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Abstract: This study is concerned with developing a robust tracking control system that merges the
optimal control theory with fractional-order-based control and the heuristic optimization algorithms
into a single framework for the non-minimum phase pitch angle dynamics of Boeing 747 aircraft.
The main control objective is to deal with the non-minimum phase nature of the aircraft pitching-
up action, which is used to increase the altitude. The fractional-order integral controller (FIC) is
implemented in the control loop as a pre-compensator to compensate for the non-minimum phase
effect. Then, the linear quadratic regulator (LQR) is introduced as an optimal feedback controller
to this augmented model ensuring the minimum phase to create an efficient, robust, and stable
closed-loop control system. The control problem is formulated in a single objective optimization
framework and solved for an optimal feedback gain together with pre-compensator parameters
according to an error index and heuristic optimization constraints. The fractional-order integral pre-
compensator is replaced by a fractional-order derivative pre-compensator in the proposed structure
for comparison in terms of handling the non-minimum phase limitations, the magnitude of gain,
phase-margin, and time-response specifications. To further verify the effectiveness of the proposed
approach, the LQR-FIC controller is compared with the pole placement controller as a full-state
feedback controller that has been successfully applied to control aircraft dynamics in terms of time
and frequency domains. The performance, robustness, and internal stability characteristics of the
proposed control strategy are validated by simulation studies carried out for flight conditions of
fault-free, 50%, and 80% losses of actuator effectiveness.

Keywords: actuator fault-tolerant; aircraft dynamics; heuristic optimization; fractional-order control;
non-minimum phase; optimal control

1. Introduction

The worldwide statistical summary of Boeing and Airbus commercial aircrafts during
1958–2020 confirms that loss of flight control in flight (LOC-I) has the largest share of the
causes of catastrophic accidents [1–3]. This motivates researchers to develop effective
control systems more in aviation-related studies due to the highly nonlinear nature of the
aircraft dynamics and being more prone to perturbation and disturbances, which are also
among the obstacles that arise when designing robust flight control systems [4]. In this
context, it is well known that non-minimum phase (NMP) dynamics are characterized by
the right half plane (RHP) zeros that yield undesirable behavior, such as moving in the
opposite direction first before correcting its direction. Besides, the non-minimum phase
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nature of dynamics causes physical limitations to the open-loop bandwidth, and thus
restricting the benefits of the feedback control system [5]. This can be seen in the tracking
control problem, where the feedback controller can track the reference signal perfectly, but
the system states can become unstable, which is referred to as the internal stability problem
generated by non-minimum phase dynamics [6].

Various methodologies have been proposed to control plants with non-minimum
phase characteristics. The main features of these approaches from the transformation
of NMP nonlinear systems to approximately minimum phase systems such as approxi-
mate feedback linearization (FBL) [7], real-zero elimination [8], and stable inversion [9]
approaches, to other approaches that investigate the possibility of overcoming unstable
internal dynamics by introducing a dummy output thereby obtaining the desired trajecto-
ries via methods such as the output redefinition method [10]. More recent works are rather
destined to the inversion-based nonlinear controllers to deal with nonlinear non-minimum
phase systems [11,12].

Although previously proposed approaches in literature showed a strong capability
for dealing with NMP dynamics, there still are some inadequacies that make them re-
stricted to certain applications and cases. Among those reported methods, for instance,
the approximate feedback linearization method can be classified into two approaches:
input-output FBL and input-state FBL. While the input-output FBL cannot cope with NMP
dynamics satisfactorily, the input-state FBL can achieve a good asymptotic closed-loop
stability. However, in this case, the states of the system must be known precisely [13].
Furthermore, the input-state FBL method suffers from the robustness problem in the exis-
tence of system uncertainties [14]. On the other hand, inversion-based and stable inversion
approaches are completely dependent on accurately determined system models and they
are susceptible to the closed-loop system instability problem in the case of perturbation of
external disturbances [15,16]. Finally, the pole-zero cancellation-based approaches such
as the real-zero elimination approach led to creating a non-causal controller and hence
internally unstable systems [17,18].

These limitations are the impetus for the proposed method, which can ensure the
internal stability, robustness, and a desirable performance in dealing with NMP dynamics
by means of transforming the NMP to minimum-phase dynamics using the fractional-order
control for the first time then using the existing powerful linear control techniques such
as the proportional–integral–derivative (PID) controller, H2, H∞, and linear quadratic
regulator (LQR) optimal control. Therefore, the main advantage of the proposed approach
is the reliance on the classical feedback control to obtain a robust and high performance
as well as internal stability against NMP dynamics. It can be concluded that the main
differences between the proposed approach and the existed methods in literature that
essentially rely on transforming the non-minimum phase to minimum phase dynamics are:

1. Compared with the input state FBL method, which is based on adding hard constraints
such as the second-order Lyapunov constraint to ensure the closed-loop stability in the
case of NMP dynamics [19], the proposed method ensures a robust and stable closed-
loop for the NMP dynamics with actuator faults without any additional constraints.

2. In contrast with the real-zero elimination, which can be applied only with MIMO
systems [10], the proposed method is appropriate for both MIMO and SISO systems
without necessitating to reach all the internal states.

