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Abstract: Antiproliferation effects of Clavularia-derived natural products against cancer cells have
been reported on, but most studies have focused on identifying bioactive compounds, lacking a
detailed investigation of the molecular mechanism. Crude extracts generally exhibit multiple tar-
geting potentials for anticancer effects, but they have rarely been assessed for methanol extracts of
Clavularia inflata (MECI). This investigation aims to evaluate the antiproliferation of MECI and to
examine several potential mechanisms between oral cancer and normal cells. A 24 h MTS assay
demonstrated that MECI decreased cell viability in several oral cancer cell lines more than in normal
cells. N-acetylcysteine (NAC), an oxidative stress inhibitor, recovered these antiproliferation effects.
Higher oxidative stress was stimulated by MECI in oral cancer cells than in normal cells, as proven
by examining reactive oxygen species and mitochondrial superoxide. This preferential induction
of oxidative stress was partly explained by downregulating more cellular antioxidants, such as glu-
tathione, in oral cancer cells than in normal cells. Consequently, the MECI-generated high oxidative
stress in oral cancer cells was preferred to trigger more subG1 population, apoptosis expression
(annexin V and caspase activation), and DNA damage, reverted by NAC. In conclusion, MECl is a
potent marine natural product showing preferential antiproliferation against oral cancer cells.

Keywords: soft corals; marine natural product; oxidative stress; antiproliferation; oral cancer

1. Introduction

Oral cancers lead to high morbidity globally, especially in South Central Asia [1].
The occurrence for males is twice that of females for oral cancer [1]. Besides surgery and
radiotherapy, chemotherapy provides an alternative or supportive way of curing oral
cancer but frequently generates adverse effects [2]. Identifying a low side-effect anticancer
drug is necessary.

Crude extracts containing diverse bioactive compounds may exhibit targeting to
generate synergistic anticancer effects different than separate compounds [3,4]. For example,
the methanol extract of Usnea barbata (MEUB) [5] shows at least 10-fold effectivity in oral
cancer cells compared to its main bioactive compound (usnic acid) in melanoma cells [6].
Moreover, several natural product extracts provide selective antiproliferation against cancer
cells while generating low side effects on normal cells. For example, aqueous extract of

Antioxidants 2022, 11, 1777. https:/ /doi.org/10.3390/antiox11091777

https://www.mdpi.com/journal /antioxidants


https://doi.org/10.3390/antiox11091777
https://doi.org/10.3390/antiox11091777
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0001-6581-1320
https://orcid.org/0000-0003-0068-2366
https://doi.org/10.3390/antiox11091777
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox11091777?type=check_update&version=2

Antioxidants 2022, 11, 1777

20f18

Scutellaria baicalensis [7], manoalide [8], and fucoidan [9], were reported to inhibit more
cancer cell proliferation than normal cells.

Marine invertebrates are abundant resources containing diverse and unique bioactive
compounds with anticancer effects [10]. Soft corals are marine invertebrates without internal
skeletons and are rich in several bioactive compounds showing anticancer effects [11-13]. For
example, several Clavularia-derived bioactive compounds showed antiproliferation effects
against leukemia [14], liver [15], colon [16], prostate [17], and lung cancer cells [13]. However,
the detailed mechanisms of action have not been investigated, and their bioactive compounds
may have been extracted at a low yield.

Here, we focus on evaluating the anticancer function of the crude extract of the
octocoral Clavularia inflata (C. inflata) collected from Green Island, located in southeast
Taiwan. Therefore, the present work aims to inspect the modulating proliferation ability of
the methanol extract of C. inflata (MECI) against oral cancer cells. The cell safety of MECI is
also examined by testing its proliferation impacts on non-malignant oral cells. Detailed
mechanisms of apoptosis induction and DNA damage were investigated for the first time.

