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Abstract: This paper proposes a GPS receiver vector frequency-locked loop-assisted phase-locked
loop (VFAPLL) structure based on the maximum likelihood estimation (MLE) method for highly
dynamic weak-signal scenarios. In this structure, the loop structure does not include a frequency
discriminator, and the signal is directly input to the navigation filter after down-conversion, coherent
integration, and other processing to avoid nonlinear noise error. Due to the high dimension and
nonlinearity of the cost function of the MLE algorithm, the Levenberg Marquardt (LM) algorithm is
used to optimize it. The proposed VFAPLL is compared with the VFAPLL implemented based on
the extended Kalman filter (EKF) algorithm and the frequency locked loop assisted phase locked
loop (FAPLL) implemented based on MLE. Through simulation verification, it was shown that the
VFAPLL (MLE) has higher tracking accuracy, lower loss-of-lock threshold, and better robustness to
the input signal than the other two loops.

Keywords: VFAPLL; maximum likelihood estimation; iterative; LM; high dynamics

1. Introduction

The traditional frequency locked loop assisted phase locked loop (FAPLL) couples
the frequency locked loop (FLL) and the phase locked loop (PLL), where the FLL is re
sponsible for the coarse acquisition of the frequency, and the PLL is responsible for the
accurate tracking of the low dynamic part of the signal. It can better solve the signal
tracking problem under the high dynamic stress of the receiver. However, the tracking
performance of the FAPLL is unsatisfactory in extremely challenging environments, such
as urban canyons, extremely high dynamics in the military field, and automatic driving.

In fact, each signal channel in the receiver is related. If we can establish a connection
between each channel through the position and speed of the receiver to realize information
sharing, then the tracking performance of the receiver can be improved to a certain extent.
Especially in highly dynamic scenes and under weak signal conditions with a low carrier-
to-noise ratio, this information-sharing loop shows better signal locking ability and higher
tracking accuracy than the scalar tracking loop; that is, a strong signal can assist the tracking
of a weak signal, and it can maintain a certain precision of tracking even when the signal is
blocked and can realize fast recapture when the signal is recovered, which is the standard
approach to vector tracking. The concept of a vector tracking loop was first proposed by
Spilker [1]; subsequently, vector tracking technology gradually attracted the attention of
researchers in related fields who carried out research on this technology.

Pany et al. proposed a carrier-to-noise ratio estimation method suitable for vector
tracking under weak signal conditions [2]. Dr Lashley studied the tracking performance
of vector tracking in weak signal and highly dynamic environments and further demon-
strated the advantages of vector tracking technology [3–5]. Domestic scholars have also
contributed to the development of vector tracking technology. The more representative
studies were produced from Tsinghua University and the National University of Defense
Technology [6,7].
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Today’s vector tracking loops include the vector frequency locked loop (VFLL), vector
delay locked loop (VDLL) and vector phase locked loop (VPLL). The combination of a
FAPLL and vector tracking technology is a very promising development direction. In
this paper, VFLL is used to assist the PLL. The advantages of vector tracking and the FLL
are that they are fully utilized in the auxiliary loop, which avoids time-consuming and
energy-consuming reacquisition after signal interruption, can tolerate the high dynamic
stress of users more robustly, and can track signals with lower signal-to-noise ratios.

Scholars have been working to improve the tracking performance and robustness of
FAPLLs. This loop essentially aids PLLs by estimating the Doppler frequency shift, whereas
Kalman loops or other circuit forms can also be used for assistance in estimating frequency.
Lashley proposed several carrier tracking loop structures combining vectors and scalars
in [8], including the VFLL-assisted PLL, local carrier phase Kalman filter cascaded VDFLL,
and cooperative carrier tracking. The VFLL-assisted PLL structure combines the carrier
frequency error of the navigation processor with the phase discriminator. The position and
clock offset of the navigation processor are predicted and updated by the code discriminator
in the VFLL-assisted PLL structure. The speed measurement value is obtained by combining
the carrier frequency and discriminator of each channel. Roncagliolo proposed a new loop
structure called the unambiguous frequency-assisted phase locked loop (UFA-PLL). In
terms of tracking ability and antijamming, this loop has the same advantages as commonly
used coupled loops, but its design and implementation are simpler. An optimal method for
smoothing phase estimation has also been proposed [9]. Stefan et al. proposed a vector
receiver combined with an FAPLL [10], where the VFLL receiver outputs the frequency
error used in the FAPLL. The loop proposed in this paper is more robust to carrier phase
tracking than conventional FAPLLs, even in harsh signal environments.

Yang Rong et al. in China proposed an iterative FAPLL designed in the state space
based on the minimum mean square error algorithm through constructing a high-fidelity
carrier signal model [11]. Another study combined the FLL and PLL through an ensemble
filter. If a decentralized state estimation framework is used for the FAPLL, then the
measurements can be distributed and filtered in the local state estimator and are thus able
to combine the local estimates by a weighting matrix to update the global carrier state [12].

To address the problem that the VFLL is not sufficiently accurate and unable to lock
the carrier phase and demodulate the received signal correctly, a phase-locked loop-assisted
vector frequency-locked loop method was proposed [13]. The method adds the output of
the loop filter in the PLL to the prediction of the carrier frequency, which improves the
prediction accuracy of the VFLL carrier phase. After that, the accuracy of the demodulated
value is improved by compensating for the residual error of the carrier phase.

