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Abstract: The failure of a rolling bearing may cause the shutdown of mechanical equipment and 
even induce catastrophic accidents, resulting in tremendous economic losses and a severely nega-
tive impact on society. Fault diagnosis of rolling bearings becomes an important topic with much 
attention from researchers and industrial pioneers. There are an increasing number of publications 
on this topic. However, there is a lack of a comprehensive survey of existing works from the per-
spectives of fault detection and fault type recognition in rolling bearings using vibration signals. 
Therefore, this paper reviews recent fault detection and fault type recognition methods using vibra-
tion signals. First, it provides an overview of fault diagnosis of rolling bearings and typical fault 
types. Then, existing fault diagnosis methods are categorized into fault detection methods and fault 
type recognition methods, which are separately revised and discussed. Finally, a summary of exist-
ing datasets, limitations/challenges of existing methods, and future directions are presented to pro-
vide more guidance for researchers who are interested in this field. Overall, this survey paper con-
ducts a review and analysis of the methods used to diagnose rolling bearing faults and provide 
comprehensive guidance for researchers in this field. 

Keywords: rolling bearing; diagnosis; fault detection; fault type recognition; signal processing;  
machine learning 
 

1. Introduction 
With the rapid development of technology and science, modern industry has become 

increasingly important in our daily life. The advancement of science and technology has 
led to the gradual development of large-scale and high-speed rotating machinery with 
integration, precision, and intelligence. Rotating machinery is an essential part of modern 
industry and is widely used in many fields, including energy and power, machinery man-
ufacturing, transportation, and aerospace. Once mechanical equipment is successfully de-
veloped for production, the reliability and safety of the equipment become increasingly 
crucial, and the fault diagnosis and condition monitoring of the core components become 
an arduous task [1–3]. 

Roller bearings are widely used in rotating machinery and are an indispensable com-
ponent that supports the rotating shaft and serves as a connector between stationary and 
rotating parts. Although rolling bearing damage occurs at the component level, it fre-
quently leads to more severe equipment failures. According to statistics, rolling bearing 
failures account for 40–90% of all rotating machinery failures [4]. The initial failure of the 
rolling bearing of a wind turbine will only affect itself, and the unit will remain opera-
tional. However, as the times of abnormal operations increase, external excitations caused 
by broken bearings will cause the traditional system to malfunction, resulting in a fire in 
extreme cases. Roll bearing failure in the rolling mill will cause a reduction in the quality 
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of rolled products, which will lead to the production line being stopped and result in sig-
nificant economic losses. Due to the complex and changing conditions operating in rotat-
ing machinery, rolling bearings often fail before their designed life ends, and their actual 
service life is often shorter than their design life, so a routine shutdown inspection is not 
the best way. Therefore, an effective and intelligent fault diagnosis of rolling bearings is 
of considerable practical significance for ensuring the health of rotating equipment and 
machinery. 

Fault diagnosis of rolling bearings is a multidisciplinary field that incorporates com-
puter science, mathematics, electronics, signal processing, engineering, and other modern 
technologies. Rolling bearing fault diagnosis is to diagnose the bearing health status 
through the collected operation data. Fault diagnosis can be broadly categorized into fault 
detection and fault type recognition. Fault detection is to detect faults from the collected 
data, while fault type recognition is to recognize faults and their types from the data. Dur-
ing the past ten years, fault diagnosis of rolling bearings has attracted considerable atten-
tion from both academics and the industry. Figure 1 shows the number of publications on 
the topic of rolling bearing fault diagnosis extracted from the Scopus database. It is clear 
that the number of publications has gradually increased from 2011 to 2021. There are sev-
eral survey papers on fault diagnosis. However, most of them focus on specifical tasks or 
methods, such as machine learning-based methods [5] for prognostics and health man-
agement of rolling element bearings [6], Fourier transform and enhanced fast Fourier 
transform algorithms [7], artificial intelligence methods [8], spectral kurtosis [9], and sig-
nal processing techniques [10]. Very few of them provide a general and comprehensive 
survey on rolling bearing fault diagnosis using vibration signals from the perspectives of 
fault detection and fault type recognition. 

 
Figure 1. The number of publications on rolling bearing fault diagnosis from 2011 to 2021. 

To address the above limitations, this paper reviews over 150 related publications in 
recent years, including over 100 publications from 2016 to 2021. These publications are 
well-known or representative ones in the rolling bearing fault diagnosis community. This 
survey discusses not only traditional methods based on signal processing and analysis 
but also machine learning and artificial intelligence methods, including feature extrac-
tion/reduction methods, deep learning methods, and evolutionary learning methods, to 
present a relatively full picture of this field. In addition, this survey summarizes com-
monly used datasets, existing limitations/challenges, and future research trends to pro-
vide researchers with useful guidance. 

The structure of the survey is task-based, including tasks for fault detection and fault 
type recognition. The organization of this paper is as follows. The primary fault forms of 
rolling bearings and the major research topics of rolling bearing fault diagnosis are pre-
sented in Section 2. Then, Sections 3 and 4 review the typical works on rolling bearing 
fault detection and fault type recognition, respectively. Section 5 summarizes datasets and 
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the limitations/challenges of existing methods and discusses future research trends in roll-
ing bearing fault diagnosis. Finally, Section 6 draws the conclusions. 

2. Background, Taxonomy, and Scope 
2.1. Fault Forms/Types of Rolling Bearing 

Rolling bearings have several types, but their basic structures remain the same. Typ-
ically, a rolling bearing consists of four parts: the inner ring, the outer ring, the rolling 
element, and the cage. There are four types of corresponding faults, i.e., the inner ring 
fault, the outer ring fault, the rolling element fault, and the cage fault. A rolling bearing 
may fail due to internal and/or external problems/factors. Nowadays, bearing failures are 
mainly caused by external factors, including improper assembly, oil lubrication failure, 
pollution corrosion, and overloading. Rolling bearing faults often have the following 
forms [3]: 
(1) Fatigue 

Rolling bearings operate with great periodic contact stress between the rolling ele-
ment and the inner/outer ring surface, causing the contact surface (generally the track 
surface) to fatigue and crack, which gradually extends to the raceway surface. Fatigue 
causes the bearing surface material to fall off and form pits. In severe cases, the material 
on the surface may fall off in large areas. Fatigue pitting and fatigue peeling are commonly 
used terms for describing fatigue. 
(2) Wear 