2. Materials and Methods
2.1. MECI Preparation

Specimens of C. inflata were collected in May 2021 in Green Island, Taiwan, using
SCUBA diving, and the voucher specimen (collection number CI2021) is given. The
animal material was immediately frozen and transported to the Department of Marine
Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan. The
coral sample was lyophilized and extracted by ethanol at room temperature three times.
The EtOH extract was evaporated to provide an organic extract (124.6 kg). This extract
was subjected to solvent partitioning between EtOAc and water. The EtOAc layer (34.8 g)
was then dissolved in 75% aqueous MeOH and partitioned with hexane. The 75% aqueous
MeOH layer of C. inflata was named MECI. MECI was dissolved in DMSO for further
experiments. All experiments with or without MECI contained the same concentration of
DMSO (0.1%).

2.2. Isolation of (1R*,12R*)-Dolabella-4(16),7,10-triene-3,13-dione (CI-A)

The 75% aqueous MeOH layer (11.1 g) was applied to flash chromatography on silica
gel, stepwise eluting with a hexane—EtOAc-MeOH gradient system to afford nine fractions
(CI-1 to CI-8). Fraction CI-2 (622.8 mg) was further isolated by silica gel open column
stepwise eluted with hexane-acetone (40:1 to 0:1), and nine subfractions (CI-2-1 to CI-2-9)
were obtained. Subfraction CI-2-6 (373.7 mg) was subjected to silica gel open column
stepwise eluted with hexanes-EtOAc-MeOH (100:10:1 to 0:0:1), and the major diterpene
(1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione (307.1 mg) was isolated. The Mass, 'H,
and 13C NMR data were comparable to those recorded in the literature [16].

2.3. HPLC Analysis of MECI

HPLC analysis was performed on a Shimadzu 40 series instrument equipped with an
LC-40D quaternary pump, a DGU-405 degasser, a CTO-40S column oven, an SPD-M40A
diode array detector, and a Phenomenex Luna C;g analytical column.

The chromatography processes were mentioned as follows: Solution A: H,O; solution
B: MeCN; flow rate: 1.0 mL/min; 0 min: 40% solution B, 0-30 min: 40% to 75% solution B,
30-40 min: 75% to 80% solution B, 40—45 min: 80% to 100% solution B.

2.4. Cell Cultures, Viability, and Reagents

The oral cancer cell lines CAL 27 (tongue) (ATCC; Manassas, VA, USA), Ca9-22
(gingival), and HSC-3 (tongue) (JCRB Cell Bank; Osaka, Japan) were taken for experimen-
tation. OC-2 (buccal mucosa) oral cancer cells [18] were supplied by Dr. Wan-Chi Tsai
(Kaohsiung Medical University, Kaohsiung City, Taiwan). The non-malignant oral cells
Smulow-Glickman (S-G), derived from gingival epithelial, were chosen to examine drug
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safety. As described, the medium was obtained from Gibco (Grand Island, NY, USA) [8].
Promega MTS reagent (Madison, WI, USA) was applied to measure cell viability after 24
h treatment and detected at 490 nm [9]. N-acetylcysteine (NAC) [19-21] (Sigma-Aldrich,
St. Louis, MO, USA) at 10 mM for 1 h pretreatment was chosen as a reactive oxygen species
(ROS) scavenger.

2.5. Cell Cycle

Cellular DNA within 75% ethanol-fixed cells was reacted with 7-aminoactinmycin
D (7AAD) (Biotium, Hayward, CA, USA) [22,23]. After performing Guava easyCyte flow
cytometry (Luminex, Austin, TX, USA), the cell cycle was determined according to DNA
content by Flow Jo 10 software (Becton-Dickinson, Franklin Lakes, NJ, USA).

2.6. Annexin V/7AAD

Cells were mixed with annexin V (1:1000)/7AAD (1 pug/mL) for 1 h at 37 °C [24]
(Strong Biotech, Taipei, Taiwan). After performing Guava easyCyte flow cytometry, the
annexin V (+)/7AAD (+ or —) events were specified for the apoptotic cell population [25].

2.7. Caspase 3/8/9 (Cas 3/8/9)

Apoptosis is generally triggered by activating caspases. The extrinsic and intrinsic
apoptotic caspases (Cas 8 and Cas 9), as well as the final caspase executer (Cas 3), were
detected with the peptide-based detection kit (Oncolmmunin kits, Gaithersburg, MD,
USA) [9,26]. After activation of these caspases, the activated peptides, in turn, generate
fluorescence for flow cytometry analysis. These caspase-specific substrates were diluted
1000-fold and incubated for 1 h. Finally, these cells were taken for flow cytometry.