The loop filter of the FAPLL in [14] is realized by bilinear transformation from the S
domain to the Z domain, and a weight adjustment module using an automatic adjustment
strategy is designed to calculate the weight factor to adjust the effects of the FLL and
PLL. In [15], the authors proposed a tracking loop structure to achieve carrier signal phase
tracking in the VFLL, in which a loop filter and reset module in the channel will assist in
tracking carrier phase and the signal processing period is matched with a preprocessing
filter. Based on fuzzy control theory, an algorithm for the FLL auxiliary PLL structure is
proposed, the algorithm uses the output of discriminator as the measured residuals of the
Kalman filter [16].

In the above examples from the literature, in-depth research has been carried out on
the FAPLL control loop in the receiver, and the performance of the corresponding receiver
was improved. However, in the extremely harsh environment of highly dynamic weak
signals and some application fields that require extremely high navigation accuracy, further
improvement of the loop performance is needed.

From the perspective of the algorithm, the performance improvement of the carrier
loop generally occurs in one of two ways. One way is to replace the loop filter with a
nonlinear filtering algorithm for the traditional discriminator and loop filter structure
to adaptively adjust the loop bandwidth. This improves the tracking performance of
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the system while considering the dynamic performance and steady-state performance of
the system [17]. In [18], the authors evaluated the tracking performance of an adaptive
third-order look-up table direct state Kalman filter in the loop bandwidth control algorithm
FAPLL. Firstly, the system measurement model, state space model, and the transfer function
of FAPLL were explained, and the relationship between the direct state Kalman filter and
the FAPLL was analyzed. Then, by solving the discrete algebraic Riccati equation, the
convergence of Kalman gain was calculated, and the look-up table direct state Kalman
filter was derived, thus reducing the complexity of direct state Kalman filter. However,
as the discriminator contained in the loop has only a small linear interval, nonlinear
noise errors were introduced, and the loop performance degrades. The other way is to
design the carrier tracking loop based on parameter estimation theory, which removes the
discriminator in the traditional loop and replaces it with a nonlinear filter and uses the
coherent integration result of the signal as the input of the navigation filter, which can
improve the loop performance, noise immunity, and sensitivity.

In the above literature, the FLL or VFLL auxiliary PLL typically uses a discriminator
to discriminate the phase or frequency difference between the input carrier and the replica
carrier. As the discriminator has only a small linear interval, when the carrier-to-noise
ratio C/No falls to an error close to or below the level required for the Kramer–Roman
lower bound, the discriminator’s measurement error increases rapidly. This leads to a
degradation in the tracking performance of closed-loop structures [19].

Therefore, according to parameter estimation theory, this paper proposes a VFLL-
assisted PLL based on the maximum likelihood estimation algorithm. The loop no longer
uses the discriminator but directly uses the correlation result as the input of the navigation
filter and then uses the maximum likelihood estimation to process the input. The nonlinear
filtering method can increase the linear interval compared with the direct use of the
discriminator, while the nonlinear operational noise is lower [20]. Additionally, unlike
Kalman filters, ML estimators are not recursive, and each estimate uses enough signal data
to achieve good weak signal performance [19].

However, if the cost function of MLE algorithm has high dimensionality and nonlin-
earity, this will lead to low computational efficiency and no closed form of solution. A
gradient method, such as steepest descent method, Levenberg–Marquardt method, etc.,
can be used to minimize the cost function through an iterative process. In [21], a maximum
likelihood estimation method based on the Levenberg–Marquardt algorithm and message
tree transmission idea was proposed. This algorithm not only has high positioning ac-
curacy but can also allow convergence to the same solution as the centralized algorithm.
A maximum likelihood estimation method for cases where the parameters are matrices
and vectors are not measurable was proposed in [22]. Compared with the multivariable
recursive extended least squares algorithm, the multivariable maximum likelihood iter-
ative least squares algorithm has higher estimation accuracy and lower computational
complexity. The maximum likelihood method is very important for parameter estimation
and system modeling. In [23], the maximum likelihood principle was combined with
data filtering technology to estimate the parameters of a class of bilinear systems, with
the proposal of a maximum likelihood iterative least squares algorithm based on filtering,
which was compared with an iterative algorithm based on least squares. The simulation
results showed that the proposed algorithm had higher accuracy and efficiency under
different noise variances.

The content in this paper is arranged as follows: Section 2 gives the operation mech-
anism of the proposed VFLL-assisted PLL carrier tracking loop and uses the jerk model
to model this loop under high dynamics. The state equation and observation equation
of the loop are also provided. Section 3 represents the implementation process of the
maximum likelihood estimation method and its corresponding optimization algorithm, the
Levenberg-Marquardt algorithm, and the specific operation process of the VFAPLL based
on the MLE-LM algorithm. The intermediate frequency data are repeatedly correlated until
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maximum likelihood convergence is achieved. Section 4 employs a software receiver in
MATLAB to verify the proposed loop. Section 5 summarizes the paper.

