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Abstract: We propose a fully convolutional neural network based on the attention mechanism for
3D medical image segmentation tasks. It can adaptively learn to highlight the salient features of
images that are useful for image segmentation tasks. Some prior methods enhance accuracy using
multi-scale feature fusion or dilated convolution, which is basically artificial and lacks the flexibility
of the model itself. Therefore, some works proposed the 2D attention gate module, but these works
process 2D medical slice images, ignoring the correlation between 3D image sequences. In contrast,
the 3D attention gate can comprehensively use the information of three dimensions of medical images.
In this paper, we propose the Attention V-Net architecture, which uses the 3D attention gate module,
and applied it to the left atrium segmentation framework based on semi-supervised learning. The
proposed method is evaluated on the dataset of the 2018 left atrial challenge. The experimental results
show that the Attention V-Net obtains improved performance under evaluation indicators, such as
Dice, Jaccard, ASD (Average surface distance), and 95HD (Hausdorff distance). The result indicates
that the model in this paper can effectively improve the accuracy of left atrial segmentation, therefore
laying the foundation for subsequent work such as in atrial reconstruction. Meanwhile, our model is
of great significance for assisting doctors in treating cardiovascular diseases.

Keywords: 3D medical image; attention mechanism; semi-supervised learning; left atrial segmentation

1. Introduction

Cardiovascular diseases have become an important factor affecting human life and
health [1,2]. In recent years, cardiac interventional therapy, as an advanced diagnosis and
treatment method between internal and surgical procedures, has been widely used to cure
cardiovascular diseases [3,4]. Among them, atrial septal puncture location surgery is the
key to the success of interventional treatment of cardiovascular disease. How to accurately
locate the puncture point to quickly puncture the atrial septum is the key to successful
surgery. However, due to the lack of accurate and reliable 3D imaging feedback, atrial
septal puncture location is still a challenging process, which requires doctors to have a
great deal of experience. Left atrial segmentation is of great significance for doctors to
quickly and accurately locate the atrial septal puncture position, and to better complete
interventional surgery.

In recent years, algorithms based on deep learning technology, especially convolutional
neural networks (CNNs), have made great breakthroughs in left atrial image processing
tasks. Ciresan et al. [5] first introduced CNN into medical image segmentation, using a
sliding window to fetch the local area around the pixel to train the network. However,
this strategy only uses high-level features, and does not make full use of features with
more marginal information. Furthermore, it is very slow because of the great quantity
of training data. Later, Shelhamer et al. [6] proposed FCN (Full convolutional network),
for image semantic segmentation, extending the classification from image level to pixel
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level. However, these methods did not fully consider the relationship between pixels,
and ignored the spatial regularization steps used in the common segmentation methods,
resulting in a lack of spatial consistency. Therefore, the results obtained are not detailed
enough. Then, Ronneberger et al. [7] proposed U-Net, which has both a contraction path
that captures context information and a symmetric expansion path that allows precise
positioning. Meanwhile, it can be trained based on FCN with a small number of images
end-to end. Despite the popularity of previous approaches, they usually can only process
2D images. Unfortunately, most clinically applied cardiology data consists of 3D volumes.
Therefore, Milletari et al. [8] recently proposed V-Net, an FCN based on 3D images. The
dataset used by the author is made up of 3D medical images, which is different from the
common 2D data. Operations such as convolution in the V-Net network structure also use
3D processing mode, in which a residual function inspired by [9] is also learned, which
ensures convergence in less training time and obtains good segmentation accuracy.

In addition, in view of the scarcity of labeled left atrial image data, many methods were
proposed in recent years to develop high-performance left atrial segmentation models to
reduce labeled data. Among them, the semi-supervised learning framework has achieved
many successful results, which can directly learn from limited labeled data and a large
amount of unlabeled data to obtain high quality segmentation results. These methods can
be roughly divided into two categories: regularization based on data perturbation or model
perturbation [10,11] and consistency constraints based on multi-task level [12,13]. Most
of them take V-Net as the backbone network of the algorithm, and the skip connection
structure of V-Net model improves the shortcomings of FCN, such as not considering global
context information and insufficient segmentation. However, the hierarchical convolution
structure in a V-Net encoder-decoder neglects the local region features of the segmentation
target to some extent, which may lead to the misclassification of the target and other objects.
The attention mechanism method can enable the network to focus on the local region of the
feature map. This motivates us to seek a suitable framework to adaptively learn the regions
of interest in the input object, highlighting the structural features that are meaningful to the
task, and thus improving the accuracy of the model prediction.

