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Abstract: Recently, many models based on the combination of graph convolutional networks and
deep learning have attracted extensive attention for their superior performance in graph clustering
tasks. However, the existing models have the following limitations: (1) Existing models are limited by
the calculation method of graph convolution, and their computational cost will increase exponentially
as the graph scale grows. (2) Stacking too many convolutional layers causes the over-smoothing issue
and neglects the local graph structure. (3) Expanding the range of the neighborhood and the model
depth together is difficult due to the orthogonal relationship between them. Inspired by personalized
pagerank and auto-encoder, we conduct the node-wise graph clustering task in the undirected simple
graph as the research direction and propose a Scalable Deep Network (SDN) for graph clustering via
personalized pagerank. Specifically, we utilize the combination of multi-layer perceptrons and linear
propagation layer based on personalized pagerank as the backbone network (i.e., the Quasi-GNN
module) and employ a DNN module for auto-encoder to learn different dimensions embeddings.
After that, SDN combines the two embeddings correspondingly; then, it utilizes a dual self-supervised
module to constrain the training of the embedding and clustering process. Our proposed Quasi-GNN
module reduces the computational costs of traditional GNN models in a decoupled approach and
solves the orthogonal relationship between the model depth and the neighborhood range. Meanwhile,
it also alleviates the degraded clustering effect caused by the over-smoothing issue. We conducted
experiments on five widely used graph datasets. The experimental results demonstrate that our
model achieves state-of-the-art performance.

Keywords: graph embedding; deep clustering; auto-encoder; scalable GNN; deep learning

1. Introduction

Graph-structured data often contains abundant node features and topological infor-
mation. Benefiting from its powerful expressive ability, graph-structured data are often
used to model drug discovery [1], social networks [2], and recommender systems [3].

Moreover, the graph clustering task has attracted extensive attention as an important
part of unsupervised learning on graphs. There are many directions in graph clustering
tasks, such as node-wise graph clustering, and graph-wise graph clustering. In recent years,
Graph Neural Networks (GNNs) have become a popular field in deep learning, which
improves the performance of graph clustering tasks effectively. Graph Convolutional
Networks (GCNs) [4] are one of the representative methods that can utilize node features
and topology information to obtain low-dimensional embeddings. On this basis, many
graph clustering models combined with deep learning techniques have been proposed
to achieve state-of-the-art effects. Kipf et al. [5] learn embedding through GCN layers,
then the decoder reconstructs the features as similar as possible to the original features.
Ahn et al. [6] optimize the aforementioned model to solve the norm-zero tendency of
isolated nodes. In addition, Pan et al. [7] combine graph convolution with the adversarial
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training method. However, the above models fail to pay attention to the importance
of nodes. Therefore, Veličković et al. [8] introduce the attention mechanism into the
graph convolution, which can aggregate the information based on nodes’ importance.
Wang et al. [9] adopt the receptive field with an attention mechanism to encode the features
and jointly optimize the clustering and embedding module. Although the models with the
graph auto-encoder as the backbone network can generate the embeddings effectively; it
ignores the information in the data structure. Combining different orders of the embeddings
and the structural information, Bo et al. [10] integrate structural information into a deep
clustering method for the first time to improve the clustering effect. In addition, Li et al. [11]
adopts the combination of deep clustering and the graph auto-encoder to design a triple
self-supervised module to supervise the embedding and clustering module.

However, the above models have the following limitations: (1) Existing models are
limited by the calculation method of graph convolution, and their computational costs will
increase exponentially as the scale of the graph grows. (2) Stacking too many convolutional
layers will introduce the over-smoothing noises and ignore the local graph structure (3)
The model depth is orthogonal to the neighborhood range, which makes it difficult to
expand both.

Therefore, researchers expect to find more scalable models. Klicpera et al. [12] propose
a simple model using the relation between graph convolution and pagerank, which enables
an efficient neighborhood expansion. Wu et al. [13] entirely reduce the computational costs
by decoupling the feature propagation from the training process. Following the idea of
SGC, Frasca et al. [14] consider the features of different receptive layers and splice them
without ignoring information, while Zhu et al. [15] average them to generate combined
features with the same dimension. Meanwhile, Zhang et al. [16] simplify the GNN from
the perspective of spectral graph theory and it can select different high-order information
orders according to different graphs. Despite this, the above models ignore the difference in
node importance in the aggregation process. Chen et al. [17] adopt a constant decay factor to
solve this issue, while Zhang et al. [18] use the receptive field weighted aggregation with an
attention mechanism to aggregate neighborhood information. However, the above methods
are suitable for supervised or semi-supervised learning scenarios, lacking a task-oriented
model framework for unsupervised clustering tasks.

In response to the above problems, we propose a network that can effectively uti-
lize various types of information in a graph with high scalability. We adopt a dual self-
supervision module to guide the training of the Quasi-GNN module and the DNN module.
With this dual-supervised module, the entire model can be trained in an end-to-end manner
for graph clustering. In addition, it should be mentioned that the algorithm of our proposed
method requires a vector form of the data as input in addition to the graph.

In summary, our contributions are described as follows:

• A highly scalable deep network to process graph-structured data is proposed. This
network can combine the topological information and the node features effectively to
obtain potential embeddings for clustering tasks.

• A linear propagation based on personalized pagerank is proposed, which improves
the performance of the clustering task and alleviates the over-smoothing issue.

• We conduct extensive experiments on five real-world datasets and achieve superior
performance with fewer iterations. The experimental results show that our model
outperforms the current state-of-the-art methods.

2. Related Work

Graph clustering divides the unlabeled nodes into different clusters with a certain met-
ric. After that, we can mine the relationships between different nodes in a graph. The early
graph clustering models perform poorly on real-world datasets due to their shallow archi-
tecture and learning capabilities, such as matrix factorization [19] and DeepWalk [20]. In
addition, Sieranoja et al [21]. propose two complementary algorithms for graph clustering
called K-algorithm and M-algorithm. The combination of these two algorithms can obtain



Appl. Sci. 2022, 12, 5502 3 of 19

several local optimizations on the graph and they can be used with different cost functions.
However, the two algorithms fail to integrate the graph topology information, which limits
their final performance.