Generally, the linear quadratic regulator (LQR), which is based on the optimal control
theory, offers more significant advantages than the classical control methods with respect
to time response performance, control effort, robustness for uncertainty, and disturbance
and noise rejection capabilities [20,21]. As reported in the literature, the LQR controller has
been successfully applied to deal with various types of NMP dynamics, for instance, m-link
robotic manipulators [22], phase electrohydraulic systems (EHS) [23], and wheeled bipedal
robot with kinematic loops [24]. It is remarkable that the first significant application of
multivariable control based on the linear quadratic regulator (LQR) started in the Boeing
company (Chicago, IL, USA) in 1978 as a part of NASA’s research programs [25]. In their
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work, the LQR theory was applied as a second option for repeated attempts based on
classical synthesis techniques to improve the control of heading- and track-hold functions
of autopilot developed for the Boeing 767 commercial transport airplane. Furthermore,
the LQR and linear quadratic gaussian (LQG) design approaches have been implemented
for more than 20 years in the autopilots of Boeing aircraft [26]. As an example, the work
in [27] focused on the design of a high-performance control of longitudinal dynamics of a
highly flexible aircraft (HFA), where integral reinforcement learning (IRL) and LQR were
combined to constitute an adaptive online data-driven tracking controller. The data were
collected within an expected time interval using the IRL technique, and then the LQR
utilized these data to calculate the optimal feedback gains.

The LQR has been introduced with other control strategies to manage the aircraft’s
non-minimum phase nature. In [28], a quantitative feedback theory (QFT) was proposed
and compared with the LQR control approach to solve the non-minimum phase problem of
the longitudinal model of hypersonic aircraft and hence a robust controller was designed
against the uncertainty problem of large aerodynamic parameters due to complex flight
environments. In another noteworthy work, a new methodology based on decomposing
the non-minimum phase aircraft model into a minimum phase part and a non-minimum
phase part for output tracking of a vertical take-off and landing (VTOL) aircraft was
introduced [29]. Then, an inversion controller was used for the minimum phase part, while
an LQR controller for a new simpler non-minimum phase part was applied to accomplish
output tracking with stability. Another control approach that appeared in [30] is based on
converting the aircraft’s longitudinal dynamics from a non-minimum phase to a minimum
phase system by redefining the system using acceleration at the instantaneous center-
of-rotation (ICR) and then applying the dynamic inversion approach to the converted
acceleration dynamics. In the notable works of [31,32], a different approach to the NMP
problem was proposed, which involved designing a feedback control system based on exact
and approximate output tracking of aircraft dynamics instead of input–output linearization
of the models describing the aircraft dynamics. The LQR controller was also augmented
with integrators to obtain zero steady-state error to a particular input [33,34] and hence
converted the regulation problem to the tracking problem.

Over the last decade, fractional-order-based control, which consists of non-integer
order derivatives and integrals, is one of the research areas that has gained attention due to
the continuous demand to obtain precise controllers for plants with complex dynamics [35].
Most of the proposed fractional-based controllers [36] showed better performance than the
integer-based controller when applied to the systems represented with fractional-order or
non-fractional-order dynamics. On the other hand, some researchers opted for designing
robust flight control systems based on the fractional-order approach for classical and
optimal controllers, specifically for UAVs. In [37], for example, the actuator fault and
external disturbances were successfully compensated online by applying an adaptive and
fractional-order sliding mode control (FOSMC) method to a UAV model.

In general terms, the fault-tolerant control (FTC) approach is the most important
civil aircraft requirement to guarantee an acceptable performance, reliability, and stability
when actuator malfunctions occur [38–42]. One of the two main types of FTC systems
is passive FTC (PFTC) [43,44], which relies on robustness properties of the controller to
compensate for some known faults and maintain the stability of the system without fault
detection and diagnosis (FDD) and controller reconfiguration (CR) units. The second type,
an active fault-tolerant control system (AFTC) studied in [45–47], requires a fault detection
and diagnosis (FDD) unit to provide information about the magnitude and location of the
current fault [48]. Then, it reconfigures the controller to maintain the total stability of the
system. Some research groups [49,50], on the other hand, introduced the adaptive-FTC
techniques that can accommodate faults without fault detection and isolation (FDI) units.

The main contribution of this paper is to develop a new control structure to overcome
the performance and robustness limitations of the classical feedback control system when
dealing with non-minimum phase dynamics, especially for some fault cases. The focal idea
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is based on converting non-minimum phase pitch angle dynamics into an approximate
minimum phase system. The proposed approach combines the fractional-order integral
controller as the feedforward controller to deal with the non-minimum phase nature of air-
craft dynamics with the optimal feedback controller to achieve a good closed-loop system
performance and stability of the new augmented minimum phase dynamics. The param-
eters of the proposed controller are calculated by formulating the control problem as a
single-objective optimization problem and solving it by a heuristic global optimization tech-
nique according to a fitness function. One of the objectives of this study is to evaluate the
capability of the proposed structure to handle 50% and 80% losses of actuator effectiveness.

The main differences between the proposed control structure and the combination of
the optimal control theory with fractional control presented in the literature [51,52] can be
listed as follows:

1. In the proposed approach, the fractional-order integral controller (FIC) is augmented
with an LQR as a pre-compensator to cope with the non-minimum phase problem.

2. The implementation of non-integer order derivatives and integrals in the closed-loop
to function as a pre-compensator extends the LQR optimal problem from optimizing
just the states of the system to optimizing the new augmented dynamics, whereas, in
the literature, for example, the integrator is added to the LQR controller loop as an
error tracker.

3. The proposed controller exhibits superior performance even in fault cases that are
considered one of the challenges in practical applications.

4. The fractional-order integral control (FIC) is compared with a fractional-order deriva-
tive control (FDC) in terms of internal stability and closed-loop stability.

5. The feedback controller and the pre-compensator, i.e., feedforward controller parame-
ters are calculated simultaneously to create a more flexible and robust control system.

The article is organized as follows. Section 2 introduces the problem description
and dynamics of the aircraft of interest. Then, the methodology with the underlying
theoretical explanations is described in Section 3. Following this section for preliminaries,
the proposed adaptive linear quadratic regulator fractional integral (A-LQR-FI) control
structure is presented in detail in Section 4. The performance of the proposed approach
is also compared with the pole placement controller, which is one of the commonly used
methods in aircraft control. The results are discussed with plots and tables comparatively.
The ultimate remarks derived from this comprehensive work are given in the final section,
namely, conclusions.

