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Abstract: In recent years, convolutional neural-network-based crack segmentation methods have 

performed excellently. However, existing crack segmentation methods still suffer from background 

noise interference, such as dirt patches and pitting, as well as the imprecise segmentation of fine-

grained spatial structures. This is mainly due to the fact that convolutional neural networks dilute 

low-level spatial information in the process of extracting deep semantic features, and the network 

cannot obtain accurate context awareness because of the limitation of the actual receptive field size. 

To address these problems, an encoder–decoder crack segmentation network based on multi-scale 

contextual information enhancement is proposed. First, a new architecture of skip connection is 

proposed, enabling the network to obtain refined crack segmentation results; then, a contextual fea-

ture enhancement module is designed to make the network more effective at distinguishing be-

tween cracks and background noise; finally, the deformable convolution is introduced into the en-

coder network to further enhance its ability to extract the diverse morphological features of cracks 

by adaptively adjusting the sampling area and the receptive field size. Experiments show that the 

proposed method is effective in crack segmentation and outperforms mainstream segmentation net-

works such as DeepLab V3+ and UNet++. 

Keywords: convolutional neural network; crack segmentation; skip connections; contextual  

features; deformable convolution 

 

1. Introduction 

In recent years, as the urbanization rate of countries around the world increases, a 

large number of infrastructures, such as bridges, tunnels, and dams, are constructed, 

providing a solid guarantee for economic development and livelihood security. However, 

the supervision and maintenance of these facilities has also brought us new challenges. 

These infrastructures commonly use concrete as the construction material and the surface 

crack is one of the main symptoms of their damage and destruction [1,2]. Without timely 

maintenance, cracks will have a significant impact on the service life and safety of those 

infrastructures. Other facilities, such as asphalt roads, also need to be checked regularly 

to ensure that surface cracks can be maintained and repaired in a timely way. Therefore, 

the automatic identification of surface cracks from optical images of various scenes is of 

great research importance [3]. Due to the development of computer science and image 

processing technology, it is now possible to partially automate the process of surface crack 

inspection. However, it is still a difficult task to accurately separate the cracks from the 

complex image background, as there may be dirt patches, oil stains, pitting, or other noise 

interferences. 
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Most of the early crack segmentation techniques rely on traditional digital image pro-

cessing methods, which often involve multiple pre-processing processes, such as morpho-

logical filtering [4,5], fuzzy theory methods [6,7], and wavelet transform [8,9], as well as 

various crack segmentation methods, such as methods based on the threshold algorithm 

[10,11] or the edge detection algorithm [12,13]. Traditional digital image processing meth-

ods are sensitive to interference from external factors, such as light changes and shadow 

occlusion, making them unusable in complex scenes. Meanwhile, digital image processing 

methods require manually designed feature operators, which are more difficult and less 

efficient to implement. 

Recently, the application of deep-learning-based convolutional neural networks 

(CNNs) in the field of computer vision has developed rapidly and has even surpassed 

human performance in a variety of tasks, such as image classification [14,15], object detec-

tion [16,17], and semantic segmentation [18,19]. Compared with traditional digital image 

processing methods, CNNs are characterized by their high level of automation and strong 

feature extraction capability, as CNNs do not rely on manually designed feature opera-

tors. In terms of crack recognition applications, some studies localize cracks in images by 

classification [20,21] or object detection [22,23] methods. However, these methods cannot 

obtain detailed information about the cracks, making them less optimal. Segmentation-

based crack recognition methods annotate cracks in images at the pixel level, providing a 

better level of detailed information, as part of the current mainstream research direction 

[24]. 

Due to the special morphological characteristics of cracks, the crack segmentation 

task faces two challenges: the accurate segmentation of fine-grained spatial structures and 

the ability to adapt to complex background environments. The former requires that the 

multi-level feature information extracted by the feature extraction network can be fully 

utilized, while the latter requires the network to possess accurate context awareness. It is 

shown in [25] that feature maps in different levels explore distinctive information, with 

shallow feature maps possessing fine spatial information and deep feature maps captur-

ing rich semantic information, while the conversion process from shallow to deep feature 

maps leads to a loss of detailed spatial information. To recover the lost spatial information 

in the decoder network, SegNet [26] assists the decoder in up-sampling by means of max-

imum pooling indexing, while U-Net [19] feeds the shallow feature information generated 

in the encoder directly to the decoder network by means of a skip connection. Both of 

them are based on the symmetric encoder–decoder architecture, and there are some recent 

studies of crack segmentation which also use similar architectures [27,28]. However, it is 

demonstrated in [29] that the multi-scale feature information in the encoder cannot be 

fully utilized by delivering information between the same layers of the encoder and de-

coder networks. Meanwhile, due to the limitation of the empirical receptive field size [30], 

the plain convolutional neural networks cannot provide sufficient contextual feature in-

formation, which is necessary to adapt to complex scenarios. To address these problems, 

this paper proposes a multi-scale contextual information enhancement network (MCIE-

Net), which redesigns the connection structure between the encoder and the decoder of 

the U-Net to capture multi-scale feature information and enhance the decoder’s ability to 

restore fine-grained the spatial structure of cracks; meanwhile, a contextual feature en-

hancement module, which consists of the pyramid pooling network and channel attention 

mechanism, is designed to enhance the context awareness of the network.  

