, and the problem-domain heuristics
included. The following sections show the general procedure of four state-of-the-art
grouping mutation operators: Swap, Insertion, Elimination, and Merge and Split. This
study contemplates the best state-of-the-art mutation operators that apply for the R||Cmax
problem, discarding the infeasible ones and those which have not shown outstanding
performance. However, in [32] a more detailed description of the seven group-oriented
mutation operators procedure can be found, as well as a compilation of other mutation
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operators applied to different grouping problems and the parameter settings approach
that they use. It is important to note that in addition to the Download operator, none
of the four mutations described below have been used to solve the R||Cmax grouping
problem. The above motivates this experimental study, whose main objective is to explore
the performance of the most used mutation operators to solve R||Cmax.

3.1. The Swap Operator

The Swap operator selects two groups to later pick k items from each selected group
and exchange the items from one group to another. Due to its way of working, it can be
adapted and used to solve grouping problems with different constraints and conditions.
Thanks to this quality, the Swap operator has been used to solve classic problems such as
Bin Packing [34] as well as new problems such as Maximally Diverse [35].

3.2. The Insertion Operator

Similar to the Swap operator, the Insertion operator selects two groups to later pick k
items from one selected group and insert them to the other group. This operator has been
used to solve from classic problems such as Graph Coloring [36] to newer problems such as
Group Stock Portfolio [37], covering problems with different constraints and conditions [38].

3.3. The Elimination Operator

The Elimination operator chooses g groups to remove them, release their items, and
re-insert them by applying problem-domain heuristics, for example, the heuristic Min()
used by the state-of-the-art GGA for R||Cmax. According to the scope of the literature
review, this is the most used mutation operator to solve grouping problems because it
has shown promising results, mainly in classic problems such as Bin Packing [28], Cell
Formation [39], Multiple Knapsack [40], and Timetabling [41].

3.4. The Merge and Split Operator

The Merge and Split, also known as Division and Combination operator, works in two
phases. In the first stage, it selects two groups and transforms them into a single one. Then,
in the second stage, it picks a group to distribute its items between two distinct groups.
Merge and Split has been used to solve grouping problems such as Cell Formation [42] and
Multivariate Micro-aggregation [43].

4. Computational Experiments

This section presents the experimental design proposed to analyze the way different el-
ements involved in the mutation process can impact the performance of grouping mutation
operators. The objective of this work is to design an efficient grouping mutation operator
that includes the best features identified during the experimentation, to later incorporate it
to the state-of-the-art GGA for R||Cmax to improve its performance [1]. The experimental
design consists of four phases. The first stage covers the analysis of the state-of-the-art
grouping mutation operators to determine which one has the best performance for R||Cmax.
The second phase comprises an exploratory analysis to observe the influence of the num-
bers of machines and jobs involved in mutation operations. The third phase includes the
assessment of different machine selection strategies, including biased, random, and mixed
approaches. Finally, the fourth phase studies the contribution of distinct rearrangement
heuristics based on insertion and swap operations. The main objective of these strategies is
to reorganize some jobs of the solutions applying more complex and expensive processes.
Although they involve a computational cost, they are of vital importance when the muta-
tion operator alone is unable to leave a local optimum. The information collected is used to
design an efficient grouping mutation operator for R||Cmax.

The performance assessment of each operator involves solving 1400 test instances
introduced by Fanjul-Peyro in 2010, distributed among 7 sets [26]. The first 5 sets differ
in the range employed to generate the pij values with a uniform distribution: U(1, 100),
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U(10, 100), U(100, 120), U(100, 200), and U(1000, 1100). From the remaining sets, one
includes instances with correlated machines (MacCorr) and the other instances with corre-
lated jobs (JobsCorr). These instances can consider 100, 200, 500, or 1000 jobs and 10, 20, 30,
40, or 50 machines. Each set contains 200 instances, 10 for each combination of the number
of machines m and jobs n.

To analyze the performance of each operator, we generate a population of 100 individ-
uals with the heuristic Min() to later mutate them for 500 generations. For a fair comparison,
we use the same seed for each operator. Finally, we use the average Relative Percentage
Deviation (RPD) to compare the operators performance. Given an instance i, the RPD is
defined as in (1), where Cmax(i) depicts the Cmax value found by the operator, and C∗max(i)
represents the best Cmax found using two hours of the commercial solver CPLEX. Thus,
RPD indicates the deviation from the evaluated grouping mutation operators to CPLEX.

RPD =
Cmax(i)− C∗max(i)

C∗max(i)
(1)

4.1. State-of-the-Art Mutation Operators

This experiment aims to study the performance of the state-of-the-art grouping muta-
tion operators in the problem R||Cmax. Recalling from Section 3, this study comprises four
operators: Swap, Insertion, Elimination, and Merge and Split, since this work focuses on
the best state-of-the-art mutation operators that apply for the R||Cmax problem. However,
the specialized literature contains other mutation operators applied to various grouping
problems with different constraints and conditions [32]. Next, the procedures of the four
mutation operators adapted to work with the constraints and conditions of the problem
R||Cmax are presented. This information is reinforced by Algorithms 4–7 and Figure 5 that
includes an example for each operator.

Algorithm 4 contains the procedure of the Swap mutation operator. First, it selects two
machines iA and iB (lines 1 and 2). We denote i= PickMachine(S) the machine i randomly
selected from the solution S with a uniform distribution. Later, this operator selects one job
for each chosen machine (lines 3 and 4). We denote j= PickJob(i) the job j randomly selected
from the machine i with a uniform distribution. Finally, the operator interchanges the two
picked up jobs (line 5). We denote S

′
= Interchange(S, iA, iB, jA, jB) the solution derived by

interchanging the jobs jA and jB in machines iA and iB. Figure 5a explains the mutation
process of the Swap operator adapted to solve the problem R||Cmax with an example in
which the jobs jA = j1 and jB = j7, selected from machines iA = i1 and iB = i4, respectively,
are exchanged. In this way, in the initial individual (Solution), the machines iA and iB
outlined in bold and the jobs in bold jA and jB depict the machines and the jobs selected,
respectively; and the final individual (Mutation) shows the jobs in their new position.

Algorithm 4 Swap operator
Input: A solution S.
Output: A mutated solution S

′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: jA= PickJob( iA);
4: jB= PickJob( iB);
5: S

′
= Interchange(S, iA, iB, jA, jB);

6: end process.
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Figure 5. Group-oriented mutation operators adapted for R||Cmax.
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Similarly, Algorithm 5 includes the procedure of the Insertion mutation operator. First,
it uses the before-mentioned PickMachine() function to select two machines iA and iB
(lines 1 and 2). Next, it employs the PickJob() function described above to select a job
jA from the first selected machine iA (line 3). Finally, this operator inserts the job jA into
the second selected machine iB (line 4). We denote S

′
= Insertion(S, iA, iB, jA) the solution

derived by inserting the job jA from machine iA into machine iB. Figure 5b describes the
mutation process of the Insertion operator implemented to solve the problem R||Cmax with
an example, where the job jA = j7, selected from machine iA = i4, is inserted into machine
iB = i1. For a clear explanation, the example outlines in bold the selected machines iA and
iB and highlights the inserted item in bold jA in the initial individual (Solution). Thus, the
final individual (Mutation) shows the picked job jA in its new position.

Algorithm 5 Insertion operator
Input: A solution S.
Output: A mutated solution S

′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: jA= PickJob( iA);
4: S

′
= Insertion(S, iA, iB, jA);

5: end process.

On the other hand, Algorithm 6 describes the procedure of the Elimination operator.
Like the Swap and the Insertion operators, the Elimination process starts by picking up
two machines iA and iB by using the PickMachine() function (lines 1 and 2). Next, it places
all the jobs of both machines in the set of released jobs RJ, employing the before-mentioned
Download() function (line 3). It is important to remark that this process is performed
instead of the elimination, since the machines cannot be removed due to the characteristics
of the problem. Subsequently, the location of the jobs in RJ is modified by using the
Permute() function (line 4). Finally, the permuted jobs in RJ

′
[] are re-inserted with the Min()

heuristic (lines 5–7). Figure 5c explains the mutation process of the Elimination operator
adapted to solve the problem R||Cmax with an example, where the machines outlined in
bold iA = i3 and iB = i4 depict the machines selected to remove their jobs j3, j5, j6, j7,
and j8 highlighted in bold from the initial individual (Solution). The Incomplete Solution
shows the chromosome without the released items placed in the box RJ. Lastly, the box
Permutation represents the jobs in RJ reordered randomly, and the final solution Mutation
depicts the chromosome generated by assigning the jobs in the box Permutation by using
the problem-domain heuristic Min().

Algorithm 6 Elimination operator
Input: A solution S.
Output: A mutated solution S

′′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: S

′
, RJ[]= Download(S, iA, iB);

4: RJ
′
[]= Permute(RJ[]);

5: for all job j ∈ RJ
′
[] do

6: S
′′

= Min(S
′
, RJ

′
[]);

7: end for
8: end process.

Lastly, Algorithm 7 contains the procedure of the Merge and Split operator. Similar to
the before-described mutation operators, Merge and Split begins by choosing two machines
iA and iB in a random way with the PickMachine() function (lines 1 and 2). Later, it
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locates the jobs of the selected machines in the set of released jobs RJ with the Download()
function (line 3). As can be seen, it is a similar case to the elimination since the machines
cannot be joined or split. Hence, the operator uses the Permute() function to modify the
location of the jobs in RJ (line 4), and later, it simulates the splitting part by re-inserting
the permuted jobs in RJ

′
[] among the two selected machines iA and iB using the above-

described heuristic Best() (lines 5–7). Figure 5d includes the mutation process of the Merge
and Split operator with an example that contains an initial individual (Solution) with the
two selected machines iA and iB outlined in bold and the released jobs j3, j5, j6, j7, and j8
highlighted in bold. Moreover, the example contains the Incomplete Solution without the
jobs in iA ∪ iB placed in a box with the same name (iA ∪ iB). Lastly, this figure includes the
final solution Mutation that depicts the chromosome resulting from the allocation of the
jobs in Permutation (a box with the jobs in iA ∪ iB reordered randomly) by applying the
problem-domain heuristic Best().

Algorithm 7 Merge and Split operator
Input: A solution S.
Output: A mutated solution S

′′
.

1: iA= PickMachine(S);
2: iB= PickMachine(S);
3: S

′
, RJ[]= Download(S, iA, iB);

4: RJ
′
[]= Permute(RJ[]);

5: for all job j ∈ RJ
′
[] do

6: S
′′

= Best(S
′
, j, w, o);

7: end for
8: end process.

Table 1 shows the results obtained from the computational experiments. For a com-
prehensive study, the performance of the operators was analyzed considering the number
of jobs n, the number of machines m, the distribution of the processing times pij, and
the 1400 instances together. In this way, the first column indicates the criterion used to
study the performance of the operators, the second one contains the classes covered for
each grouping criterion, and the following columns represent the average RPD (Relative
Percentage Deviation) achieved by each operator: Swap, Insertion, Merge and Split, and
Elimination, respectively. Finally, this table highlights in bold the results obtained by the
best operator for each group of instances. From Table 1, it can be observed that the Elimi-
nation operator excelled in all the criteria used to distribute the instances. It is important
to note that the four operators had a similar performance since their average RPD differs
only by hundredths.

Moreover, it is remarkable that the Download mutation operator procedure of the
studied GGA is quite similar to the state-of-the-art mutation operator Merge and Split,
since although the operations merge and split cannot be applied to groups explicitly due
to the characteristics and conditions of the problem, they can be emulated by considering
the jobs. In this way, the first stage of the Download mutation operator represents the
combination of the groups, where the jobs of the two selected machines are released and
placed in a single set. Similarly, the second stage depicts the split operation, where the jobs
are redistributed among the selected machines. Finally, it is also important to mention that
the only difference between the Merge and Split operator and the Elimination operator
(the two operators with the best performance) is the job reassignment strategy they work
with, since Merge and Split re-inserts the jobs only on the two selected machines, while the
Elimination operator tries to re-insert the jobs on all the machines.

The following stages of this experimental study contain the analysis of different aspects
involved in the mutation operator with the reassignment heuristic that considers all the
machines, such as the number of machines to handle, the number of jobs to remove, the
machine selection strategy, and the rearrangement heuristics.
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Table 1. Comparison of Swap, Insertion, Merge and Split, and Elimination mutation operators
using RPD.

Instance Set Swap Insertion
Merge and

Split
Elimination

100 0.1213 0.1219 0.1071 0.0804
n 200 0.1408 0.1432 0.1353 0.1154

500 0.1365 0.1371 0.1372 0.1281
1000 0.1380 0.1381 0.1387 0.1350

10 0.1291 0.1290 0.1291 0.1178
20 0.1391 0.1402 0.1344 0.1229

m 30 0.1256 0.1252 0.1220 0.1074
40 0.1310 0.1331 0.1270 0.1084
50 0.1460 0.1478 0.1353 0.1172

U(1, 100) 0.2802 0.2740 0.2632 0.2107
U(10, 100) 0.2080 0.2060 0.2039 0.1802

U(100, 120) 0.0417 0.0438 0.0408 0.0384
Pij U(100, 200) 0.1230 0.1248 0.1198 0.1164

U(1000, 1100) 0.0218 0.0230 0.0214 0.0201
JobsCorr 0.1259 0.1307 0.1194 0.1049

MacsCorr 0.1385 0.1432 0.1384 0.1326

1400 instances 0.1341 0.1351 0.1296 0.1147

4.2. Handled Machines and Removed Jobs

After observing that the four operators of the state of the art showed quite similar
performance and that the Elimination operator slightly excelled, the second phase of the ex-
perimental study focused on analyzing how the number of handled machines and removed
jobs impact the performance of the mutation operator. To analyze this phenomenon, we
explore thirty-five variants of the operator. This study consists of evaluating the suitability
of removing 1, 2, 3, 4, 6, 8, and 10 jobs from 2, 4, 6, 8, and 10 different machines, where
each combination of removed jobs and managed machines results in an operator. For this
study, we designed an enhanced version of the Elimination operator, called Elimination
operator-v2. Algorithm 8 contains the procedure of this version that is able to adapt itself
to the number of machines f and jobs h to handle. Therefore, this version receives the
solution and the number of machines and jobs to consider. Thus, it starts by using a cycle
to select the machines with the PickMachine() function (lines 1 and 2). Furthermore, for
each machine, it employs another cycle to choose the h jobs with the PickJob() function
and place them in the set of released jobs RJ (lines 3–5). It is important to highlight that if
a machine does not have enough jobs h, all of them are released and placed in RJ. Finally,
the functions Permute() and Min() are used to modify the location of the jobs and re-insert
them, respectively (lines 7–10).

For a fair comparison, all the operators use randomness to select the machines and the
jobs that intervene in their mutation process. Thus, each operator releases k jobs from g
machines and then re-inserts them with the heuristic Min(). As in the first phase, for each
operator, 100 individuals were generated and mutated during 500 generations using the
same seed.

Table 2 shows the experimental results of the thirty-five variants of the mutation
operator. The first column indicates the number of machines that each operator man-
ages, the second one represents the number of jobs removed from each of the handled
machines, and the last column contains the average RPD of each operator for the 1400 test
instances, highlighting in bold the result obtained by the best variant of the thirty-five
mutation operators.
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Algorithm 8 Elimination operator-v2
Input: A solution S, number of machines f and jobs h handle.
Output: A mutated solution S

′′
.

1: for each machine i from 1 to f do
2: i= PickMachine(S);
3: for each job j from 1 to h do
4: RJ[] = PickJob(i);
5: end for
6: end for
7: RJ

′
[]= Permute(RJ[]);

8: for all job j ∈ RJ
′
[] do

9: S
′′

= Min(S
′
, RJ

′
[]);

10: end for
11: end process.

Table 2. Comparison of handled machines and removed jobs using RPD.

Handled Machines Removed Jobs RPD

1 0.091437
2 0.094475
3 0.097644

2 4 0.100010
6 0.102259
8 0.103456

10 0.103984

1 0.093067
2 0.100647
3 0.104505

4 4 0.107246
6 0.109475
8 0.111302

10 0.111263

1 0.095776
2 0.105834
3 0.109519

6 4 0.111925
6 0.114454
8 0.115151

10 0.115754

1 0.09889
2 0.109016
3 0.112681

8 4 0.114861
6 0.116797
8 0.117525

10 0.117800

1 0.102228
2 0.110804
3 0.114677

10 4 0.116184
6 0.117627
8 0.118031

10 0.117819

It appears from Table 2 that the operators that release only one job from each machine
perform better than those that release more and that the best option is to consider only two
machines. Moreover, to graphically observe the behavior of the 35 designed operators, the
1400 instances were grouped into 20 groups concerning each combination of jobs (100, 200,
500, and 1000) and machines (10, 20, 30, 40, and 50) to calculate the average RPD of each
group and analyze the impact of each operator in more detail, e.g., the group where m = 10
and n = 100, the group where m = 10 and n = 200, and so on. Figures 6 and 7 contain
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two representative graphs of the behavior presented by the thirty-five mutation operator
variants, which allow observing the impact of the two evaluated features, i.e., the number
of machines to be handled and the number of jobs to be removed from each machine.

Figure 6. Behavior of the mutation operators grouped by the number of handled machines.

Figure 7. Behavior of the mutation operators grouped by the number of removed jobs from each
handled machine.

Figure 6 allows observing the behavior of the operator’s performance grouped ac-
cording to the number of machines that they handle for all instances with 200 jobs and
30 machines. The x-axis of this figure indicates the number of machines handled, and the
y-axis contains the average RPD reached for each operator. On the other hand, Figure 7
groups the operators according to the number of jobs removed from each machine in in-
stances with 500 jobs and 20 machines. The x-axis contains the operators grouped according
to the number of jobs that they remove, and the y-axis contains the average RPD reached
for each operator. In this way, Figure 6 allows graphically observing that the performance
of the operators improves as the number of handled machines decreases, while Figure 7
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shows that the operators removing fewer jobs have better performance. In this fashion, the
analysis suggests that the operators handling a fewer number of machines and releasing
fewer jobs are more suitable.

4.3. Machines Selection Strategy

Once identifying that the variant that considers two machines and releasing one job
from each machine has the best performance, in this stage, we evaluate the performance
of four machine selection strategies, Random, Worst, Worst Best, and Worst Random, to
analyze how they affect the performances of the mutation operators. Given a solution to be
mutated, these strategies work as follows. Random chooses the two machines randomly.
Worst selects the two machines with the worst Ci values (i.e., the machines with the highest
loads). Worst Best picks the worst and the best machine (i.e., the machines with the highest
and the lowest loads). If there are several machines with the lowest or highest load, first,
they are identified to later use a uniform distribution to select one of them randomly. Finally,
Worst Random divides the machines into two groups (W and O) in such a way that W
contains the machines with Ci = Cmax and O the remaining machines. Next, it randomly
selects the machines w and o from sets W and O, respectively. It is important to note that
for each machine selection strategy, the two released jobs are selected randomly using
a uniform distribution and later re-inserted employing the heuristic Min().

Table 3 shows the experimental results of the operators with the four machine selection
strategies. As can be seen, this table has the same structure as Table 1. That is, it clusters the
instances according to the number of jobs n, the number of machines m, the distribution of
the processing times pij of the instances, and the 1400 test instances together. Therefore,
the first column indicates the criterion used to study the performance of the operators, the
second one contains the classes covered for each grouping criterion, and the following
columns represent the average RPD (Relative Percentage Deviation) achieved by the
operators with each machine selection strategy: Random, Worst, Worst Best, and Worst
Random. Finally, this table highlights in bold the results obtained by the best mutation
operator for each group of instances. The experimental results in Table 3 suggest that the
most suitable machine selection strategy is Worst Random, with an average RPD of 0.0674
since the other approaches (Random, Worst, and Worst Best) reached higher RPD averages
of 0.0913, 0.0875, and 0.0912, respectively.

Table 3. Comparison of mutation operators with selection strategies Random, Worst, Worst Best, and
Worst Random using RPD.

Instance Set Random Worst Worst Best Worst Random

n

100 0.0605 0.0577 0.0618 0.0296
200 0.0848 0.0797 0.0832 0.0533
500 0.1030 0.0987 0.1028 0.0827

1000 0.1175 0.1147 0.1178 0.1046

m

10 0.0873 0.0857 0.0894 0.0718
20 0.0978 0.0942 0.0977 0.0752
30 0.0842 0.0824 0.0854 0.0635
40 0.0908 0.0853 0.0885 0.0631
50 0.0963 0.0900 0.0951 0.0634

U(1, 100) 0.1430 0.1470 0.1522 0.1146
U(10, 100) 0.1321 0.1319 0.1362 0.1003

U(100, 120) 0.0351 0.0309 0.0329 0.0244
Pij U(100, 200) 0.1017 0.0939 0.0970 0.0740

U(1000, 1100) 0.0182 0.0155 0.0171 0.0123
JobsCorr 0.0909 0.0820 0.0810 0.0576

MacsCorr 0.1179 0.1112 0.1220 0.0888

1400 instances 0.0913 0.0875 0.0912 0.0674
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4.4. Rearrangement Heuristics

After identifying the machine selection strategy that provides the best performance to
the mutation operator, we noted that there are high possibilities that the genetic material
of many solutions does not undergo any alteration during the mutation process. Such
a phenomenon can occur because it is likely that the two released jobs can be re-inserted in
the same machine to which they belonged. In order to analyze the above, we evaluated
the success rate (i.e., the number of the alterations in the genetic material divided by the
mutation attempts) of the mutation operator with the best properties identified in the two
previous stages. The experimental results revealed that only about the 42% of the mutation
attempts are successful.

The above motivates this stage of the experimental study that consists of evaluating
the utility of incorporating two rearrangement heuristics, called Insertion and Assemble, to
increase the operator’s success rate and improve its performance. These heuristics are only
used if, after releasing and reinserting the jobs, the genetic material of the mutated solution
has not been altered.

The rearrangement heuristic Insertion seeks to reduce the number of jobs in one of the
two selected machines by trying to insert each of their jobs into the other ones. Algorithm 9
has the procedure of the rearrangement heuristic Insertion. We denote S

′
= Insertion(S, jsm,

sm, i) the solution derived from S by inserting job jsm (jw or jo) from the selected machine
sm (w or o) into machine i. As can be seen, this heuristic goes through the jobs jw and jo of
the machines w and o selected with the machine selection strategy Worst Random (line 1).
Thus, for each pair of jobs (jw and jo), this algorithm traverses the m machines (line 2). In
this way, for each machine i different from machine w and o (line 3 and line 9), it tries to
insert the job jw of the worst machine w (line 3) and then the job jo from the other machine
o (line 7) following two conditions, denoted as Cnd_1 and Cnd_2.

Algorithm 9 Rearrangement heuristic Insertion
Input: A solution S and two machines w and o.
Output: A mutated solution S

′
.

1: for all job jw ∈ w & jo ∈ o do
2: for machine i in S do
3: if i != w then
4: if Cnd_1(S, jw, w, i) and Cnd_2(S, jw, w, i) then

5: S
′

= Insertion (S, jw, w, i);
6: end process;
7: end if
8: end if
9: if i != o then

10: if Cnd_1(S, jo, o, i) and Cnd_2(S, jo, o, i) then

11: S
′

= Insertion (S, jo, o, i);
12: end process;
13: end if
14: end if
15: end for
16: end for

Cnd_1(S, jsm, sm, i) (line 4 and line 10) allows verifying that the mutated solution (S
′
)

will have equal or better quality than the initial solution (S). In this way, Cnd_1 checks
out that the sum of the processing time resulted from the insertion in the intervened
machines i and sm (w or o) will be less than or equal to the sum of their processing times
without performing the insertion. Hence, for each job jw, Cnd_1(S, jw, w, i) returns TRUE if
Cw − pwjw + Ci + pijw ≤ Cw + Ci, where Cw and Ci represent the time that machines w and i
require to process their assigned jobs, respectively, while pwjw and pijw depict the processing
time that machines w and i require to process job jw, respectively. Otherwise, it returns
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FALSE. In the same way, for each job jo, Cnd_1(S, jo, o, i) returns TRUE if Co− pojo +Ci + pijo
≤ Co + Ci, where Co and Ci represent the time that machines o and i require to process their
assigned jobs, respectively; while pojo and pijo depict the processing time that machines o
and i require to process job jo, respectively. Otherwise, it returns FALSE.

On the other hand, Cnd_2(S, jsm, sm, i) (line 4 and line 10) checks out that the mutated
solution (S

′
) will have equal or better quality than the initial solution (S). Cnd_2 verifies

that the processing time Ci of the machine i with the new job, either jw or jo, will be less
than or equal to the current makespan Cmax. Therefore, for each job jw, Cnd_2(S, jw, w, i)
returns TRUE if Ci + pijw ≤ Cmax. Otherwise, it returns FALSE. Similarly, for each job jo,
Cnd_2(S, jo, o, i) returns TRUE if Ci + pijo ≤ Cmax. Otherwise, it returns FALSE.

In this way, the function Insertion(S, jsm, sm , i) (lines 5 and 11) is applied to S if and
only if a job j (jw or jo) satisfies the two conditions (Cnd_1 and Cnd_2). The rearrangement
process ends once an insertion is performed (lines 6 and 12), but if none of the jobs satisfied
the three conditions, the mutated solution would remain with its genetic material without
any modification.

On the other hand, the rearrangement heuristic Assemble uses two functions. The first
one is the Insertion(S, jsm, sm, i) that works similarly to the above rearrangement heuristic.
Additionally, it incorporates a second function called Interchange that seeks to exchange
each job of the selected machines with each job of the other machines in an attempt to
reduce the processing time of the selected machines. Algorithm 10 contains the procedure
of the rearrangement heuristic Assemble. We denote S

′
= Interchange(S, jsm, sm, ji, i) the

solution derived from S by exchanging job jsm (jw and jo) from the selected machine sm (w
or o) with each job ji in machine i. Like the Insertion rearrangement heuristic, Assemble
loops through the jobs jw and jo of the machines w and o selected with the machine selection
strategy Worst Random (line 1). Thus, for each pair of jobs (jw and jo), this algorithm goes
through the m machines (line 2). In this fashion, first, it tries to insert the jobs jw of the worst
machine w and jo of the other machine o into every machine i different from machines w
and o (line 3 and line 9) according to the two conditions described in Algorithm 9: Cnd_1
and Cnd_2 (line 4 and line 10). Next, it attempts to interchange the same jobs jw and jo with
each job ji in every machine i (line 15) different from machine w and o (line 16 and line 22),
validating two conditions: Cnd_3 and Cnd_4 (line 17 and line 23).

Cnd_3(S, jsm, sm, ji, i) (line 17 and line 23) allows verifying that the mutated solution
(S
′
) will have equal or better quality than the initial solution (S). In this way, Cnd_3 checks

out that the processing time resulted from the exchange in the intervened machines i and
sm (w or o) will be less than or equal to the sum of their processing times without swapping
their jobs. Hence, for each job jw, Cnd_3(S, jw, w, ji, i) returns TRUE if (Cw − pwjw + pwji ) +
(Ci − piji + pijw ) ≤ Cw + Ci, where Cw and Ci represent the time that machines w and i
require to process their assigned jobs, respectively; pwjw and piji depict the processing
time that machines w and i require to process jobs jw and ji, respectively; pwji pijw indicate
the processing time that machines w and i require to process job ji and jw, respectively.
Otherwise, it returns FALSE. In the same way, for each job jo, Cnd_3(S, jo, o, ji, i) returns
TRUE if (Co − pojo + poji ) + (Ci − piji + pijo ) ≤ Co + Ci, where Co and Ci represent the time
that machines o and i require to process their assigned jobs, respectively; pojo and piji depict
the processing time that machines o and i require to process jobs jo and ji, respectively; and
poji and pijo indicate the processing time that machines o and i require to process job ji and
jo, respectively. Otherwise, it returns FALSE.

On the other hand, the condition Cnd_4(S, jsm, sm, ji, i) (line 17 and line 23) validates
that the processing time resulting from the interchange in the intervened machines i and
sm (w or o) will be less than or equal to the current makespan (Cmax) of the initial solution S.
Hence, for each job jw, Cnd_4(S, jw, w, ji, i) returns TRUE if (Cw − pwjw + pwji ≤ Cmax) and
(Ci − piji + pijw ≤ Cmax). Otherwise, it returns FALSE. Similarly, for each job jo, Cnd_4(S, jo,
o, ji, i) returns TRUE if (Co − pojo + poji ≤ Cmax) and (Ci − piji + pijo ≤ Cmax). Otherwise, it
returns FALSE.
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Algorithm 10 Rearrangement heuristic Assemble
Input: A solution S and two machines w and o.
Output: A mutated solution S

′
.

1: for all job jw ∈ w & jo ∈ o do
2: for machine i in S do
3: if i != w then
4: if Cnd_1(S, jw, w, i) and Cnd_2(S, jw, w, i) then

5: S
′

= Insertion (S, jw, w, i);
6: end process;
7: end if
8: end if
9: if i != o then

10: if Cnd_1(S, jo, o, i) and Cnd_2(S, jo, o, i) then

11: S
′

= Insertion (S, jo, o, i);
12: end process;
13: end if
14: end if
15: for job ji in i do
16: if i != w then
17: if Cnd_3(S, jw, w, ji, i) and Cnd_4(S, jw, w, ji, i) then

18: S
′

= Interchange (S, jw, w, ji, i);
19: end process;
20: end if
21: end if
22: if i != o then
23: if Cnd_3(S, jo, o, ji, i) and Cnd_4(S, jo, o, ji, i) then

24: S
′

= Interchange (S, jo, o, ji, i);
25: end process;
26: end if
27: end if
28: end for
29: end for
30: end for

The Assemble process ends once an operation, either the insertion or the interchange,
is accomplished (lines 6, 12, 19, and 25). If none of the jobs met the two conditions, the
mutated solution remains with its genetic material without any modification.

In this way, two variants of the operator with the best characteristics identified in the
two previous stages (i.e., removing one job from two machines selected with the strategy
Worst Random and re-inserting such jobs with the Min() heuristic) were created, one for
each rearrangement heuristics presented in this section: Insertion and Assemble. The
performance of the two variants, called Insertion and Assemble, was evaluated using the
methodology mentioned above, i.e., starting from an initial population of 100 individuals
that are subsequently mutated during 500 generations and using the same seed. Table 4
holds the experimental results obtained by the two mutation operators generated in this
phase. Moreover, Table 4 includes the performance of the Download mutation operator,
the original GGA operator described in Section 2.5, to compare the degree of improvement
provided by the variants of the operator proposed in this section. For a comprehensive
analysis, the performance of the operators was analyzed clustering the instances with the
criteria used in the previous stages: number of jobs n, number of machines m, distribution
of processing times pij, and the 1400 instances together. Thus, each column shows the
performance of each assessed operator for the different criteria used to group the instances,
highlighting in bold the results obtained by the best mutation operator.

As can be observed in Table 4, the best variant is that with the rearrangement heuristic
Assemble, which for each pair of jobs first tries the insertion and then the interchange. The
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variants with the rearrangement heuristics Insertion and Assemble reached an average
RPD of 0.0552 and 0.0395, respectively. However, it is important to note that the two
versions of the mutation operators presented in this section outperformed the original
Download mutation operator of the GGA studied that reached an average RPD of 0.1139,
as well as the four state-of-the-art operators, which had an average RPD above 0.1.

Table 4. Comparison of mutation operators with the rearrangement heuristics Insertion and Assemble
and the Download operator using RPD.

Instance Set Insertion Assemble Download

n

100 0.0306 0.0185 0.0730
200 0.0480 0.0280 0.1125
500 0.0631 0.0441 0.1328

1000 0.0793 0.0671 0.1383

10 0.0612 0.0416 0.1261
20 0.0617 0.0429 0.1258

m 30 0.0497 0.0366 0.1076
40 0.0507 0.0376 0.1054
50 0.0528 0.0382 0.1048

U(1, 100) 0.0523 0.0407 0.2307
U(10, 100) 0.0538 0.0331 0.1862

U(100, 120) 0.0286 0.0176 0.0358
Pij U(100, 200) 0.0750 0.0362 0.1072

U(1000, 1100) 0.0150 0.0100 0.0182
JobsCorr 0.0664 0.0654 0.0892

MacsCorr 0.0952 0.0728 0.1304

1400 instances 0.0552 0.0394 0.1139

5. Comparing GGA with the Old and the New Mutation Operators

Given the knowledge gained from the experimental study, we propose a mutation
operator called 2-Items Reinsertion. This operator randomly chooses two jobs from two
different machines selected with the strategy Worst Random to release them and later rein-
sert them with the allocation heuristic Min(). Furthermore, it employs the rearrangement
heuristic Assemble, based on insertion and interchange operations. The rearrangement
process is only applied if, after releasing and reinserting the jobs, the genetic material of the
mutated solution has not been modified.

