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Abstract: Pneumatic actuator is one of the key technologies in the field of active suspension due to its
low cost, cleanliness, and high power-to-weight ratio characteristics. However, the dynamic models
and control strategies of the pneumatic suspension have not been well demonstrated because they are
nonlinear systems. Besides, the vertical displacement stability of sprung mass is very important for
ensuring ride comfort, but accurate control is still a challenging problem in the presence of parametric
uncertainties. In this study, an adaptive neural networks backstepping scheme is designed for the
stability control of the pneumatic suspension. Firstly, a mathematical model of the pneumatic system
is studied to investigate the dynamic system behavior and to obtain the control algorithm. Secondly,
an extended state observer is applied to estimate uncertain parameters, unmodeled dynamics, and ex-
ternal disturbances. Thirdly, unknown masses of various load passengers are approximated by using
radial basis function neural networks (RBFNNs). To enhance the system stability, a proposed control
with a prescribed performance function (PPF) is designed to guarantee the vertical displacement of
the chassis. Adaptive backstepping control with PPF is developed to stabilize the perturbed system
and guarantee tracking performance. Finally, the simulation examples for the pneumatic suspension
are employed to investigate the effectiveness of the proposed method.

Keywords: pneumatic active suspension; extended state observer (ESO); prescribed performance
control (PPC); neural networks; adaptive backstepping

1. Introduction

The study of suspension systems is an important research area because they isolate the
chassis from road disturbances to ensure ride comfort and driving safety for vehicles [1,2].
Compared to passive suspension, an actuator is used for active suspension to provide
the active force to dissipate the continuous excitations [3–5]. With the rapid development
of technology, various types of actuators such as hydraulic [6], electromagnetic [7], and
pneumatic [8] have been used to improve suspension performance. In particular, the
pneumatic springs are of more interest as they can supply variable stiffness and damping
for different sprung masses by controlling the internal pressure [9]. However, it is difficult
either to model or control the pneumatic suspension because of unknown parameters
and unmodeled dynamics [10]. Besides, the air bellows become stiffer as the static load
increases, so the air spring force is nonlinear in relation to deflection [11], and height
adjustment [12]. Due to the difficulty in obtaining the exact parameters of pneumatic servo
systems, it is not easy to design a higher-performance tracking controller, especially to
maintain chassis stability under various loads of passengers.

To overcome the above drawbacks, many control strategies have been widely used to
improve vehicle performance, such as adaptive control [13], optimal control [14], sliding
mode control [15], backstepping control [16], and model predictive control [17].
A.J. Nieto et al. [13] developed an adaptive control scheme, which can modify the stiff-
ness coefficient and natural frequency. To obtain the stiffness and ride height of the vehicle
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simultaneously, P. Karimi Eskandary et al. [14] discussed the optimized control design
by controlling the air pressure. Hyunsup Kim et al. [11] proposed a sliding mode con-
trol to improve the tracking accuracy of the chassis stability and overcome nonlinear
parameters. Although the robust control can improve the suspension performance, the
controller may be sensitive to external disturbances due to the fixed control parameters.
Rongchen Zhao et al. [16] proposed backstepping control to solve the problem of height
tracking, which is considered the nonlinear model. Xiaoqiang Sun et al. [18] used model
predictive control to regulate the vehicle height and adjust both of the roll and pitch angles
of the chassis simultaneously. However, due to the unmodeled dynamics of air bellow, it is
difficult to establish an accurate linearization model for pneumatic suspension.

In order to improve the control accuracy of nonlinear systems, various disturbance
rejection control methods have been widely studied [4,19–21]. Meanwhile, an ESO is useful
for solving the effects of unknown parameters, which asymptotically rejects the external
disturbance based on the observer bandwidth [22]. ESO considers the external disturbances
and the unknown system dynamics as a new state variable, and then the observer gain
is proposed to estimate the lumped uncertainties [20]. Therefore, ESO is not only able to
approximate parametric uncertainties, but it can also effectively estimate the unknown
states of the system [23]. L. Zhao et al. [24] proposed a nonlinear extended state observer-
based integral sliding mode control method for a pneumatic servo system with different
loads. Besides, ESO is suitable for the unmodeled dynamics of the uncertain system because
it is dependent on the system states and requires minimum information about a dynamic
system [25]. Due to its high convenience and efficiency, the ESO has been widely used in
nonlinear systems such as hydraulic, pneumatic, and robotics control [26,27], and will be
applied to estimate the air bellow dynamic in this study.

Over the past decade, with the development of artificial intelligence technology, neural
networks and fuzzy logic systems have become powerful tools that can effectively deal with
unknown functions or parameters in pneumatic systems [28,29]. NNs have been applied
to design robust, adaptive, and intelligent control systems [30,31]. W. N. Bao et al. [32]
proposed a fuzzy adaptive sliding mode controller for a pneumatic suspension, which
could improve passenger comfort and vehicle controllability. Jing Zhao et al. [33] focused
on the ride height adjustment of the pneumatic suspension based on a variable speed fuzzy
PWM control method. However, the authors did not consider robust system control in
the presence of unknown parameters or unmodeled dynamics. Furthermore, the transient
tracking performance cannot be guaranteed quantitatively in all aforementioned control
methods [34]. In this study, NNs is employed to approximate unknown nonlinear functions,
caused by different sprung masses to ensure the vertical displacement of the chassis.