2. Problem Description, the Proposed Approach, and Aircraft Dynamics

In this section, the problem of aircraft dynamics augmented adversely with non-
minimum phase effects and actuator faults is addressed and the proposed control scheme
as an attempt for a solution is presented in detail.

2.1. Non-Minimum Phase Problem

The aircraft of interest in this paper is the Boeing 747 100/200 series, flying at
the altitude of 4000 m with 0.567 Mach number corresponding to 185 m/s speed [53].
Non-minimum phase behavior is typically encountered when pitching up an aircraft to
increase its altitude. When the elevator is deflected up, a downward force is produced
on the tail that pushes it down relative to the center of gravity. Then, the aircraft angle of
attack (AOA) is increased due to the lift on the main wing causing the aircraft to climb
(pitches upward). However, before the altitude increases, the aircraft goes down initially
(undershoot) due to the reduced net lift in the center of mass. A typical step response of
such a system is presented in Figure 1. The conventional control laws, such as optimal
controllers and classical controllers, cannot work effectively if they are directly applied
to the non-minimum phase systems or if the dynamics involve faults due to unstable
zeros and internal stability problems. Therefore, designing an effective control system
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with a standard LQR technique is a challenging issue due to the limitations created by the
closed-loop bandwidth, which is narrowed due to the non-minimum phase dynamics.

Figure 1. Open−loop step response of Boeing 747 pitch angle dynamic.

2.2. Proposed Solution

In this work, the idea is to transform the non-minimum phase aircraft longitudinal
dynamics into minimum phase by inserting a fractional-order integral controller (FIC) as a
pre-compensator. Further, the design and implementation of an optimal LQR controller
to control the whole augmented dynamics as shown in Figure 2 is introduced. Further-
more, the adaptiveness of this control system structure is achieved by simultaneously
optimizing the Q and R weighting matrices with the pre-compensator parameters of KI
and λ assigned by the particular swarm optimization (PSO) algorithm according to an IAE
performance index.

Figure 2. Proposed LQR-FIC controller scheme.

This nested structure comprising the LQR, and the FIC controller is presented in
Figure 2. The optimal LQR controller is employed to obtain a closed-loop optimal control
law for the augmented system that ensures the state variables converge to zero in a limited
time, minimizes the control efforts, and compensates for the actuator faults and external
disturbances. On the other hand, a fractional-order pre-compensator, i.e., FIC is added to
the control loop to resolve the problems that can be confronted due to the non-minimum
phase characteristics. The pre-compensator directly generates control commands for the
actuator to deal with the longitudinal aircraft dynamics.



Appl. Sci. 2021, 11, 11705 6 of 23

Here, the problem is considered as the online single-objective optimization problem
exploiting a PSO optimization algorithm. The control design variables of the optimization
problem are chosen as weighting matrices (Q and R), and adaptive fractional-order integral
pre-compensator parameters (KI , λ) to track the desired pitch angle under the conditions
of normal flight and actuator losses of effectiveness by minimizing the performance index
of IAE. The general form of the online optimization problem is formulated based on the
constraints of the design variables vector, as explained in Section 4.2.

2.3. Aircraft Dynamics

The longitudinal state-space dynamics of the Boeing 747-100/200 model obtained
through Jacobian linearization at the trim point as reported in [53] can be expressed in
state-space form as,

.
x(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (1)

Here, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are the system, input, and output matrices,
respectively, x(t) ∈ Rn×1 is the state vector, u(t) ∈ R m×1 is the input or control vector,
and y(t) ∈ Rp×1 is the output vector. The longitudinal state vector, control vector, and
output vector can be defined as x = [α q VTAS θ he]

T , u = [δa δe]T , and y = [γ a θ q V he]
T

where the five states are the angle of attack α (rad), pitch rate q (rad/s), the true velocity
VTAS (m/s), pitch angle θ (rad), and altitude he (m). There are two control inputs, the
stabilizer deflection δa (rad) and elevator deflection δe (rad). The measurements available
are flight path angle γ (rad), aircraft acceleration

.
V
(
m/s2), pitch angle θ (rad), pitch rate

q (rad/s), velocity V (m/s), and altitude he (m).

3. Preliminaries

This section introduces the definition of fractional-order control, its role in the control
loop, and approximation methods in the implementation stage. Finally, a brief description
of the particle swarm optimization algorithm is presented.

3.1. Fractional-Order Integral Definition

The fractional-order integral is defined by Riemann-Liouville based on a natural conse-
quence of Cauchy’s formula for repeated integrals [54], which reduces the computation of
the primitive corresponding to the n-fold integral of a function f (t) to a simple convolution
equation as follows,

D−n f (t) =
1

Γ(n)

∫ t

0
f (y)(t− y)n−1dy (2)

which corresponds to the Riemann-Liouville’s definition for the fractional-order integral
of order n ∈ R+. Here, n is a general non-integer number and gamma function, and Γ is
used to extend the factorial to the operation of non-integer numbers, i.e., Γ(x) = (x− 1)!,
whether or not x is a whole number.

3.2. Fractional-Order Approximation

Even though the high robustness and excellent design flexibility properties of non-
integer, i.e., fractional-order controllers [55], there is no direct realization of non-integer
differentiators and integrators of these controllers due to the requirement of the theoretically
infinite size of memory. Implementation of a non-integer controller needs an efficient
approximation. The Oustaloup method [55] is one of the methods used to approximate the
non-integer differentiators and the integrators by employing a finite-dimensional rational
filter according to the equation:

sγ ≈ k
N

∏
k=1

s + ω′k
s + ωk

(3)
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The poles and zeros of a rational filter are recursively distributed in the frequency
range [ωb, ωh]. Then, the equation of the Oustaloup filter can be written as,

sγ = k
N

∏
k=1

s + ω′k
s + ωk

(4)

where the poles, zeros, and gains are evaluated as,

ω′k = ωbωu
(2k−1−γ)

N

ωk = ωbωu
(2k−1+γ)

N

k = ω
γ
h

(5)

Here, ωu =
√

ωh
ωb

and N is odd or even integer and is the order of the filter, γ is the or-
der of derivative and, ωb, ωh are the lower cut-off and upper cut-off frequencies, respectively.