The failures of the rolling bearing sealing system cause bearing wear. When the seal-
ing system fails, foreign matter will enter the bearing, resulting in abnormal friction be-
tween the inner ring/outer ring and the rolling elements. Additionally, improper lubrica-
tion will further aggravate wear, resulting in continuous material loss, increased surface 
roughness, increased clearance between bearings, and decreased running accuracy. 
(3) Deformation 

Deformation means that the bearing surface has undergone plastic deformation, or 
more specifically, a permanent indentation will appear on the bearing surface if the load 
borne by the bearing exceeds the yield strength limit of the material. Incorrect assembly 
methods and foreign matter appearance are the main reasons for the bearing deformation. 
(4) Corrosion 

Corrosion of rolling bearings occurs when chemical reactions occur on their surface. 
The first one is the oxidation reaction between the water in the lubricating oil and the 
bearing surface. The second one is fretting friction between components that leads to the 
oxidation of surface materials. The last one is abnormal current/voltage that causes local 
overheating of the bearing, resulting in welding of the element contact surface. 
(5) Fracture 

Rolling bearing fractures are the damage caused by local stresses exceeding the ma-
terial’s tensile strength limit. Generally, the crack propagates over time and penetrates 
part of the bearing component, causing complete separation of the material and fracture 
of the bearing. In addition, violent loading and unloading can also lead to bearing fracture. 

2.2. Taxonomy and Scope 
The purpose of rolling bearing fault diagnosis is to determine the bearing health sta-

tus by analyzing the collected operation data. Diagnostics of faults revolve primarily 
around fault detection and fault type identification. Figure 2 shows the general flowchart 
of fault detection and fault type recognition. Although fault detection and fault type 
recognition may have some overlap, they are two different types of tasks in fault diagno-
sis. Specifically, fault detection is to detect faults or non-faults from the collected data, and 
fault type recognition is to recognize faults and their types from the data. Therefore, to 
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solve these two tasks, different procedures are often used. For fault detection, the collected 
bearing signals are utilized to determine bearing status. The process often includes re-
moving the noise and harmonic interference from the monitoring signal using signal pro-
cessing methods and then manually identifying the fault by finding its characteristic fre-
quency. Fault type recognition refers to using the existing bearing signals to construct a 
diagnostic system to evaluate the unknown bearing signals. Unlike fault detection, fault 
type recognition methods automatically extract or construct fault features from the signals 
and determine the bearing health status using machine learning algorithms. 

 
Figure 2. General flowchart of rolling bearing fault diagnosis. 

The monitoring data of rolling bearings can be collected from oil [11], temperature 
[12], sound [13], vibration [14], and other media. Performing an oil analysis affects pro-
duction continuity because it involves shutting down equipment and opening the cover 
to collect lubricant and other oil samples. Temperature measurement equipment is expen-
sive and cannot provide a promising monitoring effect. Temperature analysis neither has 
good accuracy at the early stage of bearing fault nor distinguishes the fault types. Sound 
analysis has high technical demands for signal acquisition and identification because the 
acoustic signal attenuates and is susceptible to environmental noise interference. In con-
trast, vibration signal characteristics are stable and easy to collect, making vibration anal-
ysis a suitable condition monitoring technique. Vibration analysis has a firm theoretical 
basis. Research on the fault diagnosis method of rolling bearings based on vibration signal 
has long been a hot issue concern by domestic and foreign experts and scholars. 

This survey paper summarizes the fault diagnosis methods of rolling bearings based 
on vibration signals from the perspectives of fault detection and fault type recognition. 
First, four types of signal processing methods commonly used for fault detection of rolling 
bearings, i.e., morphological transformation-based methods, filter-based methods, de-
composition-based methods, and deconvolution-based methods, are discussed. Then, the 
classical fault type recognition methods are discussed from three aspects: feature extrac-
tion, feature reduction, and classification. In addition, the recently popular deep learning 
based-fault type recognition methods such as convolutional neural networks, Autoen-
coder, deep belief networks, and recursive neural networks, are also discussed and re-
viewed. The taxonomy of this survey is shown in Figure 3. 
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Figure 3. The taxonomy of this survey. 

3. Rolling Bearing Fault Detection 
The failure of rolling bearings will break the original energy balance of the system, 

and the most intuitive performance is abnormal vibration. The bearing fault vibration sig-
nal shows an increase or fluctuation in amplitude in the time domain and spectrum lines 
of fault characteristic frequency with prominent amplitude in the frequency domain. In 
[15], four empirical formulas were summarized for calculating the theoretical fault fre-

quencies of the inner ring ( innerF ), outer ring ( outerF ), rolling element ( ballF ), and cage ( cageF
), as shown in Equation (1). 
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where pD  is pitch diameter, bd  is rolling element diameter, bN  is rolling element 

number, ϕ  is contact angle, and shS  is shaft speed, which are basic parameters. It is 
possible to detect a bearing fault by observing the fluctuation of the time-domain wave-
forms or observing spectral lines associated with the fault characteristic frequency. Di-
rectly measuring rolling bearing vibrations is impossible in the real world. Generally, the 
sensor installed on the bearing pedestal is used to collect the signals indirectly, resulting 
in a significant amount of noise and harmonic interference in the collected vibration sig-
nals. The polluted bearing vibration signal is not effective for detecting bearing faults. 
Therefore, a series of fault detection methods based on vibration analysis was proposed 
to remove the noise and harmonic interference components in the signals, enhance the 
fault-related pulses, reduce the difficulty of fault detection, and improve the effectiveness 
of detection. Based on the difference in signal processing principles, the fault detection 
methods are mainly divided into four categories: morphological transformation-based 
methods, filter-based methods, decomposition-based methods, and deconvolution-based 
methods. 

The common rolling bearing fault detection methods are summarized in Figure 4. 
The morphological transform-based methods can extract harmonic or impact components 
of signals by using morphological operators with different structures, whose 
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appropriateness directly influences performance. The filter-based methods can adaptively 
identify the resonance frequency band that contains rich fault information, where the di-
vision of frequency band and the choice of subband are the key factors affecting the re-
sults. The decomposition-based methods refer to decomposing the complex signals into 
simple subband signals, and these methods should address modal aliasing, parameter 
setting, manually tuning, etc. The deconvolution-based detection methods belong to blind 
signal processing technology, which recovers fault characteristic signals by designing the 
appropriate inverse filters and setting the deconvolution period and filter length. In addi-
tion to the method based on recursive decomposition, which typically lacks the mathe-
matical model as theoretical support, other methods have the complete mathematical the-
ory. 