Specifically, the contributions of this paper can be summarized as follows: 

i. In order to obtain refined crack segmentation results, a multi-scale skip connection 

structure is designed to aggregate the multi-level feature information extracted from 

the decoder and improve the network’s ability to capture the spatial features. The 

multi-scale skip connection also optimizes the feature aggregation method, which 

reduces the number of network parameters and lowers the computational cost. 
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ii. To accurately distinguish between crack and other interferences in the background, 

a contextual feature enhancement module is proposed to extract contextual infor-

mation at multiple scales to improve the context awareness of the network. It consists 

of a pyramid pooling network and a channel attention mechanism which can recali-

brate the channel weights of feature maps to guide the network to focus on important 

contextual information. 

iii. Since the fixed sampling scale of plain convolution is not conducive to extracting the 

diverse morphological features of cracks, we improve the feature extraction network 

by introducing the deformable convolution into the deep layers of the encoder, 

changing the receptive field size of the network through adaptive sampling area ad-

justment, and enhancing its feature extraction capability. 

2. Related Works 

2.1. Traditional Image Processing Methods 

Most of the traditional crack segmentation methods mainly rely on the color differ-

ence between cracks and background or the edge features of cracks to extract cracks from 

images [31]. Kirschke et al. [10] used a histogram-based threshold segmentation method 

to extract road cracks. Cheng et al. [11] proposed a threshold segmentation algorithm with 

reduced sample space and interpolation to optimize the efficiency of crack segmentation. 

Katakam [32] used the method of chunking the image first and then threshold-handling 

each sub-block separately to improve the accuracy of crack segmentation. Oliveira and 

Correia [33] firstly pre-processed the images using morphological filters and then used 

dynamic threshold segmentation to segment the cracks. Zhang et al. [34] integrated spatial 

clustering, threshold segmentation, and region-growing methods to obtain a coarse-to-

fine segmentation of cracks. In [9,35], wavelet transform was used for crack segmentation, 

while in [12], the Canny operator was used to detect the contours of cracks. In addition, 

there are some studies that identify cracks with the help of machine learning methods. 

Considering the connectivity of cracks, Fernandes et al. [36] used a graph-based (graph-

based) approach to extract crack features, and then support vector machines were used to 

classify the features to obtain a classification of crack types. In [37], crack structure features 

were extracted and learned from annotation data, and, based on this, a crack recognition 

framework was generated using random structure forest to achieve pixel-level crack seg-

mentation. 

2.2. Deep-Learning-Based Methods 

Deep-learning-based crack segmentation methods mostly use semantic segmentation 

models. In 2015, Long et al. [18] achieved the first end-to-end segmentation of natural 

images using fully convolutional neural (FCN) networks, which have thus become the 

most classical network model in the field of semantic segmentation. Liu et al. [25] used a 

FCN backbone and a deeply supervised approach to upscale and fuse the feature maps 

from all levels of the backbone, and then applied a guided filter to fuse all feature maps 

as well as the side outputs to create a segmentation output. Ren et al. [38] used dilated 

convolution with a different dilation rate in the last four layers of the FCN to expand the 

receptive field without changing the feature map scale, and used skip connections to de-

liver shallow feature information, assisting the decoder in generating segmentation re-

sults. However, the methods based on FCN networks still suffer from information loss 

when up-sampling low-resolution feature maps generated in the deep layer of the feature 

extraction network. To solve the problem, symmetric encoder–decoder-based network 

structures, such as SegNet [26] and U-Net [19], have been proposed. In particular, U-Net 

has had a profound impact on many subsequent studies due to its pioneering concept and 

excellent performance, and a series of semantic segmentation models such as UNet++ [39] 

and Unet 3+ [29] have been derived on its basis. Since the detailed spatial information of 

cracks can be more effectively restored, many recent studies of crack segmentation are 
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based on the SegNet and U-Net structures. Ran et al. [40] introduced a spatial attention 

mechanism and a channel attention mechanism in SegNet and used spatial pyramidal 

pooling to capture crack features from different scales. Zou et al. [3] pair-wisely fused the 

feature maps generated in the encoder and decoder network at the same scale, and gen-

erated segmentation results by extracting features from the fused feature maps at multiple 

scales using a multi-scale fusion component. Lau et al. [27] replaced the plain convolu-

tional neural network of the encoder of U-Net with a residual network and added spatial 

and channel compression excitation modules to the decoder. Based on U-Net, Han et al. 

[28] designed a skip-level round-trip sampling structure, in which the deep feature maps 

of the encoder network were up-sampled and aggregated with some shallow feature 

maps, and then down-sampled and fed into the decoder network. These up- and down-

sampling actions enhanced the network’s memory of transmitting low-level features in 

the shallow layer, helping the network to pay attention to the distinction between the 

cracks and the background. Zhao et al. [30] proposed PSPNet, which applies special pyr-

amid pooling to the semantic segmentation task and extracts multi-scale contextual infor-

mation. Some other studies also explored spatial pyramid pooling, such as the DeepLab 

series [41–43], although the difference is that DeepLabs use a dilated convolution rather 

than pooling to obtain contextual information at multiple scales. Sun et al. [44] adopted 

and enhanced DeepLabv3+, in which a multi-attention module was introduced to dynam-

ically adjust the weights of different feature maps for pavement crack image segmenta-

tion. Yuan et al. [45] proposed OCR-Net, which uses object contextual feature representa-

tion for contextual information extraction based on object regions, thus explicitly enhanc-

ing object information and achieving good results on several mainstream semantic seg-

mentation databases. Zhou et al. [46] explored an exemplar-based regime which provides 

a nonparametric segmentation framework based on non-learnable prototypes, where sev-

eral typical points in the embedding space are selected for class prototypical representa-

tion, and distance to the prototypes determines how a pixel sample is classified. For deep 

learning models, there has been a bottleneck over the years to acquire sufficient ground-

truth supervision, especially for segmentation tasks that require pixel-level annotations. 