The approximated fractional-order integral and derivative for all λ and µ values
between 0.1 to 0.9 by the standard Oustaloup method can be obtained using MATLAB
functions. According to the approximation results for λ and µ equal to 0.1 as an example
in Appendix A, the pole and zero locations are placed at a far location to the origin in
the left half-plane (LHP), which can improve the internal stability in the presence of the
non-minimum phase dynamics. In this work, the λ and µ variables are chosen as one of
the design vectors that can be selected adaptively using the PSO algorithm. Moreover, to
ensure that the pre-compensator work in the fractional range (i.e., λ and µ will not have an
integer value), the upper and lower values of λ and µ are chosen less than one within the
region of 0.1 to 0.9.

3.3. Particle Swarm Optimization Algorithm (PSO)

Particle swarm optimization, PSO, is an intelligent optimization algorithm, which
belongs to a class of optimization algorithms called metaheuristic-PSO. PSO is based on the
paradigm of swarm intelligence, and it is inspired by the social behaviors of animals such
as fish and birds. It is a simple but powerful optimization algorithm and is successfully
used in numerous engineering applications such as modelling, signal processing, and
robotics along with machine learning, data processing, and many other techniques [56–58].

4. Proposed Adaptive Linear Quadratic Regulator with Fractional Integral (LQR-FI)
Control Structure

The proposed adaptive linear quadratic regulator augmented with fractional integral
(LQR-FI) control structure is introduced with its preliminaries in the state–space representation.

4.1. Augmented State-Space Model

According to the proposed control loop structure, as shown in Figure 2, the LQR
controller optimizes the states of the augmented system, which contains the states of the
original system and the states of the fractional-order pre-compensator. The proposed
augmented system can be expressed in state-space form as,

.
z(t) = Anewz(t) + Bnewu(t)

y(t) = Cnewz(t) + Du(t)
(6)

The Anew, Bnew and Cnew are the augmented matrices and obtained as

.
z(t) =

[ .
x(t)
.
e(t)

]
, Anew =

[
A A′

0 A′′

]
, Bnew =

[
B
B′

]
, Cnew =

[
C C′

]
(7)
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[ .
x(t)
.
e(t)

]
=

[
A A′

0 A′′

][
x(t)
e(t)

]
+

[
B
B′

]
u(t)y(t) = [C C′ ]

[
x
e

]
+ Du(t)

(8)

Here, A′, A′′, B′, and C′ are non-zero matrices, and e(t) are the states that are added by
the pre-compensator. We can see that the obtained new matrices, Anew,Bnew, Cnew contain a
non-zero effect on the states and output of the pre-compensator. The objective of the LQR is
to find a state feedback control law for the augmented system as in the equation as follows:

u(t) = −Klqrz(t) (9)

which minimizes the quadratic performance cost function

J =
∫ ∞

0

(
z′Qnewz + u′Ru

)
dt (10)

Here, Klqr = R−1Bnew
TP can be obtained by solving the algebraic Riccati equation

(ARE) for the system.

PAnew + Anew
TP + Q− PBnewR−1Bnew

TP = 0 (11)

Here, Qnew is the augmented system state weighted matrix, which is calculated simul-
taneously with R, λ, and KI by the PSO algorithm. PSO algorithm adaptively changes the
gains of the proposed controller according to the designed constrain parameter vectors.
Then, the cost function maintains the stability of the controlled system and obtains zero
tracking error.

4.2. Mathematical Model and Constraints of the Proposed Controller Based on PSO Optimization

As stated, in this paper, the control objective is simply to overcome the non-minimum
phase behavior problems when the aircraft is pitching up. Therefore, a successful controller
is designed based on optimal control theory in the case of actuator losses of effectiveness
faults. A fractional-order integrator is used as the compensator to convert the system from
a non-minimum phase to a minimum phase, and then the linear quadratic regulator is
applied for the resultant minimum phase dynamics to obtain a closed-loop optimal control
law. The LQR performance matrices Qnew, R and the fractional integrator parameters,
λ, KI are chosen as design parameter vectors, which can be determined by minimizing
the objective function, which represents the errors between the required and the actual
pitch angle utilizing PSO. The objective function is selected as an integral of the absolute
magnitude of the error (IAE) performance index. The comparison between the fractional-
order integrator and fractional-order derivative is obtained similarly by considering the
fractional-order derivative instead of the fractional integral in the proposed structure as
presented in Figure 2.

The optimization problem is formulated mathematically as follows.

Objective function = minimize(IAE) =
∫ T

0
|e(t)|dt

Here, e(t) = r(t)− y(t) is subjected to:

constraints =


Qnewlower

< Qnew < Qnewupper

R lower < R < R upper

KImin < KI < KImax

λmin < λ < λmax

(12)
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The lower and upper bound for the design variables are set as follows. First, LQR
performance matrices, Qnew and R,

Qnew,lower = diag[0.01, 0.01, 0.01, 10, 0.01, 0 . . . 0],

Qnew,upper = diag[100, 100, 100, 1000, 100, 0 . . . 0]
(13)

The Qnew is selected in this way so that approximately 100 times as much effort is put
to keep the state of pitch angle small. As known, large R means more control effort.