To assess the 2-Items Reinsertion mutation operator performance, we run two variants
of the state-of-the-art GGA for R||Cmax [1]. One with the old mutation operator (the Down-
load mutation operator), i.e., the state-of-the-art GGA and the Enhanced GGA (EGGA) that
uses the 2-Items Reinsertion mutation instead of the Download operator to evaluate their
performance over the 1400 benchmark instances. For an equivalent comparison, the effec-
tiveness and efficiency of both GGA variants were compared by using the same parameter
configuration, i.e., the one proposed by Ramos-Figueroa et al. [1]. Table 5 contains the
parameter values utilized for the population size |P|, number of individuals selected for
the crossover nc, number of individuals selected for the mutation nm, elite population size
|B|, and maximal number of generations max_gen. In this way, we analyze the strengths
and weaknesses of the 2-Items Reinsertion mutation operator, distinguishing the quality
of the solutions found by each GGA variant, their search time, as well as their ability to
escape from local optima.

Table 5. Parameter configuration.

Parameter Value

|P| 100
nc 20
nm 83
|B| 20

max_gen 500
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For a fair comparison, both algorithms were programmed in the Rust language and
were compiled using Visual Studio in the 64-bits mode. The experiments were performed
on a computer with an Intel Core i5 (3.10 GHz), and 16 GB in RAM. Similar to Ramos-
Figueroa et al. [1], for each instance, a single execution of the algorithms was run, with the
same initial seed for the random number generation.

5.1. Comparing the effectiveness of GGA with the old and the new mutation operators

To measure the effectiveness of the designed 2-Items Reinsertion mutation operator,
we applied the two GGA variants to the 1400 test instances and measured the improvement
degree in the quality of the solutions found by each algorithm based on the RPD. Table 6
contains the experimental results. The first and second columns indicate the criteria used
to group the test instance based on the number of jobs n, the number of machines m, the
processing time distribution pij, and the 1400 instances together. On the other hand, the
remaining columns contain the average RPD obtained by each metaheuristic algorithm
for the four grouping criteria, respectively. Finally, this table highlights in bold the results
obtained by the best GGA for each group of instances.

Table 6. Comparison of the state-of-the-art GGA and the EGGA presented in this work using RPD.

Instance Set GGA EGGA

n

100 0.0391 0.0176
200 0.0565 0.0224
500 0.0665 0.0291

1000 0.0724 0.0441

10 0.0512 0.0220
20 0.0606 0.0306

m 30 0.0559 0.0275
40 0.0596 0.0308
50 0.0657 0.0306

U(1, 100) 0.0719 0.0465
U(10, 100) 0.0853 0.0361
U(100, 120) 0.0278 0.0092

Pij U(100, 200) 0.0820 0.0229
U(1000, 1100) 0.0131 0.0036

JobsCorr 0.0522 0.0380
MacsCorr 0.0780 0.0419

1400 instances 0.0586 0.0283

Table 6 illustrates that the EGGA showed a better performance than the state-of-the-art
GGA using any criteria to group the test instances. Furthermore, it is worth noting that
the EGGA reaches an average RPD considerably lower than the state-of-the-art GGA by
solving the 1,400 test instances, with 0.028 and 0.059, respectively. Additionally, we applied
the Wilcoxon rank-sum test to assess whether the differences in the RPD achieved by
both GGAs for the 1,400 test instances are statistically significant. The Wilcoxon rank-
sum is a non-parametric test that compares two algorithms without assuming a normal
distribution, even for small sample sizes [44]. Table 7 presents the results obtained by
the Wilcoxon rank-sum for the RPD values reached by both algorithms in the benchmark
considered with a 95%-confidence level. For a comprehensive comparison, we generated
a hypothesis test for the RPD achieved by both GGAs in groups of instances sorted
according to the number of jobs n, the number of machines m, the distribution of the
processing times pij of the instances, and the complete benchmark (1400 instances). In this
way, the first column indicates the criterion used to compare the algorithms, the second
one contains the classes covered for each grouping criterion, and the last column indicates
the p-values obtained by the Wilcoxon test.
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Table 7. p-values for the Wilcoxon test for GGA and EGGA.

Instance p-Value

n

100 7.10 × 10−26

200 6.70 × 10−43

500 2.30 × 10−46

1000 8.16 × 10−29

10 4.57 × 10−39

20 1.63 × 10−29

m 30 2.98 × 10−21

40 3.51 × 10−20

50 3.37 × 10−25

U(1, 100) 1.13 × 10−12

U(10, 100) 1.59 × 10−49

U(100, 120) 2.03 × 10−33

Pij U(100, 200) 1.01 × 10−51

U(1000, 1100) 2.25 × 10−37

JobsCorr 2.19 × 10−15

MacsCorr 4.44 × 10−27

1400 instances 5.44 × 10−120

Table 7 indicates that the EGGA is indeed statistically better than the state-of-the-art
GGA considering the RPD that they reached for the test benchmark for all the groups of
instances considered since all p-values are less than the level of significance α = 0.05.

Finally, in order to graphically show the suitability of the designed mutation operator,
the experimental study presented in Section 2.5 was repeated but this time for the impact
analysis of crossover and mutation rates on the EGGA. In this way, the EGGA that incorpo-
rates the 2-Items Reinsertion mutation operator was run with the same 9 configurations,
i.e., Con f1: nc = 20, nm = 20, Con f2: nc = 20, nm = 40, ... Con f9: nc = 60, nm = 60. Figure 8
presents a bar graph with the results obtained from this study, where each bar depicts one
of the 9 configurations grouped according to the number of mutated solutions (nm), and
each pattern indicates the number of selected individuals for the crossover process (nc):
squares = 20, waves= 40, and circles= 60. As Figure 8 indicates, the EGGA performance
is mainly related to the number of individuals considered for the mutation processes nm
in such a way that the performance of the EGGA improves (lower RPD) as the number
of mutated solutions increases. Similarly, as the number of selected individuals for the
crossover process nc increases, the GGA performance improves but to a lesser degree.

Figure 8. Impact analysis of the parameters: number of individuals selected for crossover nc and
number of mutated solutions nm in the EGGA final performance.

The behavior mentioned above shows the suitability of the 2-Items Reinsertion mu-
tation, which is the operator with the biggest impact on EGGA final performance and
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improves it considerably. Thus, the EGGA behavior is quite similar to the one presented by
the GGA-CGT [28], where the mutation operator has the greatest positive impact on the
final performance of this algorithm.

5.2. Comparing the Efficiency of GGA with the Old and the New Mutation Operators

After analyzing the effectiveness of the EGGA, we evaluate the implications associated
with the computational time of using the 2-Items Reinsertion mutation operator. Table 8
includes the experimental results. Like Table 6, the first and second columns describe
the characteristics used to cluster the instances: the number of jobs n and machines m,
the processing time distribution pij, and the 1400 instances together. Thus, the following
columns contain the average time in seconds obtained by the state-of-the-art GGA and the
EGGA for each instance set, respectively.

Table 8. Comparison of the state-of-the-art GAA and the EGGA based on the time (time in seconds).

Instance GGA EGGA

n

100 1.2 5.71
200 1.2 5.68
500 1.24 5.49

1000 1.36 9.44

10 1.26 8.71
20 1.24 7.66

m 30 1.21 6.94
40 1.19 6.33
50 1.17 5.79

U(1, 100) 1.25 34.09
U(10, 100) 1.25 14.04

U(100, 120) 1.25 2.52
Pij U(100, 200) 1.25 2.88

U(1000, 1100) 1.25 2.71
JobsCorr 1.25 1.50

MacsCorr 1.25 1.69

1400 instances 1.25 8.49

Table 8 shows that the 2-Items Reinsertion mutation operator causes the EGGA to
be much slower. Said computational cost is closely related to the rearrangement strategy
Assemble, incorporated to avoid, as far as possible, becoming stuck in a local optima.
Although the computational cost of this strategy is high, it is also too useful, since the
properties and characteristics of the addressed problem make the mutation operator by
itself incapable of avoiding local optima., mainly in the instances with processing times
generated in the ranges U(1, 100) and U(10, 100), where the average times increased from
1.25 to 34.09 and 14.04 seconds, respectively. To review such algorithmic behavior, we
analyzed the average generation in which the state-of-the-art GGA and the EGGA find the
best solution for each test instance.

Table 9 shows that the GGA becomes quickly trapped in local optima in generation 16
on average, while the EGGA shows a better ability to deal with the landscape characteristics
of the R||Cmax search space, finding its best solutions in generation 362 on average. In
this way, Table 9 shows the importance of incorporating the 2-Items Reinsertion mutation
operator to the GGA since, although the computational cost is high, it provides to the
EGGA a better exploration capability during the search process.
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Table 9. Comparison of the state-of-the-art GAA and the EGGA based on the generation in which the
best solution in population is improved.

Instance GGA EGGA

n

100 9.27 358.34
200 8.00 369.31
500 8.00 380.83

1000 17.09 362.54

10 16.35 358.46
20 13.69 359.06

m 30 11.79 359.78
40 11.05 360.96
50 10.01 362.20

U(1, 100) 64.80 218.56
U(10, 100) 8.00 305.34

U(100, 120) 8.00 360.44
Pij U(100, 200) 8.00 391.96

U(1000, 1100) 8.00 390.13
JobsCorr 8.00 474.82

MacsCorr 8.00 392.95

1400 instances 16.11 362.03

From this study, we can conclude that it is still necessary to improve the performance
of the EGGA and study its other operators, evaluation function, and stop criteria in order
to better explore the search space, since it also becomes stuck in local optima, although
not as soon as the original GGA. Additionally, we will focus on analyzing the properties
and characteristics of the instances in the sets U(1, 100) and U(10, 100), where the EGGA
stagnates sooner and requires a longer processing time since the rearrangement heuristic is
used more times during the solution process of instances with those characteristics.

6. Conclusions and Paths of Work

The GGA has become one of the most outstanding metaheuristics for the solution of
combinatorial optimization problems related to the partition of a set of items into different
subsets. The development of a GGA involves the definition of variation operators adapted
to work at the group level. The main goal of this paper was to promote the design of
intelligent operators for GGAs as a more suitable way to obtain high-performance GGAs
that incorporate knowledge of the problem-domain.

We present a systematic experimental examination to gain insights into the impor-
tance of each phase involved in the mutation operator of a GGA designed to solve the
Parallel-Machine scheduling problem with unrelated machines and makespan minimiza-
tion (R||Cmax), analyzing whether different strategies actually contribute to the performance
of the operator. The overall procedure of a grouping mutation operator for R||Cmax com-
prises: (1) selecting one or more machines; (2) selecting one or more jobs from each of the
selected machines; and (3) reinserting the selected jobs in some of the machines. In order
to learn something about each of these three algorithmic components, this work covered
the analysis of each component in isolation by evaluating distinct strategies to deal with it.
In this way, the study covered the evaluation of four state-of-the-art grouping mutation
operators, thirty-five operators with different numbers of machines and jobs handled, four
machine selection strategies, and two rearrangement heuristics for the reinsertion of the
selected jobs. The experimental results suggested that the mutation operator with the best
performance: (1) selects two machines, one of the machines with the worst Ci value and
one random machine; (2) selects one random job from each of the selected machines; and
(3) reinserts the selected jobs in two stages. First, for each job, each machine is checked
in an attempt to insert the job in the machine with the lowest Ci value. Second, if the
first stage yields the original solution, a rearrangement heuristic is applied to attempt to
reduce the processing time of the selected machines by trying to insert one of their jobs
into the other machines or to exchange one of their jobs with one job of the other machines.
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The knowledge gained from the systematic study was used to design a new grouping
mutation operator, called 2-Items Reinsertion. The new operator was incorporated into the
state-of-the-art GGA (replacing the original mutation operator) to solve 1400 benchmark
instances, showing significant differences with an improvement rate of 52%. These results
underline the importance of evaluating the performance of the different components of the
GGA operators.

We are aware that the current performance of the Enhanced GGA (EGGA) is still far
from reaching the performance of state-of-the-art algorithms for R||Cmax. However, the
improvements achieved with the approach proposed in this work are quite promising.
Therefore, we believe that with the design and implementation of experimental approaches
such as the one presented in this paper we can further improve the performance of EGGA
by studying the behavior of other genetic components, such as the population initialization
strategy, the selection mechanism, the crossover operator, the replacement mechanism, and
the objective function. In this order of ideas, the study of the final performance obtained by
the EGGA for the R||Cmax problem revealed that there still are benchmark instances that
show a high degree of difficulty; for these instances, the included strategies in the EGGA
do not appear to lead to better solutions. Future work will consist of studying the different
components of each operator and technique included in the EGGA, designing a better
crossover operator, implementing an efficient reproduction technique, and analyzing the
EGGA behavior to understand the impact of each strategy when solving different instances
of the R||Cmax problem. We are also developing a new fitness function that will allow us to
discriminate between solutions with the same Cmax value but with a different exploitation of
the machine’s processing time. The knowledge gained from the analysis of each component
of the grouping mutation operator for the R||Cmax problem can help us gain a better
understanding of the performance of other heuristics for this problem and opens up an
interesting range of possibilities for future research on other Parallel-Machine Scheduling
variants. It is expected that the study presented in this paper represents a guideline to
carry out similar systematic experimental examinations to analyze the components of
other GGAs. This knowledge can be used to develop new intelligent operators for solving
NP-hard grouping problems.
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Abstract: Recently, the Hypervolume Newton Method (HVN) has been proposed as a fast and
precise indicator-based method for solving unconstrained bi-objective optimization problems with
objective functions. The HVN is defined on the space of (vectorized) fixed cardinality sets of decision
space vectors for a given multi-objective optimization problem (MOP) and seeks to maximize the
hypervolume indicator adopting the Newton–Raphson method for deterministic numerical optimiza-
tion. To extend its scope to non-convex optimization problems, the HVN method was hybridized
with a multi-objective evolutionary algorithm (MOEA), which resulted in a competitive solver for
continuous unconstrained bi-objective optimization problems. In this paper, we extend the HVN to
constrained MOPs with in principle any number of objectives. Similar to the original variant, the
first- and second-order derivatives of the involved functions have to be given either analytically or
numerically. We demonstrate the applicability of the extended HVN on a set of challenging bench-
mark problems and show that the new method can be readily applied to solve equality constraints
with high precision and to some extent also inequalities. We finally use HVN as a local search engine
within an MOEA and show the benefit of this hybrid method on several benchmark problems.

Keywords: multi-objective optimization; hypervolume indicator; newton method; evolutionary
algorithms; constraint handling; hypervolume scalarization

1. Introduction

Multi-objective optimization problems (MOPs)—i.e., problems where several objec-
tives have to be optimized concurrently –naturally arise in many applications (e.g., [1–4]).
As an example, in many portfolio problems, one is interested in maximizing the expected
return and social responsibility or sustainability while minimizing the risk to a financial
portfolio ([5,6]). In multi-objective optimization, we distinguish between the decision space,
which contains the vectors of decision variables, and the objective space, which is the k di-
mensional real vectors and comprises the images of the vector-valued objective function. A
typical approach to the solution of MOPs is to compute or approximate the non-dominated
(or efficient) set with respect to the Pareto dominance order (the image of which in the
objective space is called the Pareto front). One important characteristic of (continuous)
MOPs is that in regular cases, the Pareto front is a manifold of k− 1 dimensions, where k
denotes the number of objective functions. In general, it is possible that parts of the Pareto
front are of lower dimension, but the Pareto front is never more than k− 1 dimensions.
Since, in the continuous case, the non-dominated set and the Pareto front can contain
infinitely many points, it is usually approximated by a finite set of points. In particular, in
the area of evolutionary multi-objective optimization (EMO), many performance indicators
have been proposed that propagate optimal approximations of the Pareto front (e.g., [7–10]).
While their definitions slightly differ, most have in mind to obtain (more or less) evenly
spread solutions along the Pareto front.
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Math. Comput. Appl. 2023, 28, 10

Interestingly, with the hypervolume indicator [10], there exists an indicator that does
not require the knowledge of the location of the true Pareto front. Still, its maximization
leads to well-distributed approximation sets consisting of only non-dominated solutions.
In this work, by “well-distributed”, we mean the objective points have good coverage of
the Pareto front and are gap-free when the population size is large. At the maximum of
the hypervolume indicator, the density of objective points is inversely proportional to the
local curvature of the Pareto front [11]. Here is where the idea of set-scalarization comes
into play. In set-scalarization methods, rather than focusing on the improvement of single
points of the approximation set, the focus is on the optimization of a fixed cardinality set as
an entity concerning a set-based indicator, e.g., the hypervolume indicator. The objective
function of the set-scalarization method, in our case, the hypervolume indicator, provides a
mapping from the set of fixed cardinality sets in the decision space to a scalar that has to
be maximized. Due to the properties mentioned above of the hypervolume indicator, the
resulting set will provide a well-distributed set of points on the Pareto front.

Multi-objective evolutionary algorithms (MOEAs) have long since adopted the idea
of set-scalarization. The so-called indicator-based MOEAs (e.g., [12–14]) use performance
indicators to guide the search, e.g., by indicator-based selection. In numerical methods, the
set scalarization approach was first addressed in gradient-based hypervolume maximiza-
tion [15–19] and in the maximization of the Averaged Hausdorff Metric [14]). More recently,
the approach was generalized to second-order methods with the Hypervolume Newton
Method (HVN), a set scalarization-based Newton–Raphson method for the maximization
of the hypervolume indicator value of a given MOP (e.g., [20,21]). However, this method
has only been discussed for unconstrained and bi-objective optimization problems, which
limits its application.

In this paper, we extend the HVN for constrained MOPs with a general number of
objectives. To this end, we present the HVN for equality-constrained problems and further
discuss a straightforward active set method to handle inequalities. Since the HVN is highly
local, we also discuss the hybridization of this method with an MOEA. Finally, we present
numerical results indicating the strength of the novel approaches.

The remainder of this paper is organized as follows: in Section 2, we present the
necessary background required for understanding the sequel, and we review the related
work. In Section 3, we present the HVN for constrained multi-objective optimization
problems. Section 4 presents the numerical results of the constrained HVN as a standalone
algorithm and a local search strategy within a hybrid evolutionary algorithm. Finally, we
conclude and give possible paths for future research in Section 5.

2. Background and Related Work

2.1. Notations

We will always denote a finite Pareto approximate set by X = {x(1), x(2), . . . , x(μ)} ⊆
Rn. When differentiating a set function, e.g., the hypervolume, over the input set, we often

concatenate the points in X into a much longer vector, i.e., X = [x(1)
�

, x(2)
�

, . . . , x(μ)
�
]� ∈

Rμn. To make our discussion less cumbersome, we abuse the notation X slightly such
that it can be interpreted as a finite set in Rn or an Rμn-vector, depending on the context.
(See [16] for a detailed formal discussion of the mapping between fixed cardinality sets
and vectors.) We will explain the meaning of X on the spot whenever it is unclear from the
text. We will always denote by ∇ and ∇2 the gradient/Jacobian and Hessian operators
on real-valued functions, respectively, when the domain of such a function is clear from
the text. Otherwise, we take the derivative operator ∂/∂X. When expressing the Hessian
matrix, we will use the numerator layout for matrix calculus notations [22].

2.2. Multi-Objective Optimization

A real-valued multi-objective optimization problem (MOP) involves minimizing mul-
tiple objective functions simultaneously, i.e., F = ( f1, . . . , fk), fi : X → R, X ⊆ Rn, i ∈
{1, . . . , k}. For every y(1) and y(2) ∈ Rk, we say y(1) weakly dominates y(2) (written as
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y(1) � y(2)) iff y(1)i ≤ y(2)i , i ∈ [1 . . . k]. The Pareto order ≺ on Rk is defined: y(1) ≺ y(2)

iff. y(1) � y(2) and y(1) �= y(2). A point x ∈ X is called efficient or (Pareto) optimal iff.
�x′ ∈ X (F(x′) ≺ F(x)). The set PQ of all Pareto optimal solutions of a MOP is called
the Pareto set, and its image F(PQ) is called the Pareto front. Typically, i.e., under certain
(mild) assumptions on the model, one can assume that the Pareto set and front of a given
continuous MOP form at least locally an object of dimension k− 1 ([23]).

The Pareto order can also be extended to the family of sets [10], i.e., we say A ≺ B iff.
∀y ∈ B∃y′ ∈ A(y′ ≺ y). The set of all efficient points of X is called the efficient set. The
image of the efficient set under F is called the Pareto front. Multi-objective optimization
algorithms (MOAs) often employ a finite multiset X = {x(1), . . . , x(μ)} to approximate
the efficient set, whose image under F is denoted by Y. Multi-objective optimization is
an active research field that has produced many algorithms for the approximation of the
entire Pareto set/front of a given MOP. There exist, for instance, scalarization methods,
and mathematical programming techniques that transform the given MOP into an auxil-
iary scalar optimization problem (SOP) (e.g., [24]). Via solving a clever sequence of such
SOPs, one can obtain in many cases suitable Pareto front approximations (e.g., [25–28]).
In [29], a Newton method is proposed for multi-objective optimization. Next to these
point-wise iterative local search strategies there exist global set-based algorithms such as
cell-to-cell mapping techniques and subdivision techniques ([30–32]) as well as specialized
evolutionary algorithms ([33–36]). There exist in particular indicator-based evolutionary
algorithms (IBEAs) that aim for Pareto front approximations of a given performance in-
dicator (e.g., [12–14]). Widely used performance indicators are the Generational Distance
(GD [7]), the Inverted Generational Distance and variants ([8,37,38]), the averaged Haus-
dorff distance Δp ([9,39,40]), and the Hypervolume indicator, which we will use in this
work and briefly review in the next section.

Finally, there exist multi-objective continuation methods that make use of the fact that
the solution set forms at least locally a manifold (e.g., [23,41–46]).

2.3. Hypervolume Indicator and Its First-Order Derivatives

The hypervolume indicator (HV) [10,47] is defined as the Lebesgue measure of the
compact set dominated by a Pareto approximation set Y ⊂ Rk and cut from above by a
reference point r:

HV(Y; r) = λk({p : ∃y ∈ Y(y ≺ p) ∧ p ≺ r}),
where λk denotes the Lebesgue measure in Rk. HV is Pareto compliant, i.e., for all Y ≺ Y′,
HV(Y; r) > HV(Y′; r), and is extensively used to assess the quality of approximation sets
to the Pareto front, e.g., in SMS-MOEA [12] and multi-objective Bayesian optimization [48].
Being a set function, it is cumbersome to define the derivative of HV. (The derivative of
a set function is not defined for an arbitrary family of sets. For some special cases, it can
be defined directly, e.g., on Jordan-measurable sets [49].) Therefore, we follow the generic
set-based approach for MOPs [16], which considers a finite approximation sets of size μ

vectors as a point in Rμn, i.e., X = [x(1)
�

, x(2)
�

, . . . , x(μ)
�
]� ∈ Rμn. Similarly, the image of

X under F can also be represented by a Rμk-vector: Y = [F(x(1))�, F(x(2))�, . . . , F(x(μ))�]�.
In this sense, the objective function F is also extended as follows:

F : X μ → Rμk, X �→ [F(X1, . . . , Xn), F(Xn+1, . . . , X2n), . . . , F(X(μ−1)n+1, . . . , Xμn)]
�.

Taking F, we can express the hypervolume indicator as a function on Rμn:

HF : Rμn → R≥0, X �→ HV(F(X); r).
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We will henceforth omit the reference point r inHF for simplicity. It is straightforward
to express the gradient of HF with respect to X using the chain rule as reported in our
previous works [16,19]:∇HF(X) = (∂HF/∂F)(∂F/∂X), in which we also discussed the time
complexity of computing the hypervolume gradient. It is noted here that an alternative to
the computation of the gradient of the entire set, it was also suggested to compute only
the gradient of a single point with respect to the hypervolume indicator; this approach is
referred to as hypervolume scalarization [50].

2.4. Hypervolume Hessian and Hypervolume Newton Method

Here, we assume F is at least twice continuously differentiable. In general, the Hessian
matrix of the hypervolume indicator can be expressed as follows:

∇2HF =
∂

∂X

(
∂HF

∂F

∂F

∂X

)
=

[
∂

∂X

(
∂HF

∂F

)]� ∂F

∂X
+

∂HF

∂F

∂2F

∂X∂X�

= ∇F� ∂2HF

∂F∂F�
∇F +

∂HF

∂F

∂2F

∂X∂X�
. (1)

Note that in the above expression, ∂2HF/∂F∂F� and ∂2F/∂X∂X� denote the Hessian
matrix of the hypervolume indicator with respect to objective points and of the objective
function F, respectively. In our previous work [21], we derived the analytical expression of
∇2HF for bi-objective cases and analyzed the structure and properties of the hypervolume
Hessian matrix. In addition, we implemented a standalone hypervolume Newton (HVN)
algorithm for unconstrained MOPs. Moreover, we have shown that the Hessian ∇2HF is a
tridiagonal block matrix in bi-objective cases and provided the non-singularity condition
thereof, which states the Hessian is only singular on a null subset of Rμn [21], thereby
ascertaining the safety of applying the HVN method.

The analytical expression of the Hessian matrix for higher dimensions contains the
derivatives ∂HF/∂x(�)i ∂x(m)

j , m = 1, . . . , μ, � = 1, . . . , μ, i = 1, . . . , n, j = 1, . . . , n. To com-
pute these derivatives analytically, the chain rule can be applied (see [21]). In [21]. How-
ever, the Hessian matrix of the second mapping—from the points in the objective space
(y(1), . . . , y(k)) to the hypervolume indicator—was only given analytically for two dimen-
sions. The Hessian matrix of this second mapping can be generalized to k dimensional
objective spaces, and it is continuous in regular cases. Here, we will only sketch the con-
struction of this matrix and leave the detailed analysis for future research. It is known
that in the N-dimensional case, the first derivatives ∂ HV /∂yi are given by the (k − 1)-
dimensional Lebesgue measure of the k− 1 dimensional faces of the attainment surface that
separates the dominated space from the non-dominated space (see Figure 1, ∂ HV /∂y(1)3 ).
These faces themselves have a derivative that is given by the (k− 2)-dimensional Lebesgue
measure of the k− 2-dimensional segments (or patches) at the boundary of these faces,
which are also changing continuously with yi (see Figure 1, examples ∂ HV /∂y(1)1 ∂y(1)3 and

∂ HV /∂y(2)2 ∂y(1)3 ). Note that points in the objective space need to be in a general position
to guarantee differentiability; otherwise, one-sided differentiability applies and one of the
two derivatives, i.e., when the derivative with perturbed coordinate falls to the dominated
subspace, it is always zero [16].

In this work, however, rather than investigating in detail the analytical and compu-
tational properties of the Hessian for more than two objective functions, we compute the
second-order derivative ∂2HF/∂F∂F� with the automatic differentiation (AD) method [51]
and focus on solving equality-constrained MOPs using the Hessian matrix of the hypervol-
ume indicator.
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Figure 1. Example of a hypervolume indicator Hessian computation in three-dimensional objective
space with a collection of points {y(1), y(2), y(3)} and reference point r.

3. Hypervolume Newton Method for Constrained MOPs

In this section, we first describe the base method of HVN for the treatment of equality
constrained MOPs and will then discuss how to deal with inequalities and with dominated
points that may be computed during the run of the Newton method.

3.1. Handling Equalities

Consider a continuous equality-constrained MOP of the form

min
x∈X

F(x),

s.t. h(x) = 0,
(2)

where h(x) = (h1(x), . . . , hp(x))�, and hi : Rn → R, i = 1, . . . , p, being the i-th equality
constraint. The objective map is defined by F : X ⊂ Rn → Rk, where fi : X ⊂ Rn → R is
the i-the individual objective to be considered in the MOP. The feasible set is given by:

Q = {x ∈ X : h(x) = 0}. (3)

The set (population) based hypervolume optimization problem we are considering in
this work is the following one:

max
X⊂Q
|X|=μ

HV(F(X)), (4)

where HV(F(X)) denotes the value of the hypervolume for a given set X = {x(1), . . . , x(μ)}
of magnitude μ ∈ N, where each x(i) ∈ Rn. Note that the set X ⊂ Q can be interpreted
as a point in Rμn (via considering X = (x(1)1 , . . . , x(1)n , x(2)1 , . . . , x(2)n , . . . , x(μ)1 , . . . , x(μ)n )), and
hence, problem (4) can be identified by a scalar objective optimization problem of dimen-
sion μn.

The feasibility of X (i.e., X ⊂ Q) is identical to

hi(x
(j)) = 0, i = 1, . . . , p, j = 1, . . . , μ. (5)

For the related set-based equality constraints, we define for i ∈ {1, . . . , p} and j ∈
{1, . . . , μ}

hi,j : Rμn → R, hi,j(X) = hi(x
(j)). (6)

191



Math. Comput. Appl. 2023, 28, 10

For checking the feasibility of all decision points, we define h̄ : Rμn → Rpn via

h̄(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1,1(X)
h2,1(X)

...
hp,1(X)
h1,2(X)
h2,2(X)

...
hp,2(X)

...
hp,n(X)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h̄1(X)
h̄2(X)

...
h̄p(X)

h̄p+1(X)
h̄p+2(X)

...
h̄2p(X)

...
h̄pn(X)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

then its Jacobian is given by

H̄ := ∇h̄(X) = diag
(

H(x(1)), . . . , H(x(μ))
)
∈ Rμp×μn, (8)

where

H(x(i)) =

⎛⎜⎝∇h1(x
(i))�

...
∇hp(x(i))�

⎞⎟⎠ ∈ Rp×n. (9)

The Karush-Kuhn-Tucker (KKT) equations of the problem (4) hence read as

∇HF(X) + H̄�λ = 0

h̄(X) = 0,
(10)

for a Lagrange multiplier (or the dual variable) λ ∈ Rμp which directly leads to the root
finding problem

G : Rn(μ+p) → Rn(μ+p)

G(X, λ) =

(∇HF(X) + H̄�λ
h̄(X)

)
= 0,

(11)

where λ ∈ Rμn. The Jacobian of G at (X, λ)T is given by

DG(X, λ) =

(∇2HF(X) + M H̄�
H̄ 0

)
∈ Rμ(n+p)×μ(n+p), (12)

where

M =
μp

∑
j=1

λi∇2h̄j(X) ∈ Rμn×μn. (13)

Denoting by Xt ∈ Rμn and λt ∈ Rμp, the variables in iteration t, a Newton step for
problem (11) is given by(

Xt+1
λt+1

)
=

(
Xt
λt

)
− DG(Xt, λt)

−1G(Xt, λt). (14)

In our computations, we have omitted M in DG. A Newton step is hence obtained by
solving (∇2HF(Xt) H̄�

H̄ 0

)(
Xt+1 − Xt
λt+1 − λt

)
= −

(∇HF(Xt) + H̄�λt
h̄(Xt)

)
. (15)
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3.2. Handling Inequalities

In order to handle inequalities, we have chosen an active set approach which we will
discuss in the following. This approach is straightforward; however, it has led to satisfying
results in our computations, in particular when the initial candidate set was computed by
the evolutionary algorithm.

Assume problem (2) contains inequalities of the form

g(x) ≤ 0, (16)

where g(x) = (g1(x), . . . , gm(x))� and gi : Rn → R, i = 1, . . . , m, is the i-th inequal-
ity constraint. Analogous to the equality-constrained case, we define the feasibility of
X = (x(1)1 , . . . , x(1)n , x(2)1 , . . . , x(2)n , . . . , x(μ)1 , . . . , x(μ)n ) by

gi(x
(j)) ≤ 0, i = 1, . . . , m, j = 1, . . . , μ. (17)

Define for i ∈ {1, . . . , m} and j ∈ {1, . . . , μ}

gi,j : Rμn → R, gi,j(X) = gi(x
(j)) (18)

and ḡ : Rμn → Rmn by

ḡ(X) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,1(X)
h2,1(X)

...
hm,1(X)
h1,2(X)
h2,2(X)

...
hm,2(X)

...
hm,n(X)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ḡ1(X)
ḡ2(X)

...
ḡm(X)

ḡm+1(X)
ḡm+2(X)

...
ḡ2m(X)

...
ḡmn(X)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

The active set we have used is as follows: if for an inequality constraint it holds

ḡl(X) > −tol (20)

for a given tolerance tol > 0 at X, then we impose the equality

ḡl(X) = 0, (21)

(i.e., it will be added to the set of equalities) while all other inequalities are disregarded
at X.

3.3. Handling Dominated Points

Since Newton’s method tends to realize relatively longer steps, it often occurs that
some decision points are dominated after a Newton step/iteration. Therefore, it is necessary
to discuss how the equality-constrained HVN method behaves in this case. For the reason
that will become clear during our discussion, we will investigate two scenarios: (1) infeasible
and dominated points and (2) feasible but dominated points.