 
Figure 4. Summary of rolling bearing fault detection methods. 

3.1. Morphological Transform-Based Fault Detection Methods 
The morphological transform-based detection method is a signal processing method 

based on mathematical morphology theory that can capture the fault-related components 
in the bearing vibration signals through morphological operators, such as erosion, dila-
tion, open, and close. Matheron introduced mathematical morphology as a denoising 
method for image processing [16], and then Maragos extended it to the field of signal 
processing [16,17]. Given the characteristic of morphological transformation to remove 
signal noise, several researchers have applied it to the fault diagnosis of components of 
mechanical systems and conducted a great deal of research in recent years. Wang et al. 
[18] used a morphological close operator to process vibration signals for extracting fault 
impulses. Shen et al. [19] proposed morphological close–open transform and morpholog-
ical open–close transform by cascading the close or open operator of the morphology. Li 
et al. [20] and Raj et al. [21] calculated the gradient (difference) between the dilation and 
erosion operator of the morphology to obtain the vibration impact component in the sig-
nal and defined this procedure as morphological gradient transformation. Following this, 
some improved methods based on morphological gradient transformation were devel-
oped that integrated the close and open operators [22,23] and the close–open and open–
close operators [24,25]. These morphological gradient transform methods typically change 
the negative impact to positive impact, resulting in the change of signal impact compo-
nents. To ensure that the positive and negative impulses of the signal do not change after 
morphological transformation, Wang et al. [26] and Meng et al. [27] utilized the mean 
value operator to fuse the results of the closed and open operators. In addition, Deng et 
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al. [28] and Yan et al. [29] further developed the morphological hat-transform technology, 
which can enhance the weak impact in the signal by subtracting the morphological trans-
formation result from the original signal. Recently, Li et al. [30] proposed a morphological 
gradient product method by multiplying the results of two morphological transforms 
through a product operator. In addition to developing new morphological transformation 
methods, multi-scale analysis was used to improve the efficiency of the existing morpho-
logical transformation methods [31–38]. To sum up, by analyzing the available morpho-
logical transform methods and using cascade operator, gradient operator, hat-transform, 
product operator, and multi-scale analyses, researchers have developed a series of mor-
phological transform-based fault detection methods with excellent performance. 

3.2. Filter-Based Fault Detection Methods 
The filter-based detection method is to construct a narrow-band filter to remove the 

noise and interference components from the bearing vibration signals and retain the fault-
related pulses. The key to the filter-based method is to determine the center frequency and 
bandwidth of the narrow-band filter. A typical filter-based detection method is Kurot-
gram, proposed by Antoni et al. [39,40] in 2006, which uses the bandpass filter of a tree 
structure to divide the signal spectrum and then calculates the time-domain kurtosis of 
the filtered signal as a measure of fault information to adaptively select a narrow-band 
signal with the most fault information for subsequent analysis. The Kurotgram method 
has two shortcomings: one is that the parameters (center frequency and bandwidth) of the 
constructed filter are not accurate enough; the other is that the Kurtosis index is easily 
disturbed by noise, resulting in interference with the selection of the optimal filter. For 
this reason, Lei et al. [41] and Wang et al. [42] performed a wavelet packet transform on 
the bearing signal and used each wavelet node as a narrow-band filter to replace the tree 
structure filter of Kurotgram and proposed two new indicators for evaluating the fault 
information in the filtered signal, i.e., power spectral kurtosis and power spectral sparsity, 
to select the optimal filter. Similarly, Chen et al. [43] and Moshrefzadeh et al. [44] used the 
dual-tree complex wavelet transform and the maximum overlapping discrete wavelet 
packet transform to generate a series of narrow-band filters, respectively. In addition, 
many improvements to Kurotgram focus on proposing new evaluation indexes to replace 
kurtosis, such as spatial spectrum set kurtosis [43], envelope spectrum correlation kurtosis 
[45], l2/l1 norm [46], negative entropy [47,48], Gini index [49], and weighted cyclic har-
monic noise ratio [50], to avoid the wrong selection of filters in the case of excessive non-
Gaussian noise or accidental impact. 

Although Kurtogram and its improved methods can remove fault-independent noise 
and harmonic interference from vibration signals, there is still a problem with the accu-
racy of filter construction, which may lead to the loss of the signal information and affect 
the extraction of fault-related pulses. As opposed to the traditional method of dividing 
the frequency band layer by layer, the optimal wavelet filter methods are proposed [51–
55]. Tse et al. [51] used the Morlet wavelet as the filter, took maximizing sparsity of the 
filtered signal as the objective, and applied a genetic algorithm (GA) to locate the center 
frequency and bandwidth of the optimal Morlet wavelet for automatic filter construction. 
Similarly, Gu et al. [52] utilized the asymmetric real Laplace wavelet as the filter and de-
termined its center frequency and bandwidth by simultaneously maximizing the impulse 
and cyclostationary characteristics of the filtered signal. 

3.3. Decomposition-Based Fault Detection Methods 
The decomposition-based detection method involves decomposing the raw vibration 

signal into several components, such as the fault-related pulse, the noise, and the har-
monic interference. Analyzing only the fault-related pulses can simplify the process of 
detecting the fault. In 1998, Huang et al. [56,57] proposed the empirical mode decomposi-
tion (EMD) method, which provides a new idea for analyzing non-stationary signals. Gao 
[58] utilized EMD to decompose a bearing vibration signal into a series of eigenmode 
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components with inherent oscillation attributes and then conducted envelope spectral 
analysis to realize bearing fault detection. The EMD method achieved promising perfor-
mance, but it also has a number of deficiencies, such as end effect, modal aliasing, and 
over/under envelope, that limit its applications. Huang et al. [59] proposed ensemble em-
pirical mode decomposition (EEMD), where Gaussian white noise is introduced in EMD 
to assist signal decomposition. Li et al. [60] used EEMD to analyze bearing signals and 
extract bearing fault features effectively. Even though EEMD can overcome the mode ali-
asing problem to some degree, it still suffers from problems, such as low decomposition 
efficiency and the inability to determine white noise amplitude adaptively. Torres et al. 
[61] proposed complete ensemble empirical mode decomposition with adaptive noise 
(CEEMDAN), where Gaussian white noise is adaptively added to each stage of the de-
composition process. CEEMDAN can improve computing efficiency and reduce construc-
tion errors and was successfully applied to detect rolling bearing faults [62–64]. 