On the other hand, a new control scheme with output constraints called prescribed
performance control was developed by Bechlioulis to ensure the convergence of system
outputs, maximum overshoot, and steady-state error into an arbitrarily small predefined
region [35–37]. With PPC, a prescribed performance function is defined to transform the
tracking error of the original system into a new coordinate. Then, the control scheme will be
designed based on a transformed error to preserve the tracking error always within the PPF
when the transformed system is stable. PPC has been applied in many control engineering
applications that require output constraints [38,39]. Shubo Wang et al. [40] proposed an
adaptive funnel control with PPF to guarantee the output error for the servomechanisms
system. Jing Na et al. [41] proposed an adaptive control for active suspensions with para-
metric uncertainties to stabilize the vertical and pitch displacements. Yan-Jun Liu et al. [42]
propose an adaptive control with PPF constraint to characterize the tracking error conver-
gence rate and maximum overshoot of the suspension system when actuator failure occurs.
However, these results were derived under a full state measurement requirement which is
rarely satisfied in practical applications [43] and the external disturbances have a negative
impact on the control performance [44]. In this study, the PPF constraint is assigned to
guarantee the output performance of a pneumatic suspension with unknown parameters.
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According to the above discussions, we first propose a new active suspension system
using the air bellow actuator in this paper. Although the pneumatic actuator can fulfill
the requirements of a flexible suspension, the stabilization control for the chassis is a chal-
lenge since the pneumatic system contains uncertain parameters and external disturbances.
Therefore, an ESO is used to estimate these unknown dynamics, where all internal and
external disturbances are lumped together and represented by an extended state in this
study. Also, the air pressure inside the pneumatic spring is not directly measured by the
sensor, so it should be estimated by ESO. Hence, both system states and the extended
state could be estimated simultaneously. In real active suspension, the sprung mass is
a flexible parameter that can vary due to different passenger masses and will seriously
degrade the system performance. Thus, an adaptive NNs backstepping controller is used
to overcome the parametric uncertainties. The estimated dynamics are then incorporated
with PPF constraint to guarantee the ride height tracking for a pneumatic active suspension
system. Moreover, it was found that the unknown parameters may cause the singularity
and instability problem of PPC. By using neural networks and ESO, an adaptive back-
stepping controller is proposed to ensure that the output error remains within prescribed
performance constraints. Based on the Lyapunov function stability analysis, all system
states and tracking errors can be guaranteed to converge to a small neighborhood of the
origin in a finite time and do not violate the constraint boundary. The main contributions
of this study can be listed as follows

1. Adaptive backstepping control based PPF is proposed for the pneumatic active sus-
pension to guarantee the stability of sprung mass displacement in the presence of
uncertain nonlinear factors.

2. An ESO is issued to estimate the unknown lumped parameters of air bellow, i.e.,
parametric uncertainties, unmodeled dynamics, and external disturbances.

3. RBFNNs are applied to compensate for the unknown various loads of passengers.

The remainder of this paper is arranged as follows. The nonlinear mathematical of
the quarter car model is established in Section 2. Adaptive Neural Network Backstepping
Control with PPF and ESO will be proposed while the system stability is improved in
Section 3. Besides, the comparative simulations are analyzed in Section 4. Finally, the
conclusion of pneumatic active suspension is taken place in Section 5.

2. System Description
2.1. Quarter Car Suspension Model

The quarter suspension model using a pneumatic actuator is displayed in Figure 1. The
sprung mass mch denotes the total weight of the chassis structure and passenger while the
unsprung mass mus is composed of the assembly of the vehicle axis and wheel. The stiffness
coefficient of the linear spring is defined by ksp while the damping coefficient cd of the
damper is designed as passive components of the suspension system. The tire is modeled
by a linear spring with a stiffness coefficient kdt and the damping of the tire is represented
by cdt. To create the active force Fa, a pneumatic spring is used for the suspension, which is
installed between the chassis and unsprung mass. Besides, the nonlinear stiffness coefficient
kap of air bellow will contribute to the total stiffness of the system. The position of the
chassis and unsprung mass will be determined by system state variables zch and zus while
road profile will be presented by zrp.

The dynamic equations of the quarter car model are given as

mch
..
zch = −Fsp(zch, zus, t)− Fda(

.
zch,

.
zus, t) + Fa

mus
..
zus = Fsp(zch, zus, t) + Fda(

.
zch,

.
zus, t)− Fspt(zus, zrpt)− Fdat(

.
zus,

.
zrp, t)− Fa

(1)

These forces, which are created by the stiffness of pneumatic spring, mechanical
springs, and tires, can be expressed as Fsp(zch, zus, t) = (ksp + kap)(zch − zus),
Fda(

.
zch,

.
zus, t) = cd(

.
zch−

.
zus), Fspt(zus, zrpt) = kdt(zus− zrd), Fdat(

.
zus,

.
zrp, t) = cdt(

.
zus−

.
zrd).
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The expression for the tire force depends on the road holding condition which is given
by the following equation [45]

Ftr =

{
Fspt + Fdat i f Fspt + Fdat < (mch + mus)g
0 i f Fspt + Fdat ≥ (mch + mus)g

(2)

where g is the acceleration of gravity.
Define new state variables: x1 = zch, x2 =

.
zch, x3 = zus, x4 =

.
zus, dynamic equations

of quarter vehicle suspension can be described by state space as follows

.
x1 = x2.
x2 = 1

mch

[
−Fsp(x1, x3, t)− Fda(x2, x4, t) + Fa

]
.
x3 = x4.
x4 = 1

mus

[
−Fspt

(
x3, zrp, t

)
− Fdat

(
x4,

.
zrp, t

)
+ Fsp(x1, x3, t) + Fda(x2, x4, t)− Fa

] (3)
Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 28 
 

 

Figure 1. Pneumatic active suspension. 

The dynamic equations of the quarter car model are given as 

= − − +

= + − − −

( , , ) ( , , )

( , , ) ( , , ) ( , ) ( , , )

ch ch sp ch us da ch us a

us us sp ch us da ch us spt us rp dat us rp a

m z F z z t F z z t F

m z F z z t F z z t F z z t F z z t F
 (1) 

These forces, which are created by the stiffness of pneumatic spring, mechanical 

springs, and tires, can be expressed as = + −( , , ) ( )( )
sp ch us sp ap ch us

F z z t k k z z , 

= −( , , ) ( )
da ch us d ch us

F z z t c z z , = −( , ) ( )
spt us rp dt us rd

F z z t k z z , = −( , , ) ( )
dat us rp dt us rd

F z z t c z z . 

The expression for the tire force depends on the road holding condition which is 

given by the following equation [45] 

( )
( )

 + +  +
= 

+  +
0

spt dat spt dat ch us

tr

spt dat ch us

F F if F F m m g
F

if F F m m g
 (2) 

where g  is the acceleration of gravity. 

