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Abstract: Emotion Recognition in Conversation (ERC) aims to recognize the emotion for each
utterance in a conversation automatically. Due to the difficulty of collecting and labeling, this task
lacks the dataset corpora available on a large scale. This increases the difficulty of finishing the
supervised training required by large-scale neural networks. Introducing the large-scale generative
conversational dataset can assist with modeling dialogue. However, the spatial distribution of
feature vectors in the source and target domains is inconsistent after introducing the external dataset.
To alleviate the problem, we propose a Domain Adversarial Network for Cross-Domain Emotion
Recognition in Conversation (DAN-CDERC) model, consisting of domain adversarial and emotion
recognition models. The domain adversarial model consists of the encoders, a generator and a
domain discriminator. First, the encoders and generator learn contextual features from a large-scale
source dataset. The discriminator performs domain adaptation by discriminating the domain to make
the feature space of the source and target domain consistent, so as to obtain domain invariant features.
Then DAN-CDERC transfers the learned domain invariant dialogue context knowledge from the
domain adversarial model to the emotion recognition model to assist in modeling the dialogue context.
Due to the use of a domain adversarial network, DAN-CDERC obtains dialogue-level contextual
information that is domain invariant, thereby reducing the negative impact of inconsistency in
domain space. Empirical studies illustrate that the proposed model outperforms the baseline models
on three benchmark emotion recognition datasets.

Keywords: emotion recognition in conversation; domain adversarial network; domain adaptation;
transfer learning

1. Introduction

Emotion plays a significant role in daily life and intelligent dialogue systems. Emotion
recognition in conversation (ERC), which is one of the important tasks of Natural Language
Processing, has attracted more and more attention in recent years. ERC is to predict
the emotion of each utterance in a conversation. ERC is more challenging, considering
the sequential information of the conversation and the self-speaker dependencies and
inter-speaker dependencies [1].

In the literature, many neural network models have been applied to model dialogue
and dependencies, such as recurrent neural networks [2,3], graph-based convolutional
neural networks [4,5], and attention mechanisms [6–8]. However, some problems should
not be ignored. A vital issue of emotion recognition in conversation is the lack of available
labeled data, which is hard to collect and annotate. The emotion of the same statement in
different dialogue scenarios is determined according to the context, rather than the same
emotion [9]. It is difficult for annotators to figure out the contextual information. So, there
are a relatively small number of available datasets, such as in the more commonly used

Appl. Sci. 2022, 12, 5436. https://doi.org/10.3390/app12115436 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12115436
https://doi.org/10.3390/app12115436
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8871-4272
https://doi.org/10.3390/app12115436
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12115436?type=check_update&version=1


Appl. Sci. 2022, 12, 5436 2 of 18

data IEMOCAP (the IEMOCAP and MELD are two common datasets for ERC, which will
be described in detail in Section 4.1) [10], there are only 153 dialogues. It is challenging to
finish the supervised training required by large-scale neural networks.

In addition, some datasets contain only two participants in each conversation, while
others have multiple participants. Figure 1 shows a conversation from the MELD (the
IEMOCAP and MELD are two common datasets for ERC, which will be described in detail
in Section 4.1) [11], which comprises five participants. It is challenging to model speakers
dependencies. The IEMOCAP dataset has five sessions, and the last session is divided into
test data, which means that there are different speakers in the training data and the test data.
These factors have made it more challenging to model speakers and emotion dependencies.

Mike: And there is    

Kevin. 

Neutral Joy Surprise JoySad

Joey: Can we please

turn this off?

Rachel: No way, Kevin.

Mike : There is a revolutionary

new product that guarantees

that you'll never have to open

up milk cartons again. Meet the

Milk Master 2000.

Ross: Are you intrigued?

Chandler: You're flinging,

flanging right I am!

Neutral

Figure 1. A conversation example with emotion labels from the MELD dataset.

Cross-domain sentiment classification, which aims to transfer knowledge to the target
domain from the source domain, is one of the effective ways to alleviate the lack of datasets
in the target domain. Many excellent achievements have been made in cross-domain
sentiment classification [12–14]. Cross-domain sentiment classification generally requires
the source domain data to be labeled. Unlike sentiment classification, ERC lacks large scale
datasets and aims to identify the emotion of each utterance in a conversation, rather than a
single sentence. An utterance of the speaker is affected by their own and external factors,
such as topic, speaker’s personality, argumentation logic, viewpoint, intent, etc. [9]. In turn,
the utterance reflects these factors to a certain extent. These factors may lead to improved
conversation understanding, including emotion recognition [9]. For the above reasons,
aiming at the problem of lack of labeled data, Hazarika et al. [15] pre-trained a whole
conversation jointly using a hierarchical generative model and transfer the knowledge to
the target domain.

In summary, the generation task can be used to assist the ERC task, since the dialogue
generation task and ERC have some similarities. However, the spatial distribution of
feature vectors in the source and target domains is inconsistent after introducing external
generation datasets.