In 2005, Smith et al. [65] proposed the local mean decomposition (LMD), which grad-
ually decomposes a non-stationary signal into a linear combination composed of multiple 
product function components through the moving average method. In essence, LMD is to 
separate the pure FM signal and envelope signal from the original signal and multiply the 
pure FM signal and envelope signal to obtain the product function component with in-
stantaneous frequency and physical significance. LMD shows good performance for bear-
ing fault detection, i.e., can avoid some over/under envelopes and has better signal local 
characteristics and fewer decomposition components than EMD [65–68]. However, the 
LMD method can encounter several problems in practical application, such as signal mu-
tation, modal aliasing, and computational inefficiency [69]. In 2007, Frei et al. [70] pro-
posed the intrinsic time scale decomposition (ITD), which can obtain the baseline signal 
by linear transformation and can adaptively decompose a complex vibration signal into a 
combination of several proper rotation components (PRCs) and a residual. ITD for bearing 
fault diagnosis displays significant advantages in end effect, envelope error, and calcula-
tion speed over EMD. However, the components decomposed by ITD produce burrs, re-
sulting in distortion of the instantaneous amplitude and frequency [71,72]. Local charac-
teristic-scale decomposition (LCD) was proposed by Cheng et al. [73,74] in 2012, which 
simultaneously considers the position information of non-stationary signals in the time 
domain and the frequency domain, avoiding the frequency confusion of EMD and the 
signal mutation of ITD [75]. Although LCD overcomes the shortcomings of EMD and ITD, 
there are still some drawbacks, such as the end effect, which often affect the processing 
results [76]. 

All the EMD, LMD, ITD, and LCD methods adopt the idea of recursive decomposi-
tion, which shares several similar defects. First, the end effect and the mode confusion; 
Second, the recursive procedure lacks error feedback and correction; Third, the decompo-
sition results are easily affected by noise and abnormal components and have no physical 
meaning. Dragomiretskiy et al. [77] transformed signal decomposition into a constrained 
variational problem and proposed variational mode decomposition (VMD), in which the 
central frequency and bandwidth of each mode depend on the optimal solution varia-
tional model found iteratively, avoiding mode aliasing and improving the decomposition 
accuracy. The decomposition effect of VMD is affected by the number of decomposed 
modes K and the penalty factor α. The particle swarm optimization (PSO) and GA were 
applied to search the parameter values to enhance the performance of VMD for fault de-
tection [78–80]. Bonizzi et al. [81] proposed the singular spectrum decomposition (SSD), 
which can adaptively determine the embedding dimension required for each singular 
value decomposition process and decompose the original signal in narrow-banded com-
ponents. SSD has the advantages of small end effect, weak mode aliasing and no param-
eter selection. EMD does not require parameter selection either, but SSD is more effective 
in decomposing nonlinear and nonstationary time series. There was the development of 
SSD methods that could improve the decomposition accuracy and the detection ability of 
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weak fault signals, which could be applied more effectively for the fault detection of me-
chanical equipment [82–84]. 

3.4. Deconvolution-Based Fault Detection Methods 
The deconvolution-based detection method is to find an inverse filter to eliminate the 

transmission path influence in the signal acquisition process and extract the fault pulse 
from the noise-contaminated vibration signal. The research on deconvolution-based 
methods can be dated back to 1980. Wiggins et al. [85] proposed the minimum entropy 
deconvolution (MED) method to maximize the kurtosis of filtered signals and used it to 
analyze seismic signals. However, MED is easily affected by a random pulse with a large 
amplitude, making it impossible to accurately extract the periodic pulses corresponding 
to the fault in the signal [86]. To address this, McDonald et al. [87] developed a new index 
called correlation kurtosis to evaluate the periodicity and sparsity of signals and proposed 
maximum correlated kurtosis deconvolution (MCKD) for maximizing the correlation kur-
tosis value. MCKD overcomes the shortcomings of MED and can effectively extract the 
periodic pulse corresponding to the fault when there is a single abnormal pulse in the 
signal. However, the processing performance of MCKD is affected by two parameters, i.e., 
the inverse filter length and the fault cycle size. Whether the parameter setting is accurate 
directly affects the final processing result of MCKD. To address this issue, Miao et al. [88] 
proposed sparse maximum harmonics-noise-ratio deconvolution (SMHD), which can 
adaptively estimate the fault period by calculating the harmonic noise ratio of the enve-
lope of the filtered signal. However, SMHD generally suffers diminished performance 
when analyzing the signals with harmonic components. MCKD and SMHD require a long 
calculation time due to the deconvolution operation based on iteration analysis. Therefore, 
McDonald et al. [89] proposed a method that does not require iterations, namely, mul-
tipoint optimal minimum entropy deconvolution adjusted (MOMEDA), which can com-
plete the deconvolution in a short time but is adversely affected by the periodic oscilla-
tions of fault pulse. Recently, Buzzoni et al. [90] introduced the second order cyclostation-
ary index to deconvolution methods and proposed the maximum second order cyclosta-
tionary blind deconvolution (CYCBD) method. The performance of CYCBD is better than 
that of MCKD and MOMEDA, but the fault cycle frequency needs to be set accurately to 
ensure the processing effect. In order to overcome the shortcomings of these methods, 
researchers have proposed some improved deconvolution methods by combining other 
processing methods or using optimization algorithms to determine the optimal parame-
ters required for deconvolution, such as EMD combined with MED [91], PSO optimized 
MCKD [92], and CS optimized CYCBD [93]. 

4. Rolling Bearing Fault Type Recognition 
Unlike the fault detection method, machine learning algorithms were used in the 

rolling bearing fault type recognition system to replace the manual observation of the 
fault-related spectral lines. These methods can achieve automatic recognition of different 
types of faults in rolling bearings. 