Define new state variables: =
1 ch

x z , =
2 ch

x z , =
3 us

x z , =
4 us

x z , dynamic equations of 

quarter vehicle suspension can be described by state space as follows 

( ) ( )

( ) ( ) ( ) ( )

=

 = − − +
 

=

 = − − + + −
 

1 2

2 1 3 2 4

3 4

4 3 4 1 3 2 4

1
, , , ,

1
, , , , , , , ,

sp da a

ch

spt rp dat rp sp da a

us

x x

x F x x t F x x t F
m

x x

x F x z t F x z t F x x t F x x t F
m

 (3) 

2.2. Air Spring Modeling 

An air spring is installed between the chassis and unsprung masses to create the ac-

tive force which can regulate the displacement for the active suspension system. This ex-

ternal force can be controlled by regulating the supply pressure and is computed by 

=
asa as

F A P  (4) 

Figure 1. Pneumatic active suspension.

2.2. Air Spring Modeling

An air spring is installed between the chassis and unsprung masses to create the active
force which can regulate the displacement for the active suspension system. This external
force can be controlled by regulating the supply pressure and is computed by

Fa = AasPas (4)

where Aas denotes the effective working area and Pas is defined as the working pressure
inside the pneumatic spring.

Although the pressure inside the air spring is controlled by the airflow, it is also affected
by the working conditions, including unmodeled dynamics and parametric uncertainties.
Hence, we can describe its nonlinear dynamic model by [11]

.
Pas =

κRT
vas

(
a0qas −

Pas Aas(x2 − x4)

RT

)
(5)

where κ is the polytropic index, R is the ideal air constant, T denotes the gas temperature,
vas represents the volume of pneumatic spring, a0 defines the orifice open area of the
solenoid valve, qas and denotes the working area of mass flow rate.
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The air bellow volume can be calculated by the initial height and relative movement
of the chassis and unsprung mass, we have:

vas = Aas(zas0 + x1 − x3) (6)

where zas0 is the normal height of the pneumatic spring.

Assumption 1. In this study, it is assumed that the valve spool movement is directly proportional
to the voltage parameter applied to the pressure control valve. Thus, the dynamic characteristics of
servo valve could be neglected in model construction while the orifice working area a0 of the control
valve is demonstrated by

a0 = σpcu (7)

where σpc denotes the coefficient control factor and u represents the control voltage.

Substituting (6) and (7) into (5), we can obtain the dynamic model

.
Pas =

κRT
Aas(zas0 + x1 − x3)

(
σpcqasu− Pas Aas(x2 − x4)

RT

)
(8)

Consider x5 = AasPas/mch, the dynamic model of the pneumatic actuator is rewritten

.
x5 =

κRT
mch(zas0 + x1 − x3)

σpcqasu− κ

(zas0 + x1 − x3)
x5(x2 − x4) (9)

2.3. Problem Formulation

Different from linear springs, the stiffness coefficient kap of pneumatic spring is related
to the working supply pressure and is affected by many uncertain parameters that are not
easy to determine. Although some researchers have studied thermodynamic theory to
investigate the response of air bellow under pneumatic suspension [46], applying for the
control scheme design is not easy since uncertain working conditions. Since the stiffness
coefficient of a pneumatic spring contains uncertain parameters, an unknown continuous
function is defined based on a system parameter.

d0 =
1

mch

[
−kap(x1 − x3)

]
(10)

In general, the working pressure of a pneumatic spring depends on parametric uncer-
tainties caused by external disturbances, payload variations, and unmodeled dynamics.
Therefore the dynamic equation of air spring (9) should be considered unknown parameters
defined in the unmodeled terms. Moreover, the inside pressure of the air spring Pas is not
directly measured by the sensors, so it must be estimated by using an ESO.

Applying the stiffness coefficient, external disturbance, and uncertain parameters of
pneumatic spring, the dynamic model of the quarter car suspension can be fully described
by (11)

.
x1 = x2.
x2 = x5 +

1
mch

[
−ksp(x1 − x3)− cd(x2 − x4)

]
+ d0 + d(t)

.
x3 = x4.
x4 = 1

mus

[
−kdt(x3 − zrp)− cdt(x4 −

.
zrp) + ksp(x1 − x3) + cd(x2 − x4)−mchx5 −mchd0

]
.
x5 = κRT

mch(zas0+x1−x3)
σpcqasu− κ

(zas0+x1−x3)
x5(x2 − x4) + p0 + p(t)

(11)

where d(t) are the lumped modeling errors of sprung mass velocity, p0 is constant modeling
error which affects the accuracy of the pressure measurement equipment, and p0(t) is
time-varying pressure error of pneumatic spring, including parametric uncertainties of
unmodeled dynamics and external disturbances.
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Assumption 2. Due to the mechanical structure of vehicle suspension depending on physical
performance, the total weight of the sprung mass is bounded by msmin < ms < msmax.

Assumption 3. d(t) is the unknown bounded time-varying disturbance and satisfies
|d(t)| ≤ |d(t)|max.

In this study, a novel controller is developed to satisfy three performance requirements
of the vehicle suspension system

(1) Passenger comfort: Adaptive backstepping control is designed to stabilize the chassis
and dissipate the external continuous excitations that improve the comfort for passengers.

(2) Road holding: The tire is always kept in contact with the road surface by remaining
the relative tire fore (RTF) should not exceed one. RTF is used to evaluate the driving safety
factor which is defined by comparing the dynamic tire force with the total weight of the
chassis structure, wheel, and tire

RTF =
Ft

(ms + mu)g
(12)

(3) Suspension deflection: This objective guarantees that the suspension displacement
is always limited within the mechanical structure. For this purpose, relative suspension
deflection (RSD) is used as the constraint value to specify the maximum value of chas-
sis stroke

RSD =
zs − zu

zR
(13)

where zR is determined by the initial distance of the chassis at a rest position which is called
rattle space.

Remark 1. To improve the ride passenger comfort, many advanced control schemes have been
applied to dissipate the chassis vibration. Nonetheless, the objectives of improving passenger comfort
and ensuring the suspension deflection will conflict with each other. In this study, the chassis
movement will be converged to zero by PPF constraint, and the handling stability is satisfied
simultaneously. Besides, the ESO and NNs are combined to estimate and compensate for the effects
of uncertain parameters so that the tracking errors do not violate the prescribed constraints.