Inspired by cross-domain sentiment classification, to alleviate the problem of inconsis-
tency in the domain feature space of the source domain dataset and target domain dataset,
we propose a Domain Adversarial Network for Cross-Domain Emotion Recognition in
Conversation (DAN-CDERC) model, which transfers the knowledge from the domain
adversarial model to the emotion recognition model, instead of directly modeling historical
information and speaker information. The domain adversarial model consists of the en-
coders, a generator and a domain discriminator. The encoders are used to learn sequence
knowledge from the massive amounts of the generative dataset. The generator generates
an utterance in the source domain. The discriminator performs domain adaptation by
discriminating the domain, which plays an essential role in reducing the domain incon-
sistency for domain adaptation. Since both the generative conversational task and the
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ERC task also need to model the dialogue context, DAN-CDERC can use the dialogue
sequence knowledge from the large-scale dialogue generation dataset to assist the ERC
in modeling the dialogue context. Due to the use of the domain adversarial network, our
DAN-CDERC avoids the dissimilarity of the domain and vector space during the trans-
ferring process. In this paper, we try to achieve the same effect of these models without
explicitly modeling speakers.

For sentence-level classification, the domain discriminator is used to discriminate
sentences. Our discriminator can discriminate each utterance in the conversation that
belongs to the source domain or the target domain, rather than the whole conversation.
We believe this is important. On the one hand, our model is relatively simple, with only
two encoder layers. It is challenging to represent the whole conversation with a vector
effectively. On the other hand, using sequential utterances is more conducive to learning
and transferring sequence knowledge.

In summary, our contributions are as follows:

• To alleviate the problem of the small scale of the ERC task dataset, we propose
Domain Adversarial Network for Cross-Domain Emotion Recognition in Conversation,
which not only learns knowledge from large-scale generative conversational datasets,
but also utilizes adversarial networks to reduce the difference between source and
target domains;

• We use two large-scale generative conversational datasets and three emotion recog-
nition datasets to verify model performance. The empirical studies illustrate the
effectiveness of the proposed model, even without modeling information dependen-
cies such as speakers.

The rest of the paper is organized as follows: Section 2 discusses related work; Section 3
provides details of our model; Section 4 shows and interprets the experimental results;
Section 5 analyses and discusses the experimental results; and finally, Section 6 concludes
the paper.

2. Related Work

Inspired by sentence-level cross-domain sentiment analysis, this paper utilizes large-
scale dialogue generative datasets, adversarial networks and transfer learning for Emotion
Recognition in Conversation. The related work includes dialogue generation, Emotion
Recognition in Conversation, Cross-Domain Sentiment Analysis, Adversarial Network and
Transfer Learning.

2.1. Dialogue Generation

Hierarchical Recurrent encoder–decoder (HRED) [16] is a classic generative hierar-
chical neural network. It has three key components, including the utterance encoder,
the context encoder and the decoder. The latent variable hierarchical recurrent encoder–
decoder (VHRED) [17] extended HRED. VHRED added a latent variable at the decoder,
which is trained by maximizing a variational lower-bound on the log-likelihood. Variational
Hierarchical Conversation RNN (VHCR) [18] augmented a global conversational latent
variable along with local utterance latent variables to build a hierarchical latent structure
with a new regularization technique called utterance drop.

Moreover, ERC is a vital step to endowing the dialogue system with emotional percep-
tion. Some researchers are interested in how to make the dialogue system have emotional
perception. Zhou et al. [19] proposed novel mechanisms to make the responses more
emotional respectively: embedded emotion categories, captured the change of implicit
internal emotion states, and used explicit emotion expressions by an external emotion
vocabulary. Deeksha et al. [20] employed a multi-task learning framework to predict
emotion labels, and used emotion labels to guide the modeling of empathetic conversations.
Li et al. [21] proposed a multi-resolution interactive empathetic dialogue model combining
coarse-grained dialogue-level and fine-grained token-level emotions, which contains an
interactive adversarial learning framework to judge emotional feedback. Xie et al. [22]
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combined 32 emotions and eight additional emotion regulation intentions to complete the
task of empathic response generation. Ide et al. [23] made the generated responses more
emotional by adding emotion recognition tasks.

2.2. Emotion Recognition in Conversation

Unlike the document-level sentiment and emotion classification, neural network
models learn the representation of words and documents, and understand the self and inter-
speaker dependencies, for sentiment and emotion classification in conversation. Most of the
models for ERC are hierarchical network structures, including at least one utterance encoder
layer to encode utterances, and one context encoder layer to encode contextual content.

A dialogue, generally composed of multi-turn utterances, happens in a natural se-
quence, which is suitable for modeling with RNN. So RNN has become a fundamental
component for emotion detection in conversation. Poria et al. [2] employed an LSTM-based
to model dependencies and relations among the utterances. Majumder et al. [3] used three
GRUs to model the speaker, the context and the emotion of the preceding utterances. In
addition, the attention mechanism is also an important component. Wei et al. [24] employed
GRUs and hierarchical attention to model the self and inter-speaker influences of utterances.
Jiang et al. [25] proposed a hierarchical model and introduced a convolutional self-attention
network as an utterance encoder layer.