Rlower = diag[10, 10], Rlower = diag[100, 100] (14)

Second, fractional-order integral parameters, KI and λ,

upper and lower band =


−150 < KI < 150

0.1 < λ < 0.9
0.1 < µ < 0.9

(15)

In general, R and Qnew matrices are known as the LQR controller performance matrices,
which can be used as design parameter vectors to penalize the dynamic state variables
and the control signals. In the case that is under consideration, Qnew is penalizing the
aircraft and pre-compensator states, whereas R is penalizing the elevator control signal.
Still, the target is to penalize the state variables of aircraft, which represent pitch rate, true
airspeed, angle-of-attack, pitch angle, and altitude. Nevertheless, the changes occurring in
the fractional-order integrator states are not of concern. For this reason, the fractional-order
integrator states are selected as equal to zeros in the Qnew matrix, which means more
attention is paid to keeping all aircraft states near zero as much as possible compared with
the states of the fractional integrator compensator. Since the fractional-order integration
parameters are simultaneously optimized with the state-feedback gain vector of Klqr, it can
ensure a good traceability performance while keeping all states near zero. Moreover, it can
improve the convergence of the optimization algorithm to an optimal solution.

The critical issue related to the online optimization process is the dependability of the
closed-loop stability behavior on the appropriate selection of the control design parameters
over evolutionary time, i.e., the convergence of the PSO algorithm to an appropriate
selection of control design parameters. This holds true because the closed-loop system
may be unstable for the consecutive time intervals of evolution in the case of inappropriate
selection of control design parameters. Hence, in this paper, the selection of an ideal control
design parameters vector to the next time PSO evolution interval is based on the instant
positions of the poles on the s-plane for the closed-loop system. As known, the system is
stable if the closed-loop poles lie on the left half of the complex plane. The best parameter
selection during the optimization process is achieved by adding more constraints to force
the PSO algorithm to converge into the global minimum to obtain the optimal controller
parameters. We can summarize the idea as follows:

(1) Calculate the real value of eigenvalue of the closed-loop system according to the equation,

Anew c−l = Anew − BnewKlqr (16)

(2) Then, according to the obtained eigenvalues in step one, the PSO particles are updated
along with position and velocity values with or without constraints as follows: if the
position of the pole n stays on the right half of the s-plane, the objective function, IAE,
is allocated to 10−3 to force the algorithm to find a better solution in the next election.
If not, the obtained IAE value is carried out for the next selection.

Moreover, the proposed controller is examined for actuator faults. The type of faults
that are considered in this paper is the loss of effectiveness, which are an attenuation
in the actuator efficiency or gains due to lack of hydraulic fluids or lubrication [39].
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System actuator faults can be compensated by means of solving the optimization problem
presented in Equations (11)–(14). Then, in the case of fault, the input to be optimized,

U f = α× u (17)

where, U f is the faulty input, u is the nominal control, and α = diag[α1, α2, α3, . . . . . . .αm].
Here, the attenuation factor changes within the range of 0 (full fault) to 1 (no-fault).

5. Results and Discussions

The results of theoretical analyses and simulation studies are presented with tables and
time response plots to evaluate the performance of the proposed control strategies involving
LQR, PSO, and fractional-order controllers implemented to cope with the adverse dynamics
of the pitch maneuvers under various fault conditions, namely, various degrees of losses in
the actuator effectiveness due to hydraulic fluid leakages or insufficient lubrication. As a
further comparison, the pole placement controller is applied under the same conditions.
The results produced by the components of the proposed control strategy and that of others
are presented under individual subsections to exhibit the achievements.

5.1. Open-Loop Step Response: Augmented Dynamics

As a first step, to verify the effectiveness of the proposed pre-compensator for solving
problems related to the non-minimum phase behavior of aircraft pitching up, the aug-
mented dynamics of the open-loop system that produced the step responses with the
proposed λ values of 0.1 to 0.9 of fractional integral and with the effects of the integral
gain, KI are examined without the impact of the LQR controller. As seen in Figure 3a,
the non-minimum phase effects of the aircraft pitch angle dynamics on the step response
previously presented in Figure 1, are entirely compensated through all proposed values
of λ.

Likewise, the step responses of the augmented dynamics in the case of a fractional-
order derivative pre-compensator are presented in Figure 3b. The plots show that the
augmented dynamics are still in the form of non-minimum phase dynamics, exhibiting
initial undershoots. As a result, it can be concluded that the fractional-order derivative
pre-compensator cannot convert the non-minimum phase dynamics to the minimum phase
because of the high gains that are multiplied for a finite-dimensional rational filter when a
fractional-order derivative is approximated for all µ values as presented in Appendix A,
which drive the system to move in the wrong direction initially.

5.2. Closed-Loop Step Response: Proposed LQR-FIC Controller

The proposed optimal LQR controller with fractional-order integral compensator,
LQR-FIC is evaluated based on an online optimization problem explained in Section 4.2 for
normal flight conditions and with the faults of 50% and 80% actuator losses of effectiveness
as presented in the block diagram of the proposed controller. The design parameters de-
noted as λ, KI , Qnew and R simultaneously satisfy the current IAE performance index value.

The LQR controller with an adaptive integer-order integral compensator KIs−1 is
also considered and its performance is compared with that of the fractional-order integral
compensator to evaluate the effectiveness of changing the λ value on maintaining the
augmented state–space dynamics internally stable. The performance of the proposed
controllers is compared with the conventional LQR controller in terms of handling the
non-minimum phase behavior.

Table 1 presents the obtained numerical results of design parameters and IAE perfor-
mance index for the two proposed controllers, i.e., KIs−1, KIs−λ compared with conven-
tional LQR controllers. The performances of the two controllers are evaluated according
to the IAE index, where the small values of IAE indicate a better time response of the
controller. Figure 4 compares the pitch angle step responses of the two proposed controllers
with that of a conventional LQR controller for the normal case, i.e., fault-free case.
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Figure 3. (a) Open−loop step responses of augmented pitch angle control-fractional integral, and
(b) open−loop step response for augmented pitch angle control − fractional derivative.