3. Adaptive Neural Network Backstepping Control with Prescribed Performance and
Extended State Observer

In this section, the displacement of sprung mass under road disturbance will be
guaranteed within boundary constraints to satisfy the control performance of the active
suspension by the proposed control scheme. For this purpose, consider the state space of
the chassis dynamic equations by

.
x1 = x2.
x2 = x5 +

1
mch

[
−ksp(x1 − x3)− cd(x2 − x4)

]
+ d0 + d(t)

.
x5 = κRT

mch(zas0+x1−x3)
σpcqasu− κ

(zas0+x1−x3)
x5(x2 − x4) + p0 + p(t)

(14)

Four main objectives of the proposed controller

1. An ESO control scheme can estimate uncertain parameters and unmodeled dynamics.
2. The chassis displacement is limited to specific PPF constraints.
3. Ensure the suspension performance by considering road holding and keeping the

minimum of suspension deflection.
4. The control scheme is proposed by using adaptive NNs combined with ESO and the

prescribed performance constraint. Two control approaches are analyzed to compare
the effectiveness of the developed control, which are traditional backstepping and
ESO backstepping.
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3.1. Prescribed Performance Constraint

In this section, a PPC theory is applied for the control scheme to ensure the stability
of the chassis in vertical displacement. First, the tracking error of the system state x1 is
defined by

e1 = x1 − xd (15)

where xd is the reference trajectory.

Definition 1. A positive decreasing smooth function is used as the prescribed performance func-
tion [35]:

ρ(t) = (ρ0 − ρ∞)e−ϕt + ρ∞ (16)

where ϕ > 0 represents the convergence rate, ρ0 denotes the initial state of PPF, and ρ∞ is the
allowable steady-state error, which are selected to meet the initial conditions lim

t→0
ρ(t) = ρ0 > 0,

lim
t→∞

ρ(t) = ρ∞ > 0, and ρ0 > ρ∞.

According to (16), the tracking error of chassis movement will be ensured within the
bounded performance by the transform inequality

−κρ(t) < e1 < κρ(t), t > 0 (17)

where κ, κ > 0 are the constant parameters.

Remark 2. From (16) and (17), it can be seen that −κρ(0) plays a role as the lower bound of
the undershoot while κρ(0) representing the upper bound of the overshoot of x1. The steady-
state performance of the system can be guaranteed by accordingly choosing the design parameters
κ, κ, ρ0, ρ∞, ϕ.

Under the condition (17), the control strategy is designed by using an output transfor-
mation, which is used to construct the constraints into an equality form. By suggesting a
smooth and strictly increasing function S(z1), we can obtain [35]

S(z1) =
κez1 − κe−z1

ez1 + e−z1
(18)

where the two following conditions are satisfied

(1) −κ < S(z1) < κ
(2) lim

z1→∞
S(z1) = κ, lim

z1→−∞
S(z1) = −κ

Therefore, we can write the performance (17) as follows

e1 = ρ(t)S(z1) (19)

From the above definition, prescribed performance can be designed to establish the
transform errors of system states. Since S(z1) is strictly monotonically increasing and
prescribed performance parameters are selected to satisfy ρ(t) > ρ∞ > 0, we can conclude
an inverse transfer function z1 as follows

z1 = S−1
(

e1

ρ(t)

)
(20)

So, we have the transform function of z1

z1 =
1
2

ln
(

µ + κ

κ − µ

)
, (21)

where µ = e1
ρ(t) .
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Lemma 1. [35]. From the above procedure, the system state (14) is transformed by the smooth
function S(z1), so the tracking error signal e1 is guaranteed under the prescribed performance
boundary (17).

Remark 3. Based on the above analysis, as the parameters ρ0, κ, κ are designed such that the initial
condition satisfies −κρ(0) < x1(0) < κρ(0) and z1 will be restrained within the boundaries, the
condition −κ < S(z1) < κ is guaranteed. Therefore, the control problem (14) with the condition
−κρ(t) < x1(t) < κρ(t) is ensured by the transformation (20).

3.2. Extended State Observer

As mentioned in Section 2, there always exist uncertain parameters, external distur-
bances, and unmodeled dynamics in the nonlinear pneumatic system, which will degrade
the performance of the suspension controller. ESO is used to compensate for these un-
known terms in this study. Firstly, all lumped uncertainties are considered as broadening
unknown system states. Secondly, an ESO is proposed to estimate these system states by
designing parameter estimators and suggesting the control law to approximate unmodeled
dynamics. Thus, ESO can not only compensate for unknown parameters but also enhance
the robustness of the vehicle suspension [47].

To design an ESO, an additional state variable x6 is proposed to express the lumped
unknown dynamics p0 + p(t) as follows

x6 = p0 + p(t) (22)

Then, the system variables are expanded to x = [x1, x2, x5, x6]
T . So, the original

system (14) can be extended by

.
x1 = x2.
x2 = x5 + f1(x1, x2) + d0 + d(t)
.
x5 = f2(x1, x2, x5) + g(x1)u + x6.
x6 = h(t)

(23)

where f1(x1, x2) = (1/mch)[−ksp(x1 − x3) − cd(x2 − x4)], f2(x1, x2, x5) = [−κ/
(zas0 + x1 − x3)]x5(x2− x4), g(x1) = {κRT /[mch(zas0 + x1 − x3)]}σpcqas, and h(t) denotes
the time derivative of x6.

From (23), the ESO design can not only observe incorrectly measured system variables
x2, x5 but also estimate the model uncertainty x6 to compensate the controller in real-time.

Assumption 4. To simplify the ESO design, the lumped dynamicx6 is adopted with a limited
derivative, i.e., h(t) is bounded.

Assumption 5. The functions f1(x1, x2), f2(x1, x2, x5), and g(x1) are considered Lipschitz func-
tions with their state variables.