Based on V-Net model and attention mechanism, this paper designs a segmentation
algorithm for left atrial MR images which are mostly 3D data formats, different from
classic algorithms such as FCN, U-Net, and other networks. The proposed method can
use the interdependence between channel mappings, to emphasize the interdependent
feature mapping, and improve the feature representation of specific semantics. Therefore,
the model pays more attention to the salient features that are meaningful for specific
tasks. The results demonstrate that our method achieves significant improvements in left
atrial segmentation.

In summary, this paper mainly makes the following contributions to the problem of
how to make the network adaptively focus on the region of interest in the feature map:

(1) We propose a 3D left atrium segmentation model based on the attention mecha-
nism, Attention V-Net, to simulate the interdependence between channels. In contrast to
the previous 2D segmentation models, it can fully use the information between the 3D
sequences of medical images. It can adaptively learn to highlight the salient features that
are useful for tasks in the image, thus effectively enhancing the ability of feature expression.

(2) The proposed algorithm is applied to the semi-supervised framework of left
atrium segmentation. The experimental results show that compared with the baseline, the
proposed method obtains improved performance in terms of Dice, Jaccard, ASD, and 95HD,
and also outperforms other state-of-the-art semi-supervised methods.

The rest of the paper is organized as follows. A brief review of the related works in
left atrial segmentation and attention mechanism is given in Section 2. The architectures
of the proposed Attention V-Net model is presented in Section 3. We present the experi-
mental settings and the corresponding results in Section 4. Finally, we conclude this paper
in Section 5.
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2. Related Work
2.1. Left Atrial Segmentation
2.1.1. Supervised Segmentation

In 2015, a full convolution semantic segmentation network [6] achieved excellent
segmentation results, laying the foundation for the application of deep learning in image
segmentation. In recent years, many end-to-end segmentation techniques were developed
in the field of medical imaging, and some early atrial segmentation algorithms [14–16],
based on supervised learning, have shown good results. For example, the champion of
the 2018 MICCAI Left Atrium Segmentation Challenge proposed a segmented network
with two V-Nets [14]. The first is used to roughly locate the atrial center, it crops out a fixed
size area according to the prediction results, the second network finely divides the parts
cropped in the previous stage. F Isensee et al. [15] proposed a robust adaptive framework,
nnU-Met, based on 2D U-Net and 3D U-Net. It replaces the complex process of artificial
optimization using a systematic approach based on explicit and interpretable heuristic
rules. It can perform plug-and-play on a variety of datasets and achieve the same effect
of the state-of-the-art methods. Ahmad et al. [16] proposed a method to segment the left
atrium and left ventricle simultaneously on the 3D MRI data of the heart. This method uses
the traditional neighborhood-based method to track and superimpose the upper and lower
slices. Then, it reconstructs the 3D model of the segmented left atrium and left ventricle
according to the 2D format. These methods can improve the segmentation accuracy of
atrial structure to a certain extent, but it is still difficult to solve the actual situation of
medical image data with few labels and small samples. Therefore, the recent development
of semi-supervised learning has resulted in changes to atrial segmentation algorithms.

2.1.2. Semi-Supervised Segmentation

The training of deep neural network needs a large amount of annotated data, which
can only be generated by experienced doctors, and the cost is high. To solve this problem,
some methods based on semi-supervised learning framework [10–13] recently achieved
successful results. The semi-supervised learning framework can directly learn from a
limited number of labeled data and a large number of unlabeled data to obtain high
quality segmentation results. These methods can be roughly divided into two categories:
regularization based on data perturbation or model perturbation [10,11], and consistency
constraints based on multi-task framework [12,13].