A summary of the commonly used methods of rolling bearing fault type recognition 
is shown in Figure 5. These traditional methods need multiple independent steps, such as 
feature extraction, feature transform or feature selection, and classifier selection and opti-
mization, which often need to be manually set to achieve effective fault recognition per-
formance. The results of the previous step often significantly affect the results of the latter 
step. Rich domain knowledge is required in the process of fault recognition. The deep-
learning-based fault type recognition methods can automatically learn features from the 
original signals and train classifiers for effective fault recognition without human inter-
vention. However, the deep architecture used in these methods needs rich expertise to 
design and a large number of samples to train. 
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Figure 5. Summary of rolling bearing fault type recognition methods. 

4.1. Traditional Fault Type Recognition Methods 
Traditional rolling bearing fault type recognition methods usually include three 

steps: feature extraction, feature reduction, and classification. 
(1) Feature extraction 

Extracting fault-related features from vibration signals is the first step to perform 
rolling bearing fault type recognition. It is necessary to map the original bearing signals 
to statistical features to reflect the health status of bearings. Early work on feature extrac-
tion of rolling bearing vibration signals mainly focused on calculating various types of 
time-domain or frequency-domain statistical descriptive indexes [94,95], such as root 
mean square, kurtosis, skewness, average frequency, and root mean square frequency. 
These indexes are easy to calculate and intuitive to understand; their values vary with the 
running state of the rolling bearing. 

Complexity can describe the dynamic characteristics of bearing signals under differ-
ent running conditions. More and more attention is paid to applying various complexity 
evaluation indexes to fault type recognition. Yang et al. [96] used fractal dimension (FD) 
to evaluate bearing signals, but the calculation speed of FD is slow, which limits its use in 
online diagnosis. Caesarendra et al. [97] calculated the Lyapunov exponent of bearing vi-
bration signal as a feature, but its stability is vulnerable to noise interference. The entropy 
of a time series is an index commonly used to quantify the degree of uncertainty or irreg-
ularity. Approximate entropy (AE), sample entropy (SE), fuzzy entropy (FE), permutation 
entropy (PE), and dispersion entropy (DE) were applied to fault type identification [98–
102]. AE has good anti-noise performance when analyzing signals with more data points, 
but it may cause inaccurate estimation when analyzing signals with fewer data points 
[103-104]. As an improved form of AE, SE has the advantage of low dependence on the 
signal length and improved immunity to interference from noise. The disadvantage of SE 
is that its computation cost is high, and it may not be appropriate for analyzing signals 
containing similar information [103]. Based on SE, FE introduced a fuzzy membership 
function and was capable of assessing signal uncertainty more effectively [105]. PE offers 
simplicity, high robustness to dynamic noise, and a fast calculation speed and can effec-
tively analyze non-stationary signals with complex components [106]. Rostaghi and 
Azami [107] developed DE and proved that it was reliable in quantifying the complexity 
and uncertainty of time signals through the comparative test of various time series. The 
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computational efficiency of DE is significantly better than that of SE, FE, and PE. Instan-
taneous energy distribution (IED) of bearing vibration signals can describe the time-var-
ying process between fault states. Based on these characteristics, instantaneous energy 
distribution permutation entropy (IED-PE) [108] and instantaneous energy distribution 
permutation dispersion entropy (IED-DE) [109] were developed to enhance the accuracy 
of identifying fault types. 

As performing the single-scale analysis of bearing vibration signals with complexity 
and uncertainty may lead to loss of information, multiscale analysis is introduced to en-
tropy calculation to more accurately evaluate the vibration signals [110–115]. Costa et al. 
[110] and Aziz et al. [113] used the coarsening method to calculate the entropy of signals 
on multiple scales and proposed multi-scale sample entropy (MSE) and multi-scale per-
mutation entropy (MPE), respectively. MSE and MPE investigate the irregularity of bear-
ing vibration signals from multiple scales and have made significant progress toward fault 
diagnosis. In addition, when MSE and MPE are used to analyze signals with fewer data 
points, their calculation values will fluctuate with the increase in the scale factor, poten-
tially leading to evaluation results instability. Azami et al. [116,117] further proposed 
multi-scale dispersion entropy (MDE) and refine composite multi-scale dispersion en-
tropy (RCMDE) based on the advantages of DE and the coarse-graining method to ad-
dress the shortcomings of MSE and MPE. RCMDE and MDE offer much greater compu-
tational efficiency than MSE and MPE. Multi-group experiments have shown that 
RCMDE is more valuable for identifying bearing fault types [117]. 
(2) Feature reduction 

The more statistical features are used to describe signals, the more comprehensively 
the inherent information of signals is expressed. However, the high-dimensional feature 
set includes many redundant and negative-effect indexes/features. Dealing with such a 
large number of useless features typically increases the computational complexity and 
affects the recognition accuracy. In addition, using too many features to describe a large 
number of signals may lead to dimensional disaster. Therefore, it is necessary to reduce 
and compress the tremendous data resources effectively for extracting valuable infor-
mation and knowledge. Feature transformation and feature selection methods can gener-
ate a low-dimensional feature set for fault type recognition.  

Feature transformation methods are categorized based on how they preserve data 
structure. Two types of feature transformation methods exist, the global preservation-
based methods, such as principal component analysis (PCA) and linear discriminant anal-
ysis (LDA), and the local preservation-based methods, such as local preserving projections 
(LPP) and margin Fisher analysis (MFA). In [118–121], the sample features reduced by 
different feature transformation methods were used to perform the identification of bear-
ing fault types. The works in [122–124] show that the feature subset obtained by consid-
ering the local and global information in signals with different statuses is more effective 
for improving recognition performance. Chen et al. [123] proposed the Laplacian LDA 
(Lap-LDA) method based on least square LDA, which can not only obtain the global struc-
ture information of the data using LDA but also obtain the local structure information of 
the data using the Laplacian map. Zhang et al. [124] proposed global–local structure anal-
ysis (GLSA), combining the advantages of LPP and PCA.  