Zhou et al. [47] proposed a group-wise learning framework for weakly supervised seman-

tic segmentation that explicitly encodes semantic dependencies in a group of images to 

discover a rich semantic context for estimating more reliable pseudo ground truths, which 

are subsequently employed to train more effective segmentation models. König et al. [48] 

proposed a weakly supervised approach for crack segmentation that leverages a CNN 

classifier to create a rough crack localization map. The map was fused with a thresholding-

based approach to segment the mostly darker crack pixels, and the pseudo labels were 

used to train the standard CNN for surface crack segmentation. 

3. Proposed Method 

In this paper, we propose a multi-scale contextual information enhancement network 

(MCIE-Net) for crack segmentation, and its structure is shown in Figure 1. In crack seg-

mentation, there are strict requirements to accurately localize fine-grained spatial infor-

mation, such as crack edges, which means that the network must extract sufficient figura-

tive spatial information, as well as abstract semantic information. Since the plain skip con-

nection of U-Net cannot fully utilize the multi-level features information generated in the 

encoder, MCIE-Net designs a new skip connection structure, so that the deep layer of the 

decoder network can aggregate feature information from multiple shallower layers. By 

fusing the multi-scale information, the decoder can obtain a richer representation of se-

mantic information, and, more importantly, the decoder can make full use of the low-level 

features to improve the network’s ability to restore detailed spatial information. Due to 

the limitation of fixed sampling scales, the plain convolutional neural networks cannot 

provide enough contextual scene information, which leads to the weak ability of the net-

work to distinguish the segmented object from the interference information in the back-

ground. Therefore, we propose the contextual feature enhancement module, through 
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which the network can extract contextual features at multiple scales and obtain a richer 

representation of contextual scene information. The contextual feature enhancement mod-

ule is placed in the deep layers of the decoder network instead of all layers, because the 

shallow layers do not explore the contextual features and the feature enhancement meth-

ods may dilute the fine-grained spatial information in them, affecting the network’s seg-

mentation capability. Our experiments in Section 4.5.2 demonstrate that when both per-

formance and efficiency are taken into account, it is the best choice to place the module in 

the fourth and fifth layers of the decoder network. Additionally, in order to better extract 

the diverse morphological features of cracks, we improve the feature extraction network 

by introducing the deformable convolution into the encoder network to change the size 

of the receptive field through adaptive sampling area adjustment. Similar to [49], we do 

not replace all the layers of the encoder network with deformable convolution layers be-

cause there will be a limited improvement in network performance while using the de-

formable convolution in the shallow layers, but a significant increase in computational 

cost. Our experiments in Section 4.5.3 show that replacing the plain convolution of the 

fourth and fifth layers of the encoder network with deformable convolution is the optimal 

choice to achieve both performance and efficiency. 
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Figure 1. An illustration of the MCIE-Net architecture. 

3.1. Multi-Scale Skip Connection Structure 

The encoder network of U-Net has a distinct hierarchical character, and different 

stages of its convolutional layers obtain diverse meaningful features. The shallow layers 

keep abundant structure information, while the deep layers obtain more abstract features 

which play a crucial role in object recognition. Due to the loss of spatial information 

caused by the down-sampling operation in the coding process, it is not enough to only 
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use deep coarse feature maps to obtain fine segmentation results. Specifically, in the ap-

plication of crack segmentation, the slender and tortuous structural characteristics of the 

cracks place high demands on the edge prediction capability of the model. In order to 

better restore the spatial information of cracks, we propose a multi-scale skip connection 

method to connect the encoder and decoder of U-Net. By feeding multi-scale feature maps 

to the decoder through the multi-scale skip connection, the network can better capture 

fine-grained spatial features. 

Figure 2 shows four different skip connection structures. Among them, the plain skip 

connection and the densely connected skip connection can only deliver information at the 

same level; thus, the utilization of multi-level feature information generated in the en-

coder is relatively limited. In contrast, our multi-scale skip connection can provide the 

decoder with multiple feature maps generated in different layers of encoder network, en-

abling each layer of the decoder to learn rich fine-grained structural features. Compared 

with the full-scale skip connection, our multi-scale skip connection has the following two 

improvements. First, the multi-scale skip connection does not build the intra-connection 

between the decoder layers. The deep feature maps in the decoder do not contain spatial 

information, and the semantic information they contain can be effectively utilized through 

the backbone network; thus, there is no need to build additional connection paths. In ad-

dition, after concatenating the feature maps from different sources, we adjust the number 

of channels of the feature maps to be consistent with the same layer of feature maps in the 

encoder. The experiments in Section 4.5.1 demonstrate that the two improvements in this 

paper can significantly reduce the number of network parameters and lower the compu-

tational cost compared with full-scale skip connection. 
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Figure 2. Comparison of different architectures of skip connections. (a) Plain skip connection, (b) 

densely connected skip connection, (c) full-scale skip connection, and (d) multi-scale skip connec-

tion. 

As an example, Figure 3 illustrates how to construct the feature map ���
�  (the fourth 

layer of the decoder). The decoder receives the feature map ���
�  from the same encoder 

layer and ���
�  from a deeper decoder layer; meanwhile, the feature maps of ���

� ,  ���
� , 

and ���
� , generated in several shallower layers of the encoder, are also transmitted 

through the skip connection paths. Furthermore, while the plain skip connection directly 

concatenates feature maps from different sources, we unify the number of channels of 

each feature map before concatenating, so that the superfluous information can be re-

duced [29]. Lastly, a feature aggregation mechanism, which consists of a convolution op-

eration, a batch normalization, and a ReLU activation function, is used to seamlessly 

merge the abundant information owned by the concatenated feature map. 
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Figure 3. An illustration of how to construct the feature map of the fourth decoder layer. 