Due to the rising of graph neural network models and the problem of context propa-
gation in the current RNN-based methods, some work RNN-based networks are replaced
by graph networks. Ghosal et al. [4] proposed Dialogue Graph Convolutional Network
(DialogueGCN) to model self and inter-speaker dependencies. Zhang et al. [5] tried
to address context-sensitive dependencies and speaker-sensitive dependencies using a
conversational graph-based convolutional neural network in multi-speaker conversation.
Sheng et al. [26] introduced a two-stage Summarization and Aggregation Graph Inference
Network, which models inference for topic-related emotional phrases and local depen-
dency reasoning over neighboring utterances. Zhang et al. [27] proposed a dual-level
graph attention mechanism that augments the semantic information of the utterance and
multi-task learning to alleviate the confusion between a few non-neutral utterances and
much more neutral ones. Ma et al. [28] used a multi-view network to explore the emotion
representation of a query from word-level and utterance-level views. TODKAT [29] used
a topic-augmented language model (LM) with an additional layer specialized for topic
detection, and combined LM with commonsense statements derived from a knowledge
base ATOMIC. SKAIG [30] used commonsense knowledge to enrich the edges of the graph
with knowledge representations from the model COMET.

2.3. Cross-Domain Sentiment Analysis

Cross-domain sentiment analysis is one of the areas where a classifier is trained in one
source domain and applied to one target domain. Due to different expressions of emotions
across several domains, many pivot-based methods [14,31,32] have been proposed to
address domain adaptation problems by learning non-pivot words and pivot words. The
selection of non-pivot words and pivot words will directly affect the performance of the
target domain. Another effective way is adversarial training [13,33–35], which obtains
domain-invariant features by deceiving the discriminator.

2.4. Adversarial Network and Transfer Learning

Multi-source transfer learning can also lay a foundation for modeling various aspects
of different emotions (e.g., mood, anxiety), where only a limited number of datasets with a
small number of data samples are available.

Liang et al. [36] treated emotion recognition and culture recognition as two adversarial
tasks for cross-culture emotion recognition to address the problem of generalization across
different cultures. Lian et al. [37] and Li et al. [38] treated the speaker characteristics and
emotion recognition as two adversarial tasks to reduce the speaker’s influence on emotion
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recognition. Parthasarathy et al. [39] proposed an Adversarial Autoencoder (AAE) to
perform variational inference over the latent factors, including age, gender, emotional state,
and content of speech.

Furthermore, some researchers utilize transfer learning for emotion recognition.
Gideon et al. [40] investigated that emotion recognition can benefit from using representa-
tions originally learned for different paralinguistic and different domains. Felbo et al. [41]
used 1246 million tweets to train a pre-training model for emoji recognition. Li et al. [42]
utilized a low-level transformer as the utterance encoder layer and a high-level trans-
former as the context encoder layer. EmotionX-IDEA [43] and PT-Code [44] learn emotional
knowledge from BERT. Hazarika et al. [15] pre-trained a whole conversation jointly using a
hierarchical generative model and transferred it to the target domain.

Our work strives to tackle a small number of datasets of ERC. Hence we use a large
amount of publicly available generative conversational datasets to model conversation,
and introduce a domain discrimination task to enhance domain adaptability.

3. Domain Adversarial Network for Emotion Recognition in Conversation

In this paper, there are two domains: a source domain Ds and a target domain Dt.
Because the source domain dataset is used to train the generative task, it has no emotional
label. For the source domain, given a dialogue containing m utterances ds = {u1, u2, . . . ,
um}, m is the length of dialogue, we can leverage {u1, u2, . . . , um−1} and {û2, û3, . . . , ûm} to
train a generative conversational task. For the target domain, given a dialogue containing n
utterances dt = {u1, u2, . . . , un} and n labels Yd = {ŷ1, ŷ2, . . . , ŷn}, n is the length of dialogue.
Our goal is to predict the emotion labels of the dt.

This study proposes a Domain Adversarial Network for Cross-Domain Emotion Recognition
in Conversation (DAN-CDERC) model to address emotion recognition with generative
conversation. DAN-CDERC contains two key components: the Domain Adversarial model
and the Emotion Recognition model. Figure 2 shows the architecture of the Domain Adversarial
model, where the input is {u1, u2, . . . , um} for the source domain and {u1, u2, . . . , un} for the
source target domain. The output of the generator is the generated response sequence {û2,
û3, . . . , ûm}, and the output of the discriminator is the domain labels. Figure 3 shows the
architecture of the Emotion Recognition model, where the input is {u1, u2, . . . , un} and the
output is emotion labels Yd = {ŷ1, ŷ2, . . . , ŷn}.

Domain  Discriminator

input1

ො𝑢2

Decoder

ො𝑢3

Decoder

…

…

ො𝑢𝑚

Decoder

Conversational Generator

input2 … inputk

GRL GRL GRL GRL

D𝑠 Input: {𝑢1, 𝑢2, … , 𝑢m−1}
D𝑡 Input: {𝑢1, 𝑢2, … , 𝑢𝑛}

Domain  Label

Encoder Layers

Figure 2. Overall architecture of the Domain Adversarial Network model.
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ො𝑦1 ො𝑦2 … ො𝑦𝑛

𝑢1 𝑢2 𝑢𝑛…

Context
Encoder Layer

Utterance
Encoder Layer

Emotion  Label

Figure 3. Overall architecture of the Emotion Recognition model.