2. VFLL-Assisted PLL Carrier Tracking Loop Design

Vector tracking technology is considered to be a promising next-generation receiver
technology. It couples all signal tracking channels together through a certain method and
directly estimates the user’s position and clock error. The estimated state information is
further converted into a control quantity for feedback control of the tracking loop. By
realizing information sharing among each signal channel, the vector tracking loop can
provide better performance in low signal-to-noise ratios and highly dynamic environments
without adding any external assistance. Although the traditional vector tracking loop
couples the output of the discriminator in each channel, the measurement residuals of each
signal channel are still estimated independently [19]. Based on this situation, the VFLL in
this paper no longer uses the frequency discriminator [24], and the coherent integration
result of the I/Q branch is directly used as the observation value of the filter so that the
receiver will easily operate under the condition of a low signal-to-noise ratio due to the
nonlinear noise introduced by the frequency discriminator, which promotes its anti-noise
performance. In addition, this paper combines the maximum likelihood estimation method
with vector tracking in the VFLL and uses this VFLL to assist the PLL to reduce the tracking
threshold of the carrier tracking loop.

To adapt to the highly dynamic and weak-signal environment, a second order VFLL-
assisted third order PLL was designed with reference to the FAPLL structure. Figure 1 is
a block diagram of the VFLL-assisted PLL based on the maximum likelihood estimation
algorithm, and Figure 2 is a block diagram of the FAPLL based on the maximum likelihood
estimation algorithm.
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The carrier tracking loop of the i1 channel is shown in Figure 2, the digital intermediate
frequency signal is first multiplied and correlated by the local signal and stripped the carrier
and doppler frequency. The integral clearer integrates input correlation signals i(n) and
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q(n) and outputs integral results I(n) and Q(n) as the observations of the navigation filter.
The navigation filter uses the maximum likelihood estimation method to process the input
information and outputs the estimated speed and receiver clock error. The line-of-sight
projection converts the receiver speed and clock error estimates into frequency estimates
using the projection relationship of the speed error and frequency error between the receiver
and the satellite. Then, the frequency estimation value obtained by the VFLL and the phase
estimation value output by the PLL are simultaneously input to loop filter 2, and the output
result enters the NCO to obtain a local signal similar to the receiver input intermediate
frequency signal. Figure 2 shows the structure of the traditional FAPLL. In the figure, the
input signal in the FLL and PLL is multiplied by the local replica signal, and the output
is a real baseband signal containing only data bits. To further increase the signal-to-noise
ratio, the coherent integration results I(n) and Q(n) are output by the integration cleaner,
whose coherent integration time is Tcoh. The phase detector/frequency detector uses the
coherent integration result to estimate the phase or frequency difference. The error result
is filtered by the loop filter and then fused to adjust the numerical control oscillator so
that the frequency or phase of the output signal is consistent with that of the received
signal. Because the FLL in the combined loop can track the higher-order components
corresponding to high dynamic stress in the input signal change, the tracking and locking
of the signal by the phase-locked loop in the combined loop will become relatively easy,
thus improving the tracking ability of the loop for the high dynamic signal [25].

Based on the theory of parameter estimation, the maximum likelihood estimation
method is applied to VFAPLL (MLE) loop to improve the robustness of the loop in high
dynamic environment. The loop is modeled using the Jerk model of high-speed and highly
maneuverable targets. In the model, the state vector is composed of the Doppler frequency
f0, the first-order rate of change of the Doppler frequency f1, and the second-order rate of
change of the Doppler frequency f2. The state equation is as follows [26]:

Xk =

1 T 1
2 T2

0 1 T

0 0 1

Xk−1 +


1
2 T2

T

1

Wk−1 (1)

where Xk = [ f0 f1 f2]
T , Wk−1 is the state disturbance noise, and its covariance matrix

Q(k) = E
[
WkWT

k
]
. The expression of Q(k) is shown in Formula (2). The jerk model adds

another dimension to the acceleration model; that is, it can estimate the jerk, so a more
accurate estimation of the acceleration parameters can be obtained. Consequently, the jerk
model is very suitable for modeling highly dynamic carriers.

Q(k) =


T5

20
T4

8
T3

6
T4

8
T3

3
T2

2
T3

6
T2

2 T

NyT (2)

where Ny represents the random jitter of the third derivative of the carrier frequency. After
coherent integration processing by the integral clearer, the output integral signal with phase
and frequency deviation is [17]:

g(k) =
[

gI(k)
gQ(k)

]
=

AD(k)R(∆τ)
sin( feTcoh)

feTcoh
cosθ(k)

AD(k)R(∆τ)
sin( feTcoh)

feTcoh
sinθ(k)

+

[
nI(k)
nQ(k)

]
(3)

where A is the signal amplitude, D(k) represents the data code, and R(∆τ) represents
the C/A code autocorrelation function with a maximum value of 1. As the code delay of
the instant branch is within one-half chip when the tracking is initialized, R(∆τ) can be
normalized to 1. Variable ∆τ is the phase difference between the copied C/A code and the
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received C/A code, nI(k), nQ(k) are zero-mean white Gaussian noise, and the sin c( feTcoh)
term is considered to be approximately equal to 1.

Therefore, the observation equation of the loop is:

Z(k) =

[
Acos(θme)

Asin(θme)

]
+ B(k) (4)

where θme(k) is the average residual phase over time T.