2.8. Oxidative Stress

Oxidative stress is commonly detected by measuring ROS and mitochondrial su-
peroxide (MitoSOX), which were probed with 2’,7'-dichlorodihydrofluorescein diacetate
(H,DCFDA) (Sigma-Aldrich, St. Louis, MO, USA) [27,28] and MitoSOX™ Red [9] for
flow cytometry. Moreover, glutathione (GSH) was determined with flow cytometry using
5-chloromethylfluorescein diacetate (CMF-DA) (Thermo Fisher Scientific, Carlsbad, CA,
USA) staining as described before [9].

2.9. DNA Damage

DNA damage was detected with YH2AX [29] and 8-hydroxy-2-deoxyguanosine (8-
OHJAG) [9]. The YH2AX antibody [30] was obtained from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). Subsequently, Alexa Fluor®488-secondary antibody (Cell Signaling
Technology) and 7AAD were added for double staining. Additionally, 8-OHdG was
examined with the 8-OHdG-FITC antibody (Santa Cruz Biotechnology). Finally, the as-
prepared cells were subjected to flow cytometry.

2.10. Statistical Analysis

JMP 14 software (SAS Institute Inc., Cary, NC, USA) was used to assess statistical
analysis. Non-overlapping lowercase letters between different groups indicate signifi-
cant results.

3. Results
3.1. HPLC Profile of MECI and Major Component

The HPLC-PDA fingerprint profile of MECI (red line) and major compound (1R*,12R*)-
dolabella-4(16),7,10-triene-3,13-dione (blue line) is shown in Figure 1A. The retention time
for (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione is 32.046 min. The fingerprint profile of
MECI also shows the peak of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione. The linear
equation of major compounds was y = 107 x — 12062 (R? = 0.9999). The results showed that
(1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione accounts for 3.17 % of MECL.
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Figure 1. HPLC profile of MECI and major component. (A) The HPLC-UV (210 nm) fingerprint
profile of MECI and (1R*12R*)-dolabella-4(16),7,10-triene-3,13-dione are shown in red and blue,
respectively. (B) The calibration curve of (1R*,12R*)-dolabella-4(16),7,10-triene-3,13-dione, namely
CI-A (n = 3).

3.2. MECI Has Antiproliferation Effects on Oral Cancer Cells

MECI downregulated the cell viability (%) for a panel of oral cancer cells (Figure 2A).
For comparison, MECI-treated non-malignant cells (S-G) exhibited higher viability than
oral cancer cells. The ICs, values of MECI for Ca9-22, CAL 27, HSC-3, OC-2, and S-G
cells at 24 h MTS assays were 9.53 £ 0.18, 8.36 & 0.86, 60.65 £+ 3.08, 50.25 £ 4.08, and
75.15 + 0.77 ug/mL, respectively.

Moreover, the impact of ROS on the controlling antiproliferation effects of MECI was
assessed using an ROS inhibitor (NAC). As indicated, the antiproliferation effect of MECI
in four oral cancer cell lines was inhibited by pretreating NAC (Figure 2B). Cells (Ca9-22
and CAL 27) highly susceptible to MECI were later used to assess the detailed antioral
cancer mechanism.