According to [48], a linear ESO model is demonstrated for the extended system
variables (23) as

.
x̂1 = x̂2 + 4ω0(x1 − x̂1).
x̂2 = x̂5 + f1(x̂1, x̂2) + 6ω2

0(x1 − x̂1).
x̂5 = x̂6 + f2(x̂1, x̂2, x̂5) + g(x̂1)u + 4ω3

0(x1 − x̂1).
x̂6 = ω4

0(x1 − x̂1)

(24)

where x̂ = [x̂1, x̂2, x̂5, x̂6]
T is the observer states, ω0 is the tuning parameter of the observer,

and represents the bandwidth of the ESO.
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The state observer errors are determined by x̃i = xi − x̂i, i = 1, 2, 5, 6. From the system
model (23) and ESO (24), the dynamic equations of state observer errors are expressed as

.
x̃1 = x̃2 − 4ω0 x̃1.
x̃2 = x̃5 + [ f1(x1, x2)− f1(x̂1, x̂2)]− 6ω2

0 x̃1 + d0 + d(t)
.
x̃5 = x̃6 + [ f2(x1, x2, x5)− f2(x̂1, x̂2, x̂5)] + [g(x1)− g(x̂1)]u− 4ω3

0 x̃1.
x̃6 = −ω4

0 x̃1 + h(t)

(25)

To investigate the convergence of the adopted ESO (24), the scaled estimation errors
will be determined by εi = x̃i/ωi−1

i , i = 1, 2 and ε j = x̃j/ωi−3
j , j = 5, 6. Thus, we can

write (25) in a compact form (26).

.
ε = ω0 Aε + M

f̃1 + d0 + d(t)
ω0

+ N
f̃2 + g̃u

ω2
0

+ K
h(t)
ω3

0
(26)

where A is a Hurwitz matrix, so there exists a positive definite matrix satisfying
AT P + PA = −I

A =


−4 1 0 0
−6 0 1 0
−4 0 0 1
−1 0 0 0

, M =


0
1
0
0

, N =


0
0
1
0

, K =


0
0
0
1


ε = [ε1, ε2, ε5, ε6]

T ; f̃1 = f1(x1, x2)− f1(x̂1, x̂2)

f̃2 = f2(x1, x2, x5)− f2(x̂1, x̂2, x̂5); g̃ = g(x1)− g(x̂1)

Lemma 2. [49]. Based on Assumption 4, the state variable h(t) is bounded, so the observer state x̂i
is bounded. Thus, there exist positive constants `i > 0 that |x̃i| < `i are satisfied.

According to Assumption 5, there exist a set of constant values that satisfy the Lips-
chitz conditions

f̃1 = | f1(x1, x2)− f1(x̂1, x̂2)| ≤ c1|ε1|+ c2|ε2| ≤ (c1 + c2)‖ε‖
f̃2 = f2(x1, x2, x5)− f2(x̂1, x̂2, x̂5) ≤ c3|ε1|+ c4|ε2|+ c5|ε5| ≤ (c3 + c4 + c5)‖ε‖
g̃ = g(x1)− g(x̂1) ≤ c6‖ε‖

(27)

where ‖ε‖ =
√
|ε1|2 + |ε2|2 + |ε5|2 + |ε6|2.

Remark 4. Based on scaled estimation errors (26) and the analysis in Lemma 2, the proposed ESO
is stable and the state observer errors are set promptly small by regulating the bandwidth parameter
ω0. It should be set the bandwidth to satisfy the balance between the observer performance and
system robustness because a large ω0 can cause high frequency oscillation of the system. Then, the
estimation states x̂2, x̂5, x̂6 in the Equation (24) are used to design the controller.

3.3. Backstepping Controller Design with PPF and ESO

This section proposes an adaptive control scheme based on a modified backstepping
technique, where parametric uncertainties are compensated by the ESO and the PPF
is applied to guarantee the tracking error of chassis displacement x1 in the predefined
boundary. Consequently, the Lyapunov Barrier theory is applied to prove the stability of
the proposed algorithm scheme.

Step 1: Define the tracking error with PPF in Section 3.1
Step 2: Choose the virtual signal α1
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From (21), the derivative of z1 can be rewritten as

.
z1 =

1
2

(
1

µ + κ
− 1

µ− κ

)( .
x1

ρ
− x1

.
ρ

ρ2

)
= ς

(
x2 −

x1
.
ρ

ρ

)
(28)

where ς = 1
2ρ

(
1

µ+κ −
1

µ−κ

)
.

The error variable of x2 is defined by

z2 = x2 − α1 (29)

Choose the candidate Lyapunov function V1

V1 =
1
2

z2
1 (30)

The time derivative of V1 is
.

V1 = z1
.
z1 (31)

Substituting (28) and (29) into (31), we have

.
V1 = z1ς

(
z2 + α1 −

x1
.
ρ

ρ

)
(32)

Choose the virtual control α1 as follows

α1 =
x1

.
ρ

ρ
− ς−1k1z1 (33)

Substituting (33) into (32), we have the form of
.

V1

.
V1 = −k1z2

1 + z1ςz2 (34)

Step 3: Develop the virtual control α2
Define the error variable of x5

z3 = x5 − α2 (35)

Choose the candidate Lyapunov function V2

V2 = V1 +
1
2

z2
2 (36)

The time derivative of V2 is defined by

.
V2 =

.
V1 + z2

.
z2 (37)

Substituting (29) and (34) into (37), we have

.
V2 = −k1z2

1 + z2
(
z1ς +

.
x2 −

.
α1
)

(38)

According to (23) and (35), we can write (38) as follows

.
V2 = −k1z2

1 + z2
[
z1ς + (z3 + α2) + f1 + d0 + d(t)− .

α1
]

(39)

Choose the virtual control α2 by using the state estimation of ESO, we obtain

α2 = α2c + α2u (40)
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where α2c = −z1ς +
.
α1 − f̂1 and α2u = −k2(x̂2 − α1).

The derivative of virtual control α2 is calculated by

.
α2c =

∂α2

∂t
+

∂α2

∂x1
x̂2 +

∂α2

∂x̂2

.
x̂2 and

.
α2u =

∂α2

∂x1
x̃2 (41)

Then, substituting (40) into (39) and using (26), we have

.
V2 = −k1z2

1 + z2z3 + z2 f̃1 − k2z2
2 + k2z2ω0ε1 + z2(d0 + d(t)) (42)

Step 4: Design the actual control u
Choose the candidate Lyapunov function V3

V3 = V2 +
1
2

z2
3 (43)

The time derivative of V3 using (35) and (42) can be described by

V3 = −k1z2
1 + z2 f̃1 − k2z2

2 + k2z2ω0ε1 + z2(d0 + d(t)) + z3
(
z2 +

.
x5 −

.
α2
)

(44)

Using (23), we can write (44) as follows

V3 = −k1z2
1 + z2 f̃1 − k2z2

2 + k2z2ω0ε1 + z2(d0 + d(t)) + z3
(
z2 + g(x1)u + f2 + x6 −

.
α2
)