Recently, many more effective models applied to unsupervised learning are proposed,
such as auto-encoder [22] and generative adversarial networks (GAN) [23]. On this ba-
sis, many graph clustering models combined with deep learning techniques have been
proposed and they have achieved good performance. The Graph Auto-encoder (GAE) [5]
combines the auto-encoder with graph convolution. It first utilizes the two GCN layers to
capture the information between graph topology and node features and then reconstructs
an adjacency matrix to be as similar to the original matrix. The ARGA [7] adopts the
adversarial training scheme to normalize the embedding process to obtain more robust
embeddings. However, none of the above-mentioned models are clustering task-oriented
joint optimization training methods. The DAEGC [9] combines the two components to
jointly optimize the embedding module and the clustering module, which improves the
quality of the embeddings and the clustering effect. Meanwhile, the SDCN [10] integrates
the structural information into deep clustering by using a transfer operator to combine the
auto-encoder with the GCN module. It can conduct end-to-end clustering training with
the dual self-supervision module. Although these methods have superior performance,
they still use the GCN module based on the message passing mechanism as the backbone
network, limiting the scalability of these models.

However, the above models also have several drawbacks: (1) There is no solution to
the orthogonal relationship between the model depth and the neighborhood range (2) Too
many smoothing iterations or GCN layers stacking lead to over-smoothing issues.

To solve the limitations of the traditional GNN models, scalable GNN models are pro-
posed. Early scalable GNNs simplified the model by sampling the graph, the GraphSAGE [24]
samples the neighbors around the target node with the same probability, while the Fast-
GCN [25] samples the nodes according to the importance of each node. Due to their node-
wise sampling or layer-wise sampling method, they fail to learn large-scale sparse graphs
effectively. On this basis, the GraphSAINT [26] proposes a subgraph-wise sampling method
with high scalability, which decouples sampling from GNNs and further reduces the compu-
tational costs.

The other direction of scalable GNNs in recent years is to simplify the model structure.
The SGC [13] transforms the nonlinear GCN into a simple linear model by repeatedly
eliminating the nonlinear function between the GCN layers and folding the final function
into a linear function. The PPNP [12] modifies the propagation scheme by adopting the
relationship between GCN and pagerank. The AGC [16] advocates the use of high-order
graph convolution to capture the global features of the graph and it can adaptively select the
appropriate order according to different graphs, while the AGE [27] optimizes the model
of GAE by decoupling the GCNs and modifies the GNN models from the perspective of
graph signal processing. The S2GC [15] adopts an improved Markov diffusion kernel to
derive a simpler variant of GCN that captures the global and local context of each node.
Nevertheless, the SIGN [14] points out that the features among multiple layers should be
considered together instead of a certain layer. They splice the features with different degrees
of smoothness and utilize them for downstream tasks. Meanwhile, the GBP [17] adopts a
constant weighted average decay factor to consider the difference in importance between
the receptive fields of different nodes. On this basis, the GAMLP [18] integrates multi-
scale node features effectively with three different attention mechanisms to improve the
scalability and computational efficiency. However, the above models with high scalability
lack a jointly training framework for graph clustering tasks.

In contrast, our proposed scalable deep network can not only effectively integrate
the graph structure and node features, but also decouple the encoding process from the
propagation process. We improve the scalability of the existing models and alleviate the
over-smoothing issue. Moreover, SDN solves the issue of the orthogonal relationship
between the model depth and the range of the neighborhood by the Quasi-GNN module.
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Meanwhile, we utilize a dual self-supervised module to train the clustering task end-to-end,
which enables high-confidence clustering results while obtaining high-quality embeddings.

3. The Proposed Method

In this section, we first introduce the definition of graph and clustering tasks. Then
we introduce our proposed Scalable Deep Network (SDN). The overall framework of SDN
is shown in Figure 1. Specifically, SDN consists of three modules, a DNN module for
auto-encoder, a Quasi-GNN module, and a dual self-supervised module. We first utilize
the DNN module and linear encoder to generate the intermediate embedding, then use the
linear propagation module to obtain the final embeddings. Meanwhile, we utilize the dual
self-supervised module to supervise the training of these two modules. We introduce the
specific details of our model as follows.

Figure 1. The overall framework of SDN is as above. X, X̃ are input data and reconstructed data,
respectively. E(l) and H(l)are the results of the l-th layer of the linear encoder in the DNN and Quasi-
GNN modules, respectively. Layers with different colors represent E(l) of different embeddings
learned by the DNN module. The green solid line indicates that the target distribution P is calculated
by the distribution Q, the yellow dotted line represents the dual self-supervision mechanism, and the
target distribution P supervises the training of the DNN module and the Quasi-GNN module at the
same time. The solid blue line in the linear propagation layer of the Quasi-GNN module represents
the propagation mode.

3.1. Problem Formalization

Graph-structured data can be defined as G = {V , E , X}, where V = {v1, v2, v3, · · · , vm}
is a vertex set with m vertices, E is an edge set with n edges, X = {x1, x2, x3, · · · , xm}T is a
feature matrix (input data). The topology of graph G is described by an adjacency matrix
(with self-loops) Ã, where Ã = {aij}. If there there is an edge between vi and vj, aij = 1,
otherwise aij = 0. For non-graph data, we obtain their adjacency matrix Ã by constructing
a KNN graph with the Dot-product. We first calculate the similarity between different
nodes by Sij = xT

j xi, and select K nodes with the highest similarity for each sample as
their neighbors. Degree matrix D̃ = diag(d1, d2, d3, · · · , dn) ∈ Rn×n, where di = ∑vj∈V aij

represents the degree of any node vi.
Graph clustering is to divide the nodes into t disjoint clusters C = {cl | l = 1, 2, 3, · · · , t}

according to a selected criterion, and there is c1
⋂

c2 = ∅. When the node vi is divided into
a certain cluster, it can be expressed as vi ∈ cl .
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3.2. DNN Module for Auto-Encoder

It is not sufficient to obtain embeddings only based on node features and topology
information, so we utilize auto-encoders to obtain high-dimensional representations of node
features and integrate them into the embedding learning process of multi-layer perceptrons.
For accommodating different data types, we adopt the most basic auto-encoder to obtain
high-dimensional embeddings of nodes. First, the initial feature matrix (vector data) X is fed
into the fully connected neural network of the DNN module to obtain the high-dimensional
embedding E. The specific process and formula are defined as follows.