3.3. MECI Has subG1-Incremental Effects

Antiproliferation is partly affected by abnormal cell cycle progression [31,32] and
subGl is also an apoptosis-like indicator [33]. To assess the impact of MECI on cell cycle
change, 7AAD-staining flow cytometry was performed (Figure 3). MECI increased the
subG1% of oral cancer cells (Ca9-22 and CAL 27) (Figure 3), an indicator of fast screening
for apoptosis. For comparison, non-malignant cells (S-G) exhibited lower subG1% than
oral cancer cells. MECI decreased G1% and increased G2/M% in oral cancer cells but there
was little change to S—G cells.
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Figure 2. Antiproliferation. (A) Cell viabilities. Except for S-G cells, others were oral cancer cells.
After 24 h MECI incubation, the cells were subjected to the MTS assay. (B) Impact of NAC on MECI-
induced antiproliferation to oral cancer cells. After pretreating with NAC, cells were post-treated
with MECI (0 (0.1% DMSO in the medium), 10, and 30 pg/mL) for 24 h. With or without MECI, all
drug treatments were adjusted to contain the same DMSO (0.1%) in the medium. Data, mean £ SD
(n = 3). For the same cell line, columns showing non-overlapping letters differ significantly (p < 0.05).
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Figure 3. Cell cycle analysis. Except for S-G cells, others were oral cancer cells. After pretreating with
NAC, cells were post-treated with MECI (0 (0.1% DMSO in the medium), 10, and 30 nug/mL) for 24 h
and applied to the flow cytometry. Data, mean & SD (1 = 3). For the same cell line, columns showing
non-overlapping letters differ significantly (p < 0.05).

The impact of ROS on the regulation of the cell cycle progression by MECI was as-
sessed using an ROS inhibitor (NAC). The subG1 accumulating effect of MECI in oral
cancer and non-malignant cells was inhibited by pretreatment with NAC (Figure 3). More-
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over, NAC increased the MECI-induced G2/M% compared to MECI alone at 30 pg/mL
MECI treatment.

3.4. MECI Has Annexin V-Incremental Effects

In addition to subGl-increasing effects, it is essential to assess apoptosis by additional
methods. Using annexin V/7ADD detection, MECI enhanced the annexin V (+) % of oral
cancer cells (Figure 4A), which is an advanced indicator of apoptosis. For comparison,
non-malignant cells (5-G) showed lower annexin V (+) % than oral cancer cells.
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Figure 4. Annexin V-detected apoptosis. (A) Annexin V/7AAD. Except for S-G cells, others were oral
cancer cells. After 24 h MECI incubation (0 (0.1% DMSO in the medium), 10, and 30 ug/mL), cells
were subjected to flow cytometry. Annexin V (+)/7AAD (+/—) spots were specified for apoptosis (+).
(B) Impact of NAC on MECI-induced apoptosis changes to oral cancer cells. After pretreating with
NAGC, cells were post-treated with MECI (30 ug/mL) for 0, 12, and 24 h. Data, mean =+ SD (n = 3). For
the same cell line, columns showing non-overlapping letters differ significantly (p < 0.05).
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The impact of ROS on the regulation of the annexin V level by MECI was assessed
using an ROS inhibitor (NAC). The annexin V-increasing changes of MECI in oral cancer
and non-malignant cells at time-lapse were inhibited by pretreatment with NAC (Figure 4B).

3.5. MECI Has Caspase-Activation Effects

In addition to annexin V-increasing status, it is essential to assess apoptosis by more
methods. Using caspase activation analysis (Figure 5A,C,E), MECI increased the Cas 3/8/9
(+) % of oral cancer cells, which is an advanced indicator of apoptosis in triggering caspase
signaling. For comparison, non-malignant cells (5-G) exhibited lower Cas 3/8/9 (+) % than
oral cancer cells.

The impact of ROS on the regulation of the Cas 3/8/9 (+) by MECI was assessed
using an ROS inhibitor (NAC). The Cas 3/8/9 (+)-increasing status of MECI in oral cancer
and non-malignant (S-G) cells at time-lapse was inhibited by pretreatment with NAC
(Figure 5B,D,F).

3.6. MECI Has ROS-Incremental Effects

The effects of the antioxidant NAC were assessed above. Consequently, oxidative
stress in terms of ROS was examined in MECI-treated cells. Based on graphs and statistics
presented in Figure 6, there is a difference between the Ca9-22 (84.2%) and CAL 27 (90.7%)
vs. 5S-G (38.6%) cells with regard to ROS generation after 30 pg/mL MECI treatment
(Figure 6A). Using flow cytometry analysis, MECI increased the ROS (+) % of oral cancer
cells (Figure 6A), which is an indicator of oxidative stress. For comparison, non-malignant
cells (S—G) exhibited lower ROS (+) % than oral cancer cells.