(45)

Propose the actual control u

u = g(x̂1)
−1
[
− f̂2 − (x̂2 − α1)− x̂6 +

.
α2c − k3(x̂5 − α2)

]
(46)

Substituting (46) into (45), we have:

V3 = −k1z2
1 + z2 f̃1 − k2z2

2 + k2z2ω0ε1 + z2(d0 + d(t)) + z3 f̃2 + z3ω3
0ε6

+z3(k1k2 + 1)ω0ε2 − k3z2
3 + k3z3ω2

0ε5
(47)

Theorem 1. Considering the pneumatic active suspension (14) under Assumptions 1–3, the
controller (46) and ESO (24) are designed in this study. Then, the proposed control is proposed, in
which the tracking errors and scaled state estimation errors εi are bounded at the same time, and
the tracking error e1 converges to the boundary of the PPF constraints by selecting the appropriate
control parameters.

Proof. Using ESO estimation, the candidate Lyapunov function V4 is selected by

V4 = V3 +
1
2

εT Pε (48)

Using (47), we can write the time derivative of V4 as follows

.
V4 = −k1z2

1 + z2 f̃1 − k2z2
2 + k2z2ω0ε1 + z2(d0 + d(t)) + z3 f̃2

+z3ω3
0ε6 + z3(k1k2 + 1)ω0ε2 − k3z2

3 + k3z3ω2
0ε5 +

1
2

.
ε

T Pε + 1
2 εT P

.
ε

(49)

Substituting (26) into (49), we have:

.
V4 = −k1z2

1 + z2 f̃1 − k2z2
2 + k2ω0ε1z2 + z2(d0 + d(t)) + f̃2z3 + ω3

0ε6z3

+(k1k2 + 1)ω0ε2z3 − k3z2
3 + k3ω2

0ε5z3 −ω0‖ε‖2 + εT PM f̃1
ω0

+εT PN f̃2
ω2

0
+ εT PN g̃u

ω2
0
+ εT PM d0+d(t)

ω0
+ εT PK h(t)

ω3
0

(50)
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Based on the analysis in (27), assuming that the control signal u is bounded, the
observer bandwidth ω0 is proposed to satisfy the upper bound of lumped unknown
dynamics, we have

−ω0‖ε‖2 + εT PM f̃1
ω0

+ εT PN f̃2
ω2

0
+ εT PN g̃u

ω2
0

≤
(
−ω0 +

φ1(c1+c2)
ω0

+ φ2(c3+c4+c5)

ω2
0

+ φ2c6
ω2

0
|u|max

)
‖ε‖2

(51)

where φ1 = PM and φ2 = PN.
Since the unknown parameter d0, the lumped modeling errors d(t), and the parametric

uncertainty h(t) are bounded, the upper-bounded of these states can be obtained as follows

z2(d0 + d(t)) ≤ 1
2 z2

2 +
1
2 (|d0|max + |d(t)|max)

2

εT PM d0+d(t)
ω0

≤ 1
2‖ε‖

2 +
φ2

2
2ω2

0
(|d0|max + |d(t)|max)

2

εT PK h(t)
ω3

0
≤ 1

2‖ε‖
2 +

φ2
3

2ω6
0
|h(t)|2max

(52)

where φ3 = PK.
Thus, (52) can be further rewritten as follows

.
V4 ≤ −k1z2

1 −
(

k2 − 1
2

)
z2

2 − k3z2
3 + (c1|ε1|+ c2|ε2|)z2 + k2ω0ε1z2

+ 1
2 z2

2 +
1
2 (|d0|max + |d(t)|max)

2 + ‖ε‖2 + (c3|ε1|+ c4|ε2|+ c5|ε5|)z3

+ω3
0ε6z3 + (k1k2 + 1)ω0ε2z3 + k3ω2

0ε5z3 +
φ2

2
2ω2

0
(|d0|max + |d(t)|max)

2

+
φ2

3
2ω6

0
|h(t)|2max +

(
−ω0 +

φ1(c1+c2)
ω0

+ φ2(c3+c4+c5)

ω2
0

+ φ2c6
ω2

0
|u|max

)
‖ε‖2

(53)

We can set the total upper-bounded of these states as follow
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2 220 2
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22 3

3 6 max
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1 1
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1
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1
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T

T

z d d t z d d t

d d t
PM d d t

h t
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where  =
3
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1

2

1 1

2 2

1
2

2

V k z k z k z c c z k z

z d d t c c c z

z k k z k z d d t

c c c c c c
h t u 


 
 



2

 (53) 

We can set the total upper-bounded of these states as follow 

( )( ) ( )


 

 
 = + + +  

 

22 2 2
32

02 6max max max
0 0

1

2 2 2
d d t h t   

( ) ( )  


  

+ + +
 = − − − −

1 1 2 2 3 4 5 2 6
0 2 2 max

0 0 0

1
c c c c c c

u   

So, we have 

=

(
1
2
+

φ2
2

2ω2
0

)
(|d0|max + |d(t)|max)

2 +
φ2

3

2ω6
0
|h(t)|2max

Ξ = ω0 −
φ1(c1 + c2)

ω0
− φ2(c3 + c4 + c5)

ω2
0

− φ2c6

ω2
0
|u|max − 1

So, we have

.
V4 ≤ −k1z2

1 −
(

k2 − 1
2

)
z2

2 − k3z2
3 − Ξ‖ε‖2 + (c1|ε1|+ c2|ε2|)z2 + k2ω0ε1z2

+(c3|ε1|+ c4|ε2|+ c5|ε5|)z3 + ω3
0ε6z3 + (k1k2 + 1)ω0ε2z3 + k3ω2

0ε5z3 +
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So, we have 

(54)

Arrange (54), we get
.