Regularization Based Methods

Similar to [17], Li and Yu [10] proposed a method to regularize the model by adding
perturbation to the input data. An iterative model needs to propagate forward twice, the
input is the unchanged image and the changed image, respectively. Then the results of the
changed image are inverted transformed to build the consistency loss of the two predicted
results. The idea is simple, but it works well. Yu and Wang [11] designed the uncertainty
perception strategy on the basis of Mean Teacher [18], and they adopted the consistency
loss function to improve the performance of the student model. The model perturbation
regularization is realized by adding different perturbations to the teacher model and the
student model, such as adding noise to the input or adding dropout to the network. This
adds some extra computing overhead, but you obtain a performance boost.

Multi-Task Frameworks

Li, Zhang, and He [12] adopted a multi-task network structure to segment the image
and perform the signed distance graph regression at the same time, and the network
uses the discriminator as the regularization term. This design can make the prediction
distribution of the whole unlabeled data set smooth. Meanwhile, it can introduce strong
shape and position as prior information to ensure the stability and robustness of the
segmentation results. The dual-task consistency algorithm [13] establishes the prediction
disturbance between different tasks. The output of different task branches should be



Appl. Sci. 2022, 12, 3764 4 of 13

transformed into the same predefined space, and the consistency regularization between the
two prediction mappings is explicitly performed. It establishes a task-level regularization
which is completely different from the previous data-level regularization. The model is
simple, and the calculation cost is not large.

2.2. Attention Model

The Attention mechanism can retrieve the key features through the convolutional layer
of the network to output relevant weights. Generally, Sigmoid or SoftMax are used to calculate
weights to identify the important features. It can be applied to any sequence model [19,20].
There are two types of attention mechanisms: soft attention [21] and hard attention [22].
Soft attention pays more attention to regions [23] or channels [24]. For example, ref. [23]
proposes a module called spatial transformer, which can carry out corresponding spatial
transformation of spatial domain information in images, so as to extract key information. The
most important thing is that soft attention is differentiable. It can optimize the parameters
through backward propagation optimization in the model training process, learning to
obtain the weight of attention. Hard attention differs from soft attention in that it pays more
attention to points. Meanwhile, hard attention is a random prediction process, which does
not use all hidden layer states, but extracts information from a certain area in the form of a
one-hot. Monte Carlo sampling is needed to estimate the gradient because the backward
propagation cannot be performed directly in this way. The key point is that hard attention
is not differentiable, and the training process is usually completed through reinforcement
learning. In recent years, the attention mechanism can be explained intuitively by using the
human visual mechanism. For example, our visual system tends to pay attention to part of
the information that assists judgment in the image and ignore irrelevant information [25].
Similarly, in problems involving language or vision, some parts of the input may be more
helpful to the decision than others. Our goal is to be able to help the decoder have a
reference of the weights of different inputs when generating feature maps. The attention
module allows the model to dynamically focus on certain parts of the input that contribute
to the current task, it is a good choice for semantic segmentation of image.

3. Methodology
3.1. The Proposed Framework

In this section, we show the structure of our proposed Attention V-Net. We use
V-net, an encoder-decoder structure, as the backbone. The encoder part is used for feature
extraction and the decoder part can restore the image resolution. The features are extracted
from the early stages of the encoder part of the V-Net to the decoder part using horizontal
connections. Furthermore, we apply the 3D attention gate we designed on the connection
part to use the interdependence between channels to learn the spatial weight information
combined with the feature map, and obtain some structural regions with strong correlation.

The main structure is shown in Figure 1. The network consists of four encoder blocks
and four decoder blocks, and the encoder blocks and the decoder blocks are connected
symmetrically by the skip-connections. The parameters of the convolutional neural layer
are shown in Table 1. The entire network is divided into different stages according to
different resolutions, and each stage includes one to three convolutional layers. The upper
and lower sampling parts is also changed from pooling to transposed convolution. In
addition, the structure of adding residual connections at each stage is designed. The
last convolution layer is converted into probabilistic segmentation of foreground and
background regions through SoftMax.