For the first scenario, we consider the simplest case, where p = 1 and there is only
one dominated point. Without loss of generality, we can assume that for an approximation
set X = {x(1), x(2), . . . , x(μ)} ⊆ X , x(1) is dominated by at least one of the remaining μ− 1
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points (as the indices are assigned to X arbitrarily). Denoting by X(−1) the approximation
set after removing x(1), we can express the constraint function on X(−1) as:

h̄∗(X(−1)) : R(μ−1)n → Rμ−1, X(−1) �→
(

h̄∗2(X(−1)), h̄∗3(X(−1)), . . . , h̄∗μ(X(−1))
)�

,

h̄∗j (X
(−1)) : R(μ−1)n → R, X(−1) �→ h(x(j)), j ∈ [2 . . . μ].

Note that we are only considering the special case of one constraint, i.e., p = 1. The
root finding problem G can re-expressed in the following form, equivalent to Equation (11):

G(X, λ) =

⎛⎜⎜⎜⎝
λ1∇h(x(1))

∇HF

(
X(−1)

)
+ ∑

μ
i=2 λj∇h̄∗j (X

(−1))

h(x(1))
h̄∗(X(−1))

⎞⎟⎟⎟⎠.

Let μ′ = μ− 1 and H
(

X(−1)
)
= [∇h̄∗2(X(−1)), . . . ,∇h̄∗μ(X(−1))] ∈ Rμ′n×μ′ , we express

the derivative of G as a block matrix:

DG(X, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ1∇2h(x(1)) 0n×μ′n ∇h(x(1)) 0n×μ′

0μ′n×n ∇2HF

(
X(−1)

)
+ ∑

μ
j=2∇2h̄∗j

(
X(−1)

)
0μ′n×1 H

(
X(−1)

)
∇h(x(1))� 01×μ′n 0 01×μ′

0μ′×n H
(

X(−1)
)�

0μ′×1 0μ′×μ′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that the upper left 2× 2 block equals ∇2HF(X) + ∑
μ
i=1∇2h−i (X). The inverse

of DG can be obtained by applying the Schur complement recursively (first consider the
block partition indicated above and then apply it again to each partition), provided that
both ∇2h(x(1)) and ∇2HF

(
X(−1)

)
are non-singular.

After simplification, the inverse of DG admits the following form:

[DG(X, λ)]−1 =

⎡⎢⎢⎢⎢⎢⎣

(
In×n −

(
g�Ag

)−1
Agg�

)
A 0n×μ′n

(
g�Ag

)−1
Ag 0n×μ′

0μ′n×n B
(
I−H(H�BH)−1H�B

)
0μ′n×1 0μ′n×μ′(

g�Ag
)−1

(Ag)� 01×μ′n −(g�Ag
)−1

01×μ′

0μ′n×n 0μ′×μ′n 0μ′×1 −(H�BH)−1

⎤⎥⎥⎥⎥⎥⎦,

where g = ∇h(x(1)), A = [λ1∇2h(x(1))]−1, H = H(X(−1)), and

B =

[
∇2HF

(
X(−1)

)
+

μ

∑
j=2
∇2h̄∗j

(
X(−1)

)]−1

.

The first row of blocks is of particular interest to us since it determines the search step
of x(1). It is obvious that

Δx(1) = −
(
[DG(X, λ)]−1

)
[1:n,1:μ(n+1)]

G(X, λ)

= −
(

λ1

(
In×n −

(
g�Ag

)−1
Agg�

)
Ag + h(x(1))

(
g�Ag

)−1
Ag

)
(22)

= − h(x(1))
∇h(x(1))�[∇2h(x(1))]−1∇h(x(1))

[∇2h(x(1))]−1∇h(x(1)),
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where notation (M)[1:n,1:μ(n+1)] takes rows from 1 to n and columns from 1 to μ(n + 1) in
matrix M. Similarly, the search step of the dual variable is:

Δλ1 = −
(
[DG(X, λ)]−1

)
[μn+1,1:μ(n+1)]

G(X, λ)

= −λ1

(
g�Ag

)−1
(Ag)�g +

(
g�Ag

)−1
h(x(1)) (23)

= λ1

(
h(x(1))

∇h(x(1))�[∇2h(x(1))]−1∇h(x(1))
− 1

)
.

Now, consider the function ĥ(x) = h2(x)/2, whose first- and second-order deriva-
tives are:

∇ĥ(x) = h(x)∇h(x), ∇2ĥ(x) = h(x)∇2h(x) +∇h(x)∇h(x)�.

The global minimum/maximum of ĥ corresponds to the feasible set, i.e., h(x) = 0.
Hence, Newton iterations that optimize ĥ will equivalently find the feasible set. Computing
the Newton direction of ĥ, we have:

−
[
∇2ĥ(x)

]−1
ĥ(x)

= −[h(x)∇2h(x)]−1

(
In×n − ∇h(x)∇h(x)�[h(x)∇2h(x)]−1

1 +∇h(x)�[h(x)∇2h(x)]−1∇h(x)

)
h(x)∇h(x) (24)

= − h(x)
h(x) +∇h(x)�[∇2h(x)]−1∇h(x)

[∇2h(x)]−1∇h(x).

Setting x = x(1) in the above equation and comparing it to Equation (22), we notice
that the Newton direction of ĥ and the hypervolume Newton step Δx(1) only differ by a
scalar, which can be neglected in practice since we implement a step-size control to re-scale
the search step (see the following sub-section). Therefore, we conclude that for infeasible
and dominated points, our HVN method (Equation (15)) only considers the constraint
function and moves such decision points to the feasible set rapidly (ideally at quadratic
speed when the point is close to the feasible set). This satisfactory property allows for
handling infeasible and dominated points without modifying our HVN method.

In addition, due to this nice property, an infeasible point will eventually lie on the
feasible set, where it can still be dominated if other feasible points exist. This is precisely
the second scenario of our discussion, in which the hypervolume of feasible but dominated
points will be zero. To move such points, we propose to employ the famous non-dominated
sorting [36] procedure, where we partition all feasible points into “layers” of mutually non-
dominated ones (formally, anti-chains of Pareto order) and compute the Newton direction
for each layer (using Equation (15)) regardless of other dominating layers. In this manner,
the HVN method can move all feasible points along the feasible set for achieving a good
distribution.

3.4. The HVN Method for Constrained MOPs

Taking the above considerations regarding the HVN method, in this section, we aim to
devise and implement a standalone HVN algorithm, which is outlined in Algorithm 1. First,
we check if any decision point is feasible (i.e., h(x) = 0 for some x), where the feasibility can
be tested numerically with a pre-defined small threshold (e.g., 10−4 used in this work) for
the equality constraints. Then, we employ the non-dominated sorting point procedure [36]
to partition the feasible points Xf into “layers” of mutually non-dominated ones, where
the Newton direction (Equation (15)) is calculated separately on each layer. Taking L for
the indices of points in a layer and Xf[L] for the subset indexed by L, we express this
partitioning as Xf[L1] ≺ Xf[L2] ≺ · · · ≺ Xf[Lq], ∀i �= j(Li ∩ Lj = ∅),∪iLi ⊆ [1 . . . μ]. Note
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that the dominance relation for the remaining infeasible and dominated points is not well-
defined, considering the equality constraints since they are incomparable to the feasible
ones (also among themselves). In this case, we simply merge them into the first layer L1
and compute the Newton direction thereof, which can be justified by the observation in
Equations (22) and (24). The resulting search direction of the infeasible and dominated
points is a Newton direction of the function h2/2. In this treatment, a special case arises
when there are no feasible points, usually in the first several iterations of the algorithm.

Algorithm 1: Standalone hypervolume Newton algorithm for equality-
constrained MOPs
1 Input: F: multi-objective function, h: equality constraints, X0: initial

approximation set, B: maximal iterations;
2 if X0 is not given then

3 sample X =
{

x(1), x(2), . . . , x(μ)
}
⊆ X uniformly at random

4 else

5 X← X0

6 Y←
{

F(x(1)), F(x(2)), . . . , F(x(μ))
}

;

7 H←
{

h(x(1)), h(x(2)), . . . , h(x(μ))
}

;

8 λ ← {
11×p/μ, . . . , 11×p/μ

}
and |λ| = μ ; � initialize dual variables

9 ε ← 10−4;
10 for c = 1, 2, . . . , B do

11 S ← ∅ ; � indices for the feasible subset
12 for i ∈ [1 . . . μ] do � check the feasibility

13 if max
{
|h1(x

(i))|, . . . , |hp(x(i))|
}
≤ ε then S ← S ∪ {i} ;

14 L1, L2, . . . , Lq ← NON-DOMINATED-SORTING(X[S]); � Xf = X[S]
15 L1 ← L1 ∪ ([1..μ] \ S);
16 for L ∈ {L1, L2, . . . , Lq} do

17 ∇2HF(X[L])← HYPERVOLUME-HESSIAN(X[L], Y[L]) ; � Equation (1)
// Equation (15)

18 ΔL ← NEWTON-STEP
(∇2HF(X[L]),∇2h(X[L]),∇h(X[L]), H[L], λ[L]

)
;

// See Section 3.4
19 Determine the step-size σL with Armijo’s backtracking line search;

// Apply Newton step to the primal-dual pair
20 (X[L], λ[L])← (X[L], λ[L]) + σLΔL

21 Y←
{

F(x(1)), F(x(2)), . . . , F(x(μ))
}

;

22 H←
{

h(x(1)), h(x(2)), . . . , h(x(μ))
}

;

23 return X;

Finally, another important aspect is the step-size control for each Newton step. We
propose maintaining individual step-sizes for each partition, which is determined using the
well-known Armijo’s backtracking line search [52]. In detail, this method starts with an ini-
tial step-size σ0 and tests whether the Euclidean norm of G(X, λ) has sufficiently decreased
after applying the Newton step to the primal-dual pair (X, λ). Since Newton’s direction
for equality-constrained problems (Equation (15)) is not necessarily an ascent direction
for the hypervolume, we take the Euclidean norm ||G(X, λ)|| as the convergence measure
since (1) the optimality condition is G(X, λ) = 0 (Equation (11)) and (2) the Newton step is
always a descent direction of ||G(X, λ)||. Let Z = (X�, λ�)� be the primal-dual variable
and ΔZ = −[DG(Z)]−1G(Z), then we have ( d

dσ ||G(Z + σΔZ)||)|σ=0 = −||G(Z)|| ≤ 0. If
the test fails, then we halve the step-size and repeat the test. Notably, for infeasible and
dominated points, the test checks if the value of the squared constraint value is sufficiently

196



Math. Comput. Appl. 2023, 28, 10

decreased as the HVN method computes the Newton direction of h2/2 for those points. In
our implementation, we use maximally six iterations of such tests, resulting in a minimal
step-size of σ0/64. As for the initial step-size σ0, the commonly used value σ0 = 1 often
leads to Newton steps that jump out of the decision space when the Newton direction is
large or the point is in the vicinity of the decision boundary. Therefore, we set it to the
minimum of one and the maximal step-size that the primal vector X can take without
leaving the decision space, i.e., σ0 = min{1, σmax}. The value of σmax can be calculated in a
straightforward way when the decision space is a convex and compact subset of Rn, e.g.,
a hyperbox.

3.5. Computational Cost

The above method requires the knowledge of the Jacobian and the Hessian of both ob-
jective and constraint functions. In this work, we have used automatic differentiation (AD)
techniques [53]. Note that finite differences can also be utilized when the AD-computation
is not applicable. The AD-computation takes maximally four times the used multiply–add
operations taken in evaluating the function value [54]. Hence, to make a fair compari-
son between HVN and MOEA methods, we will take 4 function evaluations (FEs) and
4 + 6n FEs to quantify the computational cost of each AD-computed Jacobian and Hessian,
respectively. In total, the number of FEs consumed in each iteration comprises:

#FEs : μ︸︷︷︸
F

+ μ︸︷︷︸
h

+ 4μ︸︷︷︸
∇F

+ 4μ︸︷︷︸
∇h

+ (4 + 6n)μ︸ ︷︷ ︸
∇2F

+ (4 + 6n)μ︸ ︷︷ ︸
∇2h

+ 6(4μ + 4μ)︸ ︷︷ ︸
step-size control

= (69 + 12n)μ,

which amounts to computations of function evaluation, constraint evaluation, Jacobian
of the objective function and the constraint, Hessian of the objective function and the
constraint, and the backtracking line search of the step-size. Computing the hypervol-
ume Hessian takes Θ((μn)3) time in addition to the AD-computation of derivatives in
Equation (1). For solving Equation (15), we use Cholesky decomposition, which has a com-
putational complexity of O((μ(n + p))3). It is certainly desired either to have an analytic
expression of the HV Hessian or to exploit the block diagonal structure this matrix will
certainly have for AD, which we, however, have to leave for future research.

We have implemented the standalone algorithm in Python, which is accessible at
https://github.com/wangronin/HypervolumeDerivatives (accessed on 1 November 2022).

4. Numerical Results

In this section, we present some numerical results of the HVN both as standalone
algorithms as well as a local search engine within the NSGA-III algorithm.

4.1. HVN as Standalone Algorithm

We showcase the behavior of the proposed Newton method as a standalone method
on three example problems:

(P1) : F(x) =
[
(x− 1)2, (x + 1)2

]�
,

h(x) = x2 − 1, X = [−2, 2]2, r = [20, 20]�.

(P2) : F(x) =
[
(x− (1, 1, 0)�)2, (x− (1,−1, 0)�)2, (x− (−1, 1, 0)�)2

]�
,

h(x) =

⎛⎝x−
(

2
√

3
3
− 1, 0,−1.5

)�⎞⎠2

− 1, X = [−2, 2]3, r = [38, 38, 38]�.

(P3) : F(x) =
[
(x + (1, 1, 1)�)2, (x + (1, 0, 0)�)2, (x + (2, 2,−4)�)2

]�
,

g(x) = −x0, X = [−4, 4]3, r = [90, 90, 90]�.
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Importantly, we will use different initializations of the decision points that are specific
to each problem in order to investigate the behavior of the standalone HVN with respect
to the characteristic of each problem; We do not aim to provide a unified and systematic
initialization method for the standalone HVN in this section. Note that problem P3 defines
an inequality constraint on the first component x0 of the decision point, where the feasible
set is {x ∈ X : x0 ≥ 0}, and the optimum lies on the active set of g, i.e., x0 = 0. This
problem is meant to test if the proposed HVN algorithm can manage to solve inequality-
constrained problems where the optimum is on the active set of the constraint. To measure
the empirical performance of the HVN algorithm, we take the Euclidean norm ||G(X, λ)||
since the Newton direction is not necessarily an ascent direction for the hypervolume.

Moreover, since it is well-known that the Newton-like method can be affected by choice
of initial solutions, we investigate the performance of the HVN algorithm on problem P1
with three different initializations. Specifically, in the two-dimensional decision space,
we create μ = 50 initial decision points on the line segment x2 = x1 − 2, x1 ∈ [0, 2],
where we determine the value of x1 by (i) taking evenly spaced points (linear), (ii) logistic-
transformed evenly spaced points (which makes the points denser around the tails of the
line segment), or (iii) logit-transformed evenly spaced points (higher density of points
in the middle). The results are illustrated in Figure 2 and Table 1, which shows a set of
well-distributed points on the feasible set in the objective space (the red dashed sphere) for
all three initializations. In addition, the empirical convergence rate is quadratic regardless
of the choice of initialization methods, as reported in Table 1.

Table 1. The evolution of ‖G(X, λ)‖ on problems P1 with three different initialization strategies.

Linear Logistic Logit

1 4.23 × 101 4.55 × 101 4.20 × 101

2 2.33 × 101 2.54 × 101 2.27 × 101

3 8.81 × 100 1.01 × 101 8.52 × 100

4 8.19 × 100 7.82 × 100 8.30 × 100

5 2.29 × 100 2.17 × 100 2.29 × 100

6 1.06 × 10−1 8.77 × 10−2 1.11 × 10−1

7 1.91 × 10−4 3.48 × 10−4 1.93 × 10−3

8 7.38 × 10−10 7.05 × 10−7 1.03 × 10−5

9 1.76 × 10−14 1.06 × 10−12 1.55 × 10−10

10 1.62 × 10−14 1.79 × 10−14 2.33 × 10−14

The results on problem P2 are depicted in Figure 3 and Table 2 for three different sizes
μ ∈ {20, 40, 60} of the approximation set. The initial decision points are sampled uniformly
at random in the convex hull of three points (1, 1, 0)�, (1,−1, 0)�, and (−1, 0, 0)�. Whereas
the final approximation set is well-distributed in the objective space, we observe that
empirical convergence of ||G(X, λ)|| is considerably rugged in the first 20–25 iterations,
after which quadratic convergence appears. This is indeed attributed to the fact that
decision points often become dominated in the first couple of iterations on this problem,
resulting in zero hypervolume gradient thereof and hence quite a large norm of ||G(X, λ)||.
Nevertheless, the proposed treatment of those dominated points (Algorithm 1), which
is based on the non-dominated sorting procedure, is capable of bringing the dominated
points to the active set with a quadratic speed. Similarly, the same ruggedness is seen in the
convergence chart of problem P3 (shown in Figure 4). On this problem, we again take the
setting μ ∈ {20, 40, 60}, and the initial decision points are sampled uniformly at random
in the feasible space of [0, 4] × [−4, 4]2. We extend the HVN algorithm slightly for this
inequality-constrained problem in the following way: whenever the decision points are
feasible, i.e., g(x) ≤ 0, and quite distant from the active set (g(x) = 0, shown as the red
plane in Figure 4), we ignore the constraint function when computing the Newton step.
When the feasible decision points are sufficiently close to the active set (the distance is
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less than 10−4 in our implementation), we consider g(x) an equality constraint and utilize
Equation (15) to compute the Newton step.
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Figure 2. On problem P1, the convergence of the HVN method is shown for three different initial-
izations of the starting approximation set (μ = 50)—linear (top row), logistic (middle), and logit
spacing (bottom). We depict the final approximation set (left column; green stars), the corresponding
objective points (middle column; green stars), and the evolution of the HV value and ‖G(X, λ)‖
(right column).

Moreover, we test the standalone HVN method on large-scale, complicated MOPs.
We choose the well-known DTLZ problems with one spherical constraint [55,56] with
μ = 200 decision points, resulting in a relatively large Hessian matrix (for an 11-dimensional
decision space and one constraint, the DG(X, λ) object is of size 2400× 2400). In this case,
we use sparse matrix operations for computation efficiency, exploiting the sparsity of the
Hessian. Since the DTLZ problems are highly multi-modal, the initial approximation set is
generated in a local vicinity of the Pareto set, i.e., X∗ + 0.02U (0, 1), where X∗ is sampled
uniformly at random on the Pareto set. We execute the standalone HVN method for
15 iterations and illustrate the result in Figure 5. In the plot, we observe well-distributed
final points (green dots) in contrast to non-uniform initial ones (black crosses), showing the
standalone HVN works properly as a local method for large-scale problems.
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Figure 3. On problem P2 with a spherical constraint, we depict for three sizes of the approximation
set (μ ∈ {20, 40, 60}; from top to bottom), the final approximation set (left column; green stars), the
corresponding objective points (middle column; green stars), and the evolution of the HV value and
‖G(X, λ)‖ (right column). The initial points are sampled uniformly at random in the convex hull of
three points (1, 1, 0)�, (1,−1, 0)�, and (−1, 0, 0)�.

Table 2. The evolution of ‖G(X, λ)‖ on problems P2 and P3.

Problem P2 Problem P3

μ = 20 μ = 40 μ = 60 μ = 20 μ = 40 μ = 60

1 1.365 × 101 1.055 × 101 18.036836 1.433 × 103 569.121097 438.983791
2 9.454 × 100 9.259 × 100 16.083916 9.368 × 102 541.523806 434.703270
3 1.247 × 101 8.977 × 100 16.403643 1.197 × 103 444.774066 365.952443
4 1.589 × 101 8.628 × 100 18.052126 9.522 × 102 261.636562 362.014326
5 9.791 × 100 6.888 × 100 12.364802 6.194 × 102 212.841570 341.897644
6 8.618 × 100 1.123 × 101 3.899254 5.232 × 102 145.076665 254.253017
7 8.024 × 100 8.779 × 100 11.323440 3.557 × 102 103.986300 240.719767
8 4.737 × 100 7.632 × 100 13.320606 2.419 × 102 57.592159 165.603954
9 9.037 × 10−1 7.090 × 100 2.543622 1.511 × 102 12.628821 109.411195

10 7.393 × 10−2 1.816 × 100 5.984437 8.527 × 101 0.104307 70.516402
11 1.182 × 10−1 2.660 × 10−1 5.749496 3.732 × 101 0.097777 41.699152
12 4.399 × 10−2 2.877 × 10−1 0.702964 3.248 × 100 0.097013 19.525977
13 1.535 × 10−1 3.232 × 10−2 2.240449 2.008 × 100 0.096634 0.447690
14 2.299 × 10−1 3.694 × 10−3 13.274468 1.829 × 100 0.096256 0.257345
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Table 2. Cont.

Problem P2 Problem P3

μ = 20 μ = 40 μ = 60 μ = 20 μ = 40 μ = 60

15 7.425 × 10−2 7.159 × 10−2 15.201915 5.425 × 10−2 0.005277 2.066379
16 1.572 × 10−2 1.378 × 10−2 11.273571 1.735 × 10−1 0.002934 2.016149
17 4.216 × 10−4 1.231 × 10−3 3.318978 6.372 × 10−6 0.001602 1.019636
18 1.630 × 10−7 5.630 × 10−4 2.818340 9.702 × 10−3 0.001552 0.944297
19 1.674 × 10−13 5.454 × 10−4 0.400360 9.373 × 10−5 0.001528 4.904926
20 1.733 × 10−13 5.411 × 10−4 0.335107 2.546 × 10−8 0.001522 2.937413
21 1.803 × 10−13 4.697 × 10−4 0.074058 7.243 × 10−12 0.001516 3.118031
22 1.761 × 10−13 5.901 × 10−4 0.081798 8.897 × 10−12 0.001139 0.336917
23 1.384 × 10−13 6.140 × 10−5 0.057776 6.654 × 10−12 0.001072 0.004270
24 1.020 × 10−13 4.508 × 10−7 0.029809 7.210 × 10−12 0.001010 0.000866
25 9.765 × 10−14 2.759 × 10−11 0.001956 5.851 × 10−12 0.000994 0.000489
26 9.788 × 10−14 7.794 × 10−13 0.081949 5.851 × 10−12 0.000990 0.000477
27 1.177 × 10−13 7.767 × 10−13 0.031275 5.851 × 10−12 0.000954 0.000459
28 1.176 × 10−13 7.688 × 10−13 0.000492 5.851 × 10−12 0.128140 0.000460
29 1.052 × 10−13 5.918 × 10−13 0.000053 5.851 × 10−12 0.252721 0.000460
30 1.314 × 10−13 6.821 × 10−13 0.000002 5.851 × 10−12 0.022233 0.000460

Figure 4. On problem P3 with a spherical constraint, we depict for three sizes of the initial approx-
imation set (μ ∈ {20, 40, 60}; from top to bottom), the final approximation set (left column; green
stars), the corresponding objective points (middle column; green stars), and the evolution of the HV
value and ‖G(X)‖ (right column). The initial decision points are sampled uniformly at random in
the feasible space of [0, 4]× [−4, 4]2.
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Figure 5. On Eq-DTLZ1-3 problems, the HVN method starts from a small local perturbation (black
crosses) of the Pareto set (sphere in the decision space), i.e., X∗ + 0.02U (0, 1), where X∗ (of size 200) is
sampled uniformly at random on the Pareto set. The final approximation set of the HVN method is
depicted as green points. Only the first three search dimensions are shown for the decision space.

4.2. HVN within NSGA-III

In this section, we investigate the empirical performance of the HVN algorithm
on more complicated, equality-constrained DTLZ (Eq-DTLZ) problems [55,56] and their
inverted counterparts (Eq-IDTLZ). As Newton-like algorithms are local methods, running
the standalone algorithm (Algorithm 1) will stagnate at local Pareto sets. Therefore, we
hybridize the HVN algorithm with an MOEA, in which we first execute the MOEA for a
pre-defined budget to overcome the local optimum and get close to the global Pareto set,
and then initialize the HVN algorithm from the final approximation set of the MOEA to
make local refinements. We summarize this hybrid approach in Algorithm 2. Notably, in
line 3, we transfer the whole approximation set (rather than only the non-dominated points)
to HVN upon the termination of MOEA since the standalone HVN method is able to move
dominated points towards the feasible set at quadratic speed, as proven in Section 3.3.

Algorithm 2: Hybridization of HVN and MOEA

1 Input: F: multi-objective function, h: equality constraints, B1: #iteration for
MOEA, B2: #iteration for HVN;

2 X← MOEA(F, μ, h, B1) ; � X is the entire approximation set
3 X′ ← HVN(F, h, X, B2); � Algorithm 1
4 return X′;

The following empirical study aims to check whether the hybridization approach
can achieve a better final approximation set/front than an MOEA alone under the same
computation budget. As for the test problem, a single spherical constraint h(x) = (x1 −
0.5)2 + (x2 − 0.5)2 − 0.16 is imposed on problems DTLZ1− 4. The decision space is [0, 1]11,
the reference point is r = (1, 1, 1)� for HVN, and the approximation set is of size 200. Here,
we choose the well-known NSGA-III algorithm [34,35], where the equality constraints are
handled using the adaptive ε-constraint handling technique. We utilize the implementation
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in the Pymoo library: https://pymoo.org/constraints/eps.html (accessed on 1 November
2022). The method considers a solution feasible subject to a small ε threshold, which
decreases linearly to zero. The initial value of ε is set to the average constraint value
of the initial population. In our experiment, we control the ε decrease to zero after 50%
of the iterations of NSGA-III. In addition, we use Das and Dennis’s approach [28] to
generate well-spaced reference directions (18 partitions which lead to 190 directions) for
NSGA-III. As for its hyperparameters, we use the default setting: η = 30 and p = 1 for
simulated binary crossover and η = 20 for polynomial mutation. Furthermore, the hybrid
algorithm first executes NSGA-III with μ = 200 for 1000 iterations and then runs the HVN
method for 10 iterations. In HVN, the total function evaluations and AD operations take
ca. 270 s CPU time on an Intel(R) Core(TM) i5-8257U CPU. Considering the CPU time of
a single function evaluation, which is on average ca. 5.6 × 10−5 s measured on the same
hardware, the total function evaluations plus the AD operations are equivalent to roughly
270/5.6 × 10−5 ≈ 4.8 × 105 FEs. Therefore, the total budget of the hybrid algorithm is
roughly 4.8 × 105/200 + 1000 ≈ 3400 iterations. We will execute the standalone NSGA-III
algorithm for the same iterations to keep the fairness of comparisons.

We first depict one example of the final approximation set (only the non-dominated
subset is shown) in Figure 6 for both methods, where we clearly observe that the hy-
bridization achieves much more non-dominated points than NSGA-III. Second, we show,
in Table 3, the hypervolume indicator value and the number of final non-dominated points
for both algorithms obtained from 15 independent runs. In addition, we compute the above
metrics for the hybrid algorithm right before the HVN phase starts (NSGA-III (1000) in the
table), showing the progress that HVN manages to make. From the results, we conclude
that the hybrid algorithm significantly improves upon the hypervolume metric and outputs
substantially more non-dominated points than NSGA-III alone. We conjecture that the
observed advantage of the hybrid algorithm is very likely attributed to HVN’s ability
to move dominated points to the feasible set with quadratic convergence (see Section 3),
which disregards the objective function and thereby its multi-modal landscape.

Table 3. On Eq-DTLZ1-4 and Eq-IDTLZ1-4 problems, the sample mean and standard error of the
hypervolume (HV) value and the number of final non-dominated (ND) points over 15 independent
runs for each algorithm. The hypervolume values are computed with reference point (1, 1, 1)� for all
problems except Eq-DTLZ4, Eq-IDTLZ3, and Eq-IDTLZ4, which we use (1.2, 5 × 10−3, 5 × 10−4)�,
(800, 800, 700)�, and (−0.4, 0.6, 0.6)�, respectively. The initial population is μ = 200 for all algorithms.
Hybridization = NSGA-III (iter = 1000) + HVN (iter = 10), which consumes roughly the same CPU
time on function evaluations with NSGA-III for 3400 iterations (see caption of Figure 6 for the detail).

Eq-DTLZ1 Eq-DTLZ2 Eq-DTLZ3 Eq-DTLZ4

Algorithm HV #ND HV #ND HV #ND HV #ND

NSGA-III (1000) 0.867 ± 1.4 × 10−3 28.4 ± 0.7 0.297 ± 1.9 × 10−3 32.7 ± 0.9 0.292 ± 1.9 × 10−3 26.0 ± 1.0 8.4 × 10−4 ± 7.0 × 10−5 12.3 ± 0.8
Hybridization 0.876 ± 2.4 × 10−4 80.9 ± 2.0 0.324 ± 3.6 × 10−4 95.3 ± 1.9 0.321 ± 6.6 × 10−4 75.2 ± 2.4 1.1 × 10−3 ± 5.1 × 10−5 200.0 ± 0.0
NSGA-III (3400) 0.873 ± 4.5 × 10−4 38.5 ± 1.3 0.304 ± 9.2 × 10−4 32.6 ± 0.9 0.301 ± 1.1 × 10−3 30.1 ± 0.7 9.2 × 10−4 ± 5.2 × 10−5 14.5 ± 0.6

Eq-IDTLZ1 Eq-IDTLZ2 Eq-IDTLZ3 Eq-IDTLZ4

Algorithm HV #ND HV #ND HV #ND HV #ND

NSGA-III (1000) 0.517 ± 1.8 × 10−2 23.2 ± 0.5 3.224 ± 2.0 × 10−2 74.1 ± 1.2 1.5× 109 ± 8.0 × 106 81.7 ± 1.6 8.4 × 10−4 ± 7.0 × 10−5 12.3 ± 0.8
Hybridization 0.534 ± 1.5 × 10−3 112.1 ± 2.1 3.388 ± 1.7 × 10−2 198.2 ± 0.4 1.6× 109 ± 5.4 × 106 197.1 ± 0.4 1.1 × 10−3 ± 5.1 × 10−5 200.0 ± 0.0
NSGA-III (3400) 0.529 ± 2.9 × 10−4 33.4 ± 0.4 3.359 ± 4.7 × 10−3 88.3 ± 0.4 1.5× 109 ± 2.5 × 106 92.1 ± 0.8 9.2 × 10−4 ± 5.2 × 10−5 14.5 ± 0.6
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(a) Eq-DTLZ2

(b) Eq-IDTLZ1

Figure 6. On the Eq-DTLZ2 (a) and the Eq-IDTLZ1 (b) problem, we compare the hybridization
of HVN and NSGA-III to NSGA-III with roughly the same budget: for the former, the hybrid
algorithm first executes NSGA-III with μ = 200 for 1000 iterations and then runs the HVN method
for 10 iterations. In HVN, the total function evaluations and AD takes ca. 270 s CPU time on an
Intel(R) Core(TM) i5-8257U CPU, which corresponds to ca. 4.8× 105 FEs. Hence, for the latter, we set
3400 (=4.8×105/200 + 1000) iterations in total for μ = 200. We use the same hyperparameter setting
for the standalone NSGA-III and the one used in the hybridization. The decision space is [0, 1]11, and
the reference point is (1, 1, 1)� for HVN.

5. Conclusions

In this paper, we propose a hypervolume Newton method for equality-constrained
multi-objective optimization problems (MOPs) under the assumption that both the objective
and the constraint functions are twice continuously differentiable. Based on previous works
on set-oriented hypervolume Hessian matrix and hypervolume Newton (HVN) method for
unconstrained MOPs, we propose, in this paper, the generalization of the HVN for equality-
constrained problems and also elaborate a treatment for inequality-constrained based on
an active set approach, which regards an inequality function as equality if the constraint
values are within some small tolerance. In addition, we devised and tested two resulting
algorithms: the standalone HVN method as an efficient local optimizer and a hybridization
of the HVN and an MOEA for solving complicated and multi-modal MOPs. Moreover, in
detail, we discuss the search direction for dominated points obtained from the set-oriented
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Newton step in which we prove that for dominated and infeasible points, the computed
search step is the Newton step of the squared equality constraint function. Therefore, our
HVN method can efficiently steer the non-dominated and dominated decision points.