E(l) = φ(W(l)
e E(l−1) + b(l)

e ), (1)

where E(l) represents the encoding result of the l-th layer, and for the 0-th layer of the
network, we set E(0) = X. W(l−1)

e represents the encoding weight matrix of the l layer, φ
represents the nonlinear function, such as ReLu(·). After encoding at layers l, we decode
the embedding using a decoder that is fully symmetric to the encoder.

D(l) = φ(W(l)
d D(l−1) + b(l)

d ), (2)

where D(l) represents the results of the l-th layer, for the 0-th layer of the decoding network,
there is D(0) = E(l). W(l)

d represents the decoding weight matrix of the l layer. After that,
we set X̃ = D(l) and make the following results as the objective function.

Lres =
1

2N

N

∑
i=1
‖xi − x̃i‖2

2 =
1

2N

N

∑
i=1
‖X− X̃‖2

F. (3)

3.3. Quasi-GNN Module

Although the auto-encoder can learn the embeddings from the data themselves, such
as E(1), E(2), and E(3), it ignores the relationship between nodes. Therefore, the traditional
deep clustering method needs to utilize the GCN module to capture the relationship
between nodes as the supplements. The GCN module can solve this issue, but it is difficult
to expand the model depth and the range of the neighborhood together, which limits
the learning ability and architecture of the models. Therefore, we propose a Quasi-GNN
module, which decouples the encoding process from the propagation process and it can not
only capture the relationship between nodes, but also expand the range of the neighborhood
and the depth of the model together, reducing the computational cost and improving
the scalability.

3.3.1. Linear Encoder

We utilize the multilayer perceptron (MLP) as our encoder to get the embeddings.
The result of each layer can be defined as

H(l) = f (H(l−1), W(l−1)
m ) = H(l−1)W(l−1)

m , (4)

where H(l) is the embeddings of the l-th layer. Specially, H(0) = X, Wm is the weight
matrix of MLP. To obatin a more complete and powerful embedding, we combine the high-
dimensional representations E(l) learned from the DNN module with H(l). The formula is
as follows.

H̃(l) = (1− σ)H(l) + σE(l), (5)

E(l) is the calculation result of the l-th layer DNN module. σ is the balance coefficient and
we set it to 0.5. After that, we need to do the propagation operation on it to aggregate
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information in the neighborhood. Then we utilize the H̃(l) as the input of the l-th layer in
MLP to generate the embeddings

H(l) = f (H̃(l−1), W(l−1)
m ) = H̃(l−1)W(l−1)

m . (6)

3.3.2. Linear Propagation Module

We first briefly review the message passing algorithm of traditional GCNs. A tradi-
tional two-layer GCN model can be defined as

ZGCN = So f tmax(ÂReLu(ÂXW0)W1), (7)

where Â = D̃r−1ÃD̃−r, Â is the normalized adjacency matrix, by setting r = 1 or 0.5,
we can obtain different regularization methods, such as ÃD̃−1, D̃−

1
2 ÃD̃−

1
2 , and D̃−1Ã.

The predicted labels is ZGCN . In a traditional two-layer GCN model, the calculation of each
layer depends on the calculation result of the previous layer. Limited by this calculation
method, the computational costs of the traditional GNN models increase exponentially.
It is difficult to expand the model depth and the neighborhodd range together for their
orthogonal relationship. According to Xu et al. [28], the influence score of sample x on y in
GNN can be defined as

I(x, y) = ∑
i

∑
j

∂Zyi

∂Xxj
. (8)

In the k-layers GNN, I(x, y) ∝ Prw′(x → y, k), where Prw′(x → y, k) is the random
walk distribution after fine-tuning. When k→ ∞, if the graph is irreducible and aperiodic,
the value will approach a stable distribution independent of x (i.e., the same amount
of influence scaling), which indicates that the influence of the x on the y at this time
will eventually be independent of the local graph structure. Assuming that this stable
distribution is πlim, we can calculate the distribution by the following formula

πlim = Âπlim. (9)

Obviously, the result is related to the structure of the whole graph and has no relation to
the starting point of the random walk, which means that we finally consider the information
of the whole graph and ignore the nodes themselves. In addition, the original pagerank
also adopts this calculation method to obtain the full graph structure.

πpr = Arwπpr Arw = AD−1. (10)

Based on this, we can adopt a variant of pagerank (i.e., personalized pagerank) to
reconsider the root node. Assuming that ix is the indicator vector of node x, its vector
representation after multiple propagations can be defined as

πppr(ix) = (1− α)Âπppr(ix) + αix, (11)

where α is the transmission probability, α ∈ [0, 1], Â is the normalized adjacency matrix.
In this way, we can obtain an approximate post-propagation matrix with respect to the
entire graph data

M(0) = T = g(X), (12)

M(k+1) = (1− α)ÂM(k) + αT, (13)

where M(k) is the result of the k-th propagation, T is the embedding obtained by the linear
encoder. Therefore, we can deduce the final embeddings Z by combining the intermediate
embeddings H in the Seciton 3.3.1.