Table 1. The numerical results of the proposed controller−based fractional integral/fractional compensator: fault−free and
faulty conditions.

Parameters

LQR-FIC and LQR-IC LQR-FDC Classical-LQR

Fault-Free 50% Fault 80% Fault Fault-Free 50% Fault 80% Fault Fault-Free 50% Fault 80% Fault

LQR-FIC LQR-IC LQR-FIC LQR-IC LQR-FIC LQR-IC LQR-FDC LQR-FDC LQR-FDC LQR LQR LQR

IAE 0.0138 0.0386 0.0183 0.0453 0.0255 0.0568 0.0043 0.0061 0.0101 1.0436 1.0416 1.0428
KI −149.9 −150 −150 −149.9 −150 −150 −150 −149.99 −150 - -
λ 0.1 1 0.1 1 0.1 1 0.6 0.6 0.5 - -

Q(q) 0.01 0.01 0.01 1.2887 0.0105 0.8077 0.01 0.01 0.01 10 10 10
Q(v) 0.0409 0.01 0.0358 0.0419 0.01 0.0248 0.01 0.01 0.01 10 10 10
Q(α) 0.4453 0.8318 0.3258 0.5953 0.5015 0.4684 0.18 0.8237 0.01 10 10 10
Q(θ) 89.4723 96.1881 69.48 87.986 87.745 92.616 788.72 974.16 984.8474 1000 1000 1000
Q(h) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 10 10 10

R 99.873 100 79 98 92 99.4215 797.77 986.24 999.9998 10 10 10
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Figure 4. Pitch angle step responses to various controllers.

The obtained transfer function of the pre-compensator and state-feedback gain vector
Klqr as per the values of λ, which are selected by the optimization algorithm are presented
in Appendix A. The optimal feedback gain, Klqr, is a 2× 27 matrix. Refer to Appendix B
for Klqr and the augmented state-space matrices since they are in large dimensions.

5.3. Proposed LQR-FI Pitch Angle Controller under Fault Flight Condition

The proposed controller can successfully compensate for the 50% and 80% loss of
actuator effectiveness faults as shown in Figure 5a,b. Furthermore, Table 1 shows the
obtained design parameters of vectors Qnew, R, λ, KI and performance index IAE for the
proposed controller compared with a conventional LQR controller in the case of 50% and
80% loss of the actuator gain’s fault.

5.4. Proposed Structure with FD Pre-Compensator (LQR-FDC): Fault-Free and Fault Flight Conditions

As explained earlier, the main problem of a non-minimum phase system that occurs
when designing a feedback tracking controller is achieving internal stability. In this paper,
the internal stability problem is assessed by replacing the fractional-order integral pre-
compensator with a fractional−order derivative pre-compensator in the proposed structure.
The LQR-FDC control structure produced favorable step responses even in the cases of
fault as depicted in Figure 6. However, considering the open-loop step response of the
augmented dynamics that was explained earlier in Figure 3b, the open-loop step response
still exhibits non-minimum phase dynamics, which may lead to an internal instability
problem for some states of the dynamics. This can be appreciated if the results shown in
Table 1 for the integral pre-compensator are compared with the derivative compensator.
It can be concluded that the LQR-FDC highly penalizes the pitch angle state compared
with the other states, which may also lead to the internal stability problem.
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Figure 5. Pitch angle step response with (a) 50% fault and (b) 80% fault.

1 
 

 

Figure 6. Pitch angle step response with and without faults.
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5.5. Proposed LQR-FIC Controller against Pole Placement Controller

Among the techniques frequently found in literature for controlling civil aircraft [59],
UAV [60], and military aircrafts [61,62] is the pole placement approach. The proposed LQR-
FIC controller is further evaluated by comparing it with the pole placement controller in
terms of time and frequency responses under faulty and fault-free conditions. In addition,
as described previously, the main obstacle in the classical feedback control loop with NMP
dynamics is the problem of internal stability even if the system shows optimal transient
and steady-stated time responses. Therefore, for a fair comparison, the desired positions
of poles (eigenvalues of the closed−loop system) in the pole-placement controller were
selected at the same positions as those captured by the proposed LQR-FIC controller. This,
in fact leads to very similar transient responses from both controllers. The forward scaling
factor is attached to the pole placement controller at the input of the system to scale the
input, and thus force the steady state response to reach the desired level. The value of
the scaling factor is selected as the reciprocal of the DC gain of the system to avoid the
reversing response of the pole placement controller due to the NMP nature of aircraft
altitude control. The main purpose of the proposed controller is to devise a control method
to deal with adverse non-minimum phase characteristics in terms of the internal stability
problem. It is seen that the proposed method provided better internal stability, which is
particularly important in terms of flight quality. The frequency response analysis presented
higher gain, phase, and delay margins. Therefore, the evaluation is carried out according
to frequency domain analysis to observe the dynamic behavior of the NMP with respect to
its internal state stability.

As clearly seen in Figure 7, the pole placement controller with a feedforward scaling
factor produced favorable time responses for fault−free and faulty flight conditions. How-
ever, as revealed in Figure 8, which represented the Bode plots of the closed-loop system
using the pole placement controller, the gain, phase, and delay margins are reduced when
compared with the margins of the proposed LQR-FIC controller. Finally, Table 2 presented
the results of the pole placement controller that were obtained during the simulation tests.

Table 2. Numerical performance results of the pole placement controller.

Controller IAE P1 P2 P3 P4 P5 Forward Negative
Scaling Factor

Pole placement-Fault free 0.0704 −50.117 −10.420 −14.27 −14.200 −1.26 −627.4238
Pole placement-50%

Fault free 0.0728 −50.117 −47.777 −9.29 −14.274 −1.21 −599.9231

Pole placement-80%
Fault free 0.0728 −50.117 −47.769 −9.29 −14.274 −1.21 −599.9041

Figure 7. Pitch angle step response with and without faults—pole placement controller.
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Figure 8. Closed-loop Bode plots of pole placement.