3.2. Contextual Feature Enhancement Module 

In the practical application of crack segmentation, some complex and variable envi-

ronmental factors, such as shadow and pitting, are very likely to interfere with the recog-

nition of cracks and lead to the occurrence of segmentation error. This is because the pixel 

characteristics of these interfering factors are very similar to the cracks and are not easily 

discernible. In order to accurately distinguish cracks from other interfering factors, it is 

necessary to obtain accurate scene perception with the help of sufficient contextual infor-

mation [30]. Based on this, this paper introduces a contextual feature enhancement mod-

ule (CFEM) to enhance the deep layers of the decoder network to obtain sufficient contex-

tual information. 

Figure 4 shows the structure of the contextual feature enhancement module, which 

mainly includes two sub-modules of a pyramidal pooling module and a squeeze-and-ex-

citation block. In the convolutional neural network, the size of the receptive field can 

roughly indicate the extraction of contextual information. Theoretically, convolutional 

neural networks can expand the receptive field by increasing the network depth, and thus 

obtain a larger range of contextual information, but it is shown in [30] that the actual re-

ceptive field of deep neural networks is much smaller than the theoretical value. To ad-

dress this problem, global average pooling is often utilized as a typical global contextual 

prior model in many tasks such as image classification [50,51]. However, in semantic seg-

mentation tasks, this strategy is not enough to cover the necessary contextual information 

of the complex scene images. Therefore, the pyramid pooling module down-samples the 

feature map �� to be enhanced by averaging pooling to four scales, and the sizes are 

1 × 1, 2 × 2, 3 × 3, and 6 × 6, respectively. The small feature map of each size contains 

the contextual feature information extracted at that scale. After adjusting the number of 

channels and bilinear interpolation up-sampling, the four new feature maps are restored 

to their original size. Then, the four feature maps are concatenated with �� as the en-

hanced feature map ��. Note that the number of channels of the feature map �� becomes 
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twice that of the original feature map ��, which is not adapted to the symmetrical struc-

ture of our U-shaped network. So, we reduce it to half via a convolution operation and 

then obtain feature map ��. 
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Figure 4. An illustration of the context feature enhancement module. 

In order to make effective use of the rich semantic information owned by the en-

hanced feature map ��, a channel attention mechanism is performed to recalibrate the 

channel weights, which selectively emphasize the important features and suppress unim-

portant features by learning the global information. Specifically, the channel attention 

mechanism is a squeeze-and-excitation block consisting of three operations: squeeze ���, 

excitation ��� , and the channel-wise multiplication ������  [52]. The operation ��� 

squeezes the feature map to 1 × 1 × � with global average pooling to achieve global in-

formation embedding. The operation ��� transmits the squeezed feature map through a 

fully connected layer, a RELU activation layer, a fully connected layer, and a sigmoid ac-

tivation layer in turn to capture the dependency information on the channel dimension. 

Then, the output 1 × 1 × � feature map will be used as the weight matrix to recalibrate 

the channel weights of feature map �� in the operation ������, and finally we obtain the 

contextual feature enhanced feature map ��. The channel attention mechanism can guide 

the network to focus on important channel information, making it more sensitive to criti-

cal contextual feature information. 
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3.3. Introduction of Deformable Convolution 

The high-level CNN layers encode the semantic information over spatial locations 

[49], and different locations may correspond to objects with different scales or defor-

mation. However, the receptive field size of the same CNN layer is invariable, which can 

affect the network to extract features. Specifically, in the application of crack segmenta-

tion, the cracks have diverse morphologies and different orientations. Therefore, it is dif-

ficult for the traditional CNNs limited by fixed geometric structures to learn all the mor-

phological features of cracks. 

To address this problem, we replace some of the standard convolutions in the en-

coder network with deformable convolutions, which can better capture various morpho-

logical information of cracks by adaptively adjusting the receptive field sizes. In the stand-

ard convolution, given the input feature map �, for each location �� on the output fea-

ture map �, we have 

�(��) = ∑  �(��) ∙ �(�� + ��)��∈�   (1)

where �(��) denotes the weight of the convolution kernel at ��, �� enumerates the lo-

cations in �, and � is the full set of sampling points. The size of the sampling region of 

standard convolution is fixed and determined by the convolution kernel size. In deform-

able convolution, � is unchanged, but the sampling region is augmented by sampling 

offsets. As illustrated in Figure 5, the sampling offsets are obtained by a convolutional 

layer over the same input feature map. The spatial resolution of the output offset is the 

same as the input feature map, while its channel dimension is 2�, corresponding to � 

2D offsets. Therefore, in deformable convolution, Equation (1) becomes 

�(��) = ∑  �(��) ∙ �(�� + �� + Δ��)��∈�   (2)

where Δ�� is the sampling offset. The introduction of deformable convolution allows the 

network to adaptively adjust the sampling area and receptive field size to improve its 

ability to extract crack features. 

Input Feature map Output Feature map

Offset Field

2N

OffsetsConv

Deformable Convolution

 

Figure 5. An illustration of the 3 × 3 deformable convolution. 
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4. Experiments 

4.1. Training Configuration 

In the crack segmentation task, since pixels can only be assigned a probability of be-

ing or not being part of a crack, it can be viewed as a binary classification problem. The 

binary cross-entropy loss (BCELoss) is commonly used for binary segmentation tasks. 