M(0) = H̃ = H(L), (14)
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M(k+1) = (1− α)ÂM(k) + αH̃. (15)

The last layer of the linear propagation module is the multi-classification function of
the softmax function

Z = So f tmax(M(K)) = So f tmax((1− α)ÂM(K) + αH̃). (16)

As a result, zij ∈ Z indicates the probability that a node vi belongs to the cluster j.
Moreover, we can consider Z as a kind of aggregation class distribution.

3.4. Dual Self-Supervised Module

Through the above two modules, we mechanically combine the DNN module and
the Quasi-GNN module, they essentially are all used for unsupervised or supervised
learning in different scenarios and we cannot apply them to our depth clustering task
directly. Therefore, we need to unify the Quasi-GNN module and the DNN module with
the same optimization objective. We set the goal of these modules to approximate the
target distribution P, which makes the results tend to be consistent during the training
process, and because of the strong connection between the two modules, we call it a dual
self-Supervised module. This module does not require the participation of labels during
the training process.

First, for the DNN module, we utilize Student’s t-distribution as the kernel to measure
the similarity between the node embeddings ei and the cluster center vector µj:

qij =
(1 + ‖ei − µj‖2/v)−

v+1
2

∑j′(1 + ‖ei − µj′‖2/v)−
v+1

2
, (17)

where ei is the i-th row of the embedding E(l), µj is initialized by the K-means learned by
the pre-train auto-encoder, v is the degree of freedom of Student’s t-distribution. qij can
be seen as the probability of assigning sample i to cluster j. From this, we can obtain the
cluster distribution Q about the nodes. To enable nodes to be assigned to different clusters
with higher confidence, we calculate the target distribution P.

pij =
q2

ij/ fij

∑j′ q2
ij/ fij′

, (18)

where fij = ∑i qij is the soft clustering frequency. The target distribution P normalizes the
sum of squares of each distribution in the cluster distribution Q. By using two distributions
to constrain different embeddings, the embedding obtained by the DNN module and the
Quasi-GNN module can be considered simultaneously to optimize the embedding and
clustering quality jointly. On this basis, we can obtain the corresponding objective function

Lclu = KL(P‖Q) = ∑
i

∑
j

pijlog
pij

qij
. (19)

This objective function constrains the DNN module and we can obtain the superior
embeddings for clustering by reducing the KL divergence loss of the two distributions
Q and P. In addition, we need to utilize the P distribution to constrain the Quasi-GNN
module

Lmlp = KL(P‖Z) = ∑
i

∑
j

pijlog
pij

zij
. (20)

To sum up, the final loss can be defined as

L = Lres + βLclu + γLmlp, (21)
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where β and γ are constraint coefficients, β ∈ [0, 1] and γ ∈ [0, 1]. Algorithm 1 shows the
training process of our proposed model.

Algorithm 1 Training process of SDN.

Require: Initial features: X, Graph: G, Numbers of clusters: K, Adjacency matrix: A,
Iteration number: MaxIter, Layer number of linear encoder: LE, Layer number of linear
propagation module: LP;

Ensure: Clustering results R;
1: Initialize W(l)

e , W(l)
d , b(l)

e , b(l)
d with pre-train auto-encoder;

2: Initialize µ with K-means on the representations learned by pre-train auto-encoder;
3: Initialize W(l)

m randomly;
4: for ite = 1 to MaxIter do
5: Generate DNN embeddings E(0), E(1), E(2), · · · , E(L);
6: Use E(L) to calculate the distribution Q by Equation (17);
7: Calculate target distribution P by Equation (18);
8: for l = 1 to LE do
9: Set the balance coefficient σ = 0.5 to calculate H̃(l) by Equation (5);

10: Calculate the embeddings of the next layer of MLP by Equation (6);
11: end for
12: Set H̃ = H(L)

13: for l = 1 to LP do
14: Calculate the embeddings by Equation (15);
15: end for
16: Set the transmission probability α = 0.3 to calculate the distribution Z by Equation (16);
17: Feed H(L) into the decoder to obtain the refactored feature X̃;
18: Calculate Lres, Lclu, Lmlp, respectively;
19: Calculate the whole loss function L by Equation (21);
20: Back propagation and update parameters in SDN;
21: end for
22: Calculate the clustering results based on distribution Z;
23: return R;

4. Experiments
4.1. Datasets

To evaluate the performance of our model, we conduct extensive experiments on five
public benchmark datasets, the specific details of them are shown in Table 1.

• USPS [29]: The USPS is a digit dataset automatically scanned from envelopes by the
U.S. Postal Service containing a total of 9298 16 × 16-pixel grayscale samples; the
images are centered, normalized, and show a broad range of font styles.

• HHAR [30]: The Heterogeneous Human Activity Recognition (HHAR) dataset con-
tains 10,299 sensor records from different smart terminals. All samples are divided
into 6 types of human activities, including riding, lying, sitting, standing, walking,
and climbing stairs and down the stairs.

• Reuters [31]: Reuters is a simple, widely used dataset for text classification. It includes
46 different subjects: some subjects have more samples, but each subject in the training
set has at least 10 samples.

• ACM: The ACM dataset is a paper network from ACM digital library. It contains
papers published in KDD, SIGMOD, SIGCOMM, MobiCOMM, and VLDB, which can
be divided into three categories (databases, wireless communication, data mining).

• CiteSeer: The CiteSeer is a citation network. Papers in this dataset are divided into
Agents, AI (Artificial Intelligence), DB (Database), IR (Information Retrieval), ML
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(Machine Learning), and HCI, containing a total of 3312 papers. It records information
between cited papers or citations.

• DBLP: The DBLP dataset is an author network. If two authors are collaborators, then
there is an edge connection between them. We label their research fields according to
their papers published in international journals and conferences.

• Flickr: The Flickr is an image network which is constructed by forming links between
shared Flickr public images. Edges are formed between pictures from the same
location, pictures submitted to the same gallery, group, or collection, pictures that
share a common tag, pictures taken by friends, etc.