In addition, inspired by the previous work on Attention U-Net [26], we design a 3D
attention module. We apply this module to the skip-connection part based on the standard
V-Net network. Furthermore, the modified framework can simulate the interdependence
between channels. In the image segmentation task of this paper, all hidden states are
important, but not equally important. The V-Net deepens the network through convolution
and pooling operations. Finally, the separated pixels in high-dimensional space will have
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stronger semantic information. We need a module to combine the contextual information
of adjacent layers, and then use this information to guide the network to learn the regions
of interest in the feature map. In this case, self-attention is needed to dynamically adjust
the importance of different hidden states. Compared with the rugged strategy of Squeeze-
Excitation [24] in which each channel of the feature map is multiplied by a weight coefficient,
our attention strategy is more detailed. The proposed method has a unique adjustment
factor for each value of each channel in the feature map. Furthermore, the designed
attention gate can learn the spatial weight information combined with feature maps, so
that the output has stronger semantic information and less noise interference. As the core
contribution of our paper, we will explain it in detail in the next section.

Table 1. The parameters of the convolutional neural layers.

Block Name Layer Name Layer Configuration Remark

Encoder Block (1)
conv 1 5× 5× 5, 16

de-conv 1 2× 2× 2, stride 2

Encoder Block (2)

conv 2_1 5× 5× 5, 32 Down-sampling path

conv 2_2 5× 5× 5, 32

de-conv 2 2× 2× 2, stride 2

Encoder Block (3)

conv 3_1 5× 5× 5, 64

conv 3_2 5× 5× 5, 64

Down-sampling path

conv 3_3 5× 5× 5, 64

de-conv 3 2× 2× 2, stride 2

Encoder Block (4)

conv 4_1 5× 5× 5, 128

conv 4_2 5× 5× 5, 128

conv 4_3 5× 5× 5, 128

de-conv 4 2× 2× 2, stride 2

Decoder Block (5)

conv 5_1 5× 5× 5, 256

conv 5_2 5× 5× 5, 256

conv 5_3 5× 5× 5, 256

up-conv 5 2× 2× 2, stride 2

Decoder Block (6)

conv 6_1 5× 5× 5, 128

conv 6_2 5× 5× 5, 128

conv 6_3 5× 5× 5, 128

up-conv 6 2× 2× 2, stride 2 Up-sampling path

Decoder Block (7)

conv 7_1 5× 5× 5, 64

conv 7_2 5× 5× 5, 64

conv 7_3 5× 5× 5, 64

up-conv 7 2× 2× 2, stride 2

Decoder Block (8)

conv 8_1 5× 5× 5, 32

conv 8_2 5× 5× 5, 32

up-conv 8 2× 2× 2, stride 2

conv 9_1 5× 5× 5, 16

conv 9_2 1× 1× 1, 2
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Figure 1. The proposed framework.

3.2. Attention Gates

Inspired by the work on Attention U-Net [26], we design a 3D attention gate for
3D data processing, combining it with the standard V-Net network. The 3D attention
gate is applied before each level of skip-connection, which can make the network to put
more weight on the characteristics associated with skip-connection. As shown in Figure 2,
the 3D attention gate has two inputs: one is the feature map x transmitted from the
extended pathway through a skip-connection, and the other is the feature map g output
by the previous neural layer. Both x and g are sent to the 1 × 1 × 1 convolution, turning
them into the same number of channels without changing the size. After the upsampling
operation to change the number of channels the same, they are accumulated along the
direction of the channel and passed through the ReLU. Then, the output through another
1 × 1 × 1 convolution and a sigmoid. Finally, we obtain an attention weight score, attention
coefficients, αi ∈ [0, 1], which can identify the salient features in the image. The output of
the 3D attention gate is the element-wise multiplication of input feature-maps and attention
coefficients: x̂l

i,c = xl
i,c · αl

i . In a default setting, a single scalar attention value is computed
for each pixel vector xl

i = RFl where Fl corresponds to the number of feature-maps in layer l.
The weight information can be added to the input feature map of this layer to eliminate the
influence of irrelevant information in the skip-connection. As shown in Figure 2, the output
of the 3D attention gate is connected to the next encoder through concatenate operation
to integrate contextual information, where C = Cx + Cg, H = Hx = Hg, W = Wx = Wg,
D = Dx = Dg. Therefore, the 3D attention gate module could help to achieve better
segmentation performance.