θme(k) = 1
T
∫ kT
(k−1)T

[
θc(k) + 2π fc(k)T + 2π fc

′(k) T2

2 + 2π fc
′′ (k) T3

6

]
dτ

− 1
T
∫ kT
(k−1)T [θnco(k) + 2π fnco(k)T + ∆θnco]dτ

= θe(k) + π fc(k)T + π fc
′(k) T2

3 + π fc
′′ (k) T3

12 − π fnco(k)T

(5)

The covariance of the observation noise matrix V(k) is Rk, where Rk = E
[
Bk BT

k
]
,

such that

Rk=[
σ2

n 0
0 σ2

n
] (6)

3. VFAPLL Based on Maximum Likelihood Estimation

The IF signal model received by the receiver is expressed in Formula (7) [27]:

g(t) = h(t) + n(t) (7)

where g(t) is the observed signal, h(t) is the real signal, and n(t) is the noise. Assuming
the signal amplitude, code phase delay, Doppler shift, carrier phase, and other parameters
change very slowly during the observation time interval so that they can be regarded as
unknown constants during this time interval, the digital model of the signal is as follows:

g(k) = A·C(k− τ) cos(2πT( f IF + fd)k + ϕ) + n(k) (8)

where for the meaning of the parameters A, C(k), τ, T, f, ϕ, please see “List of symbols”.
(A, τ, fd, ϕ) are unknown signal parameters.

The maximum likelihood estimation method is to find a value of θ suitable for maxi-
mizing the possibility of obtaining the observed data, that is, if there is a sample of random
vector X with observation quantity x, find a solution of θ such that the corresponding joint
probability density function or probability function p(x; θ) reach their maximum.

For probability P(x|θ), there are two cases: if x is a variable, θ is invariant, and this
function is termed the probability function and describes the probability for different
sample points x; on the contrary, if x is invariant, θ is a variable, and this function is termed
the likelihood function and describes the probability of having sample point x for different
model parameters θ.

If corresponding to the paper, P(r|A, τ, fd, ϕ) represents that for a set of given sample
values [g(0), g(1),. . . , g(M)], find a set of values of the signal parameters (A, τ, fd, ϕ), so
that the probability of the sample values is maximum, that is, find the optimal estimation
of the signal parameters (A, τ, fd, ϕ). If the elements of g are all independent of each other,
then the joint distribution

P(r|A, τ, fd, ϕ) =
M

∏
i=1

p(ri|A, τ, fd, ϕ) (9)

is the probability density in Formula (9) in the paper.
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The product operation entails large amounts of computation, so it is common to take
logarithms of the likelihood function, as shown below:

ln[
M

∏
i=1

p(ri|A, τ, fd, ϕ)] =
M

∑
i=1

ln[p(ri|A, τ, fd, ϕ)] (10)

where ln[
M
∏
i=1

p(ri|A, τ, fd, ϕ)] is the Log—likelihood function, corresponding to

U(A, τ, fd, ϕ|r) in this paper.
The joint probability density of the received signal at N sampling points is [27]:

p(r|A, τ, fd, ϕ) =
1

(πN0)
N exp (− 1

N0
(g− ĝ)TW(g− ĝ)) (11)

where ĝ denotes the estimated value of g obtained from Formula (8) in the absence of noise,
and W denotes the weighting matrix of g. Assuming that the observations and residuals
are causally reversible, and the residuals are independent of each other, the log-likelihood
cost function of the above joint probability density function can be defined as follows [27]:

U(A, τ, fd, ϕ|g) = − 1
N0

N−1

∑
k=0

wk|g(k)− ĝ(k)|2 (12)

The maximum likelihood estimate of the signal parameters can be obtained by maxi-
mizing the log-likelihood cost function U as follows [27]:

∂U(θ|g)
∂θ

= 0 (13)

L(τ, fd|g) = 1
N0

{
N−1
∑

k=0
g(k)C(k− τ) cos(2πT( f IF + fd)k)

}2

+ 1
N0

{
N−1
∑

k=0
g(k)C(k− τ) sin(2πT( f IF + fd)k)

}2
(14)

For the derivation of formula (14), please see the Appendix A. The Doppler frequency
fd is:

fd(k) = f0 + f1k +
f2

2
k2 (15)

where f0, f1, and f2 represent the Doppler frequency, first-order rate of change of Doppler
frequency, and second-order rate of change of Doppler frequency, respectively. Then, the
maximum likelihood cost function is as follows:

L( f0 , f1, f2|g) = 1
N0

{
N−1
∑

k=0
g(k)·C(k− τ) cos (2πT

(
f IFk + f0k + f1

2 k2 + f2
6 k3
)
)

}2

+ 1
N0

{
N−1
∑

k=0
g(k)·C(k− τ) sin (2πT

(
f IFk + f0k + f1

2 k2 + f2
6 k3
)
)

}2
(16)

The so-called maximum likelihood estimation of signal frequency performs a three-
dimensional search on f0, f1, f2 to find a set of frequency estimates when the maximum
likelihood function reaches the peak value. However, the three-dimensional search of
frequency requires considerable computation. As shown in expression (19), the high dimen-
sionality and nonlinearity of the cost function will entail a large amount of computation for
the MLE algorithm, which is also the main disadvantage of this algorithm. The peak value
of the cost function can be obtained through iterative calculation using the gradient method.
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For optimizing the maximum likelihood estimation method, we use the Levenberg-
Marquardt algorithm. The LM algorithm belongs to optimization algorithm as well as an
iterative maximum likelihood estimation method, and it is the most widely used nonlinear
least squares algorithm and is an algorithm for finding the extreme value by using gradient,
which belongs to the “mountain climbing” method. It has the advantages of both the
gradient method and the Newton method. When λ is very small, the step size is equal to
the Newton method step size, and when λ is large, the step size is approximately equal to
the step size of the gradient descent method.