Table 1. The statistics of the datasets.

Dataset Type Samples Classes Dimension Description

USPS Image 9298 10 256 KNN network
HHAR Record 10,299 6 561 KNN network
Reuters Text 10,000 4 2000 KNN network
ACM Graph 3025 3 1870 Citation network

CiteSeer Graph 3327 6 3703 Citation network
DBLP Graph 4058 4 334 Author network

Flickr Graph 89,250 7 500 Image network

4.2. Methods

We compare SDN with various existing representative unsupervised models for clus-
tering tasks. Moreover, these models can be divided into three categories according to
different input data, models that only use feature matrix (vector data): K-means, AE, and
Random Swap; models that only use adjacency matrix (graph data): K-algorithm and
M-algorithm; models that use both the two data: DEC, IDEC, GAE, VGAE, DAEGC, ARGA,
SDCN, AGCN, SDNP, SDNE, and SDN. The following are specific descriptions of these
models.

• K-means [32]: It is a traditional clustering method applied directly to the feature
matrix (vector data). In this paper, we utilize the K-means supported by the sklearn
package. For details, please refer to https://github.com/scikit-learn/scikit-learn,
accessed on 12 April 2022.

• AE [22]: This auto-encoder consists of an encoder and a decoder. It uses the encoder
to encode the initial data, then utilizes the decoder to reconstruct the embeddings.
In addition, it calculates the reconstruction loss as the objective function. Finally, we
employ K-means to perform clustering on the obtained high-dimensional embeddings.

• Random Swap [33]: Random swap algorithm aims at solving clustering by a sequence
of prototype swaps and by fine-tuning their exact location by k-means. We utilize
the Random Swap file of the python version in the UEF Machine Learning repository.
For details, please refer to https://github.com/uef-machine-learning/RandomSwap,
accessed on 12 April 2022.

• K-algorithm [21]: K-algorithm applies similar iterative local optimization but without
the need to calculate the means. It inherits the properties of k-means clustering in
terms of both good local optimization capability and the tendency to get stuck at a
local optimum.

• M-algorithm [21]: M-algorithm gradually improves on the results of the K-algorithm
to find new and potentially better local optima. It repeatedly merges and splits random
clusters and tunes the results with the K-algorithm.

• DEC [34]: DEC is a deep clustering method that defines a centroid-based probability
distribution and minimizes the KL divergence as an auxiliary objective distribution to
improve both cluster assignment and feature representation. It implements the joint
optimization of deep embedding and clustering.

https://github.com/scikit-learn/scikit-learn
https://github.com/uef-machine-learning/RandomSwap
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• IDEC [35]: Taking into account the preserved data structure, IDEC manipulates
the feature space to disperse the data points. Moreover, it can jointly perform the
embedding and the clustering process.

• GAE [5]: This method is an effective combination of auto-encoder graph convolution.
First, graph convolution is used to encode the data; then, the decoder is used to
reconstruct its adjacency matrix. The loss function measures the difference between
the reconstructed matrix and the original matrix.

• VGAE [5]: This model first obtains the embeddings through GCNs, then learns the
distribution satisfied by them. Finally, it calculates the posterior probability to obtain
the latent variable to reconstruct the adjacency matrix.

• DAEGC [9]: It adopts the attention network to learn node embeddings and employs
a clustering loss to supervise the self-training clustering process.

• AGRA [7]: Using the adversarial regularization to normalize the process of encoding,
ARGA combines an adversarial training scheme with a graph auto-encoder to obtain
the superior embeddings.

• SDCN [10]: To obtain the more robust embeddings, SDCN fuses the calculation results
of the GCN module and the DNN module. Moreover, it utilizes a dual self-supervised
module to constrain the two modules to train the model end-to-end.

• AGCN [36]: Considering the nodes’ importance, AGCN employs the attention mecha-
nism to merge the embeddings learned by the same layer of auto-encoder and GCNs.

• SDNP: It is a variant of SDN, which only employs the Quasi-GNN module.
• SDNE: It only utilizes the DNN module for encoding as a variant of SDN.
• SDN: The proposed method.

4.3. Evaluation Metrics and Experimental Setup
4.3.1. Evaluation Metrics

We adopt four widely used evaluation metrics: Accuracy (ACC), Normalized Mutual
Information (NMI), Average Rand Index (ARI), and macro-F1 score (F1) [37]. For each
metric, a larger value implies a better clustering result.

The specific calculation methods of the four indicators are as follows

Accuracy (ACC)

ACC is used to compare the obtained labels with the true labels, which can be calcu-
lated by the formula below

ACC =
∑m

i=1 δ(si, map(ri))

n
, (22)

where ri, si represent the obtained label and true label corresponding to the data xi, respec-
tively, n is the total number of data, δ indicates that the indicator function is as follows

δ(x, y) =
{

1 i f x = y
0 otherwise

. (23)

The map in this formula represents the re-distribution of the best class label to ensure
the correctness of the statistics.

Normalized Mutual Information (NMI)

NMI is often used in clustering to measure the similarity of two clustering results.
Assuming that PA(a), PB(b) represent the probability distribution of A and B, and PAB(a, b)
represents the joint distribution probability of A and B, then we have

H(A) = −∑
a

PA(a)logPA(a), (24)
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H(B) = −∑
b

PB(b)logPB(b), (25)

H(A, B) = −∑
a,b

PAB(a, b)logPAB(a, b), (26)

where H(A) is called the information entropy of A vector. According to the relationship
between joint entropy and individual entropy, NMI is defined as

NMI =
H(A) + H(B)

H(A, B)
. (27)

Adjusted Rand index (ARI)

ARI reflects the degree of overlap between the two divisions. Suppose clustering is a
series of decision-making processes, that is, making decisions on all N(N − 1) node pairs
on the set. When only two nodes are similar, we group them into the same cluster. We
utilize a to group two similar nodes into one cluster and b to group dissimilar nodes into
different clusters. The Rand coefficient (RI) can be defined as

RI =
a + b

C2
n

. (28)

However, RI fails to guarantee that the RI value of randomly divided clustering results
is close to 0. Therefore, the Adjusted Rand index (RI) is proposed.