However, this loss function is not suitable for crack segmentation, because in the crack 

images, there are far more non-crack pixels than crack pixels, which may cause the net-

work to prefer to segment the background pixels. We use the sum of binary cross-entropy 

and Dice loss as the loss function, called BCEDiceLoss. The BCELoss can be calculated as: 

���� = −
�

�
∑ �������� + (1 − ��)���(����)��

���   (3)

where � is the number of pixels in the image, �� is the truth value of the pixel, and �� 

is the predicted value of the pixel. The Dice Loss can be expressed as: 

����� = 1 −
2 ∑ ���� + ��

���

∑ ��
�
��� + ∑ ��

�
��� + �

 (4)

where � is the smoothing factor for preventing the denominator from being 0. Therefore, 

the BCEDiceLoss we use can be calculated as: 

�������� = 1 −
� ∑ �������

���

∑ ��
�
��� �∑ ��

�
��� ��

−
�

�
∑ �������� + (1 − ��)���(����)��

���   (5)

where we set the smoothing factor � to 1���. 

We use the stochastic gradient descent with momentum as the optimizer to minimize 

the loss function, and the momentum is set as 0.9. The initial learning rate is 1���, and 

the poly learning rate strategy is used to adjust the learning rate while training.  

Our experiments are conducted on a system with an NVIDIA RTX A4000 GPU(Man-

ufactured by Nvidia in Santa Clara, California, the United States) and an Intel Xeon Gold 

5320 CPU(Manufactured by Intel in Santa Clara, California, the United States). The soft-

ware environment of the system is Python 3.6 and Pytorch 1.7. 

4.2. Datasets and Metrics 

We verify the effectiveness of our method on three publicly available crack datasets: 

DeepCrack-DB (proposed in [25]), CFD (proposed in [37]), and CCSD [53]. There are 537 

images in the dataset DeepCrack-DB with a resolution of 544 × 384. These images con-

tain various cracks of roads, walls, bridges, and so on. The images are relatively clear, but 

the background environment is complex with many kinds of disturbing factors. We split 

the dataset DeepCrack-DB randomly in a ratio of 8:2, resulting in 429 images in the train-

ing dataset and 108 images in the test dataset. The dataset CFD has 118 images taken from 

road surfaces with a resolution of 480 × 320. The images are blurred and the cracks are 

very thin, making segmentation more difficult. We remove some images from the dataset 

because they have obvious errors in the annotation. The remaining images are randomly 

partitioned in a ratio of 8:2, resulting in a training dataset with 89 images and a test dataset 

with 23 images. There are 458 high-resolution images in the dataset CCSD and we resize 

them to the resolution of 512 × 384. These images are taken approximately 1 m away 

from the surfaces and the concrete surfaces have variation in terms of surface finishes 

(exposed, plastering, and paint). We split the dataset CCSD randomly in a ratio of 8:2, 

resulting in 366 images in the training dataset and 92 images in the test dataset. 

Additionally, random image augmentation methods are adopted to each image dur-

ing the network training, including methods such as rotations, flips, and brightness shifts. 

Some of the images of the three datasets are shown in Figure 6. 



Appl. Sci. 2022, 12, 11135 11 of 21 
 

(c)(b)(a)
 

Figure 6. Crack images of the two datasets. (a) DeepCrack-DB, (b) CFD, (c) CCSD. 

We select intersection over union (IoU), precision, recall, and F1 score as the evalua-

tion metrics. Their precise definitions are: 

��� =
��

�� + �� + ��
 (6)

��������� =
��

�� + ��
 (7)

������ =
��

�� + ��
 (8)

�1 − ����� = 2 ×
��������� × ������

��������� + ������
 (9)

where �� denotes the number of true positives, �� denotes the number of false posi-

tives, and �� denotes the number of false negatives. Considering that the images in da-

taset CFD are blurred and there are transition regions between the crack pixels and the 

non-crack pixels in the subjectively labeled ground truth, the two pixel points around the 

labeled crack pixels are also considered as ��. It should be noted that this evaluation 

method has been commonly used in other studies [24,27,37,54]. 

4.3. Comparison with Other Methods 

Our method is compared with five other deep-learning-based methods which are: 

DeepCrack [25], DeepLab v3+ [43], U-Net, UNet++, and Unet 3+. DeepCrack is one of the 

classical networks of crack segmentation. It consists of a FCN backbone and a deep super-

vision mechanism, and its prediction results are refined by the guided filtering and con-

ditional random field (CRF) methods. DeepLabV3+ is the latest and optimal network 

framework of Google’s DeepLab series [41,42,55]. It is based on null convolution, spatial 

pyramid pooling modules, and coding region-decoding region structures, and its further 

fusion of the underlying features with the higher-level features improves the segmenta-

tion accuracy. UNet++ and Unet 3+ are evolved from U-Net, and all three of them have a 

U-shaped network structure. They have very good performance and are widely used in 

various fields. 
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4.3.1. Results on DeepCrack-DB 

Figure 7 shows the segmentation results of the six methods on some images in the 

DeepCrack-DB dataset, and Table 1 shows a quantitative comparison of the IoU, preci-

sion, recall, and F1 score metrics. As can be seen in Figure 7, all methods, except our MCIE-

Net, exhibit varying degrees of false detection when there are interference factors in the 

image background region. As shown in Table 1, U-shaped networks such as U-Net and 

MCIE-Net achieve better results in crack segmentation, because their skip connection 

structures play an important role in capturing the fine structural features of the cracks, 

which avoids the problems of detail loss and segmentation discontinuities. MCIE-Net fur-

ther enhances the contextual semantic information extraction and improves its adaptabil-

ity to complex background conditions; thus, it achieves the best results in all four metrics, 

which are 91.28%, 95.67%, 94.59%, and 94.82%, respectively. 