Feature selection methods can be divided into three categories, i.e., filter-based meth-
ods, wrapper-based methods, and embedded-based methods. In the filter-based method, 
the features of the original dataset are evaluated and selected according to similarity, de-
pendency, and correlation. This kind of method has fast calculation speed and low com-
plexity. The commonly used methods include Fisher score (FS), Laplacian score (LS), Re-
lief-F, and minimum redundancy maximum relevance (mRMR), which were applied to 
remove irrelevant features from bearing vibration [125–128]. The wrapper-based feature 
selection methods use a classifier to evaluate feature subsets for determining the most 
useful feature subset for classification. Compared with filter-based methods, wrapper-
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based methods require a longer computing time, but the quality of the feature subset ob-
tained is higher. The wrapper-based feature selection methods could be more efficient 
through heuristic search algorithms. GA, PSO, and ant colony optimization (ACO) were 
used for subset search in wrapper-based feature selection methods [129–131]. In order to 
rapidly and accurately obtain the optimal feature subset for fault type identification, the 
hybrid feature selection method combining the advantages of the two methods above de-
veloped, in which the filter-based method is used as the first selection and the wrapper-
based method is used as a second selection [132,133]. The embedded-based methods inte-
grate feature selection and classifier learning, including classification and regression tree 
(CART) and C4.5 decision tree, which were applied to rolling bearing fault type recogni-
tion [134]. 
(3) Classification 

After feature extraction and feature reduction, it is necessary to train a classifier to 
learn the mapping between the features and the class labels of existing bearing signals for 
conducting automatic fault type recognition. The known instances with the trans-
formed/selected features and the corresponding class labels are fed into a classification 
algorithm as the training set. The class label of each instance in the test set can be predicted 
by the trained classifier according to their features. In the past decade, various classifica-
tion methods have been applied to rolling bearing fault type recognition, such as k-nearest 
neighbor (KNN), artificial neural network (ANN), support vector machine (SVM), ex-
treme learning machine (ELM), and random forest (RF). 

KNN has the advantages of only one parameter and easy implementation by making 
classification decisions vis identifying the attributes of a limited number of neighboring 
training samples around the unknown/testing sample. Yan et al. [108] calculated IDE-PE 
of the bearing signal and used KNN to classify bearing fault types. It should be noted that 
the performance of KNN depends on the quality of sample features. ANN is a multilayer 
feedforward neural network and can perform fault type recognition by adjusting the as-
sociation relationship between a large number of network nodes [135,136]. SVM has good 
generalization ability, but the kernel function and related parameters need to be selected. 
Zhu et al. [137] proposed a new rolling element bearing fault diagnosis method based on 
multi-scale fuzzy entropy, multiple class feature selection, and SVM. Chen et al. [138] in-
put the symbolic entropy of the bearing signals into SVM for fault type identification and 
obtained good results. ELM is a feedforward neural network that uses random weights 
between the hidden layer and the input layer, and the output weights of its output layer 
are calculated through regular processes. With ELM, only the number of hidden layer 
neurons needs to be set. It has the advantage of rapid processing and good generalization 
but the disadvantage of overfitting [139]. RF can handle high-dimensional data effectively 
without a long running time, but the parameter selection of RF often affects the classifica-
tion accuracy [140]. To avoid setting classifier parameters manually, PSO is used to adap-
tively determine the optimal parameters of classifiers, e.g., PSO optimized SVM, PSO op-
timized ELM, and PSO optimized RF, which were proposed to improve the accuracy of 
fault identification [141–143]. 

4.2. Deep Learning Based Fault Type Recognition Methods 
Deep learning techniques have strong learnability. By stacking non-linear processing 

units layer by layer, it can automatically learn effective features from the raw data without 
manual feature extraction and manipulation. Deep learning methods are primarily imple-
mented based on ANN, including convolutional neural networks (CNNs), Autoencoder 
(AE), deep belief networks (DBNs), and recursive neural networks (RNNs). Deep learning 
methods were used to address machine vision, image processing, speech recognition, text 
analysis, and other problems. Inspired by these successful applications, deep learning 
methods have been gradually introduced into the field of fault diagnosis over the past five 
years [144]. 
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CNNs is the most commonly used deep learning method for fault diagnosis. The net-
work structure is usually composed of convolution layers and pooling layers. The convo-
lution layer convolutes with the original input data to obtain shallow features, and then 
the pooling layer captures the relatively important features through down sampling. The 
deep characteristics of the data are gradually obtained by alternately stacking the convo-
lution layer and the pooling layer. CNNs were first used to identify the fault types of 
rolling bearings in 2016 [145], and then it was widely used and improved [146–148]. The 
input data of a CNN can be one-dimensional bearing vibration signals or two-dimensional 
images (i.e., spectrogram, texture, and grayscale) converted from one-dimensional vibra-
tion signals. Accordingly, 1D-CNNs and 2D-CNNs methods were developed. Wen et al. 
[146] transformed the one-dimensional time series signals into two-dimensional image 
signals through random sampling segments of the original signals and fed these images 
into Lenet-5, which achieved satisfactory results in three different mechanical fault diag-
nosis tasks. In [147], Wang et al. applied Morlet wavelet decomposition and bilinear in-
terpolation to convert the vibration signal into grayscale images and then used rectified 
linear units and the appropriate dropout strategy to improve the generalization perfor-
mance of CNNs for fault diagnosis. Zhang et al. [148] proposed an improved CNN model 
using the original vibration signals as inputs. This method uses a wide convolution kernel 
for extracting features and suppressing high-frequency noise and small convolutional ker-
nels in the preceding layers for performing multilayer nonlinear mapping. The CNN-
based fault recognition methods typically extract the internal features of bearing signals 
through multiple convolution layers and pooling layers and perform fault type recogni-
tion by using the fully connected layer, which has a layer with Softmax or Signmoid func-
tion for classification, or using other classifiers, such as KNN, to perform classification 

AE is a special neural network that consists of two parts, i.e., encoding and decoding, 
which is to reconstruct input data for obtaining the discriminative data information. The 
use of improved AE methods has enhanced the processing performance of fault diagnosis. 
For example, the denoising AE method was proposed by adding noise to the original data, 
the sparsity AE method was implemented by introducing sparse constraints to the output 
layer, and the stacking AE method was developed by combining multiple AEs. In [149–
152], AE and its improved versions were utilized for extracting discriminative features 
from the original vibration of signals, based on which bearing fault types may be accu-
rately recognized. Sun et al. [149] used AE to fuse the extracted features of the bearing 
signals, thereby reducing the redundancy of signals. Shi et al. [150] developed the sparsity 
AE by adding a sparse penalty to AE for high-level feature learning and bearing fault 
recognition. Zhou et al. [151] proposed a novel diagnosis method based on Teager com-
puted order spectrum and stacking AE. The results demonstrated that the proposed 
method could extract features adaptively from bearing vibration signals regardless of the 
speed or load changes. Gu et al. [152] used a denoising AE to extract features from the 
bearing original vibration signals and inputted the extracted features to the BP network 
classifier. 