The algorithm requires calculating the gradient matrix and Hessian matrix of the
log-maximum likelihood function and using the gradient to find the extreme value. The
update equation of the algorithm is as follows [27]:

θ̂
i+1
ML = θ̂i

ML − (Hi + di)
−1Gi i = 0, 1, . . . (17)

where θML represents the state vector, which is equal to [g, fd]
T . Gi represents the gradient

matrix, Hi is the Hessian matrix, and i represents the number of iterations.

Gi =

[
∂L(θ|gN)

∂θ

]
θ=θ̂i

(18)

Hi =

[
∂2L(θ|gN)

∂θ2

]
θ=θ̂i

(19)

where
∂L
∂θ

= [
∂L
∂τ
∂L
∂ fd

] ,
∂2L
∂θ2 = [

∂2L
∂τ2

∂2L
∂τ∂ fd

∂2L
∂ fd∂τ

∂2L
∂ f 2

d

] (20)

The value of the diagonal matrix di must ensure that Hi + di is always positive such that
(Hi + di)

−1 has a solution, the (Hi + di)
−1Gi term is the correction term for each iteration,

and the function is equivalent to the discriminator in the traditional loop. In addition, the
second-order derivative matrix—the Hessian matrix—is of great significance because it
can determine whether the obtained solution is the minimum or maximum value. If the
Hessian matrix is negative at the point corresponding to the solution, then this solution
is the maximum. The Hessian matrix also defines the covariance matrix of the parameter
estimates, and its relationship with the covariance matrix V(θ) is V(θ) = {−E[H(θ)]}−1.

Assuming that the C/A code is stripped from the received signal, the expression of
the received signal is changed from (8) to the following form:

g̃(k) = A cos(2πT( f IF + fd)k + ϕ) + ñ(k) (21)

where g̃(k) = g(k)C(k− τ̂) and ñ(k) = n(k)C(k− τ̂) represent the received signal and
noise after stripping the C/A code, respectively, and the loop can be simplified into a
carrier tracking loop. At this time, the gradient matrix and Hessian matrix in the LM
algorithm are as follows [27]:

∂L
∂ fd

= −4πT
N0

{
∑
k

g̃· cos

}
×
{

∑
k

g̃·k· sin

}
+

4πT
N0

{
∑
k

g̃· sin

}
×
{

∑
k

g̃·k· cos

}
(22)

∂2L
∂ fd

2 = 8π2T2

N0

{
∑
k

g̃·k· sin
}2

+ 8π2T2

N0

{
∑
k

g̃·k· cos
}2
− 8π2T2

N0

{
∑
k

g̃· cos
}
×
{

∑
k

g̃·k2· cos
}

− 8π2T2

N0

{
∑
k

g̃· sin
}
×
{

∑
k

g̃·k2· sin
} (23)
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where sin = sin(2πT( f IF + fd)k) = sin (2πT
(

f IFk + f0k + f1
2 k2 + f2

6 k3
)
),

cos = cos(2πT( f IF + fd)k) = cos (2πT
(

f IFk + f0k + f1
2 k2 + f2

6 k3
)
), g̃ = g̃(k),

∑
k
(·) =

N−1
∑

k=0
(·). This process eliminates the related computation of τ in the original gradient

matrix and Hessian matrix, thus reducing the amount of computation.
The purpose of the iterative process is to use an efficient method to gradually find the

maximum value. This process can be divided into three steps. First, a set of initial values
is set, and there is a distance between this set of values and the peak value. Second, it
approaches the peak in some way from the starting value. Third, some method is needed
to test whether the obtained value is a peak (i.e., the maximum likelihood solution). This
corresponds to testing a new set of estimated values to assess whether the maximum value
has been reached. If the result of the judgment has reached the maximum value, then
the search can be stopped, and the set of values can be used as the maximum likelihood
estimation solution. However, if the judgment result has not reached the maximum value,
then the second and third steps need to be repeated until the maximum likelihood solution
is found.

The following is the specific iterative process of the LM algorithm [27]:

(1) First, set the initial values of θ̂ and matrix d. When selecting initial values, we can
consider the range of variables in the model and the assumed range of real parameters
and then randomly select a set of initial values, or we can obtain them based on prior
information. In this paper, we select a set of initial values based on previous research,
where matrix d should be initialized as a diagonal matrix.

(2) After obtaining the initial value, the maximum likelihood solution is gradually found
by iteration. In this paper, the gradient is used to find the maximum value, and this
algorithm uses a climbing method. Calculate the gradient matrix and the Hessian
matrix based on the initial value, and then use Formula (l) to update θ̂i.

(3) Calculate the maximum likelihood estimation cost function L( θ̂i
∣∣rN ) and compare

it with the previous cost function. If it is greater than or equal to the previous one,
then accept this iteration and go to the next step. In contrast, if the cost function is
less than the previous one, then increase di and repeat the calculation. The iteration
is terminated when the change in L( θ̂i

∣∣rN ) is less than the tolerance level δ; in most
cases, the tolerance level is set to approximately 0.01 or lower. The lower the tolerance
level is, the more accurate the result, and the closer the obtained solution is to the true
value.

(4) Check for convergence. If convergence is not achieved, repeat step 2 to calculate θ̂i+1

until convergence.