ARI =
RI − E[RI]

max(RI)− E[RI]
, (29)

where E[RI] represents the expectation of RI, ARI ∈ [−1, 1].

Macro-F1 Score (F1)

The F1 score measures the accuracy of a binary classification (or multi-task binary
classification) model. It takes into account both the accuracy and recall of the classification
model. F1 score can be regarded as a weighted average of model precision and recall,
and F1 ∈ [0, 1].

According to Table 2, precision refers to the proportion of samples with a predicted
value of 1 and a true value of 1 in all samples with a predicted value of 1. In addition, recall
refers to the proportion of samples with a predicted value of 1 and a true value of 1 among
all samples with a true value of 1. Therefore, precision and recall can be defined as

precision =
TP

TP + FP
, (30)

recall =
TP

TP + FN
, (31)

On this basis, F1 score is defined as the harmonic mean of precision and recall

F1 = 2× precision× recall
precision + recall

(32)

For macro-F1, it is the average of the F1 score of each cluster in the set.

macroF1 =
1
N

N

∑
i=1

F1. (33)
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Table 2. Confusion matrix. For binary classification issues, the rows of the matrix represent the true
values and the columns of the matrix represent the predicted values. TP (True Positive) means the
number of positive samples predicted as positive samples, FN (False Negative) means the number
of positive samples predicted as negative samples, FP (False Positive) means the number of negative
samples predicted as positive samples, TN (True Negative) means the number of negative samples
predicted as negative samples.

Positive Negative

Positive TP FN

Negative FP TN

4.3.2. Experimental Setup

To ensure the consistency of the experiments, we utilize a unified pre-train auto-
encoder to train the benchmark models involving the DNN module, such as AE+K-means,
DEC, IDEC, SDCN, and AGCN. The structure of the pre-train auto-encoder is a 4-layer
encoder and a 4-layer decoder with the dimension of 500–2000–500–10, and the two com-
ponents are completely symmetrical to ensure the consistency of the constructed features.
Meanwhile, we adopt the learning rate of 10−3 and 30 epochs to train the auto-encoder
and restore the optimal training results. In the subsequent training, we first employ the
pre-train auto-encoder to encode the data, then we perform the K-means and initialize our
clustering layer with the obtained clustering results. During the training, different learning
rates and epochs are used for different datasets. Table 3 shows the detailed settings for
training the Quasi-GNN module in different datasets. For the β and γ in the loss function,
we set them as β = 10−1 and γ = 10−2, respectively, in the experiment. Also, we set α in
the linear propagation layer to 0.3 and the degrees of freedom of the Student’s t-distribution
to 1.

For the application of Random Swap on each dataset, we set the number of iterations to
10 and perform K-means twice for each iteration, the rest of the settings are the default set-
tings; please refer to https://github.com/uef-machine-learning/RandomSwap, accessed
on 12 April 2022. Moreover, by applying the K-algorithm and M-algorithm, we need to
reconstruct the data according to the corresponding input data format. Therefore, we obtain
the corresponding neighbor nodes according to their adjacency matrix and measure their
similarity according to the nodes’ features like the weight of the edge. On this basis, when
using the K-algorithm and the M-algorithm, we calculated the conductance as the cost
function; in particular, for the M-algorithm, we set the number of iterations to 100. Other
parameters are default; please refer to https://github.com/uef-machine-learning/gclu,
accessed on 12 April 2022.

On the other hand, K-means, Random Swap, and AE perform graph clustering directly
on the feature matrix (vector data), K-algorithm and M-algorithm perform graph clustering
on the data after reconstructing the input format, and other methods based on graph neural
networks utilize a combination of feature matrix (vector data) and adjacency matrix (graph
data).

Table 3. Parameter settings used for each training set when training the Quasi-GNN module. K
represents constructing a K-nearest neighbor graph for non-graph data, and if the value is none, it
means that the original data is graph data.

Dataset Learning Rate Epochs K

USPS 10−3 200 3
HHAR 10−3 550 5
Reuters 10−4 120 5
ACM 10−3 120 None

CiteSeer 10−3 120 None
DBLP 10−3 120 None

https://github.com/uef-machine-learning/RandomSwap
https://github.com/uef-machine-learning/gclu
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4.4. Scalability Analysis

To further illustrate the scalability, we analyze our proposed model in time and space
complexity. Moreover, we present time and memory consumption in different baselines.

4.4.1. Complexity Analysis

In this paper, we assume that the dimension of the input data is d and the dimensions
of each layer of the pre-train auto-encoder are d1, d2, d3, · · · , dL. Assuming the number of
input data is N, the time complexity of the pre-train auto-encoder is O(Nd2d2

1d2
2 · · · d2

L).
For the linear encoder in the Quasi-GNN module, the dimension used in this part must
be the same as the pre-train auto-encoder, so the time complexity of the linear encoder is
O(Nd2d2

1d2
2 · · · d2

L). In addition, the linear propagation module in the Quasi-GNN module
requires an adjacency matrix to participate in the operation instead of parameters, so the
time complexity of this part is related to the output dimension of the linear encoder and the
number of nodes. Therefore, the time complexity is O(NLPd2

L|V|2). Moreover, we suppose
that there are K classes in the clustering task, and the time complexity of Equation (17) is
O(NK + NlogN) according to the analysis of Xie et al. [34]. In summary, the total time
complexity of our proposed model is O(Nd2d2

1d2
2 · · · d2

L + NLPd2
L|V|2 + NK + NlogN).