We first illustrate the empirical behavior of the standalone algorithm on three simple
MOPs, where we observe quadratic convergence of the two-norm of the root finding
problem G. Then, on highly multi-modal DTLZ problems with one spherical constraint
(Eq-DTLZ), we tested the local convergence of the standalone HVN algorithm with a
relatively large approximation set (μ = 200) by initializing the approximation set in the
neighborhood around the Pareto set, which shows a fast convergence to well-distributed
points on the feasible set. Finally, we benchmark the hybrid algorithm against NSGA-III on
Eq-DTLZ1-4 and Eq-IDTLZ1-4 problems, in which we observe that with roughly the same
computational budget, the hybrid algorithm achieves substantially more non-dominated
points in the final population, which leads to significantly higher hypervolume values. We
conjecture that such an advantage is attributed to (1) the fast local convergence of the HVN
method and (2) HVN’s ability to move infeasible and dominated points.

For future works, we contemplate (1) testing the hybridization of the HVN method
with other EMOAs for more than three objectives, e.g., SMS-EMOA, to investigate the
benefit of the HVN method in a broader setup; (2) comparing the hybrid HVN method
to other state-of-the-art algorithms, e.g., MOEA/D (decomposition-based), EHVI-EGO
(Bayesian optimization), or the average Hausdorff distance-based Newton method (math-
ematical optimization) on complex, or even real-world MOPs with multiple non-linear
constraint functions; (3) investigating the analytical expression (as sketched in Figure 1) and
computation of the hypervolume Hessian matrix, which can reduce the computation cost of
the HVN method; (4) devising generic methodologies to handle inequality constraints for
the HVN method, which will make it more applicable in practice; (5) extending the HVN
to methods that provide non-zero sub-gradients for dominated points as in [17,18]; and
(6) incorporating a surrogate-assisted method for tackling high-dimensional and complex
problems, e.g., as in [57].
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Abstract: Association rule mining plays a crucial role in the medical area in discovering interesting
relationships among the attributes of a data set. Traditional association rule mining algorithms such as
Apriori, FP growth, or Eclat require considerable computational resources and generate large volumes
of rules. Moreover, these techniques depend on user-defined thresholds which can inadvertently
cause the algorithm to omit some interesting rules. In order to solve such challenges, we propose an
evolutionary multi-objective algorithm based on NSGA-II to guide the mining process in a data set
composed of 15.5 million records with official data describing the COVID-19 pandemic in Mexico.
We tested different scenarios optimizing classical and causal estimation measures in four waves,
defined as the periods of time where the number of people with COVID-19 increased. The proposed
contributions generate, recombine, and evaluate patterns, focusing on recovering promising high-
quality rules with actionable cause–effect relationships among the attributes to identify which groups
are more susceptible to disease or what combinations of conditions are necessary to receive certain
types of medical care.

Keywords: association rule mining; causality measures; multi-objective evolutionary algorithm;
COVID-19 data

1. Introduction

The coronavirus (COVID-19) pandemic has affected societies around the world for
more than two years now since 11 March 2020, when the World Health Organization recog-
nized the pandemic [1]. However, unlike similar phenomena experienced several times in
human history, this pandemic has been meticulously documented, with millions of records
about almost any conceivable aspect of the phenomenon’s mechanics, including hospital
occupation, infection and death rates, medical care protocols, and medication availability.
Even government reactions, safety measures taken, social responsibility, and economic
consequences have also been recorded [2]. The availability of this enormous amount of data
poses an opportunity to test traditional data mining and knowledge discovery techniques
and algorithms, as well as design and test new ones. Association rule mining is the most
widely used technique when the goal is to reveal behavioral patterns in phenomena.

As is always the case, both private institutions and government agencies focus their
attention only on mined information that is considered useful, namely behavioral patterns
that can suggest some course of action to take. In that sense, traditional association rule
mining is not enough, and causal rules are needed. Instead of discovering associations that
have only strong statistical presence in the data set, causal rule mining aims to discover
causality relations that hold in the studied phenomenon, particularly relations that can
bring some degree of certainty about the future effects to indicate the rule evaluation
measures and regulations established to cope with a situation.

From the computational viewpoint, data sets consisting of thousands of millions of
records are not the ideal scenario for performing data mining. Exhaustive search techniques
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are evidently not an option. More efficient ways to traverse the data and analyze huge
search spaces must be selected, but huge search spaces are the specialty of bio-inspired
meta-heuristics, which in part explains why some recent papers have used diverse meta-
heuristics as the guiding tool to perform data mining [3]. In this paper, we present a
new evolutionary algorithm specifically designed to serve both traditional and causal
association rule mining. This model allows a more focused data search and offers the user a
set of parameters for increased flexibility over the intended mining process. We tested our
model with the official COVID-19 pandemic database from the Mexican government [4].

The authors of this article state that the application of artificial evolution processes in
this work only partially falls under the field of medicine since no diagnosis, prescription,
or treatment decisions are involved. Our mining process only analyzes data from previously
treated patients, and an evolutionary algorithm is used as a dynamic model of the studied
phenomenon. Moreover, neither the identification nor the interpretation of any rule mined
from the database can modify the results of the real phenomenon.

The remainder of this paper is organized as follows. First, we state the conceptual
and theoretical basis of the research in Section 2 (Background and Basic Concepts). These
include basic concepts about association rule mining, causality relations described by
mined rules, and some of the evaluation functions traditionally used to assess the na-
ture and strength of identified causality relations. Then, in Section 3 (Related Previous
Works), we briefly review some of the most relevant publications relating to association
rule mining and evolutionary algorithms, both as a prediction tool and as a guide for the
mining process. Section 4 (Proposal) describes the architecture, mathematical foundations,
and implementation details of the proposed causal mining algorithm. This section dives
into the artificial evolution process, recombination, and mutation operators, as well as the
nuances of the mining process. Section 5 (Experiments and Results) shows the designs
of different experimentation scenarios, the conditions of each experiment, the obtained
results, and their interpretation. Finally, we draw some relevant conclusions in Section 6.

2. Background and Basic Concepts

2.1. Association Rule Mining

Association rule mining is a set of data analysis techniques aiming to discover the
interesting but implicit relational patterns present in a data set. Usually, the data set
is expressed in an attribute-value language, and the relations found are expressed as
association rules. An association rule is a logical expression with the following structure:

A1 ∧ A2 ∧ . . . ∧ Am → C1 ∧ C2 ∧ . . . ∧ Cn,

where both the antecedent (Ai) and the consequent (Cj) are conjunctive clauses with terms
called selectors (item sets). Association rules can be read as “when A1 and . . . and Am occur
in the data set, C1 and . . . and Cn also occur”.

In traditional association rule mining, a rule is considered interesting if it reveals an
association between its antecedent and its consequent with a strong statistical presence
(in the source or mine). Since interesting associations can occur in several different ways,
evaluation functions are defined for each rule so that the evaluation obtained precisely mea-
sures the strength of the association described by the rule. Consequently, there are several
measures for assessing the rules discovered during a mining process, such as the classical
functions of support(supp), con f idence(con f ), and lift defined by Equations (1)–(3), respec-
tively [5]. Traditional association rule mining algorithms seek to find all rules that exceed
certain user-defined thresholds for one or more of these functions:

supp(A → C) =
|A ∩ C|
|U| (1)

con f (A → C) =
supp(A → C)

supp(C)
=

P(A ∩ C)
P(C)

(2)

210



Math. Comput. Appl. 2023, 28, 12

li f t(A → C) =
supp(A → C)

supp(A) · supp(C)
=

con f (A → C)
supp(C)

(3)

Here, the support (supp) function defined in the above equations computes the quotient
of the number of records containing both the A and C item sets and the total number of
records (U).

A different scenario is found in causal association rule mining. Causal association rules
can be read as “The simultaneous occurrence of A1 and A2 and . . . and Am, causes (is the
cause for) the occurrence of C1 and C2 and . . . and Cn”. In causal association rule mining, a
rule is considered interesting when it reveals a cause–effect relation between its antecedent
and its consequent. Additionally, a causal rule must offer a degree of actionability; that is,
it should be possible to modify the situation modeled by the antecedent in order to obtain
some specific and predictable effect on the situation modeled by the consequent. Therefore,
a causal rule is interesting when it describes a strong causality relation and it has high
actionability. However, evaluating those properties is not a trivial task, and that is why the
causality relationship has always been elusive to modeling.

Causality has historically been studied from several different perspectives. Within the
computational view, actionability is the most important property of a causal model [6].
From the artificial intelligence perspective, Judea Pearl [7] pointed out that an autonomous
intelligent system trying to build a model of its environment cannot rely exclusively
on preprogrammed causal knowledge. It must have the ability to transform perceptual
observations into cause–effect relations. By describing causal relations among the variables
considered, a causal model allows estimating new environment states as a result of specific
modifications on the causal conditions. In this work, we apply the following causal models
to help in the identification and magnitude estimation of the causal effects as well as
preview possible actions that could modify the consequent by changing the antecedent.

2.1.1. Absolute Risk (AR)

In a control case study to verify the hypothesis that “A causes C”, it must first be clear
that both the presence and the absence of A have measurable effects on C. A balanced
sample with two data groups is created: the first one, the experimental group with the
causal conditions being studied (antecedent A), models the rule A → C, and the second
one, the control group without the antecedent, models the rule ¬A → C. The sample
must be balanced. For each observation within the experimental group, there must be
another observation within the control group (i.e., both groups must have the same sup-
port). Once the control case sample is constructed, the occurrence of the consequent C is
computed within both groups, and the confidence of A → C is used as the Experimental
Event Rate (EER = con f (A → C)), while the confidence of ¬A → C is used as the Control
Event Rate (CER = con f (¬A → C)). Both event rates must then be compared. When the
comparison is measured as EER − CER, the result is labeled the Absolute Risk [8] (see
Equation (4)). Its range is [−1, 1]. A value greater than zero indicates that the antecedent
has a causal effect on the consequent:

AR(A → C) = con f (A → C)− con f (¬A → C) =
supp(A → C)− supp(¬A → C)

supp(C)
(4)

2.1.2. Probability of Sufficiency (PS)

The probability of sufficiency (PS) measures the capacity of A to produce C when A is
absent [7]. Equations (5) and (6) represent this measure:

PS =
AR

1− CER
(5)

PS =
con f (A → C)− con f (¬A → C)

1− con f (¬A → C)
=

supp(A → C)− supp(¬A → C)
supp(C)− supp(¬A → C)

(6)
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2.1.3. Population Attributable Fraction (PAF)

The population attributable fraction (PAF) or population impact is an evaluation mea-
sure used to study the impact of exposure to a specific variable in the population [9]. In data
mining, the population refers to the total number of records that show the consequent C,
the effect being studied. The formula to calculate the impact on the population, proposed
by Miettinen [10], is given in Equation (7). The measure involves the support of C and the
relative risk. The population impact measure has a causal interpretation which indicates
the estimated fraction of all observations of the consequent that did not occur when the
antecedent also did not occur:

AFp = supp(C) · (1− 1
RR

) (7)

AFp = supp(C) ·
(

1− con f (¬A → C)
con f (A → C)

)
= supp(C) ·

(
1− supp(¬A → C)

supp(A → C)

)
(8)

2.2. Discrete Multi-Objective Optimization Problems

Consider a discrete multi-objective optimization problem (DMOP) with m objective
functions ( fi, i = 1, . . . , m) and n decision variables (xj, j = 1, . . . , n). The goal of multi-
objective optimization is to minimize all objectives simultaneously. Mathematically, it can
be described as follows:

minimize �f (�x) = [ f1(�x), f2(�x), . . . , fm(�x)]
T (9)

subject to x ∈ S

where S = {�x ∈ N} is the feasible search space and �x = [x1, x2, . . . , xn]
T ∈ S is the vector

of the decision variables. Each fi : Nn → R, i ∈ {1, . . . , m} is an objective function. Let us
assume that we have two vectors �u,�v ∈ Rm. Then, we say that �u dominates �v (denoted by
�u ≺ �v) if ui ≤ vi for every i ∈ {1, . . . , m}, and uj �= vj for at least one index j ∈ {1, . . . , m}.
We say that a decision variable vector �x∗ ∈ S is Pareto optimal if no other �x ∈ S such that
�f (�x) ≺ �f (�x∗) exists.

The Pareto Optimal Set (POS) is defined by POS = {�x ∈ S|�x∗ is Pareto optimal}. The
�x∗ vector corresponds to the non-dominated solutions. The Pareto Optimal Front (POF) is
defined by POF = {�f (�x) ∈ Rn|�x ∈ POS}. We thus wish to determine the POS from the S
set of all the decision variable vectors that satisfy Equation (9). The dominance phenomenon
occurs in the decision variable (POS) and the objective function (POF) spaces. From here on,
each time we mention Pareto dominance, we are referring to the same concept in both spaces.

3. Related Previous Works

This Section shows a review of some related previous works focused on association
rule mining in COVID-19 data sets. Two groups were defined: (1) works related to tradi-
tional assessment measures (support, confidence, and lift) optimized by classical algorithms
such as Apriori, FP growth, and Eclat and (2) works that simultaneously optimize more
than one association measure function with evolutionary algorithms.

Recently, the work of Cortes et al. in [11] provided an extensive review of the state-
of-the-art machine learning techniques and data mining algorithms for predicting the
COVID-19 pandemic. Their paper analyzed the role of diverse data mining techniques in
classification, regression, text analysis, clustering, and association. Another comprehensive
study is the work of Flora et al. [12] with a review of machine learning modeling. There,
association rule mining was used as a knowledge discovery tool in the analysis of vaccines
and the identification of potential risk factors.

The work of Zicheng Shan and Wei Miao [13] proposed a data mining algorithm based
on association rules for the diagnosis and treatment of COVID-19 patients. During the
study, some disadvantages of the proposed algorithm were found because of the delicate
data preprocessing required in order to improve the efficiency of the Apriori algorithm.
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Moreover, the authors reported notably low values in some association-measure functions
such as support and confidence.

Wasiq et al. [14] proposed a framework for identifying patterns and class associations
between demographic attributes and COVID-19 death rates across different regions of
the world. Their approach suggested a workflow (pipeline) that includes data prepro-
cessing, class association learning, clustering, and data analysis to discover significant
association patterns.

In [15], Tandan et al. showed a comparative study of association rule mining works
using the Apriori, FP growth, and Eclat algorithms to discover symptom patterns by age,
gender, chronic condition, and mortality status among COVID-19 patients. Their study
optimized the support, confidence, and lift measures one by one, in order to determine a
ranking of symptoms and chronic conditions of COVID-19 patients.

In [16–18], a multi-objective genetic association rule mining algorithm based on NSGA-
II was proposed. These pioneering works introduced new concepts such as comprehensibility,
surprise, interestingness, and confidence as useful measures for extracting interesting rules.
However, these studies were only tested on small data sets with categorical or numerical
attributes and never with mixed attribute values.

The work of Luna et al. [19] introduced the first grammar-guided genetic programming
approach for mining association rules from relational databases. The performance of this
algorithm was checked using both synthetic relational data and a real-world database,
but this work focused only on support and confidence measures.

In this paper, we propose a causal association rule mining process guided by an evolu-
tionary algorithm with non-standard recombination and mutation operators. The proposed
algorithm was designed precisely to be used on a COVID-19 official database in order to
learn the behavior of the contagion and hospitalization phenomena during the pandemic.
The causality nature of the mined rules ensures a certain degree of actionability that decision
makers can leverage while combating the COVID-19 pandemic.

4. Proposal

In this section, we describe the mining methodology proposed to extract association
rules in a COVID-19 data set. Figure 1 shows the principal steps for our proposal, while
the following subsections describe the details for each one.

Figure 1. The rule mining process.

4.1. Data Preparation

Experimentation was performed with an official pandemic database generated by the
Mexican government [4]. At the moment of performing these experiments, the database
was composed of records from 1 January 2020 to 1 April 2022. The total number of records
within this period was 15,578,792 with 37 attributes.

Numerical data were discretized using the quintile-based technique [20] in order to
provide the following properties in the information:

• Uniform support: Each selector had approximately the same support, which was 20%.
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• Reduced impact of outliers: Quantile-based discretization accumulates outliers in
two ranges, assigning very low values to the first quintile and very high values to the
last quintile.

• Pareto principle, or the 80-20 rule: This empirical principle states that 80% of the
incidence of a factor is attributable to 20% of the observations [21].

4.2. Group Modeling

The set of all attributes initially used to describe the data is manually clustered in
order to define smaller groups of attributes with related semantics. The user can select
any two attribute groups to be related as the antecedent and consequent, starting a causal
mining process. This selection helps to narrow the mining process to causal rules with a
specific kind of actionability. Table 1 shows the sets of attributes manually selected that
define a semantic group. Here, the term comorbidities refers to the previous illnesses that a
person has suffered, such as diabetes or hypertension.

Table 1. Sets of attributes for each semantic group.

ID Attributes

Comorbidities
Asthma, cardiovascular disease, COVID-19, diabetes, chronic obstructive
pulmonary disease (COPD), hypertension, immunosuppression,
pneumonia, obesity, chronic kidney disease

Age and gender Age, Gender

Location Location of hospital, sector

Medical care
and outcome Intubation, in intensive care unit (ICU), deceased, hospitalized

Table 2 summarizes the number of attributes in each group, the number of possible
selectors, and the total number of possible combinations or rules to estimate the search
space size for each scenario. In Table 3, we consider three scenarios, with each one defined
by a pair of related attribute groups and a target optimization function (used as fitness
criteria). The search space contains all possible association rules according to the number
of attributes and selectors. Moreover, we considered four periods of time called waves,
with each one representing the increase in the number of people with COVID-19. Finally,
we applied the process of association rule mining in the following intervals (see Table 4).

Table 2. Description of the number of attributes and selectors in COVID-19 data set.

Attribute
Group

No. of
Attributes

No. of
Selectors

Possible
Combinations

Comorbidities 13 43 134,217,727
Clinical care 3 66 3266
Medical care 4 12 224

Age and gender 2 7 17

Table 3. Experimentation scenarios with search space size.

Scenario
Antecedent

Group
Consequent

Group
Search Space

Size

A Age and gender Comorbidities 2,281,701,359
B Comorbidities Medical care 30,064,770,848
C Location Comorbidities 438,355,096382
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Table 4. Periods of time in which the number of people with COVID-19 increased.

Wave Initial Date End Date Records

1 2020-02-16 2020-09-26 1,955,291
2 2020-09-27 2021-04-17 4,604,490
3 2021-06-06 2021-10-23 4,220,735
4 2021-12-19 2022-03-05 3,027,248

4.3. Query Definition by Optimization Problem

We defined three discrete multi-objective optimization problems (DMOPs). In all
three cases, the association-measure functions showed a conflict when optimizing them
simultaneously. Additionally, we included three constraints to obtain correct and complete
association rules:

• Support greater than zero: The association rule must be true for at least one record.
In the formal definition of optimization problems, this is stated as supp(A → C) > 0.

• Absolute positive effect: An association rule with an absolute positive effect and
with a value greater than zero indicates that observing the antecedent increases
the probability of observing the consequent, thus rejecting rules in which the an-
tecedent inhibits the consequent. Formally, in optimization problems, this is stated as
AR(A → C) > 0.

• Statistical significance: The odds ratio must be statistically significant; that is, the lower
bound of its 95% confidence interval must be greater than or equal to one. Formally,
in problems of optimization, this is stated as CIOR

in f (A → C) ≥ 1.

DMOP-1. Classic association rule mining aims to obtain rules with the highest possible
support, confidence, and lift. However, simultaneously optimizing these measures is
impossible because a sustained increase or decrease in one does not guarantee behavior in
the same direction in the other two. The formal definition of the optimization problem for
this query is described by Equation (10):

maximize supp(A → C)

maximize con f (A → C)

maximize li f t(A → C)

subject to supp(A → C) > 0,

AR(A → C) > 0,

CIin f
OR(A → C) ≥ 1.

(10)

DMOP-2. From a logical perspective, a biconditional expression (A ↔ C) can be
interpreted as “A if and only C” or “A is a necessary and sufficient condition for C”. Its truth
value is equivalent to the expression (A → C)∧ (C → A). The sufficiency condition falls to
the association rule A → C, interpreted as “A is a sufficient condition for C”. The sufficiency
condition is considered to be satisfied if the causal effect of A → C is large enough. On the
other hand, to satisfy the necessary condition of the biconditional expression, the causal
effect of C → A must be considered as well (see Equation (11)):

maximize AR(A → C)

maximize AR(C → A)

subject to supp(A → C) > 0,

AR(A → C) > 0,

CIin f
OR(A → C) ≥ 1.

(11)

DMOP-3. In this problem, we seek to find the rules that maximize susceptibility,
a measure that quantifies the capacity of the antecedent to produce the consequent, and the
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population attributable fraction, a measure that indicates the proportion of observations of
the consequences that were caused by the antecedent (see Equation (12)):

maximize PS(A → C)

maximize AFp(A → C)

subject to supp(A → C) > 0,

AR(A → C) > 0,

CIin f
OR(A → C) ≥ 1.

(12)

4.4. Evolution Proposal and Heuristically Guided Mining

Since direct exhaustive search strategies are not an option for mining a large data
set, a heuristically guided mining mode is used. When in this mode, previous knowledge
about the structure of the data is fed to a meta-heuristic optimization which evolves a set of
specific patterns with the adequate structure to be Pareto front elements in the process of
optimizing a selected objective function (i.e., absolute risk, relative risk, or any other).

The evolutionary algorithm proposed herein performs artificial evolution based on
NSGA-II [22]. Some arguments for using NSGA-II include its mechanisms for solving com-
binatorial optimization problems with two and three objective functions [23], particularly
the following:

• The non-dominated sorting of solutions based on the Pareto dominance concept
assigns a ranking to the non-dominated members of the population.

• A crowding distance strategy for assessing the density of individuals surrounding a
particular solution allows for preserving a better population diversity.

Our proposal controls the selector structure of each pattern, allowing the system to
answer specific user questions to discover association rules with particular semantics.
In addition, the regulation of the search space exploration/exploitation process allows the
generation of a wide range of causal rule complexities, from very simple rules with only one
selector in the antecedent and consequent to more elaborate rules with the antecedent and
consequent formed by several selectors. Once these patterns are known to have optimal
structures and values, the mining system can directly search for these patterns in the actual
data set. This has the effect of speeding up the mining process.

In order to guarantee the statistical significance of causal rules, two criteria are pro-
posed. First, a diversity preservation criterion will be used as an essential evolution guide in
the algorithm. Second, a statistical significance test on the set of causal rules mined is used.

Rule Evolution

The proposed algorithm evolves a population of selector lists as any other artificial
evolution process would. Each list represents a possible association rule in the data set.
The structure of those lists is straightforward, as is the structure of association rules. Each
list has two main sections representing the antecedent and consequent of the rule, and then
each section may have one or more subsections in correspondence with the selectors that
conform it. The label and domain of all attributes are considered background knowledge,
so the proper validation restrictions can be applied every time a new selector enters
the expression.

During successive generations, the algorithm selects individuals from its population
based on their fitness and applies recombination and mutation operators to generate new
individuals, which are also evaluated by their aptitude. As the population size is fixed to
N individuals, each new generation is selected from the best fit rules among previously
known and newly generated rules:

• The stop criterion for the evolution process is triggered after 100 generations without
improvement in the fitness value of the fittest rule.

216



Math. Comput. Appl. 2023, 28, 12

• Recombination: This generates new individuals (new rules) from a pair of previously
known rules A1 → C1 and A2 → C2, referred to as the ancestor rules. Four new
individuals are created using the following recombination modalities:

1. Interchange: The antecedent and consequent from the ancestor rules are inter-
changed. Two new individuals are created: A1 → C2 and A2 → C1.

2. Set operations: The union (∪), intersection (∩), and symmetric difference ( ) op-
erators are applied to the sets of selectors in the antecedent and consequent
of the ancestor rules. For each one of those set operators, the antecedent of
new rules results from applying the operator on sets A1 and A2, and the con-
sequent results from applying the same operator on sets C1 and C2. Selectors
with repeated attributes are pruned, as well as all cases that result in an empty
antecedent or consequent. At most, three new individuals are created with this
recombination process.

• Mutation: Each new rule generated by any recombination method is subjected to
either an extension or a contraction transformation to introduce variability into the
population. The extension randomly adds a new selector not previously present in the
rule, while the contraction randomly prunes a selector from the rule.

• Elitism: The non-dominated sorting and crowding distance methods used by NSGA-
II [22] are adopted to select the fittest rule and preserve the diversity of the population.

5. Experiments and Results

We designed two main experiments. The first one explored the association rules in the
complete data set (15,578,792 records). Here, our data mining methodology described in the
previous section was applied while considering the three scenarios (A, B, and C) illustrated
in Table 3. In this experiment, we intended to solve a single-objective optimization prob-
lem to find the best (maximum) values for each association measure function (equations
described in Section 2.1) and validate the convergence of our proposed algorithm. Table 5
shows each case’s fitness mean (and standard deviation). The best values are shown in
boldface. We considered 10 executions with different seeds for random generation. We
established this number of executions for two reasons: the data mining process is computa-
tionally expensive, and we corroborated that after 10 executions, there was no variation
in the results for the majority of the scenarios (standard deviation equals zero). In the
classical measures, the best association rules reached a support function value that was
low in each case’s fitness means (rather than 0.6), and the lift function was variable in
these three scenarios. In the causal association measures, the functions of the probability of
sufficiency and attributable fraction reported low values in scenarios A and C, respectively.
In general, scenario B reported the maximum values for the association measures.

The second experiment had two purposes: (1) solve the DMOP described in Section 4.3
in order to compare the classic and causal association rule models as adequate and feasible
tools for analyzing the COVID-19 pandemic phenomenon and (2) find association rules
along four different and well-defined time periods (labeled as waves) to clearly charac-
terize the behavior and tendencies of each contagion wave. Then, we applied our genetic
algorithm in the three scenarios and the four waves for each DMOP. Then, we filtered the
experimental results using criteria that selected non-dominated rules.
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Table 5. The maximum mean values found by an evolutionary algorithm for each objective function.

Classical Measures
Scenarios

A B C

Support 0.322 (0) 0.588 (0) 0.365 (0.021)

Confidence 0.655 (0) 0.993 (0) 0.880 (0.119)

Lift 7.696 (0) 33.967 (0) 41.11 (31.003)

Causal Measures
Scenarios

A B C

Probability of Sufficiency 0.272 (0) 0.869 (0) 0.823 (0.094)

Attributable Fraction 0.739 (0) 0.891 (0) 0.245 (0.019)

Absolute Risk 0.293 (0) 0.941 (0) 0.951 (0.019)

Reciprocal Absolute Risk 0.913 (0) 0.935 (0) 0.377 (0.031)

Table 6 reports the mean and standard deviation (in parenthesis) of the number of
non-dominated rules found after 10 executions for each case. We can note that scenarios
A and B, related to the comorbidities, age, gender, medical care, and outcome, were very
consistent in the non-dominated rules. In contrast, scenario C (location and comorbidities)
showed more variation in the association rules found.

Table 6. The mean of the non-dominated rules found for each DMOP in all scenarios.

Scenario DMOP W1 W2 W3 W4 A

A
1 28 (0) 28 (0) 29 (0) 26 (0) 27 (0)
2 9 (0) 28 (0) 14 (0) 15 (0) 9 (0)
3 13 (0) 15 (0) 13 (0) 14 (0) 11 (0)

B
1 38 (0) 40 (0) 39 (0) 40 (0) 39 (0)
2 16 (0) 21 (0) 24 (0) 28 (0) 20 (0)
3 23 (0) 22 (0) 23 (0) 28 (2.34) 21 (0)

C
1 16.4 (1.14) 16.8 (1.789 18.2 (1.09) 10.2 (0.83) 16 (0.70)
2 9.6 (1.51) 13.4 (1.14) 10.8 (1.64) 3 (0.70) 8.8 (1.64)
3 10.6 (1.14) 12.6 (2.40) 11.4 (0.54) 8.2 (1.30) 11.2 (1.09)

Figures 2–4 show the obtained Pareto front with the levels of the maximum values
reached by interesting rules according to causal measures. For Scenario B, DMOP-1,
and DMOP-2, the mined rules were very similar. We appreciated some differences in
scenarios B and C, where the absolute risk function, reciprocal absolute risk, population
attributable fraction, and probability of sufficiency reported low values in the last period,
called wave 4. Here, we can understand these results as a positive effect of the vaccine on
the population.

Table 7 reports the same non-dominated association rules discovered for the classic
and causal measures in scenarios A and B. Both logical models for the data mining process
found the same patterns demonstrating that causal measures can find interesting rules
as a classical model. According to the results, the diseases with the greatest influence on
the association rules found for the time periods called waves were diabetes, hypertension,
pneumonia, and COPD. The ages of the patients were directly related to the diseases.
Therefore, the majority of the population older than 53 had the highest comorbidity statistics
as the most vulnerable sector. From the viewpoint of the association measures, we observed
that the numerical values for the causal measures were more evident. Unlike these, the
support and confidence numerical values were very small.
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Figure 2. Obtained Pareto fronts of DMOP-2 (absolute risk and reciprocal absolute risk) and DMOP-3
(probability of sufficiency and population attributable fraction) for all waves in Scenario A. The an-
tecedent group is age and gender, and the consequent group is comorbidities.

Figure 3. Obtained Pareto fronts of DMOP-2 (absolute risk and reciprocal absolute risk) and DMOP-3
(probability of sufficiency and population attributable fraction) for all waves in Scenario B. The an-
tecedent group is comorbidities, and the consequent group is medical care.

Figure 4. Obtained Pareto fronts of DMOP-2 (absolute risk and reciprocal absolute risk) and DMOP-3
(probability of sufficiency and population attributable fraction) for all waves in Scenario C. The an-
tecedent group is location, and the consequent group is comorbidities.

All supplementary material for this research can be found in https://github.com/
sinisterra/mscgp (accessed on 1 November 2022). There, we provide the Python code used
to generate all experiments.
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Table 7. The best association rules were obtained in scenarios A (age and gender→ comorbidities)
and B (comorbidities and medical care). The evolutionary algorithm found these rules in the last
population generated.

AGE ^53.0 ->DIABETES ^HYPERTENSION ^PNEUMONIA

Measure W1 W2 W3 W4 T

Support 0.0178 0.0095 0.0041 0.0027 0.0071
Confidence 0.075 0.042 0.026 0.016 0.037
Lift 3.3361 3.7296 5.1588 4.9639 4.2691
Absolute Risk 0.0686 0.04 0.0252 0.0155 0.0354
Reciprocal Absolute Risk 0.5711 0.6184 0.6439 0.6776 0.6304
Prob. Sufficiency 0.069 0.0401 0.0252 0.0155 0.0355
Attributable Fraction 0.7337 0.7878 0.7574 0.8139 0.7725

AGE >53.0 ->DIABETES ^HYPERTENSION

Measure W1 W2 W3 W4 T

Support 0.045 0.0345 0.0218 0.0206 0.0288
Confidence 0.188 0.154 0.141 0.121 0.15
Lift 2.9746 3.2525 4.3939 3.9651 3.6786
Absolute Risk 0.1642 0.1373 0.1291 0.1092 0.1354
Reciprocal Absolute Risk 0.5038 0.5296 0.5402 0.5212 0.5338
Prob. Sufficiency 0.1683 0.1396 0.1307 0.1106 0.1375
Attributable Fraction 0.6201 0.6501 0.618 0.609 0.633

AGE >53 ->HYPERTENSION ^PNEUMONIA

Measure W1 W2 W3 W4 T

Support 0.0324 0.0173 0.0072 0.0048 0.0129
Confidence 0.136 0.077 0.047 0.028 0.067
Lift 3.2169 3.6087 4.9252 4.7907 4.1133
Absolute Risk 0.1229 0.0721 0.044 0.027 0.0631
Reciprocal Absolute Risk 0.5532 0.5971 0.6104 0.6497 0.605
Prob. Sufficiency 0.1245 0.0724 0.0441 0.027 0.0633
Attributable Fraction 0.6962 0.7529 0.7147 0.7786 0.7357

AGE >53.0 ->HYPERTENSION

Measure W1 W2 W3 W4 T

Support 0.094 0.0766 0.0467 0.0465 0.0624
Confidence 0.393 0.342 0.303 0.273 0.327
Lift 2.5102 2.7453 3.6076 3.225 3.0653
Absolute Risk 0.3108 0.2804 0.2589 0.2271 0.2722
Reciprocal Absolute Risk 0.4279 0.4466 0.4385 0.4142 0.4419
Prob. Sufficiency 0.3387 0.2988 0.2708 0.238 0.2879
Attributable Fraction 0.4743 0.5037 0.4748 0.457 0.488

HYPERTENSION ^PNEUMONIA ->HOSPITALIZATION

Measure W1 W2 W3 W4 T

Support 0.0378 0.0196 0.0087 0.0052 0.0148
Confidence 0.897 0.912 0.92 0.873 0.904
Lift 5.3062 10.4193 16.4679 23.7918 11.7312
Absolute Risk 0.7602 0.8426 0.8721 0.8414 0.8411
Reciprocal Absolute Risk 0.2186 0.2213 0.1553 0.1396 0.1905
Prob. Sufficiency 0.8809 0.9055 0.9156 0.869 0.8979
Attributable Fraction 0.1896 0.2063 0.1481 0.1353 0.1788
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Table 7. Cont.