4. Simulation and Verification

The receiver adopts a combination of vector and scalar tracking loops. To compare
the VFAPLL (MLE), VFAPLL (EKF) and FAPLL (MLE) under the same conditions, pa-
rameters such as their loop filter bandwidth and the predetection integral were selected
to be consistent; that is, the predetection integration time was 1 ms, BPLL = 15 Hz, and
BFLL = 25 Hz. The MATLAB software was used to simulate and generate the GPS dig-
ital intermediate frequency signal using a signal frequency f IF = 4.092 MHz, sampling
frequency fs = 16.368 MHz, ratio between carrier and noise CNR =35 dB/Hz, and a 1 ms
C/A code period.

During 0–25s, the carrier moved in a uniform straight line. Then, the number of
channels with signals in the system was 12. During 26–59s, the carrier continued to move in
a uniform straight line, but during this period, the number of signal channels decreased to
three or less, and this weak signal state lasted until 120s. The carrier periodically performed
the high dynamic motion as shown in Figure 2 from 60s to 85s, during which the carrier
was in an extremely harsh high dynamic weak signal environment. After 85s, the carrier
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returned to uniform linear motion, and after 120s, the number of channels with signal
returned to 12 [28].

In this paper, the highly dynamic model of the Jet Propulsion Laboratory (JPL) in
the United States was used to simulate the highly dynamic part in the motion state of the
carrier, as shown in Figure 3a,b. During 0–3 s, the receiver performed uniform acceleration
movement at −25 g, and the jerk was zero. At 3 s, the jerk increased rapidly to 100 g/s and
lasted for 0.5s, meanwhile, the acceleration increased from −25 to 25 g, and the acceleration
motion was then made uniform at 25 g. When it reached 5.5 s, the jerk sharply changed
from 0 to −100 g/s, and lasted for 0.5 s, whereas the acceleration decreased from 25 to
−25 g, and the acceleration motion was then made uniform at −25 g [28].
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Figure 3. Trajectory of the receiver relative to the GPS satellite. (a) Acceleration model for highly
dynamic motion; (b) jerk model for highly dynamic motion [28].

The simulation tests the tracking performance of the VFAPLL and FAPLL based on
the maximum likelihood estimation algorithm and VFAPLL based on the extended Kalman
filter. Figures 4 and 5 show the speed and position errors generated by the three loops in
the movement process described above.

Figures 4 and 5 show that the tracking performance of the three loops was good during
the initial period of 0–24 s, but during the period of 25–120 s, the loops were in a weak signal
environment, and the position and speed errors of the three loops significantly increased:
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at the same time, there was a gap in tracking performance. The VFAPLL (MLE) had the
best performance both in a weak signal environment and in a harsh, highly dynamic weak
signal environment during 60–85 s; however, the FAPLL (MLE) could not adapt to the high
dynamic stress due to the limited frequency discrimination range of the FLL and began
to lose lock after 63 s. After 120 s, the number of channels with signals was restored to
12; accordingly, the tracking errors of the VFAPLL (MLE) and VFAPLL (EKF) were greatly
reduced and gradually returned to the state during 0–24 s. During the operation of the
above loops, the maximum speed error difference between the VFAPLL (MLE) and VFAPLL
(EKF) was 2.69 m/s, and the maximum position error difference was 57 m.
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The frequency tracking accuracy of the loop was analyzed through the relationship
between the root mean square (RMS) frequency error and the carrier-to-noise ratio (CNR)
of the loop, and the frequency tracking accuracy of VFAPLL (MLE), VFAPLL (EKF) and
FAPLL (MLE) was compared. The definition of RMSE was as follows [29]:

RMSE =

√√√√ 1
M

M

∑
i=1

( Xn(k)− X̂i
n(k|k))

2 (24)

where Xn(k) and X̂i
n(k|k) represent the real value and filtered estimated value at the same

time, respectively. Figure 6 shows the relationship between the RMS frequency error and
the carrier-to-noise ratio of the three loops of the VFAPLL (MLE), VFAPLL (EKF) and
FAPLL (MLE). Figure 7 shows the loss-of-lock probability of these three loops to the signal
Doppler frequency under different carrier-to-noise ratios.
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Figure 6. Doppler frequency root mean square error of the VFAPLL (MLE), VFAPLL (EKF) and
FAPLL (MLE) at different carrier-to-noise ratios.
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Figure 7. Loss-of-lock probability of the VFAPLL (MLE), VFAPLL (EKF) and FAPLL (MLE) at
different CNRs.
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Figure 6 shows that the VFAPLL (MLE) loop has significantly improved frequency
tracking accuracy compared with the VFAPLL (EKF) and FAPLL (MLE), whether in the low
CNR range of 20–25 dB/Hz or in the extremely low CNR range of 15–20 dB/Hz. When the
carrier -to-noise ratio of the input signal is at a very low value of 15 dB/Hz, the tracking
accuracy of VFAPLL (MLE) was improved by 8 and 18 dB compared with the other two
loops respectively. When C/N0 = 21.5, the tracking accuracy of the VFAPLL (MLE) was
6 dB higher than that of the VFAPLL (EKF) and 15 dB higher than that of the FAPLL (MLE).
When C/N0 = 22.5, the mean square error of the frequency estimation of the VFAPLL
(MLE) was 28 Hz, which was 6 dB higher than that of the VFAPLL (EKF) and 15 dB higher
than that of the FAPLL (MLE). However, with the increase in the carrier noise ratio C/N0,
this improvement gradually decreases.