The Domain Adversarial model contains the Encoder Layers, the Generator model and the
Discriminator. The Encoder Layers and the Generator, from Hierarchical Recurrent encoder–
decoder (HRED) [16], are used to learn sequence knowledge from the massive amounts of
generative dataset. The Discriminator performs domain adaptation by discriminating the
domain, which plays an essential role in reducing the domain inconsistency for domain
adaptation. For the emotion recognition model, we leverage BERT [45] to encode utterances,
and LSTM (context encoder) to encode context, which learns context weights from the
generative conversational model. First, we leverage ds = {u1, u2, . . . , um−1} and {û2, û3, . . . ,
ûm} to train a generative conversational model, and leverage ds and dt to train the domain-
distinguish task. Then a part of the parameters of the generative model is transferred to the
emotion recognition model (target task). We leverage dt = {u1, u2, . . . , un} and Yd = {ŷ1, ŷ2,
. . . , ŷn} to train the emotion recognition model.

3.1. Domain Adversarial Model
3.1.1. Encoder Layers

The encoder layers include an utterance encoder and a context encoder. A Bidirectional
LSTM is used as the utterance encoder, and a unidirectional LSTM is used as the context
encoder. Given a dialogue ds = {u1, u2, . . . , um−1}, the utterance encoder uses Equation (1)
to represent each ui as a high-dimensional vector hi. Then, the context encoder uses
Equation (2) to learn the sequence knowledge of the context and represent ds as {H1, H2,
. . . , Hm−1}.

hi = BiLSTM(ui) (1)

Hi = LSTM(hi). (2)

3.1.2. Conversational Generator

The generator is used to decode and generate ui+1 one response at a time. In addition,
at the decoding stage, the generator generates a new utterance ui+1 by computing a
distribution over vocabulary Vt for target elements ui+11 by projecting the output of the
decoder via a linear layer with weights Wo and bias bo,

p(ui|u1, . . . , ui−1; X) = softmax(Wo Hi + Bo). (3)
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3.1.3. Domain Discriminator

The role of the domain discriminator is to predict the domain label of the utterance
ui which comes from the target domain or the source domain. The generator and the
discriminator are trained in parallel. For each ui through the encoding stage of Section 3.1.1,
an Hi can be obtained. Specifically, before feeding Hi to the domain classification, the Hi
goes through the gradient reversal layer (GRL) [33].

During the backpropagation, the role of the GRL is to reverse the gradient. The fol-
lowing equations are the forwardpropagation and backpropagation when Hi goes through
GRL, respectively:

Qλ(x) = x (4)

∂Qλ(x)
∂x

= −λI. (5)

We denote the hidden state Hi through the GRL as Ĥi.

3.2. Emotion Recognition with Transfer Learning

Given a dialogue containing n utterances d = {u1, u2, . . . , un}, n is the length of dialogue.
Our goal is to predict their labels {ŷ1, ŷ2, . . . , ŷn}. This model has two components, including
an utterance encoder and a context encoder.

3.2.1. Utterance Encoder

BERT is a classic pre-training model and has achieved good results on many NLP tasks.
Consequently, BERT [45] is used to encode utterances. We choose the BERT-based uncased
pre-trained model as our utterance encoder. Through BERT, we can obtain representations
of utterances, Hh = {h1, h2, . . . , hn}

hi = BERT(ui). (6)

3.2.2. Context Encoder and Transfer Learning

The context encoder of classification is the same as the encoder of the generative
conversational model. The parameters of the context encoder of the generative model are
used for initialization. The input of the context encoder is Hh = {h1, h2, . . . , hn}, and the
output HH = {H1, H2, . . . , Hn} can be obtained by the following formulas:

rt = σ
(

Wirht + bir + Whr H(t−1) + bhr

)
(7)

zt = σ
(

Wizht + biz + Whz H(t−1) + bhz

)
(8)

nt = tanh
(

Winht + bin + rt ∗
(

WhnH(t−1) + bhn

))
(9)

Ht = (1− zt) ∗ nt + zt ∗ H(t−1) (10)

Ht = tanh(Wp Ht + bp). (11)

We transfer {Whr, Whz, Whn, bhr, bhz, bhn, Wp, bp} of the adversarial generative model
to the context encoder of classification. Then Ht is used as inputs to a softmax output layer:

PP = softmax(Wp Ht + BP). (12)

Here, Wp and Bp are model parameters, and PP is used to predict emotion.
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3.3. Model Training
3.3.1. Conversational Generator

The goal is to maximize the output XH probability given the input original XO. There-
fore, we optimize the negative log-likelihood loss function:

Lossgen = − 1
|τ| ∑

(XO ,XH)∈τ

log p(XH |XO; θ), (13)

where θ is the model parameters, and (XO, XH) is a pair (original utterance-new utterance)
in training set τ, then:

log p(XH |XO; θ) =
n

∑
i=1

log p(xi
H |x1

H , x2
H , . . . xi−1

H , XO; θ),
(14)

where p(xi
H |x1

H , x2
H , . . . xi−1

H , XO; θ) is calculated by the decoder.