V4 ≤ −k1z2
1 −

(
k2 − 1

2

)
z2

2 − k3z2
3 − Ξ‖ε‖2 + (c1 + k2ω0)|ε1||z2|+ c2|ε2||z2|+ c3|ε1|z3

+ω3
0 |ε6||z3| + (k1k2 + c4 + 1)ω0|ε2||z3|+

(
c5 + k3ω2

0
)
|ε5||z3|+
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We can set the total upper-bounded of these states as follow 
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Set v1 = c1 + k2ω0; v2 = c2; v3 = c3, v4 = (k1k2 + c4 + 1)ω0; v5 = c5 + k3ω2
0;

v6 = ω3
0 , the inequality (55) can be obtained by

.
V4 ≤ −k1z2

1 −
(

k2 − 1
2

)
z2

2 − k3z2
3 + v1|ε1||z2|+ v2|ε2||z2| − Ξ‖ε‖2 + v3|ε1|z3

+v4|ε2||z3|+ v5|ε5||z3|+ v6|ε6||z3|+
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So, we have 

(56)
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Define tracking error states and matrix Γ as follows

Γ =



k1 0 0 0 0 0 0
0 k2 − 1/2 0 −v1/2 −v2/2 0 0
0 0 k3 −v3/2 −v4/2 −v5/2 −v6/2
0 −v1/2 −v3/2 Ξ 0 0 0
0 −v2/2 −v4/2 0 Ξ 0 0
0 0 −v5/2 0 0 Ξ 0
0 0 −v6/2 0 0 0 Ξ


; z = [z1, z2, z3]

T

Thus, we can rewrite (56) according to the following form

.
V4 ≤ −

[
z ε

]TΓ
[
z ε

]
+
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So, we have 

(57)

Since Γ is a positive definite matrix, we can write

.
V4 ≤ −λmin(Γ)

(
‖z‖2 + ‖ε‖2

)
+
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≤ −λmin(Γ)
(
‖z‖2 + 1

λmax(P) εT Pε
)
+
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So, we have 

(58)

where λmin(Γ) is the minimal eigenvalue of the matrix Γ and λmax(P) is the maximal
eigenvalue of the matrix P.

Multiplying (58) by eβt on both sides and integrating, we obtain

eβt
.

V4 + βeβtV4 ≤ eβt
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So, we have 

∫ t

0
eβtdt (60)

V4(t) ≤
(

V4(0)−
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So, we have 

β
(61)

Remark 5. According to (61), the tracking errors zi and εi are bounded, the system variables
xi and their estimation are also bounded with the control gains and observer bandwidth in a
finite time. Thus, the proposed control scheme can approximate the unmodeled dynamics of the
suspension system.

Remark 6. Adaptive backstepping control with PPF and ESO is developed to stabilize the vertical
displacement of the chassis. Although the parametric uncertainties can be compensated, the unknown
parameter caused by the different masses of passengers still affects the output performance of the
suspension system. This remained problem will be solved by the NNs in the following section.

3.4. Adaptive NNs Backstepping Controller Design with PPF and ESO

In a real vehicle system, the total weight of the sprung mass ms is a flexible variable
that can be changed due to different passenger masses. Therefore, the system model
of the sprung mass (14) contains some parametric uncertainties. Moreover, the damping
characteristic of air springs cannot be exactly modeled and is often ignored in the pneumatic
system. In step 3 of section III.C, we can see that the virtual control α2 contains the unknown
parameter of passenger masses. In this section, the Equation (40) can be rewritten without
using ESO as follows

α2 = −z1ς +
.
α1 +

1
mch

[
ksp(x1 − x3) + ca(x2 − x4)

]
− k2z2 (62)

The uncertain function can be defined as

f (X) =
1

ms
[ks(x1 − x3) + ca(x2 − x4)] (63)
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Because the chassis parameter is unknown, f (X) is an unknown function that will
affect system performance. Although these unknown functions cannot be solved directly by
a normal controller, neural networks can be used to approximate them. Therefore, RBFNNs
are then applied to compensate for the unknown function in this study.

Lemma 3. [50]. Based on the RBFNNs approximation, the unknown continuous function f (X)
can be estimated by

f (X) = WT
h S(X) + η(X) (64)

where Wh = [w1, w2, . . . , wn]
T ∈ Rn is called the weight vector, S(X) = [s1(X), s2(X), . . . ,

sn(X)]T represents the Gaussian function vector, η(X) denotes the approximation error, n > 1
defines the node number, and X is the input vector.

Gaussian basis function can be expressed as

Si(X) = exp

(
−‖X− ζi ‖2

σ2
i

)
, i = 1, 2, . . . , n (65)

where σi and ζi are the width and center of the basic function.
According to [51], for any continuous function f (X) and an arbitrary δ > 0, there are

the RBFNNs WT
h S(X) that are satisfying

∣∣WT
h S(X)− f (X)

∣∣ ≤ δ.
Therefore, the virtual control α2 in (40) will be proposed again as follows

α2 = −z1ς +
.
α1 − ŴT

h S(X)− k2z2 (66)

where the input vector is selected by X = [x1, x2, x3, x4]
T .

We design an adaptive law based on an adaptive algorithm

.
Ŵh = Λh

[
S(X)z2 − δhŴh

]
(67)

where Λh > 0 and δh > 0 are the constant gains of the adaptive estimation law. The
controller scheme can be described in Figure 2.
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Theorem 2. Considering the pneumatic vehicle suspension design (14), the adaptive NNs back-
stepping controller is proposed by (33), (46), (66) together with the adaptation law (67). Then, an
adaptive output feedback control scheme is developed based on tuning the bandwidth parameters
ω0 of ESO and the constant gains Λh, δh, ζi, σi of RBFNNs estimation. Besides, the boundary
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parameters κ, κ, ρ0 of PPF are chosen to meet the initial condition −κρ(t) < x1 < κρ(t). This
is to ensure that the semi-global stability of the system is guaranteed, i.e., the system states and
estimation errors converge asymptotically to a small set around zero. Thus, the chassis displacement
is ensured within the specified PPF boundary.

Proof. Using ESO and NNs estimation, the candidate Lyapunov functions for the whole
closed-loop control system are chosen again by

V = V3 +
1
2

εT Pε +
1
2

W̃T
h Λ−1

h W̃h (68)

where the error weight vector is designed as W̃h = Wh − Ŵh.