DIABETES ^PNEUMONIA ->HOSPITALIZATION

Measure W1 W2 W3 W4 T

Support 0.0337 0.0163 0.0077 0.0042 0.0127
Confidence 0.905 0.919 0.925 0.881 0.911
Lift 5.3528 10.4933 16.5565 23.9939 11.8201
Absolute Risk 0.7645 0.846 0.876 0.8479 0.846
Reciprocal Absolute Risk 0.1952 0.1848 0.1371 0.1148 0.1639
Prob. Sufficiency 0.8896 0.9122 0.9207 0.8765 0.905
Attributable Fraction 0.1685 0.1717 0.1306 0.1111 0.1534

PNEUMONIA ->HOSPITALIZATION

Measure W1 W2 W3 W4 T

Support 0.1016 0.0497 0.0257 0.0127 0.0395
Confidence 0.83 0.836 0.813 0.668 0.815
Lift 4.9114 9.5507 14.5584 18.1962 10.5679
Absolute Risk 0.7536 0.7958 0.7819 0.6433 0.7751
Reciprocal Absolute Risk 0.576 0.5571 0.4547 0.3386 0.5021
Prob. Sufficiency 0.8163 0.8292 0.807 0.6594 0.8071
Attributable Fraction 0.5453 0.5405 0.4433 0.3324 0.487

6. Conclusions

In this research, we used NSGA-II mechanisms for guiding an association rule mining
process to learn the behavior of the COVID-19 contagion phenomenon at a country-wide
scale from an official government database in Mexico. Our mining algorithm includes non-
classical crossover and mutation operators that have shown certain reliability for optimizing
both classical and causal rule evaluation measures. Using artificial evolution as a guide
to the mining process, we designed three experimentation scenarios as multi-objective
optimization problems and considered the four officially identified waves of contagion.

Each experiment correctly found the rules with the maximum values for support,
confidence, lift, absolute risk, and probability of sufficiency in a DMOP context. Since all those
values were obtained under the constraint of having a confidence interval greater than or
equal to one, they all had a strong correspondence with the concept of interesting rules
expressed at the end of the Introduction section. Therefore, all mined rules identified the
strongest associations between the antecedent and consequent in the database. The rules
mined in DMOP-1 experiment were interesting in the classic mining sense, while the rules
mined in the DMOP-2 and DMOP-3 experiments were interesting in the causal mining
sense. The set of all rules mined during each experiment constituted the learned behavioral
model of the studied phenomenon and brought forth interesting information about the
phenomenon’s behavior.

The main contributions made by this work are the following:

• Design and testing of a new evolutionary algorithm for association rule mining with
enough flexibility to integrate domain knowledge in order to solve single-objective
and multi-objective association rule mining problems;

• The inclusion of a causal model to restate the semantics of the search process by
providing a measure of the actionability of mined rules;

• The inclusion of a set of proposed crossover and mutation operators into the mining
process.

Some of the next steps considered in this research include the following:

• Extending the evolution process with logical expressions;
• Incorporating a target group discovery algorithm;
• Considering the opposite optimization criteria to generate interesting rules;
• Including the proposed algorithm in other case studies.
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Abstract: Particle filters, also known as sequential Monte Carlo (SMC) methods, constitute a class
of importance sampling and resampling techniques designed to use simulations to perform on-line
filtering. Recently, particle filters have been extended for optimization by utilizing the ability to
track a sequence of distributions. In this work, we incorporate transfer learning capabilities into
the optimizer by using particle filters. To achieve this, we propose a novel particle-filter-based
multi-objective optimization algorithm (PF-MOA) by transferring knowledge acquired from the
search experience. The key insight adopted here is that, if we can construct a sequence of target
distributions that can balance the multiple objectives and make the degree of the balance controllable,
we can approximate the Pareto optimal solutions by simulating each target distribution via particle
filters. As the importance weight updating step takes the previous target distribution as the proposal
distribution and takes the current target distribution as the target distribution, the knowledge
acquired from the previous run can be utilized in the current run by carefully designing the set
of target distributions. The experimental results on the DTLZ and WFG test suites show that the
proposed PF-MOA achieves competitive performance compared with state-of-the-art multi-objective
evolutionary algorithms on most test instances.

Keywords: particle filter; multi-objective optimization; transfer learning

1. Introduction

Many real-world applications in economics, mechanics and engineering can be formu-
lated as multi-objective optimization problems (MOPs) that simultaneously optimize two
or more objective functions [1]. The basic statement of an MOP for a minimization task can
be formulated as

min F(x) = { f1(x), f2(x), · · · , fm(x)}
x ⊆ Ω

(1)

where Ω ⊆ RD is the decision space of decision variables, x = (x1, x2, · · · xD) is a decision
vector with D denoting the number of decision variables, F(x) consists of m objective
functions, and m is the number of objectives.

Usually, different objectives are conflicting with each other, which means that a de-
cision vector that decreases the values of fm may increases that of fn. As a result, it is
impossible to find only one solution that can optimize all the objectives simultaneously;
however, a set of optimal solutions that trade off between different objectives are known as
Pareto optimal solutions. The whole set of Pareto optimal solutions in the decision space is
called the Pareto set (PS), and the projection of PS in the objective space is called the Pareto
front. Various types of algorithms have been proposed for solving MOPs.

For example, the scalarization technique is one of the most popular methods and is
used to convert an MOP into a single optimization problem. Scalarization can be achieved
by the global criterion method [2], the weighted min-max method [3,4], the ε-constraint
method [5] and reference point methods [6].

Math. Comput. Appl. 2023, 28, 14. https://doi.org/10.3390/mca28010014 https://www.mdpi.com/journal/mca225



Math. Comput. Appl. 2023, 28, 14

Another popular approach is based on evolutionary algorithms (EAs), which have
been applied successfully to many real-world complex optimization problems [7,8]. Over
the past decades, a large number of multi-objective evolutionary algorithms (MOEAs) have
been proposed, such as nondominated sorting genetic algorithm II (NSGA-II) [9], multi-
objective evolutionary algorithm based on decomposition (MOEA/D) [10], reference vector
guided evolutionary algorithm (RVEA) [11] and strength Pareto evolutionary algorithm
2 (SPEA2) [12]. More recently, many variants have been proposed to further enhance the
optimization performance of MOEAs and extend them to many-objective optimization
problems, such as NSGA-III [13], θ-DEA [14] and MOEA/DD [15].

Particle filter (PF), also known as sequential Monte Carlo (SMC), is a class of im-
portance sampling and resampling techniques designed to simulate from a sequence of
probability distributions, and this has gained popularity over the last decade to solve
sequential Bayesian inference problems. With the notable exception of linear-Gaussian
signal-observation models, the PF theory has become the dominated approach to solving
the state filtering problem in dynamic systems. Applications of particle filter theory have
expanded to diverse fields, such as object tracking [16], navigation and guidance [17] and
fault diagnosis [18].

Recently, particle filters have been extended for optimization [19,20] by utilizing the
ability to track a sequence of distributions. In order to deal with a global optimization
problem, generally, a sequence of artificial dynamic distribution is designed to employ the
particle filter algorithm [21,22]. The crucial element in particle filter optimization (PFO) is
how to design the system dynamic function by formulating the optimization problem as
a filtering problem, which forces the set of particles to move toward the promising area
containing optima.

Although PFO has shown promising performance in certain applications, current
PFO methods only work for single-objective optimization problems [23]. As many real-
world problems involve multiple objectives to be optimized simultaneously, it is interesting
to extend PFO to MOPs. To fill this gap, we make an effort to extend the scope of the
application of PFO to multi-objective cases. To achieve this, we propose a novel particle-
filter-based multi-objective optimization algorithm (PF-MOA) by transferring knowledge
acquired from the search experience.

The key insight adopted here is that, if we can construct a sequence of target dis-
tributions that can balance the multiple objectives and make the degree of the balance
controllable, we can approximate the Pareto optimal solutions by simulating each target
distribution via particle filters. Inspired by the ability of SMC samplers to sample sequen-
tially from a sequence of probability distributions [24], we design a particle filter to perform
the optimization. The method of importance updating in particle filters makes it possible
to leverage the knowledge readily available for the previous subproblem to optimize the
current subproblem, guiding the new particles to concentrate on the more promising area
found thus far. As a result, PF-MOA offers an efficient solution to optimize MOPs by
tracking the Pareto optimal solutions on the Pareto front via a particle filter.

The rest of this paper is organized as follows. Section 2 presents a brief introduction to
particle filters and the application to single-objective optimization. In Section 3, a particle-
filter-based multi-objective optimization method is proposed. Numerical simulations
are conducted in Section 4, where the results are presented and discussed. Finally, our
conclusions are drawn in Section 5.

2. Background

2.1. Particle Filter

Consider the discrete-time nonlinear state-space models relating a hidden state xk to
the observations yk:

xk = g(xk−1, uk), k = 1, 2, . . . ,
yk = h(xk, vk), k = 0, 1, . . . ,

(2)

226



Math. Comput. Appl. 2023, 28, 14

where k is the sample number; xk ∈ Rnx is the state; yk ∈ Rny are the observations; uk ∈ Rnx

and vk ∈ Rny are the system and observation noise, respectively; and nx and ny are the
dimensions of xk and yk, respectively. We assume uk and vk are independent and identically
distributed (i.i.d.) sequences, independent of each other and also independent of the initial
state x0, which has the probability density function (p.d.f.) p0. Let p(xk | xk−1) denote the
transition density, and p(yk | xk−1) denote the likelihood function.

The goal of filtering is to estimate the conditional density,

bk(xk) � p(xk | y0:k), k = 0, 1, . . . (3)

where y0:k = {y0, . . . , yk}, for all the observations from time 0 to k. The conditional density
bk(xk) can be derived recursively via the Chapman–Kolmogorov equation and Bayes rule
as follows:

bk(xk) =
p(yk | xk)p(xk | y0:k−1)

p(yk | y0:k−1)

=
p(yk | xk)

∫
p(xk | xk−1)bk−1(xk−1)dxk−1∫

p(yk | xk)p(xk | y0:k−1)dxk

(4)

Since bk(xk) is unknown, we generate the particles by sampling from another known
density q(xk | y0:k) and adjust the weights of the samples to obtain an estimate of bk(xk).
This approach is known as importance sampling, and the density q(xk | y0:k) is referred to
as the importance density. Hence, it is easy to see that, in order to approximate p(xk | y0:k),
for samples

{
xi

k, i = 1, . . . , N
}

drawn i.i.d. from q(xk | y0:k), their weights should be

wi
k ∝

p
(
xi

k | y0:k
)

q
(

xi
k | y0:k

) (5)

where ∝ means proportional to, and the weights should be normalized.
To perform the estimation recursively, we used the Bayes rule to derive the following

recursive equation for the conditional density:

bk(xk) � p(xk | y0:k)

=
p(xk, yk | y0:k−1)

p(yk | y0:k−1)

∝ p(yk | xk)
∫

p(xk | xk−1)p(xk−1 | y0:k−1)dxk−1

∝
∫

p(yk | xk)p(xk | xk−1)bk−1(xk−1)dxk−1

(6)

where p(yk | y0:k−1, xk) = p(yk | xk) and p(xk | y0:k−1, xk−1) = p(xk | xk−1) both follow
from the Markovian property of model Equation (12), the denominator p(yk | y0:k−1) does
not explicitly depend on xk and k, and ∝ means that p(xk | y0:k) is the normalized version
of the right-hand side. The state transition density p(xk | xk−1) is induced from the state
equation in Equation (12) and the distribution of the system noise uk−1, and the likelihood
p(yk | xk) is induced from the observation equation in Equation (12) and the distribution of
the observation noise vk. Substituting Equation (6) into Equation (5), we find

wi
k ∝

p
(
yk | xi

k
)

p
(

xi
k | xi

k−1

)
q
(
xi

k | y0:k
) p

(
xi

k−1 | y0:k−1

)
, (7)

If the importance density q(xk | y0:k) is chosen to be factored as

q(xk | y0:k) = q(xk | xk−1, yk)q(xk−1 | y0:k−1) (8)
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Moreover, to avoid sample degeneracy, new samples are resampled i.i.d. from the
approximate conditional density p̂(xk | y0:k) at each step; hence, the weights are reset to
wi

k−1 = 1/N, and

wi
k ∝

p
(
yk | xi

k
)

p
(

xi
k | xi

k−1

)
q
(

xi
k | xi

k−1, yk

) , i = 1, . . . , N (9)

In the plain particle filter, the importance density q
(

xk | xi
k−1, yk

)
is chosen to be the

state transition density p
(

xk | xi
k−1

)
, which is independent of the current observation yk,

yielding
wi

k ∝ p
(

yk | xi
k

)
, i = 1, . . . , N (10)

The plain particle filter recursively propagates the support points and updates the
associated weights. The algorithm is as follows in Algorithm 1:

Algorithm 1 General particle filter.

1: Initialization: Sample
{

xi
0
}N

i=1 i.i.d. from an initial p.d.f. p0. Set k = 1.
2: Importance Sampling/Propagation: Sample xi

k from p
(
xk | xi

k−1

)
, i = 1, . . . , N.

3: Bayes Updating: Receive new observation yk. The conditional density is approximated by p̂(xk | y0:k) =

∑N
i=1 wi

kδ
(
x− xi

k
)
, where wi

k is computed according to Equation (10).

4: Resampling: Sample
{

xi
k
}N

i=1 i.i.d. from p̂(xk | y0:k).
5: k ← k + 1 and go to step 2.

2.2. Particle Filter Optimization for Global Optimization

We consider the global optimization problem:

x∗ ∈ arg max
x∈X

H(x) (11)

where x is a vector of n decision variables, X is the search space, and the objective function
H is a bounded deterministic function. We denote the optimal function value as H∗, i.e.,
there exists an x∗ such that H(x) ≤ H∗ � H(x∗), ∀x ∈ X .

Many of the simulation-based global optimization methods, such as the estimation
of distribution algorithms (EDAs) [25,26], covariance matrix adaptation evolution strat-
egy [27], cross-entropy (CE) method [28], model reference adaptive search (MRAS) method
[29] and particle filter optimization (PFO), fall into the category of model-based methods.
They share the similarities of iteratively repeating the following two steps: let gk be a
probability distribution on x at the k-th iteration of an algorithm:

• Randomly generate a set/population of candidate solutions X(k) from an intermediate
distribution gk over the solution space.

• Update the intermediate distribution gk using the candidate solutions to obtain a new
distribution gk+1; increase k by 1 and reiterate from step 1.

The underlying idea is to construct a sequence of iterates (probability distributions) gk with
the hope that gk → g∗ as k → ∞, where g∗ is a limiting distribution that assigns most of its
probability mass to the set of optimal solutions. Thus, it is the probability distribution (as
opposed to candidate solutions as in instance-based algorithms) that is propagated from
one iteration to the next [30].

The main idea of PFO is to formulate the optimization problem as a filtering problem,
then particle filter construction appears as a natural candidate for the reformulation of
the global optimization problem as a filtering problem. More specifically, the optimiza-
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tion problem Equation (11) can be formulated as a filtering problem by constructing an
appropriate state-space model. Let the state-space model be

xk = xk−1, k = 1, 2, . . . ,
yk = H(xk)− vk, k = 0, 1, . . . ,

(12)

where the optimal solution is a static state to be estimated, xk is the unobserved state, yk is
the observation, vk is the observation noise that is an i.i.d. sequence, and the conditional
density of the state approaches a delta function concentrated on the optimal solution as the
system evolves.

We assume that vk has a p.d.f. ϕ(·), and then the transition density is

p(xk | xk−1) = δ(xk − xk−1) (13)

where δ denotes the Dirac delta function. The likelihood function is

p(yk | xk) = ϕ(H(xk)− yk)

= ϕ(H(xk−1)− yk)
(14)

Substituting Equations (13) and (14) into the recursive equation of conditional density
Equation (6), we obtain

bk(xk) =
ϕ(H(xk)− yk)bk−1(xk)∫

ϕ(H(xk)− yk)bk−1(xk)dxk
(15)

The intuition of model Equation (12) is that the optimal solution x∗ is an unobserved
static state, while we can only observe the optimal function values y∗ = H(x∗) with some
noise. Equation (15) implies that, at each iteration, the conditional density (i.e., bk−1) is
tuned by the performance of solutions to yield a new conditional density (i.e., bk) for
drawing candidate solutions at the next iteration.

It should be expected that, if yk increases with k, the conditional density bk will
come closer to the density of xk, i.e., a Dirac delta function concentrated on x∗. From the
viewpoint of filtering, bk is the posterior density of xk that approaches the density of xk.
From the optimization viewpoint, bk is a density defined on the solution space that becomes
increasingly concentrated on the optimal solution as k increases. The framework of general
particle filter optimization is given in Algorithm 2.

Algorithm 2 General particle filter optimization framework.

1: Initialization: Sample
{

xi
0
}N

i=1 i.i.d. from an initial p.d.f. p0. Set k = 1.
2: Importance Sampling/Propagation: Sample xi

k from p
(
xk | xi

k−1

)
, i = 1, . . . , N.

3: Bayes Updating: Take yk to be the sample function value of H
(
xi

k
)

according to a certain rule. Compute the
weight wi

k for sample xi
k according to wi

k ∝ ϕ
(

H
(
xi

k
)− yk

)
, i = 1, 2, . . . , Nk and normalize the weights such

that they sum up to 1.

4: Resampling: Sample
{

xi
k
}N

i=1 i.i.d. from p̂(xk | y0:k).
5: k ← k + 1 and go to step 2.

Generally, the PFO algorithms can be differentiated from each other by the definitions
of the target p.d.f. and of the proposal p.d.f. A specific definition of the target and proposal
p.d.f. determines how the objective function is implanted in the sampling process and how
the random samples (i.e., candidate solutions) are generated, respectively. For example,
while a uniform distribution is adopted as the likelihood function p(yk | xk−1) in [22,31],
the Boltzmann distribution is another choice in defining the target distribution for PFO
methods [21].
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3. Proposed Algorithm

3.1. Algorithm Framework

As mentioned above, particle filter optimization methods have been applied to single-
objective optimization problems by reformulating an optimization problem into a filtering
problem. In this work, we make an effort to extend the scope of application of PFO to
multi-objective cases. It is well-known that a Pareto optimal solution to a MOP, under mild
conditions, could be an optimal solution of a scalar optimization problem in which the
objective is an aggregation of all the objectives [10]. That is to say, MOPs can be formulated
as a task of searching a set of Pareto optimal solutions, each of which corresponds to a
scalar optimization subproblem with a certain degree of tradeoff among the objectives in
an MOP.

With the insight into the decomposition strategy in the context of MOPs, it makes
sense to construct a series of target distributions corresponding to a number of scalar
objective optimization subproblems, and then the particle filter is adopted to simulate these
distributions so that the Pareto optimal solutions can be obtained based on the samples
yielded from simulations. There are two main issues: (1) how to design a series of proxy
target pdfs for MOPs and (2) how to effectively simulate these p.d.fs via SMC. In the
following, we seek answers to these problems and propose a particle filter optimization
method for solving multiobjective optimization problems, which will be elaborated in the
following. The framework of the proposed PF-MOA is outlined in Algorithm 3.

Algorithm 3 Particle filter multiobjective optimization.
Input: N: the number of particles; K: the number of subproblems; set the maximum number of fitness evaluation

FEmax = N ∗ K;
Output: particles in the archive D;
1: Initialization: Generate a uniform spread of K weight vectors λ for the Tchebycheff approach; optimize the

first subproblem and obtain N particles
{

xi
0
}N

i=1 to be evaluated on objective functions; save the particles in D;
set z∗ = (z∗1 , ..., z∗K) with z∗i = min fi(x); set k = 1 and FE = N;

2: while FE � FEmax do
3: for k = 1, . . . , K do
4: //Computing the k-th subproblem//
5: Calculate the subproblem with the k-th weight vector according to Equation (16): gtch(x | λk, z∗

)
=

max1≤i≤m
{

λk
i
(

fi(x)− z∗i
)}

.
6: Update the reference point z∗.
7: //Computing the target pdf associated with the k-th subproblem//
8: Calculate the corresponding k-th target pdf according to Equation (17): π̃k(x) � πk(x)

Ck
and

πk(x) = exp
{−gtch}.

9: for i = 1, . . . , N do
10: //Importance Updating//
11: Compute the weight ω̂i

k for each sample xi
k according to Equation (18), ω̂i

k ={
π̃k
(
xi

k
)
, if k = 1

π̃k
(
xi

k
)
/π̃k−1

(
xi

k
)
, otherwise.

12: end for
13: Normalize the weights such that they sum up to 1;
14: Resampling: Generate N i.i.d. samples by setting x̃i = x

j
k with probability ω̂

j
k, j = 1, . . . , N. Then, set

xi
k = x̃i , ω̂i

k = 1/N, for ∀i.
15: Calculate the mean of particles x̄k and the best particle x�k obtained thus far.
16: Particle move: Generate new particles x′ using genetic operators on x̄k and x�k , shown in Algorithm 4.
17: Update the reference point z∗.
18: Save the particles

{
xi

k
}N

i=1 to D.
19: end for
20: Update k = k + 1, FE = FE + N;
21: end while
22: Return the particles in D;

3.2. The Design of Target Distribution

Based on the theoretical foundation of sequential Monte Carlo samplers [24], SMC
allows us to perform global optimization and sequential Bayesian estimation by sequentially
sampling from a sequence of probability distributions that are defined on a common space.
Specifically, similar to simulated annealing [32], we can move from a tractable distribution
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to a distribution of interest through a sequence of artificial intermediate distributions.
Consequently, the convergence results are available for SMC samplers [33]. As two or more
conflicting objectives are involved in an MOP in Equation (1), the design of the target p.d.f.
is different from that in single-objective optimization problems.

To approach to the Pareto optimal set, a set of proxy target pdfs are needed, each
of which corresponding to a specific amount of balance among the objectives. To this
end, we adopted a decomposition strategy to decompose an MOP into a number of scalar
optimization subproblems, followed by designing a target p.d.f. for each single-objective
subproblem. More specifically, let λ1, ..., λK be a set of even spread weight vectors, and let
z∗ be the reference point. An MOP with m objectives, i.e., Equation (1), can be decomposed
into K scalar/single-objective optimization subproblems using the Tchebycheff (TCH)
decomposition [10], and the objective function of the jth subproblem is

min
x∈Ω

gtch
(

x | λj, z∗
)
= max

1≤i≤m

{
λ

j
i( fi(x)− z∗i )

}
(16)

where m is the number of objectives, z∗ = (z∗1, ..., z∗m) with z∗i = min fi(x|x ∈ Ω) is the

reference point, λj =
(

λ
j
1, . . . , λ

j
m

)
with ∑m

i=1 λi = 1 and λi ≥ 0 is the weight vector, and fi

and x are the objective function and decision vector, respectively.
In this way, for each Pareto optimal solution x∗ of an MOP, there exists a weight

vector λ such that x∗ is the optimal solution of a subproblem (Equation (16)), and each
optimal solution of the subproblem is Pareto optimal to the MOP. As a result, to obtain a
set of different Pareto optimal solutions of an MOP, one can solve a set of single-objective
optimization problems with different weight vectors defined by Equation (16) or any other
decomposition approaches. Note that gtch is continuous of λ, the optimal solution of
gtch(x | λi, z∗

)
should be close to that of gtch(x | λj, z∗

)
if λi and λj are close to each other.

Therefore, any information about these gtch with weight vectors close to λi should be
helpful for optimizing gtch(x | λi, z∗

)
.

Obtaining a set of single-objective subproblems, a set of target p.d.fs π̃1(x), π̃2(x), . . . ,
π̃K(x) corresponding to the subproblems are constructed as follows,

π̃k(x) �
πk(x)

Ck
, k = 1, 2, . . . , K

πk(x) = exp
{
−gtch

} (17)

where K is the number of target p.d.fs (in our case, K equals to the number of the weight
vector), Ck is a normalizing constant which ensures π̃k(x) to be a qualified pdf whose
integral equals 1. According to Equations (16) and (17), each p.d.f. corresponds to a specific
degree of balance between each objective using the weight vectors.

3.3. The Sampling Procedure

Given the target p.d.fs, the particle filter appears as a natural candidate for the sim-
ulation of these target distributions. The first subproblem is optimized, and then the
particle filter is used to track the sequence of target distributions that correspond to a set
of scalar subproblems. This has three main steps: importance updating, resampling and
particle move. The importance updating step takes the current distribution π̃k (correspond-
ing to a subproblem) as the target distribution and takes the previous distribution π̃k−1
(corresponding to the previous subproblem) as the proposal distribution.

Thus, given that the previous samples are updated in proportion to π̃k(·)/π̃k−1(·),
the new empirical distribution formed by samples is already distributed approximately
according to π̃k−1, and the weights of these weighted samples will closely follow π̃k. The
resampling step redistributes the samples such that they all have equal weights. The
particle move step is performed on each particle to update their locations towards the
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promising region so that we can follow the target distribution of each subproblem as closely
as possible.

Note that, instead of updating particles according to a transition equation as in
Equation (12), a Metropolis sampling method associated with genetic operators is adopted
to sample new particles as the transition equation in the MOPs is unknown.

From the perspective of multi-objective optimization, the advantage of the proposed
PF-MOA can be explained by tracking the Pareto optimal solutions on the Pareto front and
making the search more efficient. The reason is that the importance weight of particles
in the proposed PF-MOA is updated according to the difference between the current
and the previous distributions (which correspond to two related subproblems). As we
mentioned in Section 3.2, any information about these gtch with weight vectors close to
λi should be helpful for optimizing gtch(x | λi, z∗

)
. The method of importance updating

makes it possible to leverage the knowledge readily available for the previous subproblem
to optimize the next subproblem, guiding the new particles to concentrate on the more
promising area found thus far.

More specifically, while the normalization of the weights and the resampling of the
particles are the typical operations in Algorithm 2, the calculation of the importance weight
for the i-th particle according to the set of target distributions is as follows,

ω̂i
k =

{
π̃k
(
xi), if k = 1

π̃k
(
xi)/π̃k−1

(
xi), otherwise.

(18)

Through the resampling step, we eliminate/duplicate samples with low/high impor-
tance weights, respectively, avoiding the issue of particle degeneracy.

3.4. Particle Move

After the resampling step, a Metropolis sampling method based on genetic operators
is proposed to promote the divergence of particles as summarized in Algorithm 4. As we
demonstrate in Section 2.2, the state transition as function is assumed xk = xk−1 in the state
space model when solving global optimization problems. If a particle filter is applied to
this model directly, with no particle move, the resulting algorithm would be equivalent to
importance sampling from the initial sampling distribution directly to the posterior in a
single step. This would be problematic if the initial sampling distribution was located in a
different region of parameter space entirely, particularly in the context of MOPs. Hence, a
Metropolis sampling method for generating new particles is proposed to assist the particle
filter to simulate these target pdfs by exploiting the promising region.

The resampling step together with the Metropolis sampling step prevents sample
degeneracy or, in other words, maintains the sample diversity and, thus, the exploration
of the solution space. To make use of the search information obtained by the particle
filter, the mean of particles x̄k and the best particle x�k obtained thus far are identified and
assumed to be close to the optimum. The new/displacement particles x′ will hence be
generated around the promising region using genetic operators, i.e., the typical mutation
and crossover operators. Subsequently, the displacement will be either accepted or rejected
according to a dynamically calculated probability, called the acceptance probability. In the
proposed PF-MOA, the acceptance probability for the displacement of the i-th particle

(
xi)

is calculated by
ρ = min

{
π̃k
(
x′
)
/π̃k

(
xi
)

, 1
}

. (19)
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Algorithm 4 A Metropolis sampling method based on genetic operators.

Input: The current particles
{

xi
k
}N

i=1 and the current target pdf π̃k , the mean of particles x̄k and the best particle
x�k obtained thus far.

Output: the new particles;
1: for i = 1 : N do
2: Perform the genetic operator on x̄k and x�k and generate a new particle x′.
3: Calculate acceptance probability via Equation (19) and replace xi

k by x′ with

xi
k =

{
x′, with probability ρ
xi

k , with probability 1− ρ
(20)

4: Update x�k = x′, if π̃k(x
′) > π̃k

(
x�k
)
.

5: end for
6: Return updated particles;

4. Comparative Studies

In this section, numerical experiments are conducted on nine three-objective bench-
mark problems taken from the DTLZ test suite. To examine the efficiency of the proposed
strategies, the proposed PF-MOA is compared with state-of-the-art multi-objective evolu-
tionary algorithms, NSGA-II [9], RVEA [11], MOEA/D [10], NSGA-III [13], MOEA/DD [15]
and θ-DEA [14]. Our code is available at https://github.com/xw00616/PF-MOA (accessed
on 1 November 2022).

In the following section, we begin with briefly introducing the test problems and
performance metrics adopted in our paper. Afterwards, the details of the experimental
settings concerning the four compared algorithms are described. Lastly, the experimental
results together with the Wilcoxon rank sum test are presented and discussed.

4.1. Test Problems

In our experiments, the proposed algorithm is compared with three state-of-the-
art multi-objective optimization algorithms on DTLZ [34] and WFG [35] test suites with
three objectives. The number of decision variables for the DTLZ test instances is set to
D = M + K− 1, where K = 5 is adopted for DTLZ1, K = 10 is used for DTLZ2 to DTLZ6,
and K = 20 is employed in DTLZ7. The number of decision variables for the WFG test
instances is set to 12. M represents the number of objectives; here, we set M = 3.

4.2. Performance Metrics

The inverted generational distance (IGD) [36] metric and hypervolume (HV) [37]
metric are adopted to assess the performance of the algorithms. IGD and HV provide a
combined information of the convergence and diversity of the obtained set of solutions.
The PlatEMO toolbox [38] is used to calculate values of the performance metric in our
experiments. Let P∗ be a set of uniformly distributed solutions sampled from objective
space along the theoretical Pareto front. Let P be an obtained approximation to the Pareto
front. Let P∗ be a set of uniformly distributed solutions sampled from objective space along
the theoretical Pareto front. IGD measures the inverted generational distance from P∗ to P,
defined as

IGD(P∗, P) = ∑υ∈P∗ d(υ, P)
|P∗| (21)

where d(υ, P) is the minimum Euclidean distance between υ and all points in P. The smaller
IGD value, the better the achieved solution set is.

HV calculates the volume of the objective space dominated by an approximation set P
and dominates P∗ sampled from the PF.

HV = volume
(
∪j

i=1ϑi

)
(22)
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where ϑi represents the hypervolume contribution of the i-th solutions relative to the
reference points. All HV values presented in this paper are normalized to [0, 1]. Algorithms
achieving a larger HV value are better.

4.3. Experimental Settings

We ran each algorithm on each benchmark problem 20 independent times, and the
Wilcoxon rank sum test was calculated to compare the mean of 20 running results obtained
by PF-MOA and by the compared algorithms at a significance level of 0.05. Symbols “(–)”,
“(+)” and “(≈))” indicate that the proposed algorithm shows significantly better, worse
and similar performance than the compared algorithm, respectively.

The PF-MOA was implemented in MATLAB R2019a on an Intel Core i7 with 2.21
GHz CPU, and the compared algorithms were implemented in PlatEMO toolbox [38]. The
general parameter settings in the experiments are given as follows: (1) The maximum
number of function evaluations FEmax = 10, 000. (2) For PF-MOA: the population size
was set to 100 and the maximum number of generations was set to 100. (3) For the
three multiobjective evolutionary algorithms: the population size was set to 100 and the
maximum number of generations was set to 100. The specific parameter settings for each
compared algorithm were the same as recommended in their original papers.

4.4. Experimental Results

The statistical results in terms of IGD and HV values obtained by the four algorithms
are summarized in Table 1 and Table 2, respectively. For the DTLZ test problems, it is
apparent that the proposed PF-MOA achieved the best approximate Pareto front on all
test problems except for DTLZ6 and DTLZ7 (NSGA-II obtained the best IGD values).
The reason behind this may be that DTLZ6 has a plenty of disconnected Pareto optimal
regions in the decision space, and DTLZ7 has a discontinuous Pareto front. Hence, it
is challenging to design proper target distributions in PF-MOA, which further degrades
PF-MOA’s performance.

According to the Wilcoxon rank sum test, the proposed algorithm significantly outper-
formed the compared algorithms on most of the test problems. For the WFG test instances,
PF-MOA showed significantly better performance than the algorithms under comparison
on six out of nine test instances, confirming the promising performance of the proposed
PF-MOA. More specifically, taking WFG5 as an example, the objective multimodality
was combined with landscape deception, and the proposed PF-MOA showed the worst
performance compared with the other algorithms.