We use additive attention [27] to obtain the attention weight coefficient, and the
additive attention is formulated as follows:

ql
att = ψT

(
σ1

(
WT

x xl
i + WT

g gi + bg

))
+ bψ

αl
i = σ2

(
ql

att

(
xl

i , gi; Θatt

)) (1)
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where σ2(xi,c) = 1
1+exp(−xi,c)

correspond to sigmoid activation function. The 3D atten-
tion gate is characterized by a set of parameters Θatt containing linear transformations
Wx ∈ RFl×Fint , Wg ∈ RFg×Fint , ϕ ∈ RFint×1 and bias terms bψ ∈ R, bg ∈ RFint . The lin-
ear transformations are computed using channel-wise convolution for the input tensors.
Furthermore, qatt defined the transformation operation of two inputs x and g under the
parameters Θatt.

C

g

xl

attention weight

...
...

Cg×Hg×Wg×Dg

Cx×Hx×Wx×Dx

Conv3d  1×1×1

Conv3d  1×1×1

Relu

Concatenate

Sigmoid

Conv3d  
1×1×1

Conv3d  
1×1×1

Resampler Hx×Wx×Dx

...

C×H×W×D

Figure 2. 3D attention gate.

4. Experiments and Results
4.1. Datasets and Pre-Processing

To evaluate the proposed method, we apply our algorithm on the left atrium dataset [28],
which consists of 100 3D cardiac volume images. They are all obtained by GE-MRI
(gadolinium-enhanced magnetic resonance imaging) from patients with atrial fibrilla-
tion. The original resolution of the data is 625× 625× 625 mm3. To fairly compare the
advantages of the improved structure, we adopt the same data processing method as
the semi-supervised learning algorithm DTC: 80 images are used for training, including
64 labeled images and 16 unlabeled images, and 20 images for testing. Meanwhile, we use
the same pretreatment method.

4.2. Implementation Details and Evaluation Metrics
4.2.1. Implementation Details

In this part, we will make a brief introduction of the implementation of the Attention
V-Net. All experiments are implements by Pytorch [29] library. Furthermore, Pytorch
is an open source machine learning framework that accelerates the path from research
prototyping to production deployment, which is provided by Facebook AI Research. More
details can be found at https://pytorch.org/, (accessed on 20 March 2021). The experiments
are carried out on a laboratory computer. The operating system is Ubuntu 16.04. The main
required packages include python 3.6.13, CUDA9.0, cudnn7.6.5, Pytorch0.4.1.

In this work, we use the DTC algorithm as the baseline, where the V-Net network is the
backbone. The dual-task V-Net is realized by adding a new regression layer at the end of the
original V-Net network. The framework is trained by an SGD optimizer for 6000 iterations,
which has an initial learning rate (lr) of 0.01 decayed by 0.1 every 2500 iterations. The batch
size is four, consisting of two labeled images and two unlabeled images, the value of k is set
to 1500 in this work. We randomly crop 112× 112× 80 sub-volume as the network input.
To avoid overfitting, we use the standard on-the-fly data augmentation methods during
training stage. In the inference phase, we use a sliding window strategy to obtain the final
results, which with a stride of 18× 18× 4 for left atrium. At the inference time, we use the
output of pixel-wise classification branch as the segmentation result.

https://pytorch.org/
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4.2.2. Evaluation Metrics

We use overlap and surface distance measures to evaluate the segmentation, including
Dice, Jaccard, the average surface distance (ASD), and the 95% Hausdorff Distance (95HD).