Figure 7 shows that the tracking threshold of the VFAPLL (MLE) was 22.5 dB/Hz, and
the tracking thresholds of the VFAPLL (EKF) and FAPLL(MLE) were 24.5 and 25.5 dB/Hz,
respectively, which indicates that compared with the other two loops, the VFAPLL (MLE)
achieved 2 and 3 dB/Hz improvements, respectively, on the loss-of-lock threshold. In
addition, it can be seen from the figure that when CNR ≤ 18.5dB/Hz, the probability
of FAPLL (MLE) losing lock was approximately 1, while VFAPLL (MLE) still had the
possibility of locking signal under extremely low CNR of 15 dB/Hz, and when CNR was
24.5 dB/Hz or more, the probability of VFAPLL (MLE) losing lock became very low.

In summary, the VFAPLL (MLE) has higher tracking accuracy than the VFAPLL (EKF)
and FAPLL (MLE) in both low-SNR and very low-SNR conditions.

The following is an analysis of the robustness of the simulated loops. Based on the
highly dynamic scenarios given in Figure 3a,b, we conducted a statistical comparison of the
measurement accuracy of the Doppler frequency for the VFAPLL (MLE), VFAPLL (EKF),
and FAPLL (MLE), as shown in Figures 8 and 9.

Figures 8 and 9 show a comparison of the average values of the root mean square
(RMS) Doppler frequency errors of VFAPLL (MLE), VFAPLL (EKF), and FAPLL (MLE)
under different acceleration and jerk scenarios, respectively. The results show that the
VFAPLL (MLE) had a smaller average RMS Doppler frequency error than the other two
loops in the abovementioned highly dynamic scenarios, indicating that the VFAPLL (MLE)
had the highest robustness of the three loops. This was mainly due to the efficient use of
iterations by the LM algorithm and the advantages of the vector tracking loop.
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Figure 8. Comparison of the mean values of the VFAPLL (MLE), VFAPLL (EKF) and FAPLL (MLE)
RMS Doppler frequency errors under different acceleration scenarios when CNR = 23dB/Hz.
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Figure 9. Comparison of the mean values of the VFAPLL (MLE-based), VFAPLL (EKF-based)
and FAPLL (MLE-based) RMS Doppler frequency errors under different jerk scenarios when
CNR = 23 dB/Hz.

5. Convergence Analysis

The convergence of iteration mainly depends on three aspects: convergence standard,
maximum number of iterations and initial value.

(1) Convergence standard: The convergence criteria are defined as∣∣∣L(θ̂i+1
∣∣∣rN

)
− L

(
θ̂i
∣∣∣rN

)∣∣∣ < 0.01 (25)

That is, if the difference between the logarithmic likelihood function at time I + 1 and
the logarithmic likelihood function at time i of the maximum likelihood estimation
is less than the set value, it is considered unnecessary to iterate further, that is, the
algorithm has converged.

(2) Maximum number of iterations: The maximum number of times that the iteration
process terminates, given in advance, automatically terminates if it does not converge.
This is set to 10 times for this article.

(3) Initial value: set with predictor.

In order to evaluate the convergence speed and performance of the algorithm, the
following two kinds of square root errors are introduced in this paper [29],

RMSEtime(k) =

√√√√ 1
M

M

∑
j=1

[θ̂
j
k − θ

j
k]

2
(26)

RMSEtotal(j) =

√√√√ 1
N

N

∑
k=1

[θ̂
j
k − θ

j
k]

2
(27)

where, θ̂j(k) represents the estimated value of θ in the jth Monte Carlo simulation at
time k, N is the length of discrete time, and M is the number of Monte Carlo simula-
tions. RMSEtime(k) represents the average convergence speed of algorithms in simulations,
RMSEtotal indicates the performance of the algorithm in a simulation, the smaller the value,
the better the performance of the algorithm.
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The Figure 10 compares the convergence performance of VFAPLL (MLE) and VFAPLL
(EKF) when CNR = 23 dB/Hz. It is known from the figure that the average convergence
time of VFAPLL (MLE) loop is shorter than that of VFAPLL (EKF).
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Figure 10. The relationship between RMSEtime and moment k when CNR = 23 dB/Hz.

Tables 1 and 2 compare the performance of the VFAPLL (MLE) and VFAPLL (EKF)
using RMSEtotal and average consumption time as the index, as follows:

Table 1. The average consumption time and Average value of RMSEtotal of VFAPLL (MLE) when
CNR is 15, 19, 20, 21, 23, and 25 dB/Hz.

Carrier-to-Noise Ratio
(C/N0, dB/Hz)

Average
Consumption Time of

VFAPLL (MLE)
(s)

Average Value of RMSEtotal
of VFAPLL (MLE)

(s)

25 0.023 0.02
23 0.026 0.029
21 0.036 0.035
20 0.042 0.046
19 0.056 0.05
15 0.065 0.053

Table 2. The average consumption time and Average value of RMSEtotal of VFAPLL (EKF) when
CNR is 15, 19, 20, 21, 23, and 25 dB/Hz.

Carrier-to-Noise Ratio
(C/N0, dB/Hz)

Average Consumption Time
of VFAPLL (EKF)

(s)

Average Value of RMSEtotal of
VFAPLL (EKF)

(s)

25 0.026 0.029
23 0.035 0.039
21 0.039 0.042
20 0.053 0.05
19 0.06 0.055
15 0.065 0.06
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It can be seen from the table that the average time of running VFAPLL (MLE) was
less than that of running VFAPLL (EKF), which proves that the overall complexity of
VFAPLL (MLE) is lower than that of VFAPLL (EKF) (Including frequency discriminator).
The comparison of RMSEtotal shows that the loop tracking performance of VFAPLL (MLE)
is better than that of VFAPLL (EKF).