A possible explanation for this is that the deceptive objectives may impact the design
of the target distributions, and the information form the previous subproblem does not
provide sufficient information to help the algorithm generate good tradeoff solutions for
the current subproblem. Moreover, similar observations can be made from Table 2.

To further illustrate the performance of the proposed algorithm, the obtained Pareto
front for each algorithm is illustrated in Figure 1. We observed that the proposed method
can find a set of well-converged and diverse Pareto optimal solutions, thereby, confirming
the effectiveness of the particle filter in the PF-MOA.
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Table 1. Statistical results of the IGD values obtained by NSGA-II, RVEA, MOEA/D, MOEA/DD,
NSGA-III, θ-DEA and PF-MOA with the same number of real function evaluations.

Problem D MOEA/D NSGA-II RVEA NSGA-III MOEA/DD θ-DEA PF-MOA
DTLZ1 7 2.41e-1 (3.56e-1) − 4.00e-1 (4.17e-1) − 4.67e-1 (2.83e-1) − 1.86e-1 (1.73e-1) ≈ 3.51e-1 (2.36e-1) − 2.22e-1 (3.58e-1) − 1.27e-1 (7.06e-2)
DTLZ2 12 5.48e-2 (2.21e-4) − 6.96e-2 (2.44e-3) − 5.59e-2 (6.45e-4) − 5.51e-2 (2.45e-4) − 5.54e-2 (1.95e-4) − 5.48e-2 (4.76e-5) − 4.11e-2 (1.01e-2)
DTLZ3 12 1.18e+1 (6.40e+0) − 1.02e+1 (6.66e+0) − 1.63e+1 (5.65e+0) – 1.04e+1 (2.75e+0) − 2.22e+1 (1.07e+1) − 1.06e+1 (1.10e+0) − 1.79e+0 (3.79e+0)
DTLZ4 12 4.89e-1 (3.50e-1) + 1.15e-1 (1.44e-1) + 5.59e-2 (5.89e-4) + 5.51e-2 (1.20e-4) + 5.55e-2 (7.39e-4) + 5.49e-2 (7.99e-5) + 6.48e-1 (2.32e-1)
DTLZ5 12 3.23e-2 (7.34e-4) − 6.10e-3 (3.36e-4) − 8.45e-2 (1.70e-2) − 1.27e-2 (2.16e-3) − 3.13e-2 (1.03e-3) − 3.01e-2 (2.18e-3) − 3.87e-3 (1.21e-3)
DTLZ6 12 2.09e-1 (3.93e-1) + 3.58e-2 (1.61e-1) + 1.46e-1 (1.42e-1) + 1.89e-2 (2.42e-3) + 1.00e-1 (1.39e-1) + 3.81e-2 (1.71e-3) + 7.63e+0 (3.62e-1)
DTLZ7 22 2.19e-1 (1.99e-1) + 1.13e-1 (6.90e-2) + 2.02e-1 (5.32e-2) + 1.61e-1 (1.39e-1) + 4.29e-1 (2.44e-1) + 9.62e-2 (5.39e-3) + 7.45e+0 (6.91e-1)
WFG1 12 6.84e-1 (1.00e-1) + 5.72e-1 (8.19e-2) + 7.62e-1 (8.89e-2) 1.03e+0 (3.60e-2) ≈ 1.51e+0 (6.12e-3) − 1.01e+0 (4.76e-2) ≈ 1.82e+0 (1.41e-1)
WFG2 12 3.33e-1 (7.77e-2) − 2.24e-1 (9.68e-3) − 2.16e-1 (1.22e-2) − 1.75e-1 (7.12e-3) − 1.91e-1 (9.10e-3) − 1.60e-1 (2.81e-3) − 2.03e-2 (2.65e-2)
WFG3 12 3.55e-1 (1.24e-1) − 1.29e-1 (2.21e-2) + 2.65e-1 (2.41e-2) − 1.65e-1 (1.40e-2) ≈ 3.79e-1 (1.12e-1) − 1.43e-1 (1.99e-2) + 2.18e-1 (1.51e-2)
WFG4 12 2.91e-1 (1.25e-2) − 2.82e-1 (1.04e-2) − 2.69e-1 (7.74e-3) − 2.32e-1 (1.67e-3) − 2.48e-1 (3.02e-3) − 2.29e-1 (1.10e-3) − 1.60e-1 (2.68e-2)
WFG5 12 2.73e-1 (9.26e-3) + 2.85e-1 (1.22e-2) + 2.61e-1 (7.34e-3) + 2.37e-1 (2.13e-3) + 2.52e-1 (1.05e-3) + 2.36e-1 (1.38e-3) + 6.87e-1 (2.43e-2)
WFG6 12 3.44e-1 (2.25e-2) − 3.29e-1 (1.92e-2) − 3.37e-1 (2.06e-2) − 2.78e-1 (2.12e-2) − 3.04e-1 (2.23e-2) − 2.67e-1 (1.35e-2) − 1.71e-1 (3.38e-2)
WFG7 12 4.17e-1 (5.34e-2) − 2.83e-1 (1.04e-2) ≈ 2.89e-1 (1.33e-2) − 2.32e-1 (1.13e-3) ≈ 2.66e-1 (1.56e-2) ≈ 2.29e-1 (8.96e-4) ≈ 2.63e-1 (5.54e-2)
WFG8 12 3.78e-1 (2.51e-2) + 3.75e-1 (1.02e-2) + 3.74e-1 (1.39e-2) + 3.20e-1 (5.91e-3) + 3.37e-1 (7.67e-3) + 3.16e-1 (6.32e-3) + 5.48e-1 (3.59e-2)
WFG9 12 3.70e-1 (6.98e-2) − 2.84e-1 (2.24e-2) − 2.78e-1 (3.30e-2) − 2.38e-1 (3.51e-3) − 2.61e-1 (1.63e-2) − 2.35e-1 (4.19e-3) − 1.21e-1 (2.11e-2)
+/−/≈ 6/10/0 7/8/1 6/10/0 5/7/4 5/10/1 6/8/2

Table 2. Statistical results of the HV values obtained by NSGA-II, RVEA, MOEA/D, MOEA/DD,
NSGA-III, θ-DEA and PF-MOA with the same number of real function evaluations.

Problem D MOEA/D NSGA-II RVEA NSGA-III MOEA/DD θ-DEA PF-MOA
DTLZ1 7 6.21e-1 (3.49e-1) − 3.60e-1 (4.02e-1) − 2.12e-1 (2.86e-1) − 4.57e-1 (3.40e-1) − 2.27e-1 (3.15e-1) − 5.78e-1 (3.33e-1) − 9.28e-1 (7.50e-2)
DTLZ2 12 5.55e-1 (6.99e-4) − 5.29e-1 (7.43e-3) − 5.51e-1 (2.97e-3) − 5.55e-1 (6.66e-4) − 5.54e-1 (8.13e-4) − 5.56e-1 (5.04e-4) − 6.91e-1 (1.01e-4)
DTLZ3 12 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 0.00e+0 (0.00e+0) − 2.00e-2 (1.27e-2)
DTLZ4 12 2.91e-1 (1.12e-1) ≈ 4.96e-1 (8.42e-2) + 5.53e-1 (1.93e-3) + 5.56e-1 (8.24e-4) + 5.55e-1 (1.45e-3) + 5.55e-1 (4.87e-4) + 2.48e-1 (1.32e-1)
DTLZ5 12 1.82e-1 (4.00e-4) − 1.98e-1 (3.78e-4) − 1.48e-1 (4.11e-3) − 1.93e-1 (1.91e-3) − 1.82e-1 (2.29e-4) − 1.83e-1 (6.22e-4) − 4.87e-1 (2.51e-4)
DTLZ6 12 1.77e-1 (3.83e-3) + 1.99e-1 (1.59e-4) + 1.35e-1 (2.14e-2) + 1.90e-1 (1.28e-3) + 1.54e-1 (4.42e-2) + 1.81e-1 (1.71e-3) + 0.00e+0 (0.00e+0)
DTLZ7 22 2.32e-1 (9.16e-3) + 2.47e-1 (3.41e-3) + 2.06e-1 (2.69e-2) + 2.39e-1 (1.33e-2) + 2.11e-1 (1.70e-2) + 2.53e-1 (1.69e-3) + 0.00e+0 (0.00e+0)
WFG1 12 3.72e-1 (2.30e-2) − 4.91e-1 (4.72e-2) ≈ 4.58e-1 (2.91e-2) − 4.60e-1 (1.22e-2) ≈ 2.82e-1 (5.79e-3) − 4.61e-1 (1.74e-2) ≈ 4.78e-1 (1.41e-2)
WFG2 12 8.20e-1 (3.14e-2) − 9.07e-1 (6.22e-3) − 8.93e-1 (1.12e-2) − 9.09e-1 (2.33e-3) − 8.93e-1 (1.04e-2) − 9.16e-1 (4.92e-3) − 9.59e-1 (1.32e-2)
WFG3 12 2.71e-1 (2.63e-2) − 3.77e-1 (5.82e-3) − 2.97e-1 (1.68e-2) − 3.53e-1 (9.30e-3) − 2.57e-1 (4.44e-2) − 3.61e-1 (1.62e-2) − 4.78e-1 (2.11e-2)
WFG4 12 4.91e-1 (1.41e-2) − 5.01e-1 (6.63e-3) − 5.17e-1 (2.21e-3) − 5.26e-1 (2.51e-3) − 5.19e-1 (3.28e-3) − 5.32e-1 (1.82e-3) − 9.51e-1 (5.11e-3)
WFG5 12 4.77e-1 (8.04e-3) ≈ 4.81e-1 (2.91e-3) + 4.98e-1 (3.27e-3) + 5.06e-1 (4.35e-3) + 4.94e-1 (5.37e-3) + 5.05e-1 (3.61e-3) + 4.43e-1 (2.63e-2)
WFG6 12 4.45e-1 (1.90e-2) − 4.41e-1 (1.06e-2) − 4.65e-1 (7.82e-3) − 4.72e-1 (1.58e-2) − 4.55e-1 (2.01e-2) − 4.80e-1 (1.21e-2) − 6.01e-1 (1.63e-2)
WFG7 12 4.41e-1 (2.54e-2) − 5.10e-1 (4.93e-3) − 5.18e-1 (7.89e-3) − 5.31e-1 (2.05e-3) − 5.11e-1 (1.06e-2) − 5.35e-1 (1.96e-3) − 7.63e-1 (1.54e-2)
WFG8 12 4.11e-1 (1.73e-2) − 4.23e-1 (3.71e-3) − 4.31e-1 (1.01e-2) − 4.40e-1 (2.75e-3) – 4.30e-1 (7.56e-3) − 4.44e-1 (6.64e-3) − 7.33e-1 (2.24e-2)
WFG9 12 3.87e-1 (5.17e-2) − 4.84e-1 (7.56e-3) − 4.95e-1 (1.15e-2) − 5.02e-1 (4.90e-3) − 4.92e-1 (7.97e-3) − 5.07e-1 (7.91e-3) − 9.38e-1 (6.11e-3)
+/−/≈ 6/10/0 7/8/1 2/12/2 4/11/1 4/12/0 4/11/1

(a) MOEA/D (b) NSGA-II (c) RVEA (d) NSGA-III

(e) MOEA/DD (f) θ-DEA (g) PF-MOA

Figure 1. The Pareto front obtained by the compared algorithms on DTLZ5.
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5. Conclusions

In this paper, we extended the particle filter optimization method from single-objective
optimization to multiobjective optimization. The Tchebycheff decomposition was used to
decompose a multi-objective optimization into a set of single-objective problems so that a
sequence of target distribution was defined. Subsequently, the particle filter was adopted
to simulate these target distributions by using its tracking ability, and genetic operators
were employed to perform the particle move. The experimental results on the DTLZ test
suite showed the promising performance of PF-MOA compared with three state-of-the-art
multi-objective evolutionary algorithms.

However, PF-MOA cannot effectively solve certain problems with discontinuous
optimization problems, such as DTLZ6 and DTLZ7. The reason may be that PF-MOA
always searches around the best particle, thereby, reducing the diversity of all the particles;
however, the lack of diversity cannot be addressed by the resampling step, which should be
considered in future work. Moreover, for real-world multiobjective optimization problems,
uncertainty is an unavoidable issue, and it directly affects the optimization performance.
As the filtering methods have been successfully applied to noisy MOPs, the particle filter
may benefit MOEAs for solving MOPs with uncertainty.
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Abstract: Solving real-world multi-objective optimization problems using Multi-Objective Optimiza-
tion Algorithms becomes difficult when the number of objectives is high since the types of algorithms
generally used to solve these problems are based on the concept of non-dominance, which ceases
to work as the number of objectives grows. This problem is known as the curse of dimensionality.
Simultaneously, the existence of many objectives, a characteristic of practical optimization problems,
makes choosing a solution to the problem very difficult. Different approaches are being used in the
literature to reduce the number of objectives required for optimization. This work aims to propose a
machine learning methodology, designated by FS-OPA, to tackle this problem. The proposed method-
ology was assessed using DTLZ benchmarks problems suggested in the literature and compared
with similar algorithms, showing a good performance. In the end, the methodology was applied to
a difficult real problem in polymer processing, showing its effectiveness. The algorithm proposed
has some advantages when compared with a similar algorithm in the literature based on machine
learning (NL-MVU-PCA), namely, the possibility for establishing variable–variable and objective–
variable relations (not only objective–objective), and the elimination of the need to define/chose a
kernel neither to optimize algorithm parameters. The collaboration with the DM(s) allows for the
obtainment of explainable solutions.

Keywords: objectives reduction; data mining; multi-objective optimization; many objectives

1. Introduction

Real-world optimization problems are usually multiobjective, in which multiple con-
flicting objectives must be taken into account simultaneously. Manly, there are two ways to
tackle these types of problems, scalarization functions and population-based algorithms.
The use of scalarization functions presented some drawbacks, which led to the develop-
ment of population-based metaheuristics that use the concept of Pareto-dominance and
niching to evolve a population of solutions in the direction of the Pareto-optimal front [1,2].

There are at least three basic types of population-based algorithms commonly em-
ployed to solve Multiobjective Optimization Problems MOPs, namely, evolutionary algo-
rithms, swarm-based methods, and colony-based algorithms, which can use the dominance
concept, the metric indicators, or the decomposition strategy [3]. In most of these algo-
rithms, a random initial population of solutions is generated and the new populations are
consecutively obtained by selection and variation strategies until a stop criterion is met.
It is expected from this procedure that the successive populations evolve towards, or to
a good approximation of, the Pareto-optimal frontier. In each one of these populations,
complex relations exist between the Decision Variables (DVs) and the objectives, as well as
between DVs and DVs and objectives and objectives.

These algorithms work well when the number of objectives is low; however, as the
number of objectives grows, the percentage of non-dominated solutions decreases, making
it difficult for an algorithm based on Pareto-dominance to work effectively, a problem that
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is known as the curse of dimensionality. There is no consensus on the number of objectives
for which this problem occurs; some authors indicate this number as ten [4] and others as
four [5], but in reality, these difficulties arise when the number of objectives is four or more.

Two different methods are used to deal with this problem, either using relaxed forms
of Pareto optimality or reducing the number of objectives [5]. The reduction of the number
of objectives is useful either for the search process or for the decision-making process
during and/or at the end of the optimization.

In previous years, some work related to objective reduction for many objectives
optimization was proposed in the literature, which can be sub-divided into four different
categories: (i) methods in which the aim is to maintain the dominance relation for the
non-dominated solutions [6,7]; (ii) methods based on unsupervised feature selection [8];
(iii) methods based into a comparative analysis between the results obtained when the
number of objectives is reduced [9]; (iv) methods based on data mining [5,10–12]; and
methods based on the use of multi-objective formulations [13]. These approaches will be
presented in more detail here.

Brockoff and Zitzler [6,7] suggested the use of two different approaches for objectives
reduction, which are based on the definition of two types of problems. The first problem
aims to obtain the minimum objective subset that produces a certain error (δ), designated
by δ-MOSS problem (δ- Minimum Objective Subset problem), and the second problem
aims to obtain an objective subset of a predefined size (k) with the minimum possible
error, designated by k-EMOSS problem. For each one of these cases, two algorithms were
presented, an exact and a greedy algorithm, characterized for maintaining the dominance
relation. They were tested using different knapsack problems and the DTLZ2, DTLZ5, and
DTLZ7 benchmark problems for different numbers of objectives.

In López et al. [8], a methodology based on unsupervised feature selection was pro-
posed to address the δ-MOSS and k-EMOSS problems. A correlation matrix obtained from
the non-dominated set is used to divide the objective set into homogeneous neighbour-
hoods. Then, based on the idea that if the distance between the objectives is higher, this
signifies that those objectives are more conflicting. Thus, only the objectives in the centre
of those neighbourhoods are chosen and the others are discarded. The algorithms were
validated by comparing the results obtained with those of the reference [7].

Singh et al. [9] proposed an algorithm, designated by the Pareto Corner Search Evo-
lutionary Algorithm (PCSEA) that, instead of searching for the complete Pareto front,
searches for the corners of the Pareto front based on a ranking scheme. Those solutions
are used to identify the relevant objectives and the others are discarded. Some bench-
mark problems and two engineering problems were used to show the performance of the
methodology proposed.

Deb and Saxena [10] suggested an approach based on Principal Component Analysis
(PCA) for the same purpose of objectives reduction, considering the hypothesis that if
two objectives are negatively correlated, they are conflicting. In this way, they maintain
the objectives that can explain most of the variance in the objective space, which are
the most positive and the most negative of the eigenvectors of the correlation matrix.
The authors designated this method as PCA-NSGAII. Afterwards, due to the problem of
misinterpreting the data when it lies in sub-manifolds, a new proposal is made based on
nonlinear dimensionality reduction [11]. For that purpose, the authors developed two
new algorithms to replace the linear PCA, one based on correntropy [14] and the other
on Maximum Variance Unfolding (MVU). However, the method lacks information on the
means by which objective reduction alters the dominance structure, cannot guarantee the
preservation of the dominance relation and provides no measure to specify how much the
dominance relation changes when objectives are disregarded. The different procedures
proposed were applied to solve DTLZ2 and DTLZ5 benchmark problems for different
numbers of objectives.

Later, the same group, Saxena et al. [5], proposed a framework for using linear and
nonlinear objective reduction algorithms, namely, L-PCA and NL-MVU-PCA, which are
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based on machine learning techniques, PCA and MVU, to remove the secondary higher-
order dependencies in the non-dominated solutions. The idea was very similar to that
of given in previous work by the same authors [10,11], but this time, they proposed a
reduction of the number of algorithm parameters and an error measure. The algorithms
were tested on a broad range of problems and the results were compared with others in the
literature. Based on the same methodology, Sinha et al. [15] proposed an iterative procedure
to reduce the objectives in which a Decision Maker (DM) chose the best solutions. The
methodology was applied to solve some real-world problems, namely storm drainage and
car-side impact. Finally, Duro et al. [12] proposed to extend the methodology presented in
reference [5] to rank all objectives by a preference order, as well as to solve the δ-MOSS and
k-EMOSS problems, i.e., to obtain the smallest set of objectives that can originate the same
POF, and the smallest objective set corresponding to a minimum pre-defined error and the
objective sets of a certain size that originates a minimum error.

The main drawback of all these methodologies based on PCA is that they need to use
a kernel and, as a consequence, to optimize the kernel parameters. The characteristics of
this methodology, NL-MVU-PCA, were compared with the one proposed in the present
paper at the end of the next section.

Yuan et al. [13] proposed a methodology based on the use of multi-objective evo-
lutionary algorithms to solve a MOOP formulation. The authors applied this approach
to some benchmark problems and two real optimization problems. In both cases, the
calculation of the objective functions is based on simple analytical equations where the
computational cost is not relevant when compared with the problems that we intend to
solve here, which are based on numerical calculation. Therefore, besides performance, this
type of methodology will not be explored in the present work.

The present paper aims to propose a method for objectives reduction based on data
mining that:

1. can be applied independently on the type and the size of the data and the shape of
the Pareto-optimal front,

2. is independent from the choice/definition of the algorithm parameters,
3. considers the relations DVs-DVs and objectives-objectives (and not only the relations

between the DVs and objectives), and
4. can provide explainable results for a DM that is a non-expert in optimization or

machine learning.

The central aim of the works cited above was to find a reduced set of objectives that
could exactly reproduce the results from the original set. Thus, only the redundant objec-
tives could be discarded after a reduction process. That is not the aim of the present work,
since our purpose is to apply the proposed methodology to real-world and complex prob-
lems where the relations between DVs and the objectives are complex, and the objectives
are, in general, partially redundant. Thus, redundancy is not a helpful criterion to eliminate
an objective.

For that purpose, a methodology was developed to capture those complex relations
and define the relative importance of the objectives based on the determination of the
objectives–objectives relations. Doing this makes it possible to determine objectives that
can be discarded but with a certain error. In other words, the approximation of the Pareto
optimal found (with the reduced number of objectives) has some error when compared
with the approximation to the optimal Pareto front (when using all the objectives). Simulta-
neously, the redundant objectives are also eliminated. Such an approach has at least two
significant advantages. First, it aids an optimization algorithm in finding a POF estimate;
second, it makes it easier to explain the results found to the DM.

The contents of the paper are as follows: in Section 2, the concepts of machine learning
and the methodology proposed are presented; in Section 3, the methodology is tested using
some benchmarks; in Section 4, the methodology is applied in a real polymer extrusion
problem and the results obtained are discussed and, finally, the conclusions are stated in
Section 5.
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2. Machine Learning Approach

2.1. Concepts

Bandaru et al. [4] reviewed several proposals from Statistics, Data Mining, and Ma-
chine Learning to improve optimization techniques for MaOPs. The approaches usually
apply data-driven methods to the solutions in a non-dominated set. The authors arranged
the proposals based on the knowledge representation and summarized them into three
main classes: (i) Descriptive Statistics, (ii) Visual Data Mining and (iii) Machine Learning
itself. Those methods have an origin outside the MOO literature. Thus, they usually are
not applied to find properties between variables, objectives, and the non-dominated set. In
general, the relatively complex nature of those relations makes their performance inade-
quate for MaOPs. Other drawbacks relate to some classes of real-world MaOPs that require
interactions with a practitioner due to the complexity of the system modelled or for a stake-
holder making decisions. Usually, such classes of problems also involve raw or observed
data or small datasets (due to the expensiveness of generating, collecting, or simulating
samples) involving different data types, varying from continuous to nominal variables.
This way, methods that produce explainable models and work with distinct data types
are essential for those real-world problems. The strategies proposed by Duro et al. [12]
and Bandaru et al. [16] have overcome some of those challenges, including an interactive
approach for dealing with two and three objectives and pattern recognition from nomi-
nal variables. Another proposal facing those challenges is FS-OPA, initially designed for
multidimensional analysis focused on MaOPs. FS-OPA generates explainable (explicit)
models, has a relatively low computational cost (aiming at working with high dimensional
decisions and objective spaces), and can deal with different data types and their mixtures.

First, this paper compares the principal features of an extension of FS-OPA to the
NL-MVU-PCA approach (Duro et al. [12]) for determining the essential objective set. NL-
MVU-PCA learns a Kernel matrix by unfolding a high-dimensional data manifold subject
to local constraints that preserve the local isometry. Then, eigenvalues are used to identify
the principal dimensions that should correspond to a set of conflicting objectives. On
the other hand, FS-OPA uses no manifold learning; it maps the problem’s fundamental
structures into one or more phylograms (not a Cartesian graphical representation). FS-OPA
employs data clustering, but not in the usual way, since it instantiates DAMICORE [17], a
pipeline with Normalized-compressions distance (NCD), Neighbor-Joining (NJ), and Fast
Newman algorithm, that produces intermediate representations enabling the detection of
the strongest associations of dimensions. The embedding produced by FS-OPA does not
focus on reducing the decision (or objective) space; otherwise, it augments the space by
adding new variables, the internal nodes of the phylogram (while the terminal nodes corre-
spond to the original variables). The phylogram construction also searches for preserving
the isometry for different neighborhood sizes. Finally, FS-OPA can obtain similar results
as manifold learning (i.e., the determination of the essential dimensions) by finding the
closest common ancestors in a phylogram (a clade) and the frequency of common ancestors
between clades (obtained from several phylograms by data resampling). Such ancestors
highlight the principal relationships between variables and/or objectives.

Second, this paper applies the extension FS-OPA to the MOO of extruders, which
requires dealing with the relatively poor data from initial populations of an MOEA. In other
words, there is an assumption that the solutions belonging to a specific Pareto-optimal
front have some characteristics that identify the optimal behavior of the process considered.
The critical question is to know if it is possible, from a set of random solutions, as the initial
population of an MOEA, to extract information about the complex relationship between
the DVs and the objectives and between objectives and objectives. Therefore, the idea is
to capture this type of information using data mining methods from multivariate data,
independently of its location on the objectives or decision variables spaces, i.e., if the data
represents or is not optimal (or near optimal) solutions. Moreover, no distinction between
DVs and objectives will be made.
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2.2. FS-OPA

The foundations of FS-OPA are based on two methodologies that deal with large-scale
and multidimensional data of any type, named DAMICORE [17] and FS-OPA [18]. The
latter is a pipeline involving methods from Information Theory, Complex Networks, and
Phylogenetic Inference, aiming at revealing hidden relationships of objects from an unstruc-
tured (raw) dataset. It runs in three main Steps: (S1) given a metric of similarity, build a
distance matrix comparing every two objects; (S2) convert the matrix into a phylogenetic
tree by connecting close objects according to hierarchical levels of similarity; (S3) apply a
community detection process to group near subtrees into clusters. Figure 1 shows a set
of generic objects xi. The elements dij of the distance matrix correspond to a measure of
dissimilarities between objects xi and xj, according to some given metric. The matrix is
broken down into a tree, where the distance between any two objects (leaves) corresponds
to the sum of the lengths of the branches connecting them. Finally, the third step merges
objects strongly connected (according to the tree topology) into a community, generating a
set of different similarity clusters.

Figure 1. The tree-steps of the pipeline DAMICORE (reproduced from [18]).

The first implementation of DAMICORE used three specific algorithms for S1, S2,
and S3 (Figure 1), respectively, Normalized Compression Distance (NCD) [19], as it works
with for any data type and mixed types; Neighbor-Joining (NJ) [20], widely employed
in bioinformatics; and Fast Newman (FN) [21], that constructs a graph partition using a
greedy algorithm based on a bottom-up strategy for maximizing the graph modularity
function [22]. The pipeline with NCD, NJ, and FN possesses some distinctive properties.
NCD makes DAMICORE a data-type agnostic method; in the sense that it works with
any object (continuous, discrete, categorical-ordinal, and nominal variables, texts, images,
audio, etc.) and a mixture of data types.

DAMICORE has some properties that make it proper for dealing with problems with a
low level of previous knowledge, carried out by non-experts, or that would require a large
multidisciplinary team of experts. First, it can run without any data pre-processing (such
as filtering, outlier detection, feature extraction, parameter setup, and knowledge of the
problem domain). Second, it requires no parameters setup to run and is therefore not biased
toward arbitrary tuning constants. Naturally, pre-processing steps and some execution op-
tions may improve the DAMICORE performance. Its success in such a challenge has been
checked for problems in a variety of fields, such as software-hardware co-design [23–25],
compiler optimization [26], student profiling in e-learning environments [27,28], identifica-
tion of phytopathology from sensor data [29], systematic literature review, identification of
cross-cut concerns [30], and electrical distribution systems [31].

A Feature Sensitivity (FS) analysis aims to make salient the principal features of a
problem (that may differ from selecting the main components), facing common challenges
in some classes of real-world problems. For example, the quality of observed data, the
database consistency and representativeness, and the discovery of interactions between
features and their contributions to each target or objective are hard to check from a raw
dataset with low previous domain knowledge. Thus, such a scope differs from those
where the standard feature selection algorithms have usually succeeded. Moreover, an FS
strategy is expected to aid in learning the fundamental structures of a complex problem

243



Math. Comput. Appl. 2023, 28, 17

from scratch. The learned structures can induce a probabilistic model used by optimization
algorithms, such as in the Estimation of Distribution Algorithms [32]. In this research, we
use phylogram-based models since they can work with small datasets, they are compu-
tationally efficient, and there is an optimization approach designed to use such models:
Optimization based on Phylogram Analysis (OPA).

Figure 2 shows a diagram summarizing OPA and its use of the FS analysis. Such
a combination is called FS-OPA. The two main FS steps are (A) "Salienting Samples (SS)
according to a criterion" and (B) applying DAMICORE to construct a phylogram-based
model. SS ranks the samples according to each of the M criteria (or non-dominated fronts),
producing the sets of selected samples (Figure 3), denoted BC1 (the samples in the best
quantile according to Criterion 1), BC2, . . . , BCM. DAMICORE constructs a phylogram (a
rough model) from BCi, i = 1, . . . , M, generating M models (BC1-based model, . . . , BCM-
based model). Then, a consensus strategy produces a unified phylogram-based model. An
OPA cycle completes when the unified model generates new samples.

Figure 2. Diagram of the Optimization based on Phylogram Analysis—OPA.

 
Figure 3. SS procedure that obtains the selected samples is shown in Figure 2.

OPA performance has been verified for relatively complex combinatorial mono- and
multi-objective optimization problems [32]. Basic proofs concerning (stochastic) conver-
gence to optima and time–space complexity have been provided [32,33].

2.3. Comparison of FS-OPA with NL-MVU-PCA for MaOPs Data-Driven Structural Learning

NL-MVU-PCA is the primary method used by Duro et al. [12] for finding the essential
objective set in MaOPs. Such a scheme also runs PCA based on the objective–function
correlation matrix, aiming to improve objectives’ preference ranking. On the other hand,
NL-MVU-PCA maximizes the variance in objective space while preserving the local isome-
try (common property in dimensionality reduction through embedding’s). NL-MVU-PCA
is computationally more complex than PCA since the former solves an optimization prob-
lem. The non-linear (NL) approach performs the optimization of the Kernel (Gram) matrix
values by minimizing the Maximum Variance Unfolding (MVU) to find the best mapping
that preserves the geometric properties of each neighbourhood.
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Table 1 synthesizes some relevant properties of NL-MVU-PCA and FS-OPA for MaOPs.
The latter analyses three types of associations: variable-variable (producing results similar
to the Gibbs measure for Ising Models or Markov Random fields [34]), objective–objective
(the dissimilarities, when found, can favour the construction of (non-dominated) front
distributions [35]), and the variable–objective (that may benefit inference as Markov Blan-
kets [36]). The former works on the objective space for space reduction to determine
the essential objective set [12]. FS-OPA also has other properties that are relevant for
some classes of real-world problems: (i) it preserves the original variable space, which
favours non-experts interpretability; (ii) it works with any data type (continuous, discrete,
categorical—not only ordinal, but also nominal data, addressed by Bandaru et al. [4]) and
mixed types (proper for multiple heterogeneous databases with observed data); (iii) it has
a relatively low time complexity; (iv) and, finally, it has generated applicable models when
applied to learn from small datasets [17,23–31].

Table 1. NL-MVU-PCA and FS-OPA for multidimensional data-driven structural learning applied to
real-world MaOPs.

Category Types NL-MVU-PCA FS-OPA

Analyses

Objective-objective X X

Variable-variable X

Variable-objective X

Objective space reduction X

Sensitivity X

Priors
Kernel function usage X Not necessary

Parameter optimization X # Not necessary

Variable and
objective

representation

Continuous X X

Discrete (integers, real intervals) X X

Ordinal X X

Nominal X X

Mixed X

Explainability
Implicit X

Explicit (The Why) X

User-
friendliness

Stakeholders can easily run FS-OPA
and understand results even for a
large number of variables and/or

objectives

X

Scalability

Time-complexity Usual cases O(M3q3) * O(l3) **

The worst case O(M6) O(nl2 + l3)

Sample-size support Empirical Theoretical and
empirical

* M is the number of objectives, and q is the number of clusters; ** l is the number of variables and objectives, and
n is the number of data resamples; # Reference [5] shows that one can avoid parameter optimization for a new
problem by choosing q = M − 1 for NL-MVU-PCA.

Reference [5] shows the use of NL-MVU-PCA for a mixed-variable problem, the
gearbox problem (with continuous and discrete variables and continuous objectives). NL-
MVU-PCA works on the (continuous) objective vectors for the gearbox problem. It differs
from the meaning of mixed in Table 1, which relates to both the variable and objective
representation (important for the “explicit explainability”), i.e., the mixture may include
data vectors simultaneously from both spaces with different types. Moreover, FS-OPA
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can naturally work with any number of combinations of data types due to its foundation
on NCD.