(1) Dice and Jaccard Coefficients : Given two binary segmentation masks, A and B, the
Dice D and Jaccard coefficient J are defined as:

D = |A∩B|
|A|+|B| , J = |A∩B|

|A∪B| (2)

where |·| gives the cardinality (i.e., the number of non-zero elements) of each set. Maximum
and minimum values (1.0 and 0.0, repectively) for Dice and Jaccard coefficient occur when
there is 100% and 0% overlap between the two binary segmentation masks, respectively.

(2) Average Surface Distance and 95% Hausdorff Distance: Let, SA and SB, be surfaces
(with NA and NB points, respectively) corresponding to two binary segmentation masks, A
and B, respectively. The average surface distance (ASD) S is defined as:

S = 1
2

(
1

NA
∑p∈SA

d(p, SB) +
1

NB
∑q∈SB

d(q, SA)
)

(3)

Similarly, Hausdorff Distance (HD) H is defined as:

H = max
(

max
p∈SA

d(p, SB), max
q∈SB

d(q, SA)

)
(4)

where
d(p, S) = min

q∈S
d(p, q) (5)

is the minimum Euclidean distance of point p from the points from the points q ∈ S. Hence,
MSD computes the mean distance between the two surfaces, whereas, HD computes the
largest distance between the two surfaces, and is sensitive to outliers.

Four complementary segmentation metrics are introduced to quantitatively evaluate
the segmentation results. Dice and Jaccard, two region-based metrics, are used to mea-
sure the region mismatch. Average surface distance (ASD) and 95% Hausdorff Distance
(95HD), two boundary-based metrics, are used to evaluate the boundary errors between
the segmentation results and the ground truth.

4.3. Results and Analysis
4.3.1. Comparison with Other Semi-Supervised Methods

In this paper, we design an attention module and apply it to the V-Net network. It
can use the interdependence between channels to learn the spatial weight information
combined with the feature map, and to obtain some structural regions with strong corre-
lation. The final feature of each channel is the weighted sum of the features filtered by
the correlations between channels and the original features. The feature correlation of the
channels simulates the remote semantic dependence between features. It helps to maintain
the relationship between different channel feature maps, enlarge the inconsistency between
categories, and make the feature maps transmitted by the skip-connection have stronger
semantic information.

As shown in Table 2, on the 2018 left atrium segmentation dataset, we replace the
backbone network V-Net of the DTC algorithm with Attention V-Net, comparing it with
the recurring results of the basic framework DTC. The effect of Attention V-Net is 0.56%
higher on Dice, 0.74% higher on Jaccard, 0.16 voxel greater on ASD, and 0.32 voxel greater
on 95HD. Our method outperforms all the other semi-supervised networks in both Dice
(89.08%) and Jaccard (80.48%), and achieves competitive results on other metrics. We
compare our framework with four semi-supervised segmentation methods, including
entropy minimization approch (Entropy Mini) [30], uncertainty-aware mean teacher model
(UA-MT) [11], shape-aware adversarial network (SASSNet) [12], and dual-task consistency
model (DTC). Please note that we use the official code and results of Entropy Mini and
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UA-MT, and reimplement the SASSnet and DTC for left atrium segmentation. Table 2
shows the quantitative comparison of these methods. It can be found that our method
achieved the better accuracy than other semi-supervised segmentation methods on all
the evaluation metrics. It shows that our structure can improve the regional similarity
of cardiac segmentation results, and also has a significant improvement in the accuracy
of the boundary. Thus, our experiments can prove that our attention mechanism can
enhance the accuracy of model segmentation, and help to improve the performance of left
atrium segmentation.

Table 2. Comparison with Other Semi-supervised Methods.