Table 1. Performance comparison of different methods on the DeepCrack-DB dataset. 

Models IoU (%) Precision (%) Recall (%) F1 Score (%) 

DeepCrack 66.49 66.67 85.28 70.01 

DeepLab v3+ 75.95 86.18 85.04 84.52 

U-Net 85.97 94.45 89.26 90.31 

UNet++ 87.68 94.82 91.89 92.36 

Unet 3+ 88.05 94.64 92.07 93.27 

MCIE-Net 91.28 95.67 94.59 94.82 

(a) (b) (c) (d) (e) (f) (g) (h)
 

Figure 7. Sample results of using different methods on the DeepCrack-DB dataset. (a) Images, (b) 

ground truth, (c) DeepCrack, (d) DeepLab v3+, (e) U-Net, (f) UNet++, (g) Unet 3+, (h) MCIE-Net. 

4.3.2. Results on CFD 

Figure 8 shows the segmentation results of the six methods on some images in the 

CFD dataset, and Table 2 shows the quantitative comparison of the IoU, precision, recall, 

and F1 score metrics. As can be seen in Figure 8, DeepCrack and DeepLab v3+ perform 

poorly for predicting the crack boundary, making the crack region in the segmentation 

results wider than the ground truth. Unet 3+ and our MCIE-Net show a stronger ability 

to capture details and ensure the continuity in the crack area. Meanwhile, compared with 

other methods, our MCIE-Net can distinguish cracks and interference factors in back-

ground more effectively. As shown in Table 2, U-Net and Unet 3+ achieve the highest 

precision of 98.65% but a lower recall, while DeepCrack achieves higher recall of 88.62% 

but a lower precision. The F1 score takes into account both precision and recall, and the 

best result in this metric is achieved by our MCIE-Net, which is 89.47%. In addition, MCIE-

Net also achieves the best result in the IoU metric, which is 81.32%. 
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Table 2. Performance comparison of different methods on the CFD dataset. 

Models IoU (%) Precision (%) Recall (%) F1 Score (%) 

DeepCrack 75.52 83.83 88.62 84.71 

DeepLab v3+ 68.9 79.02 84.32 81.31 

U-Net 73.73 98.65 74.5 83.84 

UNet++ 76.42 98.45 77.32 85.39 

Unet 3+ 77.53 98.65 78.43 86.29 

MCIE-Net 91.32 96.32 84.02 89.47 

(a) (b) (c) (d) (e) (f) (g) (h)
 

Figure 8. Sample results of using different methods on the CFD dataset. (a) Images, (b) ground truth, 

(c) DeepCrack, (d) DeepLab v3+, (e) U-Net, (f) UNet++, (g) Unet 3+, (h) MCIE-Net. 

4.3.3. Results on CCSD 

Figure 9 shows the segmentation results of the six methods on some images in the 

CCSD dataset, and Table 3 shows q quantitative comparison of the IoU, precision, re-call, 

and F1 score metrics. As can be seen in Figure 9, DeepCrack and DeepLab v3+ fail to obtain 

accurate crack edge segmentation results; thus, the crack region is rougher than that in the 

ground-truth images. The segmentation results show that the skip connection structure 

plays a very critical role in capturing the detailed information of the cracks, and our MCIE-

Net has the best performance in identifying thin cracks which are hard to distinguish from 

the background. Meanwhile, as shown in Table 3, the MCIE-Net achieves the best results 

in all four metrics, which are 91.28%, 95.67%, 94.59%, and 94.82%, respectively. 

Table 3. Performance comparison of different methods on the CCSD dataset. 

Models IoU (%) Precision (%) Recall (%) F1 Score (%) 

DeepCrack 78.77 83.76 90.86 87.37 

DeepLab v3+ 76.03 96 77.22 84.91 

U-Net 85.59 98.22 86.08 91.31 

UNet++ 86.31 98.43 86.67 91.77 

Unet 3+ 89.61 98.32 90.1 93.75 

MCIE-Net 90.45 98.46 92.43 94.22 
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(a) (b) (c) (d) (e) (f) (g) (h)
 

Figure 9. Sample results of using different methods on the CCSD dataset. (a) Images, (b) ground 

truth, (c) DeepCrack, (d) DeepLab v3+, (e) U-Net, (f) UNet++, (g) Unet 3+, (h) MCIE-Net. 

4.3.4. Complexity and Efficiency Comparison 

We further calculate the number of model parameters and computational complexity 

of the six models, and the results are shown in Table 4. The used metrics are parameters, 

FLOPs, and FPS, which refer to the number of parameters the network needs to learn, the 

number of floating point operations for a single forward propagation during training, and 

the number of images that can be predicted by the model per second, respectively. While 

calculating the FLOPs and FPS, we use images in dataset DeepCrack-DB with a resolution 

of 480 × 320, and the batch sizes are unified to be 4. As shown in Table 4, the parameters 

of the proposed model is relatively small and the FLOPs is the lowest. In terms of FPS, U-

Net, which has the simplest network structure, performs best, processing more than 50 

images per second. The UNet++ and Unet 3+ can process about 30 images per second, and 

the segmentation speed of our method is slightly reduced, about 24 images per second. 

Considering that the need for real-time crack segmentation is not very necessary, a slight 

decrease in segmentation efficiency in exchange for an increase in segmentation perfor-

mance is desirable. 

Table 4. Complexity and efficiency comparison of different models. 