Concerning Explainability, "Explicit" means to provide a knowledge representation
(with clues for "The Why" as the potential influence of variables on objectives) that benefits
decision-maker interaction, while "Implicit" refers to the capacity to reveal the objectives’
relative importance for an optimization problem, e.g., by ranking them.

The Feature Sensitivity (FS) analysis of FS-OPA aims at finding the variable and/or
objective data-driven interactions to construct structural (graph-based) and probabilistic
modelling. Probabilistic results are fundamental when dealing with the odds of bias in
observed data or small-data sampling. Explainability is also essential for some classes of
real-world problems, mainly those concerning decisions by stakeholders. Moreover, a user-
friendly tool (instantiating the FS-OPA methodology) is relevant for real-world applications
involving practitioners or stakeholders who are not optimization or artificial intelligence
experts. Variable–variable and variable–objective interactions can also benefit practitioners’
comprehension (The Why), increasing their confidence. Finally, the phylogram-based
representation of those interactions has scaled up the understanding of results for some
problems with dozens of variables or objectives (note that the interactive data mining
approach proposed by Bandaru et al. [4] works with two or three objectives).

Table 1 also shows the time complexity for usual cases and the worst case to estimate
the overhead of both procedures. The number of clusters in NL-MVU-PCA relates to the
number of constraints to maintain the local isometry (M q; but in the worst case q = M − 1,
resulting in M2) [12]. FS-OPA with usual resampling is O(l3) since n≤ l (as in leave-one-out
resampling) [34]. Moreover, l = M in a space analysis only uses objectives. Thus, the time
complexities of FS-OPA and NL-MVU-PCA have a ratio (n + M)/M4 (l/q3) of running time
for l = M in the worst case (in the usual case).

Another relevant factor is the minimal samples required to ensure reliable findings.
Usually, the sample size for the PCA-based approach is empirically determined. FS-OPA
has a theoretical model to decide the minimal amount of samples that guarantees high
confidence in the results, which has been empirically corroborated for relatively complex
problems in the decision space of binary variables [32].

2.4. FS-OPA Framework

Figure 4 shows a flowchart of the global procedure of FS-OPA to reduce the number
of objectives. Two options exist (i) automatic procedure, and (ii) procedure with the
intervention of the DM(s). In the first case, the selection of the number of objectives to be
used in the optimization is defined by the program automatically, using the table of the
distance between objectives and applying the following rules:

1. choose the objective(s) of the less distant clusters;
2. choose one objective of the more distant (single) cluster;
3. choose one objective from each of the remaining clusters.

In the second case, the selection is made by the DM(s), using both the phylogram and
the table with the distance of objectives–objectives, as follows:

1. choose the objective(s) of the less distant clusters;
2. choose one objective of the more distant (single) cluster;
3. choose objective(s) from each of the remaining clusters taking into account, also, the

phylogram and the knowledge of the DM(s) about the process.
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Figure 4. The general procedure of FS-OPA for the reduction of the number of objectives.

The reasons for rules 1 and 2 are different: the less distant cluster is the one that trans-
ports more information concerning the entire process, since it is near most of the decision
variables, while the more distant cluster, besides everything, also has some information
about the process that cannot be lost. The idea is that the intermediate clusters, selected by
rule 3, have some information regarding the process that is already present in the objectives
selected by rules 1 and 2, and thus, the objectives that can be discarded are those that
belong to these clusters.

Both cases will be illustrated in the next section using a practical example. However,
there are advantages and disadvantages to using one or the other. The first procedure
provides the final solution directly, but the DM(s) does not take part in the process, which
can imply some discomfort and distrust with the solution found. This does not happen
when, after the analysis of the initial population of solutions, the DM(s) is confronted with
relevant information about the process and, given these intermediate results, is asked about
a possible way to advance. We are facing a situation in which the results may be explainable
to the DM(s).

3. Examples of Application: DTLZ Benchmark Problems

A strategy to deal with many-objective real-world complex optimization problems
(e.g., those with no explicit objective functions) is prioritizing objectives. In the case
of unknown priorities, their relative importance can be estimated from samples of the
decision space, as proposed in this paper. Such prioritization has a certain resemblance
to the problem of determining the essential objective set, since a redundant objective has
low priority.

The DTLZ problems (with and without redundant objectives) have been used to test the
method’s capacity to find such a set and to evaluate algorithms for many-objective optimization.

Some algorithms have succeeded in finding the set from samples in POF, near POF,
or, for example, from the last generation of an NSGAII run, although more recently, some
of them failed for new challenging problems with other types of redundancies, as shown
in [37]. This way, evaluating how much FS-OPA can estimate objectives’ relevance for
DTLZs from a random population (or from the first fronts of it) may be useful, since they
are well-known problems.

Figure 5A illustrates an FS-OPA output for unconstrained DTLZ5, also used by
Duro et al. [12] for explaining the capacity of their method to find redundant objectives
(objectives f 1, f 2, f 3, f 4, f 5, f 6, f 7, f 8, and f 9 are linearly correlated in DTLZ5). A random
population of size 31 with samples normalized and Euclidian distance was used to obtain
a distance matrix. SS procedure in Figure 3 was not applied. The output of Figure 5A
shows variables and objectives arranged into a phylogram with leaf nodes (the objects
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under analysis) composing clusters (similarly to the end of the pipeline in Figure 1)—they
are identified by the same color.

Figure 5. Phylogram and the clusters found: (A) for unconstrained DTLZ5 with 10 objectives and
(B) for constrained DTLZ5 (2,10).

Objective functions f 1, . . . , f 9 are partitioned into three neighbor clusters ({f 1, f 2}, {f 3,
f 4, f 5, f 6}, and {f 7, f 8, f 9}) in the phylogram structure; while f 10 is together with the leaf
nodes, corresponding to variables. The phylogram structure aggregates f 1, . . . , and f 9
into the same subtree, while f10 is isolated from the other objectives in the complementary
subtree. The unique node with the label "100" (another type of result from a tree consensus)
splits the phylogram into those two subtrees. Such a label (“100”) means that the leaf
nodes f 10 and x1, ..., x10, and f 10 were in the same subtree (with the remaining leaf nodes
in the complementary subtree) in 100% of all the constructed phylograms, independently
of each subtree topology in a phylogram. Such an interpretation suggests a hypothesis:
f 10 is weakly correlated to the other objectives, which are significantly associated with
themselves. Thus, f 10 and one of the other objectives could compose an essential objective
set; this result is consistent with the DTLZ5 problem structure.

Figure 5B shows the proposed phylogram for DTLZ5(2,10) with constraints
(Saxena et al. [5]). It requires an additional variable, x11, to generate samples outside
POF, as samples used to construct a phylogram from Figure 5A. The phylogram from
Figure 5B shows that f 10 is isolated in a subtree, while f 1, . . . , f 9 are in the complementary
subtrees. Such a result suggests that f 10 and f 1 (for example) would enable proper POF
estimates; this result agrees with the DTLZ5(2,10) problem structure.

Figure 6 shows the phylograms obtained by FS-OPA for DTLZs 1–4 obtained from
random populations of size 31 as a way to check if the FS-OPA clues about the objective
relationships are plausible.
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Figure 6. Phylogram and the clusters found for DTLZ1 to DTLZ4 with 10 objectives.

Given that these problems do not have redundant objectives, the unique possibility is
to present some clue about the prioritization of objectives, considering that a reduction in
the number of objectives only can be made with a certain error, as explained before. For
example, the behaviours of functions DTLZ1, DTLZ2, and DTLZ3 are very similar. The
simultaneous analysis of the clusters found and of the distances between objectives and the
decision variables show that objectives can be portioned in the following sets:

• DTLZ1: {f 1}, {f 2, f 3, f 4, f 5}, {f 6, f 7, f 8}, {f 9} and {f 10};
• DTLZ2: {f 1}, {f 2, f 3, f 4, f 5}, {f 6, f 7, f 8}, {f 9} and {f 10};
• DTLZ3: {f 1}, {f 2, f 3, f 4}, {f 5, f 6, f 7, f 8}, {f 9} and {f 10};
• DTLZ4: {f 1}, {f 2, f 3, f 4}, {f 5, f 6} and {f 7, f 8, f 9, f 10};

This signifies that a possible hierarchization of the objectives for these problems can
be made by selecting, in the first step, a single objective of the groups identified above and
then, by selecting all the others to a second level.

In addition, all the objectives in the phylograms found for DTLZ2 and DTLZ4 are not
in a subtree without a variable. That may mean that the disagreement of objectives of those
two problems is more salient from an initial random sampling.

However, the objective of this paper is not only to define the minimum number of
objectives that can be used without error but also to identify the situations where the
reduction can be done with a certain error. Anyway, a deep analysis will be necessary here,
which is outside of the scope of the present paper.

The FS-OPA also produces other outputs (useful for human comprehension of some
classes of real-world problems), which are explored in Sections related to the extrusion problem.

4. Polymer Extrusion Problem

4.1. The Problem to Solve

To demonstrate the complexity of this system regarding the modelling program and
the interrelations between the decision variables and the objectives, some details are
given here. However, the system is much more complex, as can be seen in the following
references [38–41].

Figure 7A shows an axial cut of the extruder and die fitted with a barrier screw.
The sequence of the physical phenomena developing typically along the screw is also
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represented, and comprises [38–40]: (i) gravity conveying of the solid material in the
hopper; (ii) drag solids conveying in the first screw turns; (iii) development of a thin film
of melted material separating the solids from the surrounding metallic walls; (iv) melting
of the solid plug, with physical separation of the solid plug from the melt pool; (v) melt
conveying following a relatively complex regular helical flow pattern; vi) pressure flow
through the die. Figure 7B shows the complex flow pattern quantified by the velocity fields
and the temperature profile in the Conventional Screw (CS) and Maillefer Barrier Screw
(MBS), while Figure 7C shows the complete system geometry used in the calculations.

Figure 7. Single screw extrusion: (A) plasticating phases; (B) melting mechanism in CS (left) and
MBS (right); (C) specific system geometry used in the calculations.

The aim is to determine if the best solution is to use a CS or an MBS for fixed and/or for
changing operating conditions and, simultaneously, to optimize the corresponding geometry.

The following equations represent the momentum and energy equations for the melted
region of the channel (melting and melt conveying in Figure 7), which resulted from some
specific simplifications of the general tri-dimensional (3D) set of equations. These equations
were solved numerically, considering a 2D space representing the cross-screw channel
(X and Y directions) for small increments along the channel (Z direction). However, it
is necessary to note that all the regions identified above and in Figure 7 have different
thermomechanical models that must be put together using the appropriate boundary
conditions. This is a very complex system in which the polymer properties, the operating
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conditions of the machine, and the screw geometry contribute in a complex way to measure
the process performance quantified by the objectives (see Table 2).

Table 2. Optimization objectives, aim of optimization and range of variation.

Objectives Aim xmin xmax

Output—Q (kg/hr) Maximize 1 20
Length for melting—L (m) Minimize 0.1 0.9
Melt temperature—T (◦C) Minimize 150 210

Power consumption—Power (W) Minimize 0 9200
WATS Maximize 0 1300

Viscous dissipation—Viscous Minimize 0.9 1.2

For example, to only illustrate the complexity of this process and the corresponding
numerical modelling, Equation (3) shows the melt rate per unit of channel length (Φ) that
represents the quantification of solids material that changes the physical state to melt in
each of the increments along the screw channel. However, we must take into account that
it is an analytical model that resulted from further simplifications of Equations (1) and (2).
For more details of the model used, the reader is referred to references [41–43].
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The variables in these equations represent the polymer properties, operating conditions
and flow variables: ρm is the melt density, km is the melt thermal conductivity, h is the
melting entropy, Cm and Cs are specific heat of melt and solids, respectively, Tm is the
melting temperature, η is the melt viscosity, Tso and Tc are the solids and the barrel
temperatures,

.
γ is the shear rate, T is the melt temperature in each node of the mesh,

Tavg is the average temperature of the melt, Vz is the melt velocity in the Z direction, Vs is
the solid velocity in the y direction, and Vbx is the barrel velocity in the X direction.

Therefore, the performance of the process depends on the polymer properties, machine
operating conditions and geometry. In the present example, a Low-Density Polyethylene
(LDPE) is used, and for the operating conditions, two situations are considered, as shown in
Table 3, i.e., in some cases, they are fixed, and in one of the cases, they are also considered as
a DVs. The DVs are the operating conditions and the geometrical parameters as identified
in Tables 3 and 4, respectively.

Table 3. Cases studied for LDPE—only in case 7 the operating are used as decision variables.

Case
Operating
Conditions

Decision Variables

N (rpm) Tb1 (◦C) Tb2 (◦C) Tb3 (◦C) Geometry

1 Constant 40 140 150 160 Table 4
2 Constant 60 140 150 160 Table 4
3 Constant 80 140 150 160 Table 4
4 Variable [40, 80] [140, 160] [150, 170] [160, 200] Table 4

251



Math. Comput. Appl. 2023, 28, 17

Table 4. Geometrical parameters of both CS and MBS screws.

Screw Type Decision Variables

CS case L1 L2 H1 H3 P e
MBS L1_ L2_ H1_ H3_ P_ e_ Hf wf

Interval [0, 1] [100, 400] [170, 400] [18, 22] [22, 26] [25, 35] [3, 4] [0.1, 0.6] [3, 4]

The performance of the machine was quantified using six objectives, two to maximize
(output and degree of mixing) and four to minimize (length of screw required to melt the
polymer, melt temperature at the exit, mechanical power consumption required to rotate
the screw, and viscous dissipation quantified as the ratio between the melt temperature
and the fixed barrel temperature), as shown in Table 2.

The geometrical parameters involved in the description of both types of screws are
shown in Table 4. Since only one screw can be used each time in the machine, an addi-
tional decision variable was added, identified as “case,” to trigger the decision variables
corresponding to one of the types of screws, i.e., when case ranges in the interval [0.0, 0.5]
the decision variables of the conventional screw are used, while when case ranges in the
interval [0.5, 1.0], the other screw is considered. Consequently, the total number of decision
variables is 15.

For each case studied (Table 3), 11 optimization runs are made for statistical compari-
son using the hypervolume (HV) and the Inverted Generational Distance (IGD).

4.2. Results and Discussion

The FS-OPA analysis for Cases 1 and 4 are presented in Figure 8 and Tables 5 and 6.
The results were very similar, generating the same three groups of objectives, (Q, L), (Power,
WATS), and (T, TTb). The application of the methodology defined in Section 2.4 allows
for identifying the objectives Q, Power, WATS, and T to be used in the optimization after
reduction (see Tables 5 and 6): (i) the objectives with lower distance. Power and WATS; (ii)
one objective of the cluster with higher distance, T; and (iii) one objective of the remaining
cluster, Q. It is clear, also, that instead of T, it is possible to select TTb, and instead of Q, it is
possible to select L.

Figure 8. Phylograms for Cases 1 and 4 (Table 3).
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Table 5. Distances between the objectives for Case 1.

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average

‘Q’ 0.00 0.07 0.73 0.27 0.27 0.73 0.345
‘L’ 0.07 0.00 0.73 0.27 0.27 0.73 0.345
‘T’ 0.73 0.73 0.00 0.67 0.67 0.07 0.478

‘Power’ 0.27 0.27 0.67 0.00 0.07 0.67 0.325
‘WATS’ 0.27 0.27 0.67 0.07 0.00 0.67 0.325
‘TTb’ 0.73 0.73 0.07 0.67 0.67 0.00 0.478

Table 6. Distances between the objectives for Case 4.

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average

‘Q’ 0.00 0.08 1.00 0.42 0.42 1.00 0.480
‘L’ 0.08 0.00 1.00 0.42 0.42 1.00 0.480
‘T’ 1.00 1.00 0.00 0.83 0.83 0.08 0.620

‘Power’ 0.42 0.42 0.83 0.00 0.08 0.83 0.430
‘WATS’ 0.42 0.42 0.83 0.08 0.00 0.83 0.430
‘TTb’ 1.00 1.00 0.08 0.83 0.83 0.00 0.620

To assess the capacity of using only the four objectives selected, the optimization
results obtained using SMS-EMOA provided with the problem with these four objectives
will be compared with the case with the initial six objectives using the Pareto-optimal fronts
obtained after 100 generations for a population of 100 individuals in each generation and
11 runs with different seeds values are made for statistical comparison. Additionally, this
comparison will be made with a situation with three objectives one of each of the clusters
found, specifically Q, WATS, and T.

Figures 9 and 10 show the Pareto-optimal fronts found in each one of the cases (Case
1 and Case 2) using the three sets of objectives: (i) all objectives; (ii) objectives Q, Power,
WATS, and T; (iii) objectives Q, WATS, and T. The results are, apparently, very similar
when comparing the cases with six and four objectives. In the other situation, with three
objectives, the multi-objective optimization algorithm is clearly lost, since the final solution
found alternates in the different runs between one type of screw and the other (i.e., between
the CS and the MBS). The results for Cases 2 and 3 are very similar to those presented here
and, thus, no specific discussion is made here.

By using the 11 runs performed for each case studied, the Hypervolume (HV) and the
Inverted Generational Distance (IGD) were applied and the results are presented in Table 7,
where it is possible to see the average and the percentage of losses when the number of
objectives is reduced [42–44]. To calculate IGD, all Pareto-optimal solutions found in each
run were put together in a pool and the non-dominated solutions of this pool were used
for comparison.

As shown in Table 7, it is possible to conclude that the use of four objectives (Q, Power,
WATS, and T) does not significantly deteriorate the final solutions found, the maximum
difference found is 11.6%, which, for a process like the extrusion process, and taking into
account a final population of 100 solutions, is not expressive. Additionally, the differences
in the IGD value are too small, indicating that at least the solutions found for the case of
four objectives are near the best solution found in the 11 runs. The results found for the
situation with three objectives corroborate the results shown in Figures 9 and 10.
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Figure 9. Pareto-optimal fronts after 100 generations for the pair of objectives identified in Figure 8
for Case 1.

 

Figure 10. Pareto-optimal fronts after 100 generations for the pair of objectives identified in Figure 8
for Case 7.
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Table 7. Performance comparison using Hypervolume and IGD for the total number of objectives
and the automatic reduction to four and three objectives (between brackets the standard deviation,
and loss percentage relative to six objectives) for the four cases studied.

Case Study Metric 6 Objectives
4 Objectives

(Q, Power, WATS, T)
3 Objectives
(Q, WATS, T)

1
HV 0.21518 (0.008145) 0.19148 (0.012324) −11.0% 0.02555 (0.024707) −88.1%

IGD 0.10966 (0.004972) 0.11159 (0.003607) −1.76% 0.66727 (0.143866) −508%

2
HV 0.23233 (0.013760) 0.20867 (0.010411) −10.2% 0.04689 (0.028991) −79.8%

IGD 0.10966 (0.004972) 0.11205 (0.003526) −2.17% 0.69042 (0.105262) −529%

3
HV 0.24809 (0.006384) 0.21932 (0.014301) −11.6% 0.04598 (0.0285391) −81.5%

IGD 0.11076 (0.005756) 0.11326 (0.006315) −2.25% 0.69042 (0.105262) −523%

4
HV 0.24809 (0.006384) 0.22911 (0.009955) −7.7% 0.01967 (0.011256) −92.1%

IGD 0.11076 (0.005756) 0.11431 (0.007949) −3.21% 0.72078 (0.046369) −550%

Finally, it is important to point out that during this process, the DM(s) play an im-
portant role in the procedure. Indeed, they have some intervention when selecting the
objectives. For example, it is necessary to opt for Q or L, two objectives from the same
cluster having apparently the same importance in the process. In this case, an informed DM
will make the option for Q because this objective is the output of the machine and is directly
linked with the economic issue of the problem, while L is the length for melting that is
related to the quality of the product obtained; however, this quality is also quantified by
WATS, which was already selected by the algorithm. This example shows the importance
of the DM(s) that simultaneously help the optimization process and are informed about the
process of obtaining the results.

5. Conclusions

A methodology for reducing the number of objectives for many-objective optimization
problems using population-based algorithms is proposed. This approach, based on machine
learning, is an improvement over similar state-of-the-art methodologies; namely, it allows
analysis of the relations variable–variable and variable–objective relations (and not only
objective–objective), does not need kernel function choice and parameters optimization,
allows for obtaining explainable solutions to assist the decision maker with interpreting
the results, its time complexity is also low, and it supports theoretical and empirical
sample sizes.

The approach showed its potential to reduce the number of objectives by capturing
the complex relations between the different objectives with an additional possibility, which
is to capture the objective-variable relations. This is done by applying the methodology to
a set of benchmark and real-world problems. The comparison of the Pareto-optimal fronts
obtained with another machine learning approach in the literature allows for the conclusion
that its performance is very competitive, but with the great advantage of being much easier
to use. Additionally, there is the possibility of strong interaction with the DM(s).

The application of the proposed approach to a difficult real-world problem has proven
that it is automatically possible to reduce the number of objectives by losing only around
ten percent of the Pareto-optimal frontier obtained, for the case of 100 individuals in the
population. The use of a second possibility, which is to require the intervention of the
decision maker during the process, e.g., when selecting the objectives to be considered in
the optimization, can be very useful because the person interested can see how the process
works and interpret the results obtained. Finally, an important characteristic of the method
proposed is the capacity to explain the solutions found.
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Abstract: Multi-objective reliability-based design optimization (MORBDO) is an efficient tool for
generating reliable Pareto-optimal (PO) solutions. However, generating such PO solutions requires
many function evaluations for reliability analysis, thereby increasing the computational cost. In this
paper, a single-loop multi-objective reliability-based design optimization formulation is proposed that
approximates reliability analysis using Karush-Kuhn Tucker (KKT) optimality conditions. Further,
chaos control theory is used for updating the point that is estimated through KKT conditions for
avoiding any convergence issues. In order to generate the reliable point in the feasible region, the
proposed formulation also incorporates the shifting vector approach. The proposed MORBDO
formulation is solved using differential evolution (DE) that uses a heuristic convergence parameter
based on hypervolume indicator for performing different mutation operators. DE incorporating the
proposed formulation is tested on two mathematical and one engineering examples. The results
demonstrate the generation of a better set of reliable PO solutions using the proposed method over
the double-loop variant of multi-objective DE. Moreover, the proposed method requires 6×–377×
less functional evaluations than the double-loop-based DE.

Keywords: multi-objective reliability-based design optimization; shifting vector approach; reliability
analysis; chaos control theory; differential evolution

1. Introduction

The design optimization mostly keeps design variables and parameters determin-
istic. It ignores the fact that uncertainties can arise owing to manufacturing variations,
dimensional inaccuracy, boundary conditions, material properties, and improper loading
conditions, which can lead to the infeasibility of the solution obtained through determin-
istic optimization. Therefore, it is necessary to consider these uncertainties in designing
the process to maintain safety and the quality of the solution. Reliability-based design
optimization (RBDO) [1,2] is a mathematical tool that is used for obtaining such reliable
optimal solutions for problems involving uncertainties. It also enables engineers to identify
solutions effectively for complex applications in the fields of the automotive, civil, mechani-
cal, and aerospace industries [3,4]. In RBDO, the uncertainties are manifested by converting
the deterministic constraints to probabilistic constraints. This is accomplished by applying
a probability operator to performance functions or to limit-state functions in the literature.
A generalized single-objective RBDO formulation is given in Equation (1).

Minimize f (μX),
subject to P[Gi(X) ≥ 0] ≤ PT

fi
= Φ(−βT

i ), i = 1, . . . , I,

μ(L)
X ≤ μX ≤ μ(U)

X ,
(1)
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where f (μX) is the objective function, Gi(X) is the i-th performance/constraint function,
and μX is the mean value vector of random variable vector X ∈ Rn, where n is the number
of random design variables. L and U in the superscript of μX represent the lower and upper
limits of the vector. Φ(·) represents the standard normal cumulative distribution function,
βT

i is the target reliability index of the i-th performance function, and P[·] is the probability
operator that represents the failure probability of performance function (Gi(X) ≥ 0) that
should be less than the target failure probability (PT

fi
).

Equation (1) demonstrates that solving a single-objective RBDO requires a nested-loop
procedure [2], where the outer optimization loop involves the inner-loop for reliability
analysis. The reliability analysis can be performed using simulation-based methods [5] and
analytical methods [6] on probabilistic performance function to obtain its failure probability.
The simulation-based methods show better accuracy with an expense of computational
cost [7], such as Monte Carlo simulation (MCS) [5], subset simulation [8], importance
sampling [9], and Latin-hypercube sampling [9]. On the other hand, analytical methods
are known for their computational efficiency, such as most-probable point (MPP)-based
methods, in which the sub-optimization problem is solved for each performance function
to obtain their respective MPP. The MPP-based methods can be broadly divided into the
performance measurement approach (PMA) [10] and the reliability index approach (RIA) [6].
The optimum solution obtained using PMA and RIA is known as the most probable target
point (MPTP) and the most probable failure point (MPFP), respectively. Many advanced
methods have been developed to estimate the MPTP and MPFP of performance functions,
and they are categorized as double-loop methods, decoupled-loop methods, and single-
loop methods.

The classical double-loop methods [11,12] involve a nested optimization loop, where
the inner-loop performs reliability analysis and the outer-loop is used for obtaining design
solutions. All the random variables are transformed to standard normal variables [13]
for performing reliability analysis. Since the nested optimization loop is computationally
expensive, the reliability analysis loop (inner-loop) is decoupled and performed separately
in decoupled-loop methods [14–17]. Some advanced and efficient reliability-based frame-
works were also proposed based on isogeometric analysis [18,19]. The reliability analysis
itself is considered as an computationally expensive procedure. Therefore, single-loop
methods [20] have been proposed, in which approximate reliability analysis is performed.
Different concepts such as Karush-Kuhn Tucker (KKT) conditions and quantile approxi-
mation are used to approximate MPTP that can eliminate the reliability analysis loop. The
adaptive conjugate single-loop approach (AC-SLA) [21], the enhanced single-loop method
(ESM) [22], the chaotic single-loop approach (CSLA) [23], the single-loop shifting vector
method (SLShV-CG) [24], the sequential single-loop reliability optimization and confidence
analysis method (SROCA) [25], and the approximate single-loop chaos control method
(ASLCC) [26] are a few recently developed single-loop methods. Recently, some efficient
evolutionary RBDO methods are also proposed to obtain the global reliable solution [27,28].

It has been found that many real-world engineering problems consist of more than one
objective, which are conflicting in nature [29], and can also have uncertainties. Evolutionary
algorithms are found to be promising for solving deterministic multi-objective optimization
problems (MOOPs) because they can generate Pareto-optimal (PO) solutions in one run.
However, these evolutionary algorithms need to be modified for generating reliable PO
solutions for multi-implemented as a design optimization algorithm, and inverse reliabil-
ity was performed. objective reliability-based design optimization (MORBDO) problems.
To address uncertainty in MORBDO, Deb et al. [3] used a non-dominated sorting genetic
algorithm (NSGA-II) [30] for design optimization, and Fast RIA for reliability analysis.
A multi-objective differential evolution (MODE) [31] was also Simulation-based tech-
niques are also used for reliability analysis and are coupled with double-loop methods.
For example, a radial basis function was used for approximating the responses of the
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performance function and was coupled with MCS to implement reliability analysis. NSGA-
II was used to obtain PO solutions for solving the multi-objective and multi-case [32]
RBDO problem. In another study, MCS and NSGA-II were coupled with entropy weighted
grey relational analysis for design optimization [33] to solve the control arm problem.
The multi-objective optimization design of the control arm was carried out using the
Kriging surrogate model. Sun et al. [34] proposed a radial basis function-based surrogate
modeling that was implemented with Latin-hypercube sampling for sensitivity analysis.
MCS and multi-objective particle swarm optimization (PSO) were coupled for obtaining
the reliable PO solutions. In another study, a multiple response surface method-based
artificial neural network was implemented for reliability analysis [35], and a dynamic
multi-objective particle swarm optimization algorithm was proposed for obtaining PO
solutions. A worst-case scenario was used with fuzzy sets for reliability analysis, and a real-
coded population-based incremental learning [36] was implemented with DE for obtaining
the PO solutions. A multi-objective robust optimization [37] was proposed, in which
the design problems consisted of parametric uncertainties involving both random and
interval variables. NSGA-II was implemented to generate robust PO solutions, and MCS
was performed to evaluate the impact responses of the mixed uncertainties. Constrained
NSGA-II was also implemented to solve the MORBDO problem [38]. It was coupled with
the hybrid method using the Kriging surrogate metamodel for reliability analysis.

A time-dependent reliability-based robust design optimization (TRBRDO) problem [39]
was solved using NSGA-III [40] and the dimension reduction method. It was developed
by constructing an extreme value model using the sparse grid-based stochastic collocation
method for time-dependent reliability analysis. A Bayesian multi-objective RBDO [41] was
proposed to solve problems involving aleatory and epistemic uncertainties. Multi-objective
PSO was implemented for obtaining PO solutions, and Bayesian interference was used
for reliability analysis. Another method using nested loop was proposed to solve RBDO
problems [42], in which the outer-loop was performed using multi-objective PSO, and the
inner-loop was solved using surrogate modeling with MCS sampling. A two-layer nested
optimization problem was proposed based on a decoupling strategy. The inter-generation
projection genetic algorithm was employed in the inner-loop, and the multi-objective ge-
netic algorithm [43] was implemented at the outer-loop for solving the MORBDO problem.
Another multi-objective RBDO [44] was solved by converting it into a single-objective
RBDO problem. This was achieved by assigning weights to the objectives based on quan-
titative analysis and evidence theory. The reliability analysis was estimated using the
PMA method.

From the literature, it can be seen that most of the MORBDO methods focus on
PMA, RIA, MCS, or surrogate modeling for reliability analysis, and they are based on
double-loop or decoupled-loop methods, which make them computationally expensive.
Since evolutionary algorithms are population-based methods and require many functional
evaluations, a single-loop method for solving MORBDO can improve the computational
efficiency. Moreover, single-loop methods that are solved using steepest descent search
to estimate MPTP are often stuck with periodic oscillation [26,45] for highly nonlinear
functions. This leads to the motivation of this paper, in which a new MORBDO formulation
is proposed, based on adaptive multi-objective DE. An adaptive mutation scheme is used
for selecting different variants of mutations for exploration in the search space. Both
trial and target vectors take part in the MORBDO formulation to estimate the reliable PO
solutions. The following are the contributions of the paper.

• A single-loop MORBDO formulation is developed by using a shifting vector approach
for achieving feasibility quickly, and by using chaos control theory for estimating
MPTP effectively for better convergence.

• An adaptive multi-objective differential evolution is developed by performing two vari-
ants of mutation by estimating a heuristic parameter through hypervolume computation.
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• The formulation is further developed by incorporating target and trial vectors of
differential evolution for better exploration of the search space.

The proposed method is tested on three benchmark examples from the literature.
The results are compared with a double-loop variant of multi-objective differential evolution
using PMA for reliability analysis.

The organization of the paper is as follows. In Section 2, a brief discussion on multi-
objective RBDO, PMA, chaos control method, single-loop method, and shifting vector
approach are presented. The proposed single-loop multi-objective reliability-based design
optimization method is discussed in Section 3, along with its implementation. The adaptive
mutation scheme and the detailed steps of multi-objective differential evolution are also
discussed in this section. Numerical examples are solved and discussed in Section 4. Finally,
the paper is concluded in Section 5 with a note on future work.

2. Preliminaries

2.1. Multi-Objective Reliability-Based Design Optimization

A generalized MORBDO formulation can be written as

Minimize fm(μX), m = 1, . . . , M,
subject to P[Gi(X) ≥ 0] ≤ PT

fi
= Φ(−βT

i ), i = 1, . . . , I,

μ(L)
X ≤ μX ≤ μ(U)

X , X(L) ≤ X ≤ X(U),
(2)

where fm(·) is the m-th conflicting objective function that is written using the mean value
(μX) of the random variable (X). X(L) and X(U) are the upper and lower limits on X. Solving
Equation (2) generates a set of reliable PO solutions in the design space. The reliability
analysis is performed on the probabilistic performance function to estimate the failure
probability by solving a multidimensional integral, as given in Equation (3).

Pfi
= P[Gi(X) ≥ 0] =

∫
· · ·
∫

Gi(X)≥0
fX(X)dX, (3)

where fX(X) is the joint probability density function of X. Solving this multidimensional
integral is difficult, and therefore, it is approximated with reliability analysis [7]. The first-
order reliability method (FORM) [6] and second-order reliability method (SORM) [46] are
analytical methods for reliability analysis. Both FORM and SORM estimate the reliability
index β that represents the minimum distance from the origin to the performance function
in the standard normal space. The reliability index β can be obtained by solving a sub-
optimization problem, and the reliability (R) can be estimated using Φ(β) (R = 1− Pf =
1− Φ(−β) = Φ(β)). Due to its computational efficiency and stability in generating a
reliable solution, PMA is widely used to solve the sub-optimization problem [47].