6. Conclusions

In this paper, a VFLL-assisted PLL for global navigation satellite system (GNSS)
receivers based on maximum likelihood estimation was proposed. The loop makes full
use of the advantages of the VFLL and PLL and can realize a trade-off between dynamic
robustness and tracking accuracy in the loop. Compared with the traditional VFAPLL, the
loop performance is improved. The new architecture not only takes advantage of the vector
tracking loop but also achieves a very low tracking threshold through ML estimation. In
the process of ML estimation, the discriminator is removed, and the coherent integration
result of the signal is directly used as the input of the navigation filter. The problem of the
limited tracking range of the discriminator is avoided, and the tracking sensitivity of the
loop is improved. The method proposed in this paper improves the performance of carrier
tracking loop in high dynamic weak signal environments. The proposed loop structure
improves the tracking accuracy and robustness of the loop.

Deficiencies in the Paper and Prospects for Future Work

The test signals used in the paper are all from the GNSS simulator or the high dynamic
motion model of the JPL laboratory in the United States. If we can find in the future an
external environment where the navigation signal strength and carrier motion meet the
test conditions, it will be more helpful to combine theory with practice.

In addition, although the MLE algorithm shows better robustness and faster response
speed in high dynamic scenarios, its computing load is greater than that of traditional
algorithms. Because the computing load of the MLE (LM) algorithm increases almost
linearly with the increase in the number of iterations, so we need to further optimize the
MLE algorithm based on LM algorithm.
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List of Symbols

f0
represents the Doppler frequency, corresponding to the relative motion speed
of the satellite and the receiver

f1
represents the first-order rate of change of the Doppler frequency, corresponding
to the relative motion acceleration of the satellite and the receiver

f2
represents the second-order rate of change of the Doppler frequency, corresponding
to the relative motion jerk of the satellite and the receiver

T Sampling interval for discretization of continuous time state equation
Xk state, ‘k’ represents the time epoch of the data sample
Wk state noise
Qk the covariance matrix of the prediction error Wk
Ny the random jitter of the third derivative of the carrier frequency.

g(k)
coherent integration processed output of the integral eliminator of the VFLL
Assisted PLL loop

R(∆τ) represents the C/A code autocorrelation function
∆τ the phase difference between the copied C/A code and the received C/A code
Tcoh Coherent integration time
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Z(k) measurement
B(k) measurement noise
θme(k) the average residual phase over time T
Rk covariance of measurement noise matrix V(k)
g(k) the digital model of the received signal
C(k) the C/A code in the received signal
τ the propagation delay of the signal
f IF the intermediate frequency signal input of the receiver
fd the Doppler frequency shift of the received signal
ϕ the initial phase of the carrier
p(r|A, τ, fd, ϕ) The joint probability density of the received signal at N sampling points
ĝ denotes the estimated value of g obtained from Formula (8) in the absence of noise
U(A, τ, fd, ϕ|r) the log-likelihood cost function of the above joint probability density function
ϕ̂ the maximum likelihood estimate of ϕ

Â the maximum likelihood estimate of A

L(τ, fd|g)
two-dimensional MLE cost function in the form of sine and cosine of chip delay
τ and Doppler frequency fd

θML the state vector in the update equation in the LM algorithm
Gi represents the gradient matrix in the LM algorithm
Hi represents the Hessian matrix in the LM algorithm
di diagonal matrix. The selection of di should make Hi + di always positive definite
g̃(k) represents the received signal after stripping the C/A code
ñ(k) represents the noise after stripping the C/A code
RMSE represents the root mean square error

Appendix A

Substituting Formula (8) of g into Formula (10) and setting the unit scalar weighting
factor wk = 1, we have

N0U(A, τ, fd, ϕ|g) = −
N−1
∑

k=0
g2(k)− A2

N−1
∑

k=0
cos2(2πT( f IF + fd)k + ϕ)

+2A
N−1
∑

k=0
g(k)·C(k− τ) cos(2πT( f IF + fd)k + ϕ)

(A1)

When ( f IF + fd)NT is much higher than 1, the first and second terms on the right side of the
above equation can be considered constants, so only the third term changes with parameter
θ. Then, the MLE of parameter θ can be obtained when the third term is maximized:

2A
N−1
∑

k=0
g(k)·C(k− τ) cos(2πT( f IF + fd)k + ϕ)

= 2ARe{exp(jϕ)∑N−1
k=0 g(k)·C(k− τ) exp(j2πT( f IF + fd)k)}

(A2)

For any complex value z, Re{exp(jϕ)z} is maximum when ϕ = −arg(z), so the maxi-
mum likelihood estimate of ϕ is [27]

ϕ̂ = −arg{2A ∑N−1
k=0 g(k)·C(k− τ) exp(j2πT( f IF + fd)k)} (A3)

Substituting (14) into (12) and then deriving the result with respect to A obtains the
maximum likelihood estimate of A as follows [27]:

Â =
2
N
|∑N−1

k=0 g(k)·C(k− τ) exp(j2πT( f IF + fd)k)| (A4)
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Substituting the results of (14) and (15) into (10) obtains the two-dimensional maximum
likelihood cost function of τ and fd as [27]

U(τ, fd|g) =
2

N·N0

∣∣∣∑N−1
k=0 r(k)C(k− τ) exp(j2πT( f IF + fd)k)|

2
(A5)
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