3.3.2. Domain Discriminator and Joint Learning

We feed Ĥi through the GRL to the domain discriminator as:

d = softmax
(
Wd Ĥi + bd

)
. (15)

Our training objective is to minimize the cross-entropy loss over a set of training examples:

Lossdomain = − 1
Ns + Nt

Ns+Nt

∑
i

K

∑
j

d̂i(j) log di(j). (16)

We jointly train the conversational generator and the domain discriminator, and the
final loss is the sum of the loss of the two tasks:

Losstotal = Lossgen + βLossdomain. (17)

3.3.3. Emotion Recognition in Conversation

Given a dialogue d including n utterances and the pre-defined emotion yi of ui, our
training objective is to minimize the cross-entropy loss over a set of training examples,
with a `2-regularization term,

J (θy) = −
N

∑
i=1

K

∑
j=1

yi log ŷi +
λ

2
||θy||2, (18)

where ŷi is the predicted label, and θy is the set of model parameters.

4. Experiments
4.1. Experimental Settings
4.1.1. Data

We choose Cornell Movie Dialog Corpus [46] and Ubuntu Dialog Corpus [47] as the
source domain datasets, and call the Cornell Movie Dialog Corpus, Cornell, and the Ubuntu
Dialog Corpus, Ubuntu. In all experiments, we carry out IEMOCAP [10], MELD [11] and
DailyDialog [48] to evaluate the performance of our model. Table 1 and Figure 4 show the
statistics of the datasets.
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8%

23%

15%
15%

14%

25%

IEMOCAP

hap neu sad ang exc frus

(a)

17%

47%
7%

12%

12%

2% 3%

MELD

joy neu  sad ang surp fear disg

(b)

12.51%
83.10%

1.12%

0.99%

1.77%
0.17%

0.34%

DailyDialog

hap neu  sad ang surp fear disg

(c)

Figure 4. Distribution of emotions. hap: happy; neu: neutral or no emotion; ang: angry; exc: ex-
cited; frus: frustrated; surp: surprise; disg: disgust. (a) Distribution of emotions for IEMOCAP.
(b) Distribution of emotions for MELD. (c) Distribution of emotions for DailyDialog.

Table 1. Training, validation and test data distribution in the datasets.

Dataset Dialogues Utterances

Source(S)

Cornell(C)
train 66,477 244,030
val 8310 30,436
test 8310 30,247

Ubuntu(U)
train 898,142 6,893,060
val 18,920 135,747
test 19,560 139,775

Target(T)

IEMOCAP(I) train/val 120 5810
test 31 1623

MELD(M)
train 1038 9989
val 114 1109
test 280 2610

DailyDialog(D)
train 11,118 87,170
val 1000 8069
test 1000 7740

• Cornell [46] is a conversational dataset of movie scripts collected from various sites.
It contains more than 80,000 dialogues, 300,000 sentences, and 9000 characters in
617 movies.

• Ubuntu [47] is dyadic conversations extracted from the Ubuntu chat logs, which are
used to receive technical support for various Ubuntu-related problems. It contains
more than one million dialogues and 7 million sentences.

• IEMOCAP [10] is a multimodal dataset, and we only use textual data. Emotion recog-
nition of multimodal data is beyond the scope of this paper. It contains 151 dialogues
and 7433 utterances. Each conversation consists of multi-turn utterances, and each
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utterance is annotated with one of the following emotions: angry, happy, sad, neutral,
excited, and frustrated.

• MELD [11] is a multimodal emotion classification dataset that contains textual, acoustic
and visual information. MELD is extended from the EmotionLines dataset [49]. It
contains 1432 dialogues and 13,708 utterances from the Friends TV series. Each
conversation consists of multi-turn utterances, and each utterance is annotated with
one of the following emotions: angry, joy, neutral, disgust, sad, surprise and fear.

• DailyDialog [48] is a daily conversation dataset that reflects our daily ways of commu-
nication. It contains 13,118 multi-turn dialogues, and the speaker turns are roughly
eight. Each utterance has a label of the following emotions: angry, happy, sad, surprise,
fear, disgust and neutral (no_emotion).

As displayed in Figure 4, it can be seen that the distribution of labels is relatively
balanced in IEMOCAP. Unlike IEMOCAP and MELD, the no_emotion labels account for
83.1% of DailyDialog. It is unbalanced, so the no_emotion will not be evaluated.

4.1.2. Setting

Table 2 shows the hyper-parameters of the model. For the baseline models, we use
the hyper-parameters provided in the original papers or the same hyper-parameters as
our setting. We employ AdaGrad [50] to optimize the classification model parameters.
We utilize F1-score to measure the classification performance for each category, and the
average F1-score and accuracy measure the overall performance.

Table 2. Setting of hyper-parameters.

Parameters IEMOCAP MELD DailyDialog

Embedding Size 300 300 300
Utterance Encoder Hidden Size 768 768 768
Context Encoder Hidden Size 256 256 256
Dropout 0.1–0.5 0.1–0.5 0.1–0.5
Learning Rate 0.0001 0.0001 0.0001
Batch Size 4 16 16

4.2. Experimental Results

Table 3 presents the results of using different source domains for three target datasets,
where “×" means that only transfer learning is used without the adversarial network [15];
“
√

" means that the model we proposed uses the adversarial network.

Table 3. F1-score of transfer between different domains. Weighted F1 metrics are used to evaluate
classification performance.