The impact of ROS on the regulation of ROS levels by MECI was assessed using an
ROS inhibitor (NAC). There is a difference between the Ca9-22 and CAL 27 vs. S-G cells
with regard to the effect of NAC on MECI-generated ROS levels at 3 h MECI treatment
(Figure 6B). The ROS-increasing status of MECI in oral cancer and non-malignant cells at
time-lapse was inhibited by pretreatment with NAC (Figure 6B).

3.7. MECI Has MitoSOX-Incremental Effects

The oxidative stress, such as MitoSOX, was evaluated in MECI-treated cells. Based
on graphs and statistics presented in Figure 7, there is a difference among the cell lines
examined with regard to MitoSOX positivity after MECI treatment (Figure 7A). Using flow
cytometry analysis, MECI increased the MitoSOX (+) % of oral cancer cells (Figure 7A),
which is an indicator of oxidative stress. For comparison, non-malignant cells (5-G)
exhibited lower MitoSOX (+) % than oral cancer cells.
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Figure 5. Cas 3/8/9 activation. (A,C,E) Cas 3/8/9 assay. Except for S-G cells, other cells were oral
cancer cells. After 24 h MECI incubation (0 (0.1% DMSO in the medium), 10, and 30 ug/mL), cells
were applied to Cas 3/8/9 assays. (+) spots were specified for Cas 3/8/9 (+). (B,D,F) Impact of NAC
on MECI-induced Cas 3/8/9 change to oral cancer cells. After pretreating with NAC, cells were
post-treated with MECI (30 pug/mL) for 0, 12, and 24 h. Data, mean + SD (n = 3). For the same cell
line, columns showing non-overlapping letters differ significantly (p < 0.05).
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Figure 7. MitoSOX assay. (A) MitoSOX change. Except for S-G cells, other cells were oral cancer cells.
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The impact of ROS on the regulation of the MitoSOX levels by MECI was assessed
using an ROS inhibitor (NAC). NAC eliminated MECI-induced MitoSOX positivity in the
CAL 27 oral cancer and S-G normal oral cells more efficiently than in the Ca9-22 oral cancer
cells (Figure 7B). The MitoSOX-increasing status of MECI in oral cancer cells at time-lapse
was inhibited by pretreatment with NAC (Figure 7B).

3.8. MECI Has GSH-Decremental Effects

The source of MECI-promoting oxidative stress was examined regarding the cellular
antioxidant GSH changes in oral cancer cells. Based on graphs and statistics presented
in Figure 8, there is a difference between the Ca9-22 and CAL 27 vs. S-G cells with
regard to GSH (—) % after 30 pg/mL MECI treatment (Figure 8A). Using flow cytometry
analysis, MECI increased the GSH (—) % of oral cancer cells (Figure 8A). For comparison,
non-malignant cells (5-G) exhibited lower GSH (—) % than oral cancer cells.
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Figure 8. GSH assay. (A) GSH change. Except for S-G cells, other cells were oral cancer cells. After
24 h MECI incubation (0 (0.1% DMSO in the medium), 10, and 30 ug/mL), cells were applied to a
GSH assay. (—) spots were specified for GSH (—). (B) Impact of NAC on MECI-induced GSH change
to oral cancer cells. After pretreating with NAC, cells were post-treated with MECI (30 pg/mL) for
0,12, and 24 h. Data, mean %+ SD (n = 3). For the same cell line, columns showing non-overlapping
letters differ significantly (p < 0.05).
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The impact of ROS on the regulation of the GSH levels by MECI was assessed using
an ROS inhibitor (NAC). NAC eliminated MECI-induced GSH negativity in the Ca9-22 and
CAL 27 oral cells (Figure 8B). The GSH-decreasing status of MECI in oral cancer cells at
time-lapse was inhibited by pretreatment with NAC (Figure 8B).