Then, the time derivative of V is obtained

.
V =

.
V3 +

1
2

.
ε

T Pε +
1
2

εT P
.
ε− W̃T

h Λ−1
h

.
Ŵh (69)

Substituting (64) and (66) into (39), we can rewrite the time derivative of V2 as follows

.
V2 = −k1z2

1 + z2

[
z3 − k2z2 + W̃T

h S(X) + η(X) + d0 + d(t)
]

(70)

Based on (47) and (70), we can rewrite

.
V = −k1z2

1 + z2W̃T
h S(X) + z2η(X) + z2(d0 + d(t)) + z3 f̃2 + z3ω3

0ε6

+z3(k1k2 + 1)ω0ε2 + k3z3ω2
0ε5 +

1
2

.
ε

T Pε + 1
2 εT P

.
ε− W̃T

h Λ−1
h

.
Ŵh − k2z2

2 − k3z2
3

(71)

Substituting (26) and (67) into (71), we have:

.
V = −k1z2

1 − k2z2
2 + z2(d0 + d(t)) + z2W̃T

h S(X)− k3z2
3 + z2η(X)− W̃T

h
[
S(X)z2 − δhŴh

]
+εT PM d0+d(t)

ω0
+ z3 f̃2 + z3ω3

0ε6 + z3(k1k2 + 1)ω0ε2 + k3z3ω2
0ε5 −ω0‖ε‖2

+εT PM f̃1
ω0

+ εT PN f̃2
ω2

0
+ εT PN g̃u

ω2
0
+ εT PK h(t)

ω3
0

(72)

According to Young’s inequality, it yields

z2η(X) ≤ z2
2

2 + η2(X)
2

W̃T
h W ≤ W̃T

h W̃h
2 +

WT
h Wh
2

(73)

Applying (51), (52) and (73) into (72), we can write

.
V ≤ −k1z2

1 − k2z2
2 − k3z2

3 +
1
2 z2

2 +
1
2 (|d0|max + |d(t)|max)

2 + 1
2 z2

2 −
δh‖W̃h‖2

2 + δh‖Wh‖2

2

+ η2(X)
2 + ω3

0ε6z3 +
1
2‖ε‖

2 + (c3|ε1|+ c4|ε2|+ c5|ε5|)z3 + (k1k2 + 1)ω0ε2z3

+k3ω2
0ε5z3 +

φ2
3

2ω6
0
|h(t)|2max +

1
2‖ε‖

2 +
φ2

2
2ω2

0
(|d0|max + |d(t)|max)

2

+

(
−ω0 +

φ1(c1+c2)
ω0

+ φ2(c3+c4+c5)

ω2
0

+ φ2c6
ω2

0
|u|max

)
‖ε‖2

(74)

We can set the total upper-bounded of these states as

∆ =
1
2
(|d0|max + |d(t)|max)

2 +
φ2

2
2ω2

0
(|d0|max + |d(t)|max)

2 +
φ2

3

2ω6
0
|h(t)|2max +

δh‖Wh‖2

2
+

η2(X)

2

Π = ω0 −
φ1(c1 + c2)

ω0
− φ2(c3 + c4 + c5)

ω2
0

− φ2c6

ω2
0
|u|max − 1

As a result, inequality (74) can be written by
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.
V ≤ −k1z2

1 − (k2 − 1)z2
2 − k3z2

3 −Π‖ε‖2 − δh‖W̃h‖2

2 + c3|ε1|z3 + (k1k2 + c4 + 1)ω0|ε2||z3|
+
(
c5 + k3ω2

0
)
|ε5||z3|+ ω3

0 |ε6||z3|+ ∆
(75)

Set ξ1 = c3; ξ2 = (k1k2 + c4 + 1)ω0; ξ3 = c5 + k3ω2
0; ξ4 = ω3

0 and define a new
matrix Ω

Ω =



k1 0 0 0 0 0 0 0
0 k2 − 1 0 0 0 0 0 0
0 0 k3 −ξ1/2 −ξ2/2 −ξ3/2 −ξ4/2 0
0 0 −ξ1/2 Π 0 0 0 0
0 0 −ξ2/2 0 Π 0 0 0
0 0 −ξ3/2 0 0 Π 0 0
0 0 −ξ4/2 0 0 0 Π 0
0 0 0 0 0 0 0 δh/2


We can rewrite (75) as follows

.
V ≤ −

[
z ε W̃h

]T
Ω
[
z ε W̃h

]
+ ∆ (76)

Since Ω is a positive definite matrix, we can obtain (76) as follows

.
V ≤ −λmin(Ω)

(
‖z‖2 + ‖ε‖2 +

δh‖Wh‖2

2

)
+ ∆ (77)

And we can obtain (77) as follows

.
V ≤ −λmin(Ω)

(
‖z‖2 +

1
λmax(P)

εT Pε + δhΛh
Λ−1

h ‖Wh‖2

2

)
+ ∆ ≤ −ΦV + ∆ (78)

where λmin(Ω) is the minimal eigenvalue of the matrix Ω and λmax(P) is the maximal
eigenvalue of the matrix P.

Multiplying (78) by eΦt on both sides and integrating, we obtain

eΦt
.

V + ΦeΦtV ≤ eΦt∆ (79)∫ t

0

(
eΦtV

)′
dt ≤ ∆

∫ t

0
eΦtdt (80)

V(t) ≤
(

V(0)− ∆
Φ

)
e−Φt +

∆
Φ
≤ V(0)e−Φt +

∆
Φ

(81)

According to (68), the following conditions are satisfied

|zi| ≤

√
2
(

V(0)e−Φt +
∆
Φ

)
, i = 1, 2, 3 (82)

Obviously, we can see that the error signals can be bounded to a small zero neigh-
borhood by adjusting the control parameters as t→ ∞ . Thus, the transformed error
z1 is bounded and then −κ < S(z1) < κ∀z1 ∈ R is guaranteed. It is illustrated that
−κρ(t) < e1 < κρ(t)∀t > 0. It means that the vertical displacement of the chassis is
conserved within the small predefined constraints.

Remark 7. The estimation tracking errors ε and W̃h are bounded, so the system states xi and
their estimation values are also limited to a monotonous decrease with the observer bandwidth in
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a finite time. Thus, the observer bandwidth and constant gains of adaptive estimation law can be
adjusted to guarantee the dynamic behavior of the system in the presence of unknown parameters
and external disturbance.

3.5. Road Holding and Handling Stability Analysis

In the above analysis, the guarantee for sprung mass displacement x1 to remain within
the prescribed performance boundaries has been obtained, i.e., the first performance of ride
comfort is achieved. In this section, two objectives of road holding and handling stability
can be