Source→Target
Adversarial Network

× √

C→I 59.25 64.40
U→I 58.71 63.94

C→M 57.89 59.44
U→M 57.51 59.23
C→D 48.00 55.20
U→D 47.10 54.60

As can be seen from Table 3, on the three target data, our DAN-CDERC has achieved
a significant performance improvement compared with the method without the adver-
sarial network, which is higher by around 5%, 2%, and 7%, respectively. It verifies the
effectiveness of our DAN-CDERC model, which can build a good bridge between the
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source domain and the target domain. Moreover, it demonstrates the importance of domain
adaptation in the transfer between different domains for ERC.

For different source domains, our method shows a primary trend for the three target
datasets, where Cornell as the source domain is better than Ubuntu as the source domain,
which is higher by 0.46%, 0.21%, and 0.6%, respectively. For transfer learning, in general,
the larger amount of source dataset, the better the experimental performance of the target
dataset. As shown in Table 1, it is clear that the scale of Ubuntu is an order of magnitude
larger than Cornell. To explore this reason, we analyze the characteristics of these datasets.
Cornell is composed of movie scripts from multiple websites, and Ubuntu mainly consists
of various technical Ubuntu-related problems. For the target domain datasets, the IEMO-
CAP comes from the drama script, the MELD comes from the movie script, and DailyDialog
is the daily dialogue. In terms of content, the similarity between the three target datasets
and Cornell is greater than that of Ubuntu. This explains why when Ubuntu is used as the
source domain, although the data scale is large, the effect is not as good as Cornell as the
source domain dataset.

It can be observed that our model has apparent effects on the IEMOCAP (5%) and the
DailyDialog (7%) compared with the method without the adversarial network. Still, it has
little impact on the MELD (2%). This may be due to the fact that the size of IEMOCAP
is relatively tiny, and DailyDialog is relatively unbalanced. The knowledge brought by
domain migration can compensate for these deficiencies and improve performance. How-
ever, MELD is relatively large and balanced, and the transfer of different domains does not
contribute much to performance improvement.

5. Analysis and Discussion

In this section, we give some analysis and discussion.

5.1. Comparison with Baselines

We compare our model with various baseline approaches for emotion recognition
in conversation.

• bc-LSTM is a basic model which employs BiLSTM to capture contextual content from
the surrounding utterances without distinguishing different speakers;

• CMN [51] is the Conversational Memory Network, which models utterance context
from dialogue history using two GRUs for speakers. Then, utterance representation is
obtained by feeding the current utterance as the query to two memory networks for
different speakers;

• ICON [6] uses GRU to model the self and inter-speaker sentiment influences and
employs a memory network to store contextual summaries for classification. In our
implementation, we only use the uni-modal classification;

• DialogueRNN [3] employs three GRUs (global GRU, party GRU, and speaker GRU)
to model the speaker, the context and the emotion of the preceding utterances;

• DialogueGCN [4] uses a graph convolutional neural network to model self and
inter-speaker dependencies. It represents each utterance as a node and models the de-
pendencies between the speakers of those utterances by leveraging the edges between
a pair of nodes/utterances.

• DANCornell means that the source domain is Cornell.
• DANUbuntu means that the source domain is Ubuntu.

IEMOCAP: Table 4 presents the results of our proposed DAN-CDERC model and
strong baselines. DANCornell and DANUbuntu achieve an average F1-score of 64.40%, 63.94%
and an accuracy of 65.07% and 64.61%, respectively. To our surprise, the F1-score of
DANCornell outperforms DialogueGCN (when the learning rate is 0.000085, DANCornell
achieves an F1-score of 64.68%, which is a 0.5% improvement over DialogueGCN). Al-
though DANUbuntu does not perform as well as DialogueGCN, the difference is small, and it
improves 1.19% over DialogueRNN. This is because, as mentioned in Section 4.2 above,
the similarity between IEMOCAP and Cornell is small, and we mainly use adversarial
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networks to reduce the difference between source and target domains, without resorting to
complex modeling inter and self-party dependency. For individual labels, our method also
achieves a good performance.

Table 4. Comparison with different methods on IEMOCAP.

Methods

IEMOCAP

Happy Sad Neutral Angry Excited Frustrated Average (w)

F1 Acc. F1

bc-LSTM 34.43 60.87 51.81 56.73 57.95 58.92 55.21 54.95
CMN 30.38 62.41 52.39 59.83 60.25 60.69 56.56 56.13
ICON 29.91 64.57 57.38 63.04 63.42 60.81 59.09 58.54

DialogueRNN 33.18 78.8 59.21 65.28 71.86 58.91 63.4 62.75
DialogueGCN 42.75 84.54 63.54 64.19 63.08 66.99 65.25 64.18

DANCornell 48.69 74.21 64.08 62.14 71.24 60.00 65.07 64.40
DANUbuntu 47.58 72.19 62.98 63.45 69.30 61.82 64.61 63.94

MELD: Table 5 presents the results of our proposed model and strong baselines for
MELD. DANCornell and DANUbuntu achieve F1-score of 59.44% and 59.23%, which are 1.34%
and 1.13% better than DialogueGCN. DialogueGCN is only 1.06% better than DialogueRNN.

Table 5. Comparison with different methods on MELD.