3.9. MECI Has DNA Damage-Incremental Effects

Oxidative stress triggers DNA damage [34]. DNA damage such as YH2AX and 8-
OHdG was examined in MEClI-treated cells. Based on graphs and statistics presented
in Figures 9 and 10, there are differences among the cell lines examined with regard to
YH2AX and 8-OHdG positivity after MECI treatment (Figures 9A and 10A). Using flow
cytometry analysis, MECI increased the YH2AX and 8-OHdG (+) % of oral cancer cells
(Figures 9A and 10A). For comparison, non-malignant cells (5-G) exhibited lower YH2AX
and 8-OHAG (+) % than oral cancer cells.
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Figure 9. YH2AX assay. (A) YH2AX change. Except for S-G cells, other cells were oral cancer cells.
After 24 h MECI incubation (0 (0.1% DMSO in the medium), 10, and 30 pug/mL), cells were applied
to YH2AX assays. (+) spots were specified for YH2AX (+). (B) Impact of NAC on MECI-induced
YH2AX change to oral cancer cells. After pretreatment with NAC, cells were post-treated with MECI
(30 ug/mL) for 0, 12, and 24 h. Data, mean £ SD (n = 3). For the same cell line, columns showing
non-overlapping letters differ significantly (p < 0.05).
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Figure 10. 8-OHdG assay. (A) 8-OHdG change. Except for S-G cells, other cells were oral cancer cells.
After 24 h MECI incubation (0 (0.1% DMSO in the medium), 10, and 30 pug/mL), cells were applied
to 8-OHdG assays. (+) spots were specified for 8-OHAG (+). (B) Impact of NAC on MECI-induced
8-OHdG change to oral cancer cells. After pretreating with NAC, cells were post-treated with MECI
(30 pg/mL) for 0, 12, and 24 h. Data, mean £ SD (1 = 3). Columns showing non-overlapping letters
differ significantly (p < 0.05).

The impact of ROS on the regulation of the YH2AX and 8-OHdG (+) levels by MECI
was assessed using an ROS inhibitor (NAC). The YH2AX and 8-OHdG (+)-increasing
status of MECI in oral cancer cells at time-lapse was inhibited by pretreatment with NAC
(Figures 9B and 10B). Based on graphs and statistics presented in Figure 9, the Ca9-22 and
CAL 27 oral cells displayed the highest level of NAC-mediated protection against yH2AX
formation by MECI. In Figure 10, the S-G normal oral cells displayed the highest level of
NAC-mediated protection against 8-OHdG formation by MECIL
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4. Discussion

The anticancer effects of MECI have rarely been reported. In assessing oral cancer
cells, the detailed mechanisms of the antiproliferation ability of MECI were demonstrated
for the first time. Moreover, this antiproliferation of MECI preferentially acts on oral cancer
cells rather than non-malignant cells. The preferential induction of antiproliferation by
MECI in oral cancer cells is attributed to several mechanisms, such as oxidative stress, cell
cycle, apoptosis, and DNA damage. These mechanisms are discussed in the following.

4.1. MECI Suppresses Proliferation in Oral Cancer Cells

Several Clavularia extracts show antiproliferation ability concerning cancer cells. For
example, ethyl acetate extracts from C. viridis and C. australis provided antiproliferation
and apoptosis-inducible functions on oral cancer cells [35]. They showed ICsj ranging from
31.5 to 49.3 pg/mL at 18 h MTS assay for oral cancer SCC4, SCC9, and SCC25 cells. In the
present study, the methanol extract of C. inflata (MECI)-treated oral cancer cells (Ca9-22
and CAL 27) showed ICs( values of 9.42 and 9.14 pug/mL at 24 h MTS assay. These findings
suggest that MECI is more sensitive to oral cancer cells than Clavularia ethyl acetate extracts.

Crude extracts are a mixture of several bioactive compounds, showing cooperative
targeting to induce synergistic antiproliferation effects compared to single compounds [3].
For example, the methanol extract of Usnea barbata (MEUS) showed ICs, values ranging
from 1.4 to 6 ug/mL at 48 h MTS assay for oral cancer cells [5]. In comparison, usnic acid,
the primary component of MEUB, showed ICs values of 32.8 and 22.4 ug/mL at 48 h MTT
assay for colon and lung cancer cells [36].