5.6. Effect of Fractional-Order-Based Pre-Compensators on the Phase and Gain Margins of Open-
and Closed-Loop Systems

It would be more useful and provide a better evaluation of the effects of both pre-
compensators that were demonstrated in the frequency domain by comparing the gain,
phase, and delay margins of the augmented dynamic (Open-loop response) with the gain,
phase, and delay margins of closed-loop response.

Moreover, the comparison of the two pre-compensators in the frequency domain to em-
phasize the effectiveness of the compensators removing the limitations of the feedback con-
trol system with the non-minimum phase dynamics should be performed. Figures 9 and 10
show comparisons of the Bode diagram of an open-loop response frequency response
according to the values of λ and µ with and without the use of FI and FD pre-compensators,
respectively. It can be observed from Figure 9 that the fractional integral pre−compensator
makes the augmented system more phase lagging. In contrast to this observation, the
fractional derivative pre−compensator increases the phase margin, as shown in Figure 10,
that is it increases the phase margin of the feedback system.

Figure 9. Open-loop Bode plots of the plant with and without FI compensator.
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Figure 10. Open-loop Bode plots of the plant with and without FD compensator.

For a visual comparison of the time responses of the closed-loop systems, Figure 4
presents the fault-free condition, Figure 5a,b presents the 50% and 80% faulty cases. For
a visual comparison of the frequency responses that reveal the relative stability of the
closed-loop system, the Bode plots are presented for the same fault-free and faulty cases
in Figure 11a,b respectively. In addition, the Bode plots in the case of fractional-order
derivative (FD) for the fault-free and under 50% faulty cases are depicted in Figure 12a,b,
respectively. Accordingly, the associated frequency response performance values are
presented in Table 3. All these simulation tests reveal that the closed-loop system is more
robust in the case of having the fractional-order integral (FIC) pre-compensator than having
the fractional-order derivative compensator in terms of gain, phase, and delay margins as
shown in Figure 11a,b, and Table 3. This is achieved owing to simultaneously optimized
feedback controller gains and the pre-compensator parameters.

Table 3. Obtained numerical results of the closed-loop phase and gain margins.

Adaptive Fractional
Integral

Pre-Compensator (AFI)

Adaptive Fractional
Derivative

Pre-Compensator (AFD)

Pole Placement
Controller

Gain Margin (dB) 42.4 34.8 Inf
Phase Margin (deg) 175 171 155

Delay margin (second) 4.3 0.419 0.472
50% loss of actuator effectiveness

Gain Margin (dB) 51.2 48.2 Inf
Phase Margin (deg) 162 162 154
Delay margin (sec) 1.85 0.71 0.37
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Figure 11. (a) Closed-loop Bode plots of LQR-FI compensator for λ = 0.1 : fault−free, and
(b) closed-loop Bode plots of LQR-FI compensator with 50% loss of actuator effectiveness for λ = 0.1.
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Figure 12. (a) Closed-loop Bode plots of LQR-FD compensator for λ = 0.6: fault-free, and
(b) closed-loop Bode plots of LQR-FD compensator with 50% loss of actuator effectiveness for
λ = 0.6.



Appl. Sci. 2021, 11, 11705 19 of 23

6. Conclusions

In this article, a novel combination structure of the LQR and fractional integral con-
troller (LQR-FIC) was developed to compensate for the non-minimum phase dynamics of
Boeing 747 aircraft. A fractional-order integrator was employed as a pre-compensator to
convert the longitudinal dynamics of the aircraft from the non-minimum phase dynamics
to the minimum phase. Then, the LQR was implemented to find an optimal control law for
the augmented dynamics. Nevertheless, the LQR optimal feedback gains and fractional
integral parameters are simultaneously adjusted employing the proposed PSO optimiza-
tion algorithm to create a more flexible combination of controllers with fractional order
pre-compensators. Finally, the proposed controller was evaluated in the cases of fault-free
flight conditions, internal stability problems, phase and gain margins, and for 50% and 80%
losses of actuator effectiveness faults.

In the current study, it is observed that in all implementations with fractional order
compensators (FIC and FDC) and full state feedback (pole placement) control systems, the
results proved all configurations under examination could ward off the adverse effects
of non−minimum phase dynamics when analyzed in the time domain. However, as
matter of fact, the frequency domain analysis revealed that a fractional-order integral pre-
compensator represents more robust results with stabilized internal states compared with
the fractional-order derivative pre-compensator and pole placement methods. Although the
LQR-FDC (adaptive fractional−order derivative) and pole placement controllers produced
promising results in the cases of faults, the open−loop dynamics exhibited non−minimum
phase characteristics, which may lead to internal instability. The proposed control structure,
namely adaptive fractional-order integral controller, LQR-FIC showed superior results in
the time and frequency response analyses.
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Appendix A

F(s) = 1
slambda

Approximation of the Fractional-Order Integrator using the Oustaloup Method

s−0.1


0.50119(s + 568.3)(s + 161.8)(s + 46.09)(s + 13.13)(s + 3.739)(s + 1.065)

(s + 0.3033)(s + 0.08637)(s + 0.0246)(s + 0.007006) (s + 0.001995)
(s + 501.2)(s + 142.7)(s + 40.65)(s + 11.58)(s + 3.297)(s + 0.9391)
(s + 0.2675)(s + 0.07618)(s + 0.0217)(s + 0.006179)(s + 0.00176)


F(s) = sMu Approximation of the fractional−order integrator using Oustaloup method

s0.1


1995.3 (s + 501.2)(s + 142.7)(s + 40.65)(s + 11.58)(s + 3.297)(s + 0.9391)