2.2. Performance Measure Approach (PMA)

PMA estimates the failure probability of performance function G(X) by finding MPTP
in the standard normal space (U-space). After transforming G(X) to the U-space using
the Rosenblatt transformation [13], the MPTP can be estimated using the steepest descent
direction. When all the random variables are independent, the joint cumulative distribu-
tion function (CDF) is calculated via the product of the marginal CDFs. The Rosenblatt
transformation is given as

Φ(ui) = FXi (xi) =⇒ ui = Φ−1(FXi (xi)), (4)
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where FXi (xi) is the marginal CDF of Xi and Φ(·) is the CDF of the standard normal random
variable. After transforming variables to the standard normal space by using Equation (4),
MPTP is calculated by performing the following sub-optimization problem.

Minimize G(U),
subject to ‖U‖ = βT ,

(5)

where U is the random variable in the standard normal space, and βT is the target reliability
index for the performance function G(U). To efficiently obtain the optimum solution of
Equation (5), the advanced mean value algorithm is used and the expression is presented
in Equation (6).

U(k+1) = βT ∇G(U)

‖∇G(U)‖ . (6)

If the performance function value at MPTP is less than or equal to zero, it is satisfied
for the given target reliability, as presented in Equation (2).

2.3. The Chaos Control Method

It has been observed that PMA performs well for simple nonlinear performance
functions, but it fails to converge for highly nonlinear performance functions. To overcome
this issue, chaos control theory [45] was proposed based on a stability transformation
method [48]. The modification is achieved while updating the iterative point U(k+1) of
Equation (5). The formulation for estimating the iterative point via the chaos control (CC)
method is as follows.

U
(k+1)
CC = U

(k)
CC + λC[F(u(k))−U

(k)
CC],

F(u(k)) = U(k+1) = βT ∇G(U)

‖∇G(U)‖ ,
(7)

where U(k)
CC is the MPTP calculated using CC method in the k-th iteration; C is the involutory

matrix with only one element in each row and is assumed as identity matrix I for sim-
plicity. The matrix C is usually selected to stabilize the unstable fixed point of the chaotic
dynamical system in Equation (7). The chaos control factor λ is determined according
to the eigenvalues of the original system’s Jacobian matrix, and the value is considered
within interval [0, 1]. When λ is considered as one, the formulation of the CC method is
similar to Equation (5) and can have the same issue as discussed earlier. Therefore, a small
value of λ is considered for stable convergence. F is the vector of the response function
that is estimated via nonlinear mapping with respect to the iterative values of U(k+1), as
shown in Equation (7). Although the CC method eliminates the issue of oscillation in the
convergence of MPTP, it is considered to be an inefficient process. Therefore, a modified
chaos control (MCC) [12] was proposed. The modification is achieved by extending the
iterative search to the β-hypersphere that is at the constraint boundary in the standard
normal space. Thus, MPTP is located on the constraint boundary, and convergence is
improved by controlling the tangential step size instead of the radial step size, which was
the case for the CC method. The formulation of MCC is given as

ñ(k+1) = U
(k)
CC + λC[F(u(k))−U

(k)
CC],

U
(k+1)
MCC = βT ñ(k+1)

‖ñ(k+1)‖ ,
(8)

where ñk is the modified search direction updated using U
(k+1)
CC of Equation (7). U

(k+1)
MCC is

the MPTP evaluated using the MCC method.
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2.4. Single-Loop Method

The single-loop method (SLM) [20] has been proposed to approximate the reliability
analysis of the double-loop method, and establish an equivalent deterministic performance
function that is computationally efficient. The approximate MPTP is estimated by using
the KKT optimality conditions of Equation (5), and is given in Equation (9).

∇G(U)− λ̂∇H(U) = 0, (9)

where λ̂ is the Lagrange multiplier, and H(U) = ‖U‖2 − βT
i

2 after squaring both sides
of the equality constraint of Equation (5). Using Equation (9) and ∇H(U) = 2U yields
∇G(U)− 2Uλ̂ = 0. After simplification, U can be written as ∇G(U)

2λ̂
, and multiplying it

with ‖∇G(U)‖ in the numerator and denominator, and further simplifying, we obtain

U =
‖∇G(U)‖

2λ̂

∇G(U)

‖∇G(U)‖ = βTα, (10)

where α = ∇G(U)
‖∇G(U)‖ is the unit gradient direction, and βT = ‖∇G(U)‖

2λ̂
is a constant at the

optimal solution U∗. The gradient is calculated in U-space and the random design variables
lie in the X-space. Therefore, the transformation from X-space to U-space is used for the
evaluation of approximate MPTP, using the following relationship.

X = μX + σXU, (11)

where σX is the standard deviation of X. Substituting U from Equation (10) in Equation (11)
and using the chain rule, we obtain MPTP in the X-space as

XMPTP = μX + σXβα = μX + σXβT σX∇XG(X)
‖σX∇XG(X)‖ , (12)

where XMPTP is the MPTP of the performance function G(X).

2.5. Shifting Vector Approach

The concept of the shifting vector (S(k)
i ) has been proposed [14] to decouple the double-

loop structure of the RBDO problem. It separates the optimization and reliability analysis
loop and performs it sequentially in the sequential optimization and reliability assessment
(SORA) [14] method. Using this process, the computational efficiency of SORA has been
improved as compared to the double-loop method. The concept of the shifting vector is
used to shift the violated performance function towards the feasible direction. It is given as

S
(k)
i = μ

(k−1)
X − X

(k−1)
i,MPTP (13)

where (S
(k)
i ) is the shifting vector at the k-th iteration, X

(k−1)
i,MPTP is the MPTP for the i-th

constraint, and μ
(k−1)
X is the mean of the random variable X in the (k − 1)-th iteration.

Figure 1 shows the schematic diagram of the shifted constraint based on the MPTP. It can
be seen that (S(1)

i ) is estimated based on X
(1)
i,MPTP and μ

(1)
X , and the shifted constraint is

evaluated at μ
(1)
X − (S

(1)
i ) until the reliability of the constraint is achieved. Here, the shifting

vector (S(k)
i ) is generated via an iterative process that helps to estimate the feasibility of the

performance function until its reliability is satisfied.
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Figure 1. Shifting vector approach.

3. The Proposed Method and Its Implementation

3.1. Single-Loop MORBDO Formulation Using Chaos Control and the Shifting Vector Approach

The single-loop MORBDO formulation can be written using the approximate MPTP
given in Equation (12) as

Min. fm(μX), m = 1, . . . , M,

s.t.: Gi(X
(k)
i,MPTP) ≤ 0, i = 1, . . . , I,

where X
(k)
i,MPTP = μ

(k)
X + βT

i σXα
(k)
i,X ,

α
(k)
i,X =

σX ∇Gi,X(X
(k−1)
i,MPTP)

‖σX ∇Gi,X(X
(k−1)
i,MPTP)‖

,

μ(L)
X ≤ μX ≤ μ(U)

X ,

(14)

where X
(k)
i,MPTP is the approximate MPTP of the ‘i’ performance function at the k-th iteration,

and α
(k)
i,X is the unit gradient vector of the performance function ‘i’ with respect to random

variable (X). In Equation (14), the probabilistic performance functions of Equation (2) are
converted into deterministic performance functions, which eliminate the MPTP search
of the inner-loop at every iteration. Thus, the computational efficiency can be improved
significantly. It is to be noted that the steepest descent search is used to evaluate the
approximate MPTP, which has a tendency to oscillate during convergence [45].

In the proposed formulation, chaos control theory replaces the steepest descent search
for approximating MPTP. The concept of the shifting vector approach is incorporated to
formulate a novel single-loop MORBDO formulation, as shown in Equation (15).

Min. fm(μX), i = 1, . . . , M,

s.t.: Gi(Ψ
(k)) ≤ 0, i = 1, . . . , I,

where Ψ(k) =

⎧⎪⎨⎪⎩
X
(k)
i,MPTP , ∀ target vectors,

μ
(k+1)
U − S

(k+1)
i , ∀ trial vectors,

S
(k+1)
i = μ

(k)
X − X

(k)
i,MPTP ,

X
(k)
i,MPTP = T−1(U) = μ

(k)
X + σXU

(k)
i,SLCC,

μ(L)
X ≤ μX ≤ μ(U)

X ,

(15)
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where U
(k)
i,SLCC is the approximate MPTP in the U-space that is estimated using the MCC

method. μ
(k+1)
U is the trial vector of differential evolution in the U-space in the (k + 1)-th

iteration. In the proposed formulation, the performance function Gi(Ψ
(k)) includes both

X
(k)
i,MPTP and (μ

(k+1)
U − S

(k+1)
i ), which are used for evaluating the performance function

for each target vector and trial vector, respectively. The vector (μ
(k+1)
U − S

(k+1)
i ) shifts

the violated performance function towards a feasible direction for the population of trial
vectors. U

(k)
i,SLCC in the standard normal space is given in Equation (16).

U
(k)
i,SLCC = βT

i
U
(k−1)
i + λ

(k)
i C[U

(k)
i −U

(k−1)
i ]

‖U(k−1)
i + λ

(k)
i C[U

(k)
i −U

(k−1)
i ]‖

, (16)

where U
(k)
i and U

(k−1)
i are the MPTPs estimated for the i-th constraint in the k-th and (k− 1)-

th generations, respectively. The value of U
(k)
i,SLCC is calculated after the transformation, as

given in Equation (17).

U
(k)
i = T(X(k)

i ) = (X
(k)
i − μX)/σX. (17)

The proposed single-loop MORBDO formulation given in Equation (15) is developed
based on a single-loop methodology that eliminates the integrated reliability analysis in-
volved in double-loop formulation, as given in Equation (2). The approximated formulation
for reliability analysis is established through KKT optimality conditions, where the search
direction is calculated by using modified chaos control theory. Furthermore, the shifting
vector is integrated with the single-loop MORBDO formulation that uniquely involves the
target and trial vectors of differential evolution.

3.2. Multi-Objective Differential Evolution with Adaptive Mutation Scheme

Differential evolution (DE) [49] is a population-based meta-heuristic algorithm that
works with a set of vectors and optimizes an optimization problem by iteratively improving
each vector based on an evolutionary process. It explores the design space by maintaining
a population of vectors and creating new vectors by combining existing ones. It starts
with a random generation of vectors, which are referred to as target vectors, μ

(k)
X (t), in

which t represents the t-th target vector, and k represents the k-th generation counter. Since
DE is used for solving the MORBDO problem, the notation for vector is kept the same
as the mean value of the random variable. Each target vector (μ(k)

X (t)) is transformed to

the mutant vector (μ(k+1)
V (t)) using the randomly chosen vectors (μ

(k)
r1 (t)), (μ(k)

r2 (t)) and

(μ
(k)
r3 (t)). In this paper, an adaptive mutation scheme is used, in which the mutation vector

(μ(k+1)
V (t)) is generated, either by using a random vector or the best vector. The scheme for

generating (μ(k+1)
V (t)) is given in Equation (18).

μ
(k+1)
V (t) =

⎧⎪⎨⎪⎩
μ
(k)
r1 (t) + F̂× (μ

(k)
r2 (t)− μ

(k)
r3 (t)), ζ > ε,

μ
(k)
best(t) + F̂× (μ

(k)
r2 (t)− μ

(k)
r3 (t)), otherwise,

(18)

where r1 �= r2 �= r3 are the three randomly chosen vectors from the current population,
and F̂ is the scaling factor. The variant “DE/rand/bin/1” is found to be effective in explor-
ing the search space during the initial generations because the mutant vector is generated
a using random vector. When DE starts converging towards the Pareto-optimal front,
the “DE/best/bin/1” variant replacing μ

(k)
r1 (t) to μ

(k)
best(t) can improve the convergence.

The μ
(k)
best(t) vector for each target vector is found by calculating the Euclidean distance

of the t-th target vector with respect to all non-dominated target vectors in the objective
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space. The closest non-dominated target vector is selected as μ
(k)
best(t) for the t-th target

vector. Since both the variants have their own merits, a heuristic convergence parameter (ζ)
is proposed that can help DE to use either of these variants, depending on the user-defined
parameter ε. The parameter ζ is calculated using the hypervolume (HV) performance
indicator [50] that is given as

ζ = I(k)H − I(k−1)
H , (19)

where I(k)H and I(k−1)
H are the hypervolume calculated with respect to the non-dominated

target vectors in the (k) and (k − 1) generations. It is noted that the non-dominated
target vectors in the (k− 1) and (k) generations are normalized together for estimating the
hypervolume with respect to the dominated point. Thereafter, the trial vector (μ(k+1)

U (t)) is

created for each target vector (μ(k)
X (t)), which is given as

μ
(k+1)
U (tj) =

{
μ
(k+1)
V (tj) if r ≤ pc or j = rnbr(i),

μ
(k)
X (tj) if r > pc and j �= rnbr(i),

(20)

where subscript j with t in μ
(k)
X (tj), μ

(k+1)
V (tj), and μ

(k+1)
U (tj) represent the j-th component

of the target, mutant, and trial vectors, respectively. r is a random number between 0 and
1, pc is the crossover rate, and rnbr(i) is a randomly chosen index ∈ {1, 2, . . . , n}, which
ensures that μ

(k+1)
U (tj) obtains at least one component from μ

(k+1)
V (tj). Thereafter, all target

vectors and trial vectors are combined (μ(k)
X

⋃
μ
(k+1)
U ) to find the rank of the combined

population using the non-dominated sorting [30] of NSGA-II. The crowding distance is
also calculated for maintaining the diversity for the selection of the next generation of
target vectors. The best N target vectors for the next generation are selected by using
the environmental selection scheme of NSGA-II [30]. Multi-objective DE is terminated if
the generation counter (k) is more than the total number of generations (K). Otherwise,
the generation loop continues till the termination condition becomes satisfied.

3.3. Steps for Implementation

In this section, the steps for implementing DE with an adaptive mutation scheme for
the proposed MORBDO formulation are presented, which are as follows.

1 Input: population size (N), number of variables (n), total number of generations (K),
scaling factor (F̂), probability of crossover (pc), standard deviation (σ) for random
variables, and target reliability index for constraints (βT), generation counter (k = 1).

2 Initialize random population (P(k)) that comprises target vectors (μ(k)
X ).

3 For each target vector (μ(k)
X (t)) of (P(k)):

3.1 Calculate the objective function values, fm(μ
(k)
X (t)).

3.2 Calculate MPTP for each performance function (i) using Equations (15) and (16),

and estimate shifting vector S
(k+1)
i,μX

= μ
(k)
X − X

(k)
i,MPTP.

3.3 Calculate the constraint violation of each performance function using the MPTP
that is estimated through the chaos control theory given in Equation (15).

4 If (k > K), terminate. Otherwise, continue to Step 5.

5 Generate mutant vectors (μ(k+1)
V ) using the scheme given in Equation (18).

6 Generate trial vectors (μ(k+1)
U ), as given in Equation (20).

7 For each trial vector:

7.1 Calculate the objective function, fm(μ
(k+1)
U (t)).
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7.2 Calculate MPTP (X̂
(k+1)
i,MPTP) and shifting vector for each performance function (i)

using Equations (15) and (16), and S
(k+2)
i,μU

= μ
(k+1)
U − X̂

(k+1)
i,MPTP, and estimate the

constraint violation of Gi(μ
(k+1)
U − S

(k+1)
i,μX

).

7.3 Calculate the constraint violation of each performance function using the MPTP
that is estimated through chaos control theory as given in Equation (15).

8 Combine target and trial vectors, and perform non-dominated sorting and estimate
the crowding distance.

9 Update target vectors (μ(k+1)
X ) for the next generation using the environmental selec-

tion of NSGA-II. It should be noted that the corresponding MPTPs and shifting vector
are stored in Step 7 for utilizing them in the next generation. Set k = k + 1 and go to
Step 4.

4. Numerical Examples

In this section, three mathematical examples and one engineering example are solved
to demonstrate the performance of the proposed method. All the examples consist of
two objective functions, along with the nonlinear performance functions. The proposed
method is abbreviated as SLMDE since it is developed via a single-loop method using
multi-objective DE. The results of SLMDE are compared with double-loop multi-objective
differential evolution (DLMDE). It is noted that PMA is used with DLMDE for reliability
analysis. The reliable PO solutions are generated via both methods for different values of
the target reliability index (βT). HV performance indicator values and number of function
evaluations are used to compare the outcome. Both the methods are run 30 times with
different initial populations. The standard deviation (SD) is also evaluated to see the
dispersion of HV values. The Wilcoxon signed-rank test at a 5% significance level is
also used to determine the difference for the statistical significance between SLMDE and
DLMDE. The parameters of SLMDE and DLMDE are as follows: the scaling factor (F̂) is
taken as 0.3, the crossover probability (pc) is 0.9, the population size (N) is 200, and the total
number of generations (K) is 100 for the first example, 250 for the second example, and
200 for the car side impact example. The chaos control factor (λ) is considered as 0.2 [26].
The user-defined parameter (ε) in Equation (18) is considered as 10−3. The MATLAB
R2016b platform is used for developing both methods.

4.1. Example 1

The first MORBDO example [3] consists of two objectives that are developed using
two independent random normal variables with a standard deviation of 0.03. The example
is subjected to two linear performance functions that are shown in Equation (21).

min: f1(μX) = μx1 ,

min: f2(μX) =
1 + μx2

μx1

,

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1, 2,

G1(X) = x2 + 9x1 − 6,

G2(X) = −x2 + 9x1 − 1,

0.1 ≤ μx1
≤ 1, 0 ≤ μx1

≤ 5.

(21)

Table 1 presents the best, median, and worst values of HV obtained via SLMDE
and DLMDE. SLMDE has converged to better values of HV for different βT values. This
indicates that SLMDE generates a better set of PO solutions for the given example. It is to
be noted that for a larger value of βT , the HV value becomes reduced, as compared to the
lower βT value. This is because a larger value of βT signifies a high degree of reliability
that makes the obtained PO solutions more conservative and pushes them away from the
deterministic PO front inside the feasible region.
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Table 1. Best, median, and worst HV values obtained by both methods are presented for Example 1
for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.8100 0.8067 0.7998 0.7754 0.7908 0.7422
1.0 0.8075+ 0.8048 2.0 0.7982+ 0.7739 3.0 0.7879+ 0.7411

0.8065 0.7772 0.7971 0.7550 0.7869 0.7247

SD 9× 10−4 0.0063 SD 6× 10−4 0.0042 SD 7× 10−4 0.0054

Figure 2 demonstrates the PO solutions obtained by both methods for different values
of βT . The reliable PO solutions shown in Figure 2a,b correspond to the median HV
values from Table 1. It can be seen that for larger values of βT , the PO solutions become
conservative and move inside the feasible region. The same figure also demonstrates that
some solutions coincide with the deterministic PO front that is located at the bottom right.
This is because for those solutions, the target reliability is satisfied for the performance
function G1(x).
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(a) SLMDE
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(b) DLMDE
Figure 2. The obtained PO solutions by both methods for example 1 for different βT values.

The computational efficiencies of both methods are measured with the help of a
number of function evaluations that are presented in Table 2. It can be seen that the
proposed method requires 202,000 function evaluations, which is only 14.85% of DLMDE.
This is because SLMDE is based on a single-loop method, where the reliability of the
performance function is estimated using KKT optimality conditions. On the other hand,
DLMDE performs PMA for reliability estimation, which requires many function evaluations.
Since the number of iterations for PMA is kept fixed, the number of function evaluations is
the same for DLMDE with different values of βT .

Table 2. Number of function evaluations required by both methods for example 1.

βT SLMDE DLMDE

1.0 202,000 1,360,000
2.0 202,000 1,360,000
3.0 202,000 1,360,000

The Wilcoxon test results are shown in the same table with symbols (+,=,−). The sym-
bol ‘+’ suggests a significantly better performance of SLMDE over DLMDE. Other symbols
‘−’ and ‘=’ suggest a significantly bad performance and an equivalent performance of
SLMDE over DLMDE, respectively. It can be seen from the table that SLMDE shows a
significantly better performance over DLMDE.
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The progress of HV and heuristic convergence parameter ζ with respect to iterations
are shown in Figure 3. It can be seen that there are some initial fluctuations in both HV and
ζ, which subsidise after 10 generations and stabilize after 50 generations.
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Figure 3. Progress of hypervolume and ζ of SLMDE with respect to number of generations for
example 1.

4.2. Example 2

The second example [51] consists of two objective functions which are highly nonlinear.
It has four linear and two nonlinear performance functions that are developed using two
independent random normal variables, each with a standard deviation of 0.3. The RBDO
formulation of this example is given in Equation (22).

min: f1(μX) = −[25(μx1 − 2)2 + (μx2 − 2)2 + (μx3 − 1)2 + (μx4 − 4)2 + (μx5 − 1)2],

min: f2(μX) = [μ2
x1
+ μ2

x2
+ μ2

x3
+ μ2

x4
+ μ2

x5
+ μ2

x6
],

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1, . . . , 6

G1(X) = x1 + x2 − 2,

G2(X) = 6− x1 − x2,

G3(X) = 2− x2 + x1,

G4(X) = 2− x1 + 3x2,

G5(X) = 4− (x3 − 3)2 − x4,

G6(X) = (x5 − 3)2 + x6 − 4,

0 ≤ μx1 , μx2 , μx6 ≤ 10, 1 ≤ μx3 , μx5 ≤ 5, 0 ≤ μx4
≤ 6.

(22)

Table 3 presents the statistical values of HV obtained via both methods. In can be seen
that SLMDE has converged to better values of HV for different βT values. This indicates
that SLMDE generates a better set of PO solutions for this given example. In this case, a
similar observation can also be made where for larger values of βT , the HV values becomes
reduced. This is due to the fact that larger values of βT signify a larger degree of reliability,
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which leads to the generation of conservative PO solutions. The Wilcoxon test results are
shown in the same table with symbols (+,=,−). It can be seen from the table that SLMDE
shows a significantly better performance over DLMDE.

Figure 4 shows the reliable PO solutions generated in the run, corresponding to a
median HV value from Table 3. It can be seen that for larger βT , PO solutions move inside
the feasible region and away from the deterministic PO front. The spread of solutions is
less in the case of SLMDE for βT = 1.0. The solutions are nicely distributed in the case of
DLMDE. The shift of the solutions is more for larger values of βT , which leads to smaller
values of HV that can be seen from Table 3.

Table 3. Best, median, and worst HV values obtained by both methods are presented for Example 2
for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.9118 0.9017 0.6234 0.6119 0.4027 0.3929
1.0 0.9028+ 0.8906 2.0 0.6181+ 0.6025 3.0 0.3945+ 0.3777

0.8853 0.8293 0.5999 0.5953 0.3776 0.3680

SD 0.0065 0.0153 SD 0.0065 0.0056 SD 0.0074 0.0080
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Figure 4. The PO solutions obtained via both methods for example 2, for different βT values.

Table 4 presents the computational efficiency of both methods. The proposed method
only requires 3,915,600 function evaluations, which is only 3.5–2.7% of DLMDE. It suggests that
DLMDE needs many function evaluations because PMA is performed for reliability estimation.

Table 4. Number of function evaluations required by both methods for Example 2.

βT SLMDE DLMDE

1.0 3,915,600 111,424,992
2.0 3,915,600 132,344,016
3.0 3,915,600 145,249,728

Figure 5 shows the progress of HV and ζ with respect to the number of generations. It
can be seen that there are fluctuations for all values of βT until the termination criterion
is achieved. The initial fluctuations can also be observed for ζ, which subsidize after
150 generations.
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Figure 5. Progress of hypervolume and ζ of SLMDE with respect to the number of generations for
example 2.

4.3. Car Side Impact Example

The car side impact [3] example is considered as an engineering RBDO example, which
is formulated by using 2 objectives and 10 performance functions. It consists of 11 random
design variables that are normally distributed and that are grouped into random variables
(x1, . . . , x7) and random parameters (x8, . . . , x11). The details of the variables with their
standard deviation values are given in Table 5. The RBDO formulation is presented in
Equation (23). The mathematical expressions for each function are given in Table 6.

min: f1(μX) ≡ Structural weight,

min: f2(μX) ≡ Average rib deflection,

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1, . . . , 10

G1(X) = Abdomen load ≤ 1KN,

G2(X) = V ∗ Cupper ≤ 0.32m/s,

G3(X) = V ∗ Cmiddle ≤ 0.32m/s,

G4(X) = V ∗ Clower ≤ 0.32m/s,

G5(X) = Upper rib deflection ≤ 32mm,

G6(X) = Middle rib deflection ≤ 32mm,

G7(X) = Lower rib deflection ≤ 32mm,

G8(X) = Pubic force ≤ 4KN,

G9(X) = Velocity of V-Pillar ≤ 9.9mm/ms,

G10(X) = Front door velocity of V-Pillar ≤ 15.7mm/ms,

0.5 ≤ μx1 , μx3 , μx4 ≤ 1.5, 0.45 ≤ μx2 ≤ 1.35, 0.875 ≤ μx5 ≤ 2.625,

0.4 ≤ μx6 ≤ 1.2, 0.4 ≤ μx7
≤ 1.2, 0.192 ≤ μx8

, μx9
≤ 0.75.

(23)

The statistical values of the HV values obtained from both methods with respect to
different βT are presented in Table 7. The proposed method has converged to larger values
of HV for all βT values. This signifies a better distribution of PO solutions of SLMDE
as compared to DLMDE. The observation of reducing HV values with larger βT values
remains the same. The Wilcoxon test results are shown in the same table with symbols
(+,=,−). It can be seen from the table that SLMDE shows significantly better, bad, and
equivalent performances over DLMDE for βT = 1, 2 and 3, respectively.

The obtained reliable PO solutions for both methods are shown in Figure 6. As ob-
served with previous examples, for larger values of βT , the PO solutions start moving away
from the deterministic PO front inside the feasible region.

Table 8 presents the computational efficiency of both methods. In this example, SLMDE
requires only 4,623,000, the number of function evaluations, which is only 0.3–0.26% that of
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DLMDE. Since SLMDE performs an approximate reliability estimation by using the KKT
optimality conditions, it saves many function evaluations compared to DLMDE. Figure 7
shows a similar progress for HV and ζ with respect to the number of generations. There
are initial fluctuations for all values of βT , which subside after 80 generations.

Table 5. Details of design variables and their standard deviation values.

Design Variable Standard Deviation

x1: Thickness of B-pillar inner 0.03
x2: Thickness of B-pillar reinforcement 0.03
x3: Thickness of floor side inner 0.03
x4: Thickness of cross members 0.03
x5: Thickness of door beam 0.03
x6: Thickness of door beltline reinforcement 0.03
x7: Thickness of roof rail 0.03
x8: Material of B-pillar inner 0.006
x9: Material of floor side inner 0.006
x10: Barrier height 10
x11: Barrier hitting position 10

Table 6. The objectives and performance functions of Example 3.

f1(μX): 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 0.00001x6 + 2.73x7,
f2(μX): (G5(X) + G6(X) + G7(X))/3,
G1(X): 1.16− 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10,
G2(X): 0.261− 0.01598x1x2 − 0.188x1x8 − 0.0198x2x7 + 0.0144x3x5 + 0.0008757x5x10

+0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11
G3(X): 0.214 + 0.00817x5 − 0.1318x1x8 − 0.0704x1x9 + 0.030998x2x6 − 0.018x2x7 + 0.0208x3x8

+0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10 − 0.0005354x6x10 + 0.00121x8x11
+0.00184x9x10 − 0.018x2

2
G4(X): 0.74− 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2

2
G5(X): 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.77x7x8 + 0.32x9x10
G6(X): 33.86 + 2.95x3 + 0.1792x10 − 5.057x1x2 − 11.0x2x8 − 0.0215x5x10 − 9.98x7x8 + 22x8x9
G7(X): 46.36− 9.9x2 − 12.98x1x8 + 0.1107x3x10
G8(X): 4.72− 0.5x4 − 0.19x2x3 − 0.01228x4x10 + 0.009325x6x10 + 0.000191x2

11
G9(X): 10.58− 0.674x1x2 − 1.958x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10
G10(X): 16.45− 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2

11

Table 7. Best, median, and worst HV values obtained via both methods, presented for car side impact
example for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.8256 0.8216 0.7175 0.7104 0.5208 0.5200
1.0 0.8245+ 0.8211 2.0 0.7137− 0.7095 3.0 0.5145= 0.5142

0.8235 0.8196 0.7078 0.7070 0.4996 0.4912

SD 5× 10−4 4× 10−4 SD 0.0021 0.0040 SD 0.0050 0.0082

Table 8. Number of function evaluations required by both methods for car side impact example.

βT SLMDE DLMDE

1.0 4,623,000 1.467× 109

2.0 4,623,000 1.6970× 109

3.0 4,623,000 1.7342× 109
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Figure 6. The obtained PO solutions by both methods for car side impact example for different
βT values.
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Figure 7. Progress of hypervolume and ζ of SLMDE with respect to number of generations for car
side impact problem.

4.4. Example 4

The fourth example [44] consists of two objective functions and both of them are
quadratic functions. The example has a linear performance function developed with three
independent random normal variables. The RBDO formulation is given in Equation (24).

min: f1(μX) = (μx1 − 1)2 + (μx2 − 2)2 + (μx3 − 3)2,

min: f2(μX) = μ2
x1
+ 2μ2

x2
+ 3μ2

x3
,

s.t.: P[Gi(X) > 0] ≤ φ(−βT
i ), i = 1,

G1(X) = x1 + x2 + x3 − 1,

0.1 ≤ μxi
≤ 6, i = 1, 2, 3.

(24)

where x1 ∼ N(1, 0.05), x2 ∼ N(2, 0.1), and x3 ∼ N(3, 0.15).
Table 9 presents the statistical values of HV obtained via SLMDE and DLMDE. It can

be observed that in most of the cases, SLMDE converged to better values of HV for different
βT . The HV values become reduced with larger values of βT . The Wilcoxon test results are
shown in the same table with symbols (+,=,−). It can be seen from the table that SLMDE
shows an equivalent performance with DLMDE for βT = 2 and 3, and a bad performance
for βT = 1.

274



Math. Comput. Appl. 2023, 28, 26

Table 9. Best, median, and worst HV values obtained by both methods are presented for example 4
for different values of βT . The best performances are highlighted in bold font.

βT SLMDE DLMDE βT SLMDE DLMDE βT SLMDE DLMDE

0.7733 0.7751 0.7416 0.7413 0.6834 0.6833
1.0 0.7723− 0.7721 2.0 0.7407= 0.7405 3.0 0.6826= 0.6828

0.7380 0.7585 0.7297 0.7091 0.6439 0.6799

SD 0.0100 0.0028 SD 0.0035 0.0059 SD 0.0103 0.0080

Figure 8 shows the reliable PO solutions generated in the run corresponding to the
median HV value obtained via both methods for different values of βT . As observed in the
previous examples, for larger βT , PO solutions move inside the feasible region, away from
the deterministic PO front.
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Figure 8. The PO solutions obtained via both methods for example 4 for different βT values.

Table 10 presents the computational efficiencies of both methods. The proposed
method requires only 50% of function evaluations as that of DLMDE. Figure 9 also shows
similar observations for HV and ζ during the progress of the generations. There is an initial
fluctuation which reduces after 20 generations.

Table 10. Number of function evaluations required by both methods for Example 4.

βT SLMDE DLMDE

1.0 280,000 520,000
2.0 280,000 520,000
3.0 280,000 520,000
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Figure 9. Progress of hypervolume and ζ of SLMDE with respect to number of generations for
Example 4.
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5. Conclusions

A single-loop multi-objective reliability-based design optimization has been proposed
for generating reliable PO solutions quickly. It was developed by applying KKT optimality
conditions to PMA for generating an approximate expression of MPTP. The search direction
of approximate MPTP was modified via chaos control theory. The concept of the shifting
vector approach was implemented with the novel formulation to include both target
and trial vectors. DE was made adaptive, using the heuristic parameter that helped
DE to perform different mutation operators. The proposed SLMDE was tested on three
mathematical and one engineering bi-objective RBDO examples. It was found that SLMDE
generated more reliable PO solutions for all examples compared to DLMDE. The results
demonstrate that the convergence of SLMDE takes less function evaluations than DLMDE.
For all four examples, the SLMDE was able to generate better HV values. For example 2,
a lot of fluctuations during the progress of hypervolume can be observed, which stabilize
gradually. The user-defined parameter ζ shows stable progress for all the examples. In the
future, the proposed method can be modified for quick convergence by incorporating
quantile approximation for reliability analysis. The proposed method can also be tested on
other real-world examples having many nonlinear functions.
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