Similarly, some bioactive compounds derived from Clavularia also exhibit anticancer
effects. C. viridis-derived 4-deacetoxyl-12-O-deacetylclavulone I showed an ICsj value of
2.5 pg/mL for prostate cancer cells (PC3) based on a sulforhodamine B assay at 48 h [17].
C. viridis-derived clavuperoxylides B showed an ICs value of 5.23 pg/mL for lung cancer
cells (A549) based on a CCK-8 assay at 72 h [13]. C. viridis-derived claviridic acid C showed
an ICsy value of 7.78 ng/mL for gastric cancer cells (AGS) based on an MTT assay at
72 h [37]. Some Clavularia-derived compounds are more sensitive than the crude extract
MECI, and some are similar.

Cisplatin, a common clinical anticancer drug, shows slightly higher sensitivity than
MECI in oral cancer cells (Ca9-22) based on a 24 h MTS assay, e.g., IC5 values of 2.38 [38]
and 9.42 pg/mL (Figure 2), respectively. However, the side-effect problem of cisplatin
frequently occurs in clinical applications [39]. By contrast, MECI exhibits lower cyto-
toxicity in normal cells than in oral cancer cells (Figure 1). The character of preferential
antiproliferation ability of MECI benefits the future application of oral cancer treatment.

4.2. MECI Generates Oxidative Stress in Oral Cancer Cells

Unbalancing redox homeostasis is a potent anticancer strategy [40,41]. Drugs with
ROS modulating function may exhibit antiproliferation effects on cancer cells. Several
natural products show antiproliferation of cancer cells associated with oxidative stress
production [42]. Several literature reports support this rationale as follows. Isoaaptamine
generates oxidative stress to inhibit breast cancer cell proliferation [27]. Notably, natural
products such as manoalide [8] and fucoidan [9] can upregulate more oxidative stress
generation and cause stronger antiproliferation against cancer cells than normal cells.
Similarly, MECI-treated oral cancer cells show more ROS and MitoSOX levels than normal
cells (Figures 6 and 7).

In redox homeostasis, cellular antioxidants counteract the prooxidants [43]. Down-
regulation of cellular antioxidants may result in an overwhelming generation of oxidative
stress [44]. For example, indoxyl sulfate causes GSH depletion in renal tubular cells to
generate oxidative stress [45]. Fucoidan, the marine algae-derived polysaccharide, causes
oxidative stress associated with downregulating GSH in oral cancer cells [9]. Moreover,
MECI induces more GSH depletion in oral cancer cells than in normal cells (Figure 8). This
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GSH downregulation of oxidative stress is similar to that of MECI. This finding reveals that
MECI showed preferential generation of oxidative stress against oral cancer cells.

In addition to cellular antioxidants, the enzymatic antioxidant signaling pathway also
participates in maintaining redox homeostasis [43]. For example, nuclear factor erythroid
2-like 2 (NFE2L2), thioredoxin (TXN), catalase (CAT), superoxide dismutase 1 (SOD1), and
heme oxygenase 1 (HMOX1) are common enzymatic antioxidant signaling proteins [46].
NRF2, TXN, and HMOX1 genes were downregulated by fucoidan treatment in oral cancer,
causing oxidative stress [9]. Pomegranate extract also downregulates NFE2L2, TXN, CAT,
SOD1, and HMOX1 gene expressions in oral cancer cells and induces oxidative stress [47].
Accordingly, it warrants a careful assessment of enzymatic antioxidant signaling in MECI-
induced oxidative stress response in oral cancer cells.

4.3. MECI Generates Cell Cycle Redistribution, Apoptosis, and DNA Damage in Oral Cancer Cells

Overwhelming oxidative stress production is a promising treatment against cancer
cells, accompanied by cell cycle arrest [48], apoptosis [49], caspase activation [50], and DNA
damage [51]. Oxidative stress may trigger a DNA damage response. When DNA damage
is too severe, cell cycle progression is prone to be arrested for cell cycle checkpoint exami-
nation. Once the DNA damage exceeds the tolerance, cells may process apoptosis [48].