Method
Metrics

Dice (%) Jaccard (%) ASD (Voxel) 95HD (Voxel)

Entropy Mini (CVPR 2019) 88.45 79.51 3.72 14.14
UA-MT (MICCAI 2019) 88.88 80.21 2.26 7.32
SASSnet (MICCAI 2020) 88.78 80.04 2.96 10.30
DTC (AAAI 2021) 88.52 79.74 2.08 8.54

Attention V-Net 89.08 80.48 1.94 8.22

4.3.2. Visualization

The attention model can process a large amount of data information and generate
weight probability information. The weight information can reflect the different degrees
of importance of local regions, so as to allow the network to focus on those regions that
are of great importance and more interesting to us. The Attention V-Net in this paper
can use the interdependence between channel mappings to emphasize the interdependent
feature mapping, and improve the feature representation of specific semantics. Therefore,
the model pays more attention to the salient features that are meaningful for specific tasks,
while suppressing any insignificant parts. Finally, the Attention V-Net plays a role in
enhancing the ability of image feature representation.

We use the Attention V-Net model based on DTC to randomly segment four 3D datas
in the test dataset and reconstruct the left atrium image. Figure 3 is the reconstructed image
of ground truth and prediction. Comparing the 2D visualization in Figure 3(1) and the 3D
visualization in Figure 3(2), it can be seen that the overall prediction result of the Attention
V-Net model is very close to the manual annotation. In contrast, DTC often misses the
internal area of the target object, resulting in irregular shapes, while the model with the
added attention mechanism can better simulate the segmentation results of the left atrium,
improving the accuracy of the integrity of the internal area and boundary. Compared with
other methods, our results have a higher overlap ratio with the ground truth, produce
fewer false positives, and preserve more details, which further indicates the effectiveness,
generalization, and robustness of our proposed method. The 3D representation of our
structure is closer to the real left atrium model, but there are still deviations in the details,
and cannot be completely consistent with the real shape.
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Figure 3. 2D and 3D Visualization of the segmentation by DTC [9] and our method, where GT denotes
ground truth segmentation.

5. Discussion and Conclusion 328

In this paper, we propose a fully convolutional neural network based on the attention 329

mechanism, which can be used for 3D medical image segmentation tasks. Differed with 330

other end-to-end semantic segmentation networks, the proposed network can adaptively 331

learn to highlight the salient features of the image that are useful for the task by designing 332

a new 3D attention module. The network also learn attention weights and concatenate it at 333

each layer of the skip-connection part of the V-Net, which further improves the accuracy. 334

Meanwhile, it also can process the 3D image data, using the information between the 3D 335

sequences of medical images synthetically. 336

We apply it to the left atrium segmentation framework based on semi-supervised 337

learning, and we evaluate it on the dataset of the 2018 left atrial challenge. The experimental 338
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Figure 3. 2D and 3D Visualization of the segmentation by DTC [9] and our method, where GT denotes
ground truth segmentation.

5. Discussion and Conclusions

In this paper, we propose a fully convolutional neural network based on the attention
mechanism, which can be used for 3D medical image segmentation tasks. In compari-
son with other end-to-end semantic segmentation networks, the proposed network can
adaptively learn to highlight the salient features of the image that are useful for the task,
by designing a new 3D attention module. The network also learns attention weights and
concatenates them at each layer of the skip-connection part of the V-Net, which further
improves accuracy. Meanwhile, it also can process the 3D image data, using the information
between the 3D sequences of medical images synthetically.

We apply it to the left atrium segmentation framework based on semi-supervised
learning, and we evaluate it on the dataset of the 2018 left atrial challenge. The experimental



Appl. Sci. 2022, 12, 3764 12 of 13

results show that, compared with the original algorithm, the performance indexes such
as Dice, Jaccard, ASD, and 95HD are improved. Moreover, compared with the current
advanced semi-supervised segmentation algorithm, the experimental results show that
our proposed Attention V-Net can improve the accuracy of medical image segmentation,w
hich is of great significance to clinical diagnosis and treatment. The substantial increase
in segmentation accuracy comes with a negligible increase in model complexity. Hence,
our proposed 3D attention gate module can be extended to some other 3D medical organ
segmentation tasks (e.g., brain structure or tumor segmentation) to boost performance.
We believe that our model can be a crucial component for neural networks in many
medical applications.

In the future related research of medical image analysis, we could pay more attention
to adaptive feature learning and the multi-scale feature fusion. It may obtain better feature
results and experimental performance, providing a reliable basis for clinical diagnosis and
pathology research.
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