DBN is formed by stacking multiple restricted Boltzmann machines (RBMs), where 
the output layer of the former RBM is used as the input layer of the latter RBM. These 
RBMs are trained in a greedy hierarchical manner and can gradually learn expressive fea-
tures from the data. Oh et al. [153] used the directional gradient histogram of the vibration 
signals as input features to the DBN model for bearing fault recognition. In [154], the time-
domain and frequency-domain features extracted from the different sensor signals were 
fused as the machine health indicators through a multiple two-layer sparsity AE and used 
to train a DBN for further classification. Shao et al. [155] developed a novel rolling bearing 
fault recognition method called continuous DBN with locally linear embedding, which 
computes a new comprehensive feature index based on locally linear embedding to quan-
tify rolling bearing performance degradation and uses a GA to optimize the DBN param-
eters for adapting to the signal characteristics. 
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Considering that the rolling bearing vibration signal is essentially a time series, 
RNNs with time memory functions have gradually attracted attention. RNNs can effec-
tively analyze and process the time information of the data by establishing the connection 
between multiple cycle units and mapping the whole history of the input data to the target 
vector. To address the long-term dependency, improved methods of RNNs were devel-
oped, such as long-short-term memory (LSTM) and gated recurrent units (GRUs), which 
are more effective for bearing fault recognition [156–158]. Yuan et al. [156] investigated 
the performance of RNN, LSTM, and GRU in fault diagnosis, finding that LSTM per-
formed the best and the ensemble of RNN, LSTM, and GRU could not enhance its perfor-
mance. Zhao et al. [157] developed convolutional bi-directional LSTM combining CNN 
and LSTM, where CNN extracted the robust local features from original signals and LSTM 
encoded temporal information on the outputs of CNN. Zhao et al. [158] constructed a 
deep GRU for effectively learning features of bearing vibration signals and applied the 
artificial fish swarm algorithm to obtain the optimal parameters of the GRUs. 

5. Datasets, Practices, Limitations/Challenges, and Future Research Trends 
In this section, commonly used datasets are discussed to provide useful guidance 

and practices for researchers and practitioners. This section also summarizes the limita-
tions and challenges of existing works and points out future research directions. 

5.1. Commonly Used Datasets and Practices 
In addition to the development of fault diagnosis methods, the collection and estab-

lishment of benchmark datasets are also necessary. The commonly used fault diagnosis 
datasets are Case Western Reserve University [159], IEEE PHM 2012 Data Challenge [160], 
University of Cincinnati [161], University of Ottawa [162], and Xi’an Jiao Tong University 
[163]. They are publicly available and state-of-the-art datasets in the rolling fault diagnosis 
community. These datasets contain a wide range of rolling bearing operation data, which 
are described in detail in the corresponding references. For the fault detection problem, a 
representative signal segment is subjectively intercepted from the collected rolling bear-
ing data for analysis. The detection performance of the same method will vary with dif-
ferent intercepted signals. For the fault type recognition problems, these datasets cannot 
be directly used to test the effectiveness of the proposed methods. Data preprocessing 
may be needed to solve the task. For example, the original rolling bearing data of these 
datasets are often divided to form the training set and the test set to train and test the 
machine learning-based methods, respectively. In addition to these datasets, there are also 
some other fault diagnosis datasets that were used in the literature, but they are not pub-
licly available. To make fair comparisons between existing methods, it is important to use 
the same experimental settings including data preprocessing and splitting. However, this 
is very hard to achieve at the current stage. On the other hand, to enrich the field of fault 
diagnosis, it is also necessary to develop/share good datasets of various rolling bearing 
fault diagnosis tasks, such as the ImageNet [164] dataset in the computer vision commu-
nity. 

5.2. Limitations and Challenges 
Although many rolling bearing fault diagnosis methods were proposed and achieved 

promising results. They have limitations. Most of these methods essentially focus on how 
to increase the effectiveness of the diagnosis whilst paying little attention to the intelli-
gence and adaptability of the diagnosis systems. Specifically, the limitations/challenges of 
existing techniques are summarized as follows. Some research directions/topics were also 
pointed out to address these limitations. 
(1) Limitations of fault detection methods: Some rolling bearing fault detection meth-

ods, such as morphological transform-based methods, filter-based methods, decom-
position-based methods, and deconvolution-based methods, often need rich 
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domain/prior knowledge to design and use. For example, it should be known in ad-
vance how these methods operate, what their advantages and disadvantages are, and 
whether they are suitable or effective for the task at hand. However, experts with 
such knowledge are often costly to employ. In addition, the running condition of 
rolling bearings in actual services is complex and dynamic, making it very hard to 
develop a method to meet the actual environment. Capturing the periodic impact 
component caused by the fault in the signal is a good way to achieve fault detection 
but very challenging. To address this limitation, it is promising to develop an intelli-
gent method that can automatically generate a detection model to adaptively remove 
the background interference and effectively retain the fault-related impulses. 

(2) Limitations of traditional fault type recognition methods: Traditional rolling bear-
ing fault type recognition methods often include three key steps, i.e., feature extrac-
tion, feature reduction, and classification. The results of a previous step may influ-
ence the outcomes of the following step. To ensure the whole diagnostic process is 
feasible and effective, each step must be designed elaborately by experienced re-
searchers, such as determining which type of features to choose/extract, which fea-
tures to use, which classifier to use, and whether the classifier needs to be optimized. 
However, it should be noted that such a well-designed diagnostic method may only 
be effective for a specific fault diagnosis task. Therefore, it is promising to design 
methods that can automatically deal with these subtasks of fault type recognition. In 
addition, obtaining representative features of sample signals is the key to achieving 
good results. Therefore, it is a good research direction that develops a diagnostic 
method to automatically and simultaneously extract and construct representative 
features from the original bearing signals, to reduce the difficulty of distinguishing 
samples and improve the accuracy of fault type recognition. 