Activation of checkpoint kinase 1 (CHK1) phosphorylates inactivates the phosphatase
(cell division cycle 25; CDC25). In turn, it inactivates cell division cycle 2 (CDC2)-cyclin Bl
complex, leading to G2/M arrest [52]. MECI declined the G1 phase population and caused
G2/M arrest in oral cancer cells but not S-G cells. This warrants a detailed investigation
of the response of the G2/M checkpoint in MECI-treated cells. Moreover, MECI caused
differential cell cycle redistribution between Ca9-22, CAL 27, and S-G cells. It is possible
that different doubling times of them may contribute to this difference in cell cycle changes.
Additionally, different levels of subG1 population between Ca9-22 and CAL 27 cells were
evidenced after MECI treatments. When cells become apoptosis, the chromosomal DNA
molecules are cleaved by a caspase-dependent endonuclease such as caspase 3 [53], generat-
ing the sub-G1 population detected by flow cytometry. This caspase 3 activation appeared
in the MEClI-treated oral cancer cells (Ca9-22 and CAL 27) (Figure 5A,B).

Oxidative stress also triggers apoptosis [49]. For example, fucoidan exhibits prefer-
ential production of oxidative stress in oral cancer cells, leading to preferential apoptosis
rather than in normal cells [9]. Similarly, MECI promotes higher subG1 accumulation
(Figure 3) and causes more apoptosis (annexin V) in oral cancer cells than in normal cells
(Figure 4). The molecular mechanism for improving apoptosis by MECI was explored
with flow cytometry, demonstrating that MECI activates more extrinsic and intrinsic cas-
pases (Cas 8 and Cas 9) and executor caspase (Cas 3) in oral cancer cells than in normal
cells (Figure 5). Therefore, MECI provides a preferential induction of apoptosis in oral
cancer cells.

Based on YH2AX and 8-OHdG [50], MECI-promoted DNA damage was further
validated. MECI shows higher YH2AX and 8-OHdG levels in oral cancer than normal cells
(Figures 9 and 10), suggesting that MECI exhibits a preferential induction of DNA damage
in oral cancer cells.

4.4. Function of Oxidative Stress in Antioral Cancer Mechanism of MECI

Although oxidative stress was upregulated, the crucial function of oxidative stress
in drug treatment still needs to be validated by examining ROS removal using NAC pre-
treatment. Several literature reports prove that NAC recovers drug-induced oxidative
stress-associated changes. For example, natural products such as fucoidan [9] and cryp-
tocaryone [54] show oxidative stress-dependent mechanisms in oral and ovarian cancer
cells, validated by NAC. In the present investigation, the MECI-promoting mechanism
for oxidative stress, apoptosis, and DNA damage was blocked by NAC. Additionally, in
the case of Ca9-22 and CAL 27 cell lines, NAC/MECI increases cell viability above 100%
(Figure 1). It is possible that NAC (a GSH precursor) or GSH reacts with MECI, which im-
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proves the cell proliferation of oral cancer cells in addition to decreasing the MECI-induced
oxidative stress. As described above, MECI exhibits preferential oxidative, apoptosis, and
DNA damage changes, leading to preferential induction of antiproliferation for oral cancer
cells. Consequently, MECI causes oxidative stress-dependent preferential antiproliferation
mechanisms on oral cancer cells.

4.5. Limitation of MECI Study

Selective MECI-mediated killing of cancer cells compared to normal ones was demon-
strated in the present study. However, the selective killing effects of MECI were not
examined in other malignity types, limiting its application to other cancer cell treatments.
This warrants an assessment of the antiproliferation effects of MECI on more malignant
types in the future.

5. Conclusions

The present study identifies the anticancer effects of MECI for the first time, using the
example of oral cancer cells. MECI demonstrates preferential induction of antiproliferation
in oral cancer cells but less damage to normal cells. This preferential antiproliferation ability
of MECI depends on oxidative stress, where MECI induces higher oxidative stress in oral
cancer cells in examining ROS and MitoSOX than in normal cells. This character of MECI-
induced preferential oxidative stress against oral cancer cells is accompanied by triggering
more GSH depletion against oral cancer cells than in normal cells. Consequently, these
MECI-treated oral cancer cells induce higher oxidative stress bursts and promote more
apoptosis, caspase activation, and DNA damage than normal cells. These MECI-triggered
oxidative-related mechanisms were suppressed by NAC pretreatment, suggesting that
MECI-triggered oxidative stress-mediated antiproliferation, apoptosis, and DNA damage
of oral cancer cells occurred.
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