Methods

MELD

Neutral Surprise Fear Sad Joy Disgust Anger Average (w)

F1 Acc. F1

bc-LSTM 76.23 45.10 0.00 16.11 53.17 0.00 41.06 59.43 56.44
bc-LSTM+Att 76.20 47.74 0.00 22.16 51.86 0.00 38.76 59.23 56.69
DialogueRNN 75.25 49.56 3.08 22.11 52.19 0.00 42.58 58.47 57.04
DialogueGCN - - - - - - - - 58.10

DANCornell 77.58 54.29 0.00 25.93 57.00 0.00 40.97 57.56 59.44
DANUbuntu 77.18 52.45 0.00 29.14 57.97 0.00 39.23 57.50 59.23

The MELD is a multi-party conversations dataset, and there are more than 300 speakers
in the dataset. Normally, there are several participants in each conversation, for example, in
Figure 1 where there are five participants. Additionally, we also observe that many speakers
in a conversation do not utter alternately, but one speaker may utter several utterances
continuously. Hence, it is not easy for models such as DialogueGCN to model the speaker’s
information successfully.

DailyDialog: Table 6 presents the results of DialogueRNN, DialogueGCN , DANCornell
and DANUbuntu (since the DailyDialog is seriously unbalanced, we add two additional
evaluation metrics, Micro F1 and Macro F1). Table 6 clearly shows that DialogueGCN
performs poorly. Performance improvement is difficult due to the imbalance of the Daily-
Dialog dataset compared with DialogueRNN, but DANCornell and DANUbuntu still achieve
a 1.42% and 0.82% improvement on Weighted F1-score, respectively. Besides, our proposed
DAN-CDERC model outperforms baseline models in terms of Micro F1 and Macro F1. To
explain this gap in performance, it is essential to understand the distribution of emotions
for DailyDialog. From Figure 4, most of the utterances are emotionless, and it may not
be possible to model the speaker’s information successfully by using DialogueRNN and
DialogueGCN, compared with IEMOCAP.
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Table 6. Comparison with different methods on DailyDialog. Micro F1, Macro F1 and Weighted F1
metrics are used to evaluate classification performance.

Methods
DailyDialog

Happy Disgust Surprise Angry Fear Sad Micro F1 Macro F1 Average (w) F1

bc-LSTM 55.99 25.17 53.54 22.78 0.00 14.81 50.37 28.72 48.78
DialogueRNN 61.75 0.00 33.06 37.34 0.00 29.44 55.65 26.95 53.78
DialogueGCN 57.67 0.00 8.89 5.19 0.00 1.68 50.91 12.24 42.69

DANCornell 61.52 29.38 48.65 41.79 20.00 36.62 56.01 39.66 55.20
DANUbuntu 60.95 27.63 48.15 41.41 19.05 37.33 55.61 39.09 54.60

As shown in Table 7, we make statistics on the average length of the dialogue, and the
average length of the utterance in the IEMOCAP, MELD and DailyDialog. The average
dialogue length of the IEMOCAP dataset is around 50 utterances, while the MELD is
around 10 and the DailyDialog is around eight. Moreover, the IEMOCAP has five sessions
and two participants in each conversation. The MELD has multiple participants, more
than 300. Although there are only two participants in each conversation in the DailyDialog
dataset, they are collected from dialogues in different scenarios. That is to say, there is
no relationship between the conversations. The IEMOCAP, which more easily models
inter-dependencies and self-dependencies than the MELD (short conversations and many
participants) and DailyDialog (short conversations and a weak correlation between con-
versations), have long conversations, few participants, and a strong correlation between
conversations. This is why our model does not perform as well on the IEMOCAP as on
MELD and DailyDialog compared with the other best models. Those models are more
conducive to establishing dependencies, while our model lacks this ability.

Experiments show that our model is effective on three datasets. In addition, since
the proposed model does not model the speakers’ information, it is effective not only for
dyadic conversations, but also for multi-party conversations.

Table 7. Statistics of the datasets.

Dataset Avg. Dialogue Avg. Utterance

IEMOCAP 49.23 15.81
MELD 9.57 8.07

DailyDialog 7.81 14.08

5.2. Effectiveness of the Utterance Encoder Layer

We try to replace BERT with LSTM as the classification utterance encoder. The encoder
parameters of the utterance of the domain adversarial model are transferred to the encoder
of the classification model, and the results are shown in Table 8.

Table 8. Impact of the Different Utterance Encoder Layer. Weighted F1 metrics are used to evaluate
classification performance.

Source Utterance Encoder IEMOCAP MELD DailyDialog

Cornell LSTM 61.24 58.51 53.08
BERT 64.40 59.44 55.20

Ubuntu LSTM 62.83 58.15 53.05
BERT 63.94 59.23 54.60

When we replace the encoder, results demonstrate that BERT provides better represen-
tations of utterances than LSTM. When Cornell is the source domain, the gap is 3.16% on
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IEMOCAP and 2.12% on DailyDialog. The other gaps are all around 1%. However, the ef-
fect of LSTM as an utterance encoder also exceeds the performance of using BERT as the
utterance encoder without the adversarial network. This indicates that a suitable utterance
encoder and domain adversarial network can jointly promote performance improvement.