Models Parameters (���) FLOPs (���) FPS (Frames/s) 

DeepCrack 14.72 181.11 26.28 

DeepLab v3+ 16,385 187.69 12.4 

U-Net 7.85 126.9 54.32 

UNet++ 9.16 314.13 30.48 

Unet 3+ 6.75 454.8 28.16 

MCIE-Net 7.87 107.93 24.36 

4.4. Ablation Experiments 

To verify the effectiveness of improved schemes, such as multi-scale skip connection 

(MSSC), the contextual feature enhancement module (CFEM), and deformable convolu-

tion (DConv), an ablation study is carried out on the DeepCrack-DB dataset. IoU and F1 

score metrics are used as the metrics and the results are shown in Table 5. From experi-

ment 1 and experiment 2, we can learn that the IoU is improved by 1.36% and the F1 score 

is improved by 1.85% after using the multi-scale skip connection structure. This indicates 

that our multi-scale skip connection structure can help the network to better capture fine-

grained spatial information, such as crack edges. Comparing experiments 2 and 3, it can 

be seen that the IoU and the F1 score improve by 2.48% and 1.58%, respectively, which 

indicates that the network can improve its ability to adapt to complex backgrounds and 
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distinguish between interference information and segmented objects. Comparing experi-

ment 3 and experiment 4, the introduction of deformable convolution improves the IoU 

by 1.47% and the F1 score by 1.08%, which shows that the use of deformable convolution 

is also an effective method to improve the segmentation performance. 

Table 5. Ablation study of the MCIE-Net. 

Group MSSC CFEM DConv IoU (%) F1 Score (%) 

1    85.97 90.31 

2 ✓   87.33 92.16 

3 ✓ ✓  89.81 93.74 

4 ✓ ✓ ✓ 91.28 94.82 

To highlight the advantages of our multi-scale skip connection in extracting spatial 

feature information and obtaining refined crack segmentation results, we select some im-

ages with tiny cracks from the test sets of DeepCrack-DB, CFD, and CCSD datasets to form 

the mixed test set A (MTSA), and evaluate the segmentation results of the images. The 

MTSA has a total of 51 images, of which 20 are selected from DeepCrack-DB, 7 are selected 

from CFD, and 24 are selected from CCSD. Our network is compared to Network A, 

whose structure is mostly the same as MCIE-Net, but without the multi-scale skip con-

nection. Some representative samples are shown in Figure 10, and Table 6 shows the quan-

titative comparison of the IoU, precision, recall, and F1 score. As can be seen in Figure 10, 

Network A fails to extract refined spatial information and recognize the tiny cracks. Mean-

while, as shown in Table 6, our MCIE-Net achieves the best results for IoU, recall, and F1 

score metrics, and the result for the precision metric is very close to that of Network A. It 

can be concluded that our multi-scale skip connection plays an important role in obtaining 

refined crack segmentation results. 

Table 6. Performance comparison of our networks with or without MSSC on MTSA. 

Models IoU (%) Precision (%) Recall (%) F1 Score (%) 

Network A 74.83 90.09 78.79 81.76 

MCIE-Net 83.38 89.86 91.35 90.48 

(a) (b) (c) (d)
 

Figure 10. Sample results of using our networks with or without multi-scale skip connection on the 

mixed test set A. (a) Images, (b) ground truth, (c) Network A, (d) MCIE-Net. 
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We also select some images with background noise from the test sets of the three data 

sets mentioned above to form the mixed test set B (MTSB). There are 50 images in the 

MTSB, of which 31 are selected from A, 6 from B, and 13 from C. We evaluate the segmen-

tation results of images in MTSB and our MCIE-Net is compared to Network B, whose 

structure is mostly the same as the propose network, but without the contextual feature 

enhancement module. Table 7 shows a quantitative comparison of the IoU, precision, re-

call, and F1 score metrics, in which our MCIE-Net achieves the best results in all four 

metrics. The segmentation results in Figure 11 highlight the advantage of our MCIE-Net 

in distinguishing between cracks and noise interference in the background, which is at-

tributed to the contextual feature enhancement module.  

Table 7. Performance comparison of our networks with or without CFEM on MTSB. 

Models IoU (%) Precision (%) Recall (%) F1 Score (%) 

Network B 73.82 82.07 90.32 84.82 

MCIE-Net 86.5 95.05 90.74 92.41 

(a) (b) (c) (d)
 

Figure 11. Sample results of using our networks with or without contextual feature enhancement 

module on the mixed test set B. (a) Images, (b) ground truth, (c) Network B, (d) MCIE-Net. 

4.5. Effect of Different Settings of the Network Components 

To verify that the parameter settings of our network structure are optimal, we per-

form several side-studies, further analyzing the different components of our network. All 

experiments are conducted on the DeepCrack-DB dataset, and the batch sizes are unified 

to be 4. 

4.5.1. Comparison of Different Skip Connection Structures 

We compare the segmentation performance and model complexity of our proposed 

multi-scale skip connection (MSSC) with the other three skip connection structures, 

namely the plain skip connection (PSC), the densely connected skip connection (DCSC), 

and the full-scale skip connection (FSSC), as mentioned in Section 3.1. Experiments are 

conducted using the four network models shown in Figure 12 with no other changes. IoU, 

F1 score, parameters, and FLOPs are used as the metrics and the results are shown in Table 

8. It can be seen in the table that the segmentation performance of the multi-scale skip 

connection is better than that of the plain skip connection, and is very close to that of the 
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densely connected skip connection. While the full-scale skip connection achieves the best 

results in the IoU and F1 score metrics, its result in model complexity is the worst, with 

the highest FLOPs of 454.80 × 10�. Our multi-scale skip connection achieves the best re-

sults in parameters and FLOPs, which are 5.82 × 10�  and 101.58 × 10� , respectively. 