Next, we analyze the space complexity of our proposed model. For neural networks,
the space complexity is represented by the number of neural network layers and the number
of parameters. The parameters needed in our model appear in the DNN module and the
linear encoder in the Quasi-GNN module. For the encoder of the pre-train auto-encoder
and the linear encoder in the Quasi-GNN module, to combine the embeddings of these
two components, the dimensions of their weight matrix should correspond to each other.
In addition, the decoder and the encoder are completely symmetrical. Therefore, the weight
matrix size of these three components should be the same. The space complexity of We, Wd,
and Wm is O(dd1 + d1 + d1d2 + d2 + · · ·+ dL−1dL + dL). To sum up, the space complexity
of SDN should be O(dd1 + d1 + d1d2 + d2 + · · ·+ dL−1dL + dL).

4.4.2. Time and Memory Consumption Comparison

On the one hand, to fully demonstrate the superiority of SDN in terms of memory
consumption, we conduct experiments on Flickr and compare the SDN with baselines that
have the state-of-the-art (SOTA) performance, such as AGCN and SDCN. The statistics
of the Flickr are shown in Table 1. The results of the comparative experiments, the total
number of parameters, and memory consumption of AGCN, SDCN, and SDN are shown
in Table 4.

Table 4. Accuracy of graph clustering on Flickr. “OOM” means “out of memory”.

Number of Parameters Memory Consumption Flickr

AGCN 4,614,831 Exceed 11G OOM
SDCN 4,566,650 Exceed 11G OOM

SDN 4,569,667 9.959G 43.60

On the other hand, to show the superiority of SDN in terms of time consumption, we
record the time consumed by AGCN, SDCN, and SDN when processing the same dataset.
The specific results are shown in Figure 2.

First, according to the results in Figure 2, the time consumption of AGCN and SDCN
is mostly higher than that of SDN. In summary, the two-part experimental results show
that existing SOTA methods have larger memory consumption and longer processing time
than SDN. Second, for the experimental results in Table 4, AGCN and SDCN cannot be
applied to large-scale datasets, such as Flickr, mainly because they adopt GNN and its
variant methods as the result of the backbone network, while the computational costs of
GNN recursively increase with the deepening of the network layer, which makes it difficult
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for this type of model to handle large-scale graph data, and cannot effectively expand the
neighborhood range to obtain better node embedding and clustering results.

Figure 2. Time consumption comparison chart of AGCN, SDCN, and SDN on six datasets. The
experiments are conducted on a machine with Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz, and a
single NVIDIA GeForce RTX 2080 Ti with 11GB memory. The operating system of the machine is
Ubuntu 18.04.5 LTS. As for software versions, we use Python 3.9.12, Pytorch 1.11.0 and CUDA 11.4.

In contrast, SDN utilizes linear encoders as the backbone network and linear propaga-
tion layers for feature propagation. Our proposed model not only effectively reduces the
computational costs when processing the large-scale graph-structured data but also solves
the orthogonal issue of the neighborhood range and the model depth, which shows the
high scalability of SDN.

5. Result Analysis

We compare SDN with representative benchmark models and conduct extensive exper-
iments on five datasets, including HHAR, Reuters, ACM, CiteSeer, and DBLP. The bench-
mark models completely adopt the original parameter settings. Moreover, the specific
experimental results for different metrics are shown in Tables 5–8, where the bold values
represent the best performance, the underlined values indicate the second-best performance.
Our model surpasses recent benchmark models and achieves SOTA results. Compared
with SDCN, our module has the following advantages:

• We decouple the GCN module by employing the Quasi-GNN module to capture the
information of graph topology and node features, and this module can be combined
with methods such as smoothing or label propagation, which makes our model have
high scalability.

• We solve the issue of the orthogonal relationship between the model depth and the
range of neighborhood, which enables the two to scale together and reduces the
computational costs.

• We simplify the model‘s structure and add the structural information to the Quasi-
GNN module to alleviate the over-smoothing issue.
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Table 5. Accuracy (ACC) results on six datasets.

USPS HHAR Reuters ACM CiteSeer DBLP References

K-means 66.82 59.98 54.04 67.31 39.32 38.65 [32]
AE 71.04 68.69 74.90 81.83 57.08 51.43 [22]

Random swap 63.47 59.21 58.92 59.70 38.62 38.75 [33]
K-algorithm 56.27 45.06 44.24 37.82 32.40 32.44 [21]
M-algorithm 52.98 42.31 44.25 38.08 21.34 29.60 [21]

DEC 73.31 69.39 73.58 84.33 55.89 58.16 [34]
IDEC 76.22 71.05 75.43 85.12 60.49 60.31 [35]
GAE 63.10 62.33 54.40 84.52 61.35 61.21 [5]

VGAE 56.19 71.30 60.85 84.13 60.97 58.59 [5]
DAEGC 73.55 76.51 65.50 86.94 64.54 62.05 [9]
ARGA 66.80 63.30 56.20 86.10 56.90 61.60 [7]
SDCN 77.89 84.26 77.15 90.45 65.96 68.05 [10]
AGCN 80.98 88.11 79.30 90.59 68.79 73.26 [36]

SDNP 77.66 78.61 81.07 91.07 69.52 60.56 Proposed
SDNE 70.96 82.11 79.47 87.44 60.14 65.98 Proposed
SDN 78.04 89.50 81.15 91.34 70.78 74.93 Proposed

Table 6. Normalized Mutual Information (NMI) results on six datasets.

USPS HHAR Reuters ACM CiteSeer DBLP

K-means 62.63 58.86 41.54 32.44 16.94 11.45
AE 67.53 71.42 49.69 49.30 27.64 25.40

Random swap 60.51 58.86 29.06 16.40 17.26 11.24
K-algorithm 50.70 31.57 11.88 0.88 7.69 7.69
M-algorithm 57.54 50.60 4.03 1.27 0.71 0.38

DEC 70.58 72.91 47.50 54.54 28.34 29.51
IDEC 75.56 74.19 50.28 56.61 27.17 31.17
GAE 60.69 55.06 25.92 55.38 34.63 30.80

VGAE 51.08 62.95 25.51 53.20 32.69 26.92
DAEGC 71.12 69.10 30.55 56.18 36.41 32.49
ARGA 61.60 57.10 28.70 55.70 34.50 26.80
SDCN 79.51 79.90 50.82 68.31 38.71 39.50
AGCN 79.64 82.44 57.83 68.38 41.54 39.68

SDNP 78.79 82.31 59.52 69.70 41.95 27.86
SDNE 67.51 78.96 56.35 59.78 32.84 31.07
SDN 79.64 83.02 59.49 70.35 44.28 41.84
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Table 7. Average Rand Index (ARI) results on six datasets.