(s + 0.2675)(s + 0.07618) (s + 0.0217) (s + 0.006179) (s + 0.00176)

(s + 568.3)(s + 1000)(s + 161.8)(s + 46.09)(s + 13.13)(s + 3.739)(s + 1.065)
(s + 0.3033)(s + 0.08637) (s + 0.0246) (s + 0.007006) (s + 0.001995)


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KIs−0.1 =


−75.176 (s + 568.3)(s + 161.8)(s + 46.09)(s + 13.13)(s + 3.739)

(s + 0.08637)(s + 0.0246)(s + 0.007006) (s + 0.001995)(s + 1.065)(s + 0.3033)

(s + 501.2)(s + 142.7)(s + 40.65)(s + 11.58)(s + 3.297)
(s + 0.07618)(s + 0.0217)(s + 0.006179)(s + 0.00176) (s + 0.9391)(s + 0.2675)


Klqr =


0.010

−0.011

0.0015

−0.0107

−0.0172

0.0323

1.0298

−0.1476

0.0012

−0.008

0.0013

−0.00

0.0025

0.00

0.0046

0.00

0.0086

0.00

0.0161

0.00

0.0296

0.00

0.0519

0.00

0.0743

−0.0001

0.0698

−0.0001

0.048

−0.0001

0.0306

−0.0001

−0.0001

0.0006

−0.0002

0.001

−0.0002

0.0014

−0.0002

0.0013

−0.0002

0.001

−0.0001

0.0006

−0.001

0.0004

−0.0001

0.0002

−0.0001

0.0001

−0.0001

0.0001

−0.0001

0.0001



Appendix B

The augmented state-space matrices for lambda = 0.1.

Aexg =



−2.125 −0.05
−0.5384 −0.3522

3.627 −0.1327
1 0
0 −1.0578−7

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

−1.813 0 −0.0003379
4.733 −9.794 0.03635
−2.428 −4.582e−8 0.01276

0 0 0
−13.6 13.6 0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0.2247 0.421 0.7889
−1.663e−7 −3.117e−7 −5.84e−7

0.07622 0.1428 0.2676
0 0 0
0 0 0

−0.00176 0.0004413 0.0008269
0 −0.006179 0.001549
0 0 −0.0217
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1.478 2.77 5.19
−1e−6 −2.051e−6 −3.843e−6

0.5015 0.9397 1.761
0 0 0
0 0 0

0.001549 0.002903 0.00544
0.002903 0.00544 0.01019

0.0054 0.01019 0.0191
−0.07618 0.0191 0.03579

0 −0.2675 0.06707
0 0 −0.9391
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

9.726 18.22 34.15
−7.2e−6 −1.349e−5 −2e−5

3.3 6.183 11.59
0 0 0
0 0 0

0.01019 0.0191 0.03579
0.0191 0.03579 0.06707

0.03579 0.06707 0.1257
0.06707 0.1257 0.2355
0.1257 0.2355 0.4413
0.2355 0.4413 0.8269
−3.297 0.8269 1.549

0 −11.58 2.903
0 0 −40.65
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

63.99 119.9 −0.2e− 0
−4.737e−5 −8.877e−5 −0.001293

21.71 40.68 0.0001018
0 0 0
0 0 0

0.06707 0.1257 0
0.1257 0.2355 0
0.2355 0.4413 0
0.4413 0.8269 0
0.8269 1.549 0
1.549 2.903 0
2.903 5.44 0
5.44 10.19 0

10.19 19.1 0
−142.7 35.79 0

0 −501.2 0
0 0 0.00176
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

−0.3e− 3 −0.0007077 −0.001326
−0.002422 −0.004539 −0.008505
0.0001908 0.0003576 0.00067

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0.0004413 0.0008269 0.001549
−0.006179 0.001549 0.002903

0 −0.0217 0.00544
0 0 −0.07618
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

−0.002485 −0.004656 −0.008725
−0.01594 −0.02986 −0.05596
0.001255 0.002352 0.004408

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0.002903 0.00544 0.01019
0.00544 0.01019 0.0191
0.01019 0.0191 0.03579
0.0191 0.03579 0.06707
−0.2675 0.06707 0.1257

0 −0.9391 0.2355
0 0 −3.297
0 0 0
0 0 0
0 0 0
0 0 0

−0.01635 −0.03064
−0.1049 −0.1965
0.00826 0.01548

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.0191 0.03579
0.03579 0.06707
0.06707 0.1257
0.1257 0.2355
0.2355 0.4413
0.4413 0.8269
0.8269 1.549
−11.58 2.903

0 −40.65
0 0
0 0

−0.05741 −0.1076
−0.3682 −0.6899

0.029 0.05435
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0.06707 0.1257
0.1257 0.2355
0.2355 0.4413
0.4413 0.8269
0.8269 1.549
1.549 2.903
2.903 5.44
5.44 10.19

10.19 19.1
−142.7 35.79

0 −501.2



Caug =



0 0 −1 1
−0.2028 −0.1321 1.775 −3.674

0 0 0 1
1 0 0 0
0 1 0 0
0 0 0 0

1 0 0 0 0
0.01364 −6.24e−8 −1.169e−7 −2.191e−7 −4.105e−7

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0

0 0 0 0 0
−7.693e−7 −1.441e−6 −2.701e−6 −5.061e−6 −9.48e−6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0
−1.777e−5 −3.33e−5 −0.000485 −0.0009087

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
−0.001703 −0.003191 −0.005979 −0.0112

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
−0.02099 −0.03934 −0.07371 0.1381

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0
−0.1381 −0.2588

0 0
0 0
0 0
0 0



Baug =



117.1
−8.671e−5

39.74
0
0

0.1228
0.23

0.4311
0.8077
1.514
2.836
5.314
9.958
18.66
34.96
65.52

0
0
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