Obviously, compared to the densely connected skip connection and full-scale skip con-

nection, our multi-scale skip connection structure significantly reduces the computational 

cost at the cost of only a slight degradation in segmentation performance. Considering all 

the data in the Table 8, it can be concluded that the proposed multi-scale skip connection 

structure achieves a good balance between performance and model complexity. 

Table 8. Segmentation performance and model complexity of the networks with different skip con-

nection structures. 

Structures IoU (%) F1 Score (%) Parameters (���) FLOPs (���) 

PSC 85.97 90.31 7.85 126.90 

DCSC 87.68 92.36 9.16 314.13 

FSSC 88.05 93.27 6.75 454.80 

MSSC 87.33 92.16 5.82 101.58 

4.5.2. Analysis of the Contextual Feature Enhancement Module 

The proposed contextual feature enhancement module includes two sub-modules: a 

pyramid poling module (PPM) and a squeeze-and-excitation block (SEB). In order to ver-

ify the effectiveness of the two sub-modules on model performance improvement, exper-

iments are conducted. IoU and F1 score are used as the metrics and the results are shown 

in Table 9. The data in the table show that the introduction of the pyramid pooling module 

or the squeeze-and-excitation block alone can only improve the performance of the model 

to a small extent. The proposed contextual feature enhancement module can better im-

prove the performance of the model with only a slight increase in FLOPs and number of 

model parameters, achieving the best results in both IoU and F1 scores. 

Table 9. Ablation study of the contextual feature enhancement module. 

Group PPM SEB Parameters (���) FLOPs (���) IoU (%) F1 Score (%) 

1   5.95 102.15 88.62 92.42 

2 ✓  7.83 107.92 89.89 93.44 

3  ✓ 5.99 102.16 89.24 93.05 

4 ✓ ✓ 7.88 107.93 91.28 94.82 

Our contextual feature enhancement module (CFEM) can be plug-and-played into 

any layer of the decoder network. To further explore the best optimization scheme, we 

place CFEM at different layers of the decoder network while keeping the encoder network 

structure unchanged. F1 score, FPS, and FLOPs are used as the metrics, and the results are 

shown in Figure 12. It can be seen in the figure that as the number of network layers to 

which CFEM is applied increases, the network efficiency gradually decreases; however, 

the segmentation performance does not improve with it. This is because contextual fea-

tures are semantic information, which is usually obtained by deep layers of the network. 

The shallow layers mainly explore structural features, and the multi-scale pooling and 

channel weight recalibration mechanism in CFEM will dilute the structural information 

in low-level feature maps, so that the network performance suffers. Taking both perfor-

mance and efficiency into account, we apply the contextual feature enhancement module 

to the fourth and fifth layers of the decoder network.  
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Figure 12. Segmentation performance and efficiency of the networks with the CFEM in different 

decoder layers. (a) Comparison of the F1 score and FPS of the six networks; (b) FLOPs of the six 

networks. 

4.5.3. Deformable Convolution in Different Encoder Layers 

The deformable convolution (DConv) adds 2D offsets, learned from the preceding fea-

ture maps via additional convolutional layers, to the regular grid sampling locations in the 

standard convolution, enabling free-form deformation of the sampling area. This module 

can readily replace their plain counterparts in any of the CNN layers. In order to explore the 

best optimization scheme for the encoder network while taking into account the operational 

efficiency, deformable convolutions are used to replace the standard ones in different layers 

of the encoder network, while the decoder network structure is kept unchanged. We evalu-

ate the segmentation results with three metrics, including F1 score, FPS, and FLOPs, and the 

results are shown in Figure 13. It can be concluded from the figure that the introduction of 

deformable convolution has improved the segmentation performance of the network. How-

ever, as the number of network layers to which deformable convolution is applied continues 

to increase, the segmentation performance does not improve significantly. On the contrary, 

there is a significant decrease in FPS. This is because the feature maps in shallow layers of 

the network are large in size and it takes lots of time to generate the offset fields, leading to 

a decrease in the prediction efficiency. Considering both performance and efficiency, we 

apply deformable convolution to the fourth and fifth layers of the encoder network. 
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Figure 13. Segmentation performance and efficiency of the networks with deformable convolu-

tion in different encoder layers. (a) Comparison of the F1 score and FPS of the six networks; (b) 

FLOPs of the six networks. 
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5. Conclusions and Future Work 

In this paper, a multi-scale contextual information enhancement network for crack 

segmentation is proposed. The redesigned skip connection structure enables the decoder 

to fuse feature information from multiple scales generated in the encoder, which improves 

the network’s ability to capture the fine-grained spatial structure of cracks. The proposed 

contextual feature enhancement module allows our network to adapt to complex scenar-

ios. In addition, we introduce deformable convolution in the encoder, which further im-

proves the network’s ability to extract crack features. The experiments on two public da-

tasets demonstrate that the proposed MCIE-Net shows competitive performance on the 

crack segmentation task. 

Regarding the direction of future work, on the one hand, we will continue to optimize 

the crack segmentation model to balance prediction accuracy and operational efficiency 

to further enhance its usefulness in engineering applications. On the other hand, the ef-

fectiveness of a deep learning model depends heavily on the number of training samples; 

however, it is very difficult to label a large number of crack images in detail. Therefore, 

ways of performing crack segmentation under small-dataset conditions represent another 

research direction. 
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