USPS HHAR Reuters ACM CiteSeer DBLP

K-means 54.55 46.09 27.95 30.60 13.43 6.97
AE 58.83 60.36 49.55 54.64 29.31 12.21

Random swap 50.80 45.21 23.74 17.73 15.11 4.23
K-algorithm 35.71 24.46 11.17 0.76 7.97 7.97
M-algorithm 30.76 29.98 1.22 1.27 0.02 0.05

DEC 63.70 61.25 48.44 60.64 28.12 23.92
IDEC 67.86 62.83 51.26 62.16 25.70 25.37
GAE 50.30 42.63 19.61 59.46 33.55 22.02

VGAE 40.96 51.47 26.18 57.72 33.13 17.92
DAEGC 63.33 60.38 31.12 59.35 37.78 21.03
ARGA 51.10 44.70 24.50 62.90 33.40 22.70
SDCN 71.84 72.84 55.36 73.91 40.17 39.15
AGCN 73.61 77.07 60.55 74.20 43.79 42.49

SDNP 71.26 72.78 62.05 75.39 44.07 27.71
SDNE 58.74 71.33 58.07 66.39 33.42 30.45
SDN 71.94 79.01 62.26 76.03 45.90 45.64

Table 8. Macro-F1 score (F1) results on six datasets.

USPS HHAR Reuters ACM CiteSeer DBLP

K-means 64.78 58.33 41.28 67.57 36.08 31.92
AE 69.74 66.36 60.96 82.01 53.80 52.53

Random swap 60.78 58.22 46.34 58.68 29.98 34.88
K-algorithm 57.71 44.69 37.76 36.93 29.51 29.51
M-algorithm 51.88 28.24 21.66 30.26 6.55 11.69

DEC 71.82 67.29 64.25 84.51 52.62 59.38
IDEC 74.63 68.63 63.21 85.11 61.62 61.33
GAE 61.84 62.64 43.53 84.65 57.36 61.41

VGAE 53.63 71.55 57.14 84.17 57.70 58.69
DAEGC 72.45 76.89 61.82 87.07 62.20 61.75
ARGA 66.10 61.10 51.10 86.10 54.80 61.80
SDCN 76.98 82.58 65.48 90.42 63.62 67.71
AGCN 77.61 88.00 66.16 90.58 62.37 72.80

SDNP 76.60 73.21 65.38 91.08 62.16 51.28
SDNE 69.62 80.18 63.30 87.38 56.50 64.97
SDN 77.02 89.39 66.03 91.39 61.48 74.60

6. Ablation Study

To further verify the effectiveness of our proposed model, we adopt two variant meth-
ods to verify the performance of each module. SDNP only employs the Quasi-GNN module
and SDNE only utilizes the DNN module for encoding. Finally, we perform K-means on
the embeddings obtained from them. Compared with other baselines, the experimental
results show that removing either of the above two modules will lead to a decrease in
accuracy and other metrics, which indicates that the two components of our proposed
model are inseparable.

Moreover, it is worth noticing that some results obtained by SDNP are better than
baselines. For instance, the accuracy in Reutuers, ACM, and CiteSeer of SDNP is about
2%, 0.5%, and 1% higher than that of AGCN. In addition, other metrics of SDNP also
surpass AGCN with varying degrees, and this result indicates that the decoupled method
we proposed still has superior performance while having high scalability.
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Figure 3. Analysis of transmission probability α. Through these four pictures, we can notice that
when α = 0.3, our model have the best performance for different mertics.

7. Analysis of Transmission Probability α

The linear propagation layer adopts the propagation strategy defined by Equation (11).
Owing to no parameters, it simply performs linear operations on the original matrix, which
greatly improves scalability and reduces computational costs. We set α = 0, 0.1, 0.3, 0.5, 0.7,
and 1, respectively, on each dataset, and measure their final clustering effect. In this way,
we obtain the most suitable transmission probability α setting, and the experimental results
are shown in Figure 3. The experimental results generally show a trend of increasing first
and then decreasing with the increase in α. The transition probability essentially indicates
the probability that the target node learns from itself or its neighbor nodes. Based on the
experimental results, we can infer that learning from only one of them is not sufficient.
Therefore, it is necessary to find a suitable α to integrate the information of the target node
and its neighbor nodes to obtain the deep embeddings.

8. Conclusions

In this paper, we propose a scalable deep network with a Quasi-GNN module and
a DNN module. First, we utilize the Quasi-GNN module to capture the information of
graph topology and node features in different dimensions and employ the DNN module
for auto-encoder to supplement the structural information. In addition, the combination
of these two components can be combined with other post-processing methods to enable
nodes further to be assigned to clusters with higher confidence, so it has high scalability.
Moreover, our proposed model solves the issue of the orthogonal relationship between
the model depth and the neighborhood range. It reduces the computational costs of the
traditional GCN models and alleviates the over-smoothing issue caused by the stacking
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of multiple GCN layers. Experiments on benchmark datasets show that our model has
superior performance and achieves the SOTA effect.

For future work, we plan to optimize the Quasi-GNN module using the attention
mechanism to consider the difference in importance between different nodes. On the
other hand, we can add variants of GAE/VGAE to obtain more robust embeddings or
propose different self-supervised modules to supervise the training of deep embeddings
and clustering effectively.
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