Moreover, we try to employ the utterance encoder parameters of the domain adver-
sarial network to initialize the utterance encoder parameters of the emotion recognition
model. However, we find that this method is not helpful for performance improvement.
The possible reason for this phenomenon is that the representations of utterances differ
between generative and emotion recognition tasks in different domains.

5.3. Source Domain Size

We compare the results of different sizes of source domain dataset, comprising 0%,
10%, 20%, 50% and 100% available in the source domain (The source domain: Cornell;
The target domain: IEMOCAP). Figure 5 presents the results from the IEMOCAP dataset.
A primary trend can be seen from the figure, which is that as the size of the source domain
dataset increases, the classification performance in the target domain gets better. Compared
with the method without transfer learning (0% source domain data), the use of only 10%
source domain dataset can also significantly improve, with an increase of 2.15%. This
shows the effectiveness of our method. This method, based on the adversarial network,
has indeed improved the improvement by learning some inherent sequence knowledge
instead of just the increasing scale of the dataset.

56.21
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Figure 5. The results of different sizes of source domain data. (The source domain: Cornell; The
target domain: IEMOCAP).

5.4. Comparison of Time and Number of Parameters

As shown in Table 9, we count the time required and the number of parameters for
different methods per epoch on IEMOCAP in the inference stage.

Table 9. The time required and the number of parameters for different methods on IEMOCAP. (The
second is used as a unit of time here).

Methods Time Parameters

DialogueRNN 18.16 s 3.30 m
DialogueGCN 3.97 s 2.78 m
DAN-CDERC 7.76 s 115.57 m

Since the proposed DAN-CDERC model uses the pre-trained model, it has the most pa-
rameters, at 115.57 million. The DAN-CDERC model takes 7.76 s per epoch, which is
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between DialogueRNN and DialogueGCN. DialogueGCN used the 300 dimensional pre-
trained 840B GloVe vectors [52]. Due to a significant amount of time required to process
the pre-trained 840B GloVe vectors, the total time used by DialogueGCN is much more
than our DAN model. So the proposed DAN-CDERC model takes the least total time. In
addition, our model is simple, with only two layers (a BERT layer and a unidirectional
LSTM layer). DialogueGCN has three layers (a CNN layer, a Bidirectional LSTM layer,
and a GCN layer); DialogueRNN has a CNN, three GRUs, and an attention layer. They also
need to model various information.

5.5. Case Studies

Table 10 presents an example from IEMOCAP. This dialogue is carried out in a pes-
simistic atmosphere and alternates between emotions. Due to the recognition error of U45

F
and the alternation of emotion in the dialogue, DialogueGCN does not perform well in the
next several utterances. Paying too much attention to the previous utterances and speaker
may cause this phenomenon.

We analyze predicted labels for the IEMOCAP dataset. In the confusion matrix, we
find that our model is mainly misclassified in two cases. One is to mistake “Sad” and
“Frustrated” as “Neutral”, and the other is to mistake “Neutral” as “Frustrated”. As
can be seen from Figure 4a, “Natural” and “Frustrated” account for a large proportion,
and the above results may be caused by the imbalance of emotional labels distribution.
The recognition of these kinds of emotions depends on contextual emotions, which is a
shortcoming of our model compared to DialogueGCN and DialogueRNN.

Table 10. Our method is compared with DialogueGCN for an example from IEMOCAP.

Turn Utterance Emotion DialogueGCN DANCornell

T45
F What the hell is this? ang fru ang

T46
M I’ll get out. I’ll get married and live some place else. Maybe, maybe New York? fru hap ang

T47
F Are you crazy? ang fru ang

T48
M Wait a minute. Tell me this. Do you mean to say that you would leave the business? fru fru fru

T49
F The business? The business? It doesn’t inspire me? ang fru ang

6. Conclusions

Given the lack of large-scale publicly available datasets, transfer learning is an effective
way to alleviate this problem. We present a Domain Adversarial Network for Cross-Domain
Emotion Recognition in Conversation (DAN-CDERC) model, consisting of two parts, namely
the domain adversarial model and the emotion recognition model. The domain adversarial
network employs a conversational dataset to train the generative task and a source domain
and target domain dataset to train the domain discriminator for domain adaptation simulta-
neously. The emotion recognition model receives the transferred sequence knowledge and
recognizes the emotions. When Cornell is the source dataset, the DAN-CDERC achieves an
F1 of 64.40%, 59.44% and 55.20% on three datasets, all outperforming the baselines, with-
out resorting to complex modeling inter and self-party dependency. In addition, the data
scale of the source domain will have an impact on emotion recognition, but for different
source domain datasets, domain similarity is more important than the data scale. Since
DAN-CDERC does not model speakers’ information, it is effective not only for dyadic
conversations, but also for multi-party conversations. Our method proves the feasibility of
using conversational datasets and domain adaptation for ERC.

Although this paper attempts to solve the problem of domain adaptation for ERC,
there is inconsistency in the domain space between different tasks and different datasets,
which has not been fully considered. In addition, due to the introduction of large-scale data
and the use of adversarial networks in this paper, the training time of the model on the
source task is long, which is also one of the shortcomings of adversarial transfer networks.
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In the future, using more and faster adaptation strategies to solve the task of ERC is worthy
of continuous and in-depth research.
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