(3) Limitations of deep learning-based fault type recognition methods: Although the 
deep-learning-based rolling bearing fault type recognition methods can automati-
cally achieve feature extraction, feature reduction, and classification, most of the 
methods are based on neural networks, which need researchers to design their archi-
tectures and adjust the corresponding parameters. The process of model design and 
parameter adjustment process will consume a significant amount of time and re-
sources. Moreover, the interpretability of the neural network-based methods is not 
good, i.e., cannot directly express the fault identification process. In addition, these 
methods usually require a large number of samples to train. However, in practical 
engineering applications, it is typically difficult to obtain a large number of fault sam-
ples, which will limit the use of deep learning-based diagnosis methods. 
Therefore, it is necessary to develop new rolling bearing fault type recognition meth-

ods that do not need rich manual effort to design the architectures and select the parame-
ters, can effectively deal with limited training data, and learn interpretable models for 
fault type recognition. These are very challenging research directions, but it is worth in-
vestigating them to make the fault type recognition methods more applicable to real-
world scenarios. 

In summation, the existing rolling bearing fault diagnosis methods require rich prior 
knowledge and expert experience and lack intelligence and flexibility; therefore, these 
methods have not been fully explored from a universal perspective. Therefore, it is neces-
sary to develop a rolling bearing fault diagnosis approach that relies less on prior 
knowledge, domain expert experience, or human intervention and can be effectively ap-
plied to a wide range of applications. 

5.3. Future Research Directions 
In addition to the aforementioned research directions/topics, there are some other 

research topics that are becoming popular in this field. This subsection will discuss these 
research trends. 
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(1) Transfer learning-based methods: The effective performance of the fault type recog-
nition methods usually needs to meet a basic assumption, namely, that the training 
samples and test samples are independent and identically distributed. However, the 
monitor information of rolling bearing is generally subject to working conditions, 
such as the characteristic frequency and amplitude changing with rotational speed, 
resulting in a large distribution difference between training data and test data, 
thereby presenting a domain migration issue. Transfer learning (TL) can extract 
knowledge from one or more related scenes to help improve the learning perfor-
mance of scenarios in the target domain [165]. TL can relax the assumption of inde-
pendent and identical distributions and provide a new solution to address the above 
deficiencies. The TL-based rolling bearing fault type recognition methods were pro-
posed and achieved desirable results [166–168]. The TL-based recognition model, 
learning the common feature space from the source domain data and the target do-
main data to reduce the distribution difference between different domains, cannot 
adaptively adjust its parameters for target domain tasks, thereby affecting its domain 
adaptability and recognition accuracy. Thus, the further development of TL-based 
fault type recognition methods is a good direction for future research to improve the 
classification performance, recognition accuracy, and generalization under variable 
operating conditions. 

(2) Few-shot learning methods: A large amount of labelled data is also the key to ensur-
ing the performance of existing fault type recognition methods, especially for deep 
learning-based methods. In real-world scenarios, it is easy to obtain enough normal 
samples due to the rolling bearing mostly running under normal conditions, but the 
fault samples are typically difficult to obtain and require extensive manual effort to 
label. The absence of labelled fault samples will either lead to overfitting in the train-
ing process or the class imbalance problem. Few-shot learning (FSL) is effective for 
distinguishing failure attribution accurately under very limited data conditions 
[169,170]. Data augmentation, data/model transfer, and meta-learning constitute the 
three main threads of FSL methods. Thus, the comprehensive exploration of FSL-
based fault type recognition methods is a good direction for future research for re-
ducing the dependence on large amounts of data, avoiding the risk of overfitting, 
and improving the applicability and recognition performance. 

(3) Evolutionary deep learning methods: Evolutionary deep learning methods aim to 
deal with the limitations of deep learning methods, particularly neural networks, by 
using evolutionary computation (EC) techniques. This direction includes two main 
topics, i.e., using EC methods to automatically design neural networks and using EC 
methods to evolve deep models by themselves. On the first topic, some work was 
performed to evolve neural networks for fault diagnosis by finding the optimal num-
bers of layers, network connections, numbers of filters, etc. [171–175]. These methods 
can reduce the requirement of expertise from both the neural network domain and 
the problem domain, improve recognition performance, and decrease the number of 
parameters in the evolved models. On the second topic, pure EC methods, particu-
larly genetic programming methods, are used to evolve deep models. GP is a com-
putational intelligence algorithm to achieve automatic programming without human 
intervention and domain knowledge [176,177]. With a flexible program expression, 
GP can automatically evolve variable-length models to solve a task. GP has shown 
promise in the computer vision domain by evolving deep models [178–181]. The 
models evolved by GP typically have better interpretability than neural networks. 
However, there is little work on GP for fault diagnosis [182–184]. Figure 6 shows an 
example of using GP to solve fault type recognition, where the GP method is used to 
automatically generate informative and discriminative features from original vibra-
tion signals for recognizing different fault types. The left example tree of Figure 6 is 
the solution evolved by GP, showing high interpretability. In addition, the solutions 
are often creative and even not considered by human experts [183,184]. However, 
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both topics have not been fully investigated in the fault diagnosis community. There-
fore, it is promising to develop effective evolutionary deep learning approaches to 
fault diagnosis. 

 

 

(a) Flowchart (b) Solution 
 

Figure 6. Illustrations of the proposed GPAFEC method in [183]. (a) Flowchart of GPAFEC, (b) So-
lution evolved by GP. 

6. Conclusions 
The rolling bearing is an indispensable part of rotating machinery, and its running 

status typically affects the operation of the whole equipment. The research into rolling 
bearing fault diagnosis technology is of great significance to ensure the safe and stable 
operations of rotating machinery. This paper comprehensively reviewed existing fault di-
agnosis methods of the rolling bearing in terms of fault detection and fault type recogni-
tion. For fault detection, the methods, i.e., morphological transformation-based methods, 
filter-based methods, decomposition-based methods, and deconvolution-based methods, 
were discussed. For fault type recognition, traditional methods and deep learning-based 
methods were discussed. The commonly used datasets of fault diagnosis were presented 
for better practices. In addition, we summarized the limitations of existing methods and 
pointed out future research directions, which provides helpful guidance for researchers 
who are interested in this field. Overall, this field of fault diagnosis has potential for future 
study. Given the current limitations, it is still needed to develop automatic, intelligent, 
effective, and efficient methods for rolling bearing fault diagnosis under real-world sce-
narios. In addition, some topics such as transfer learning, few-shot learning, and evolu-
tionary deep learning can also be further investigated to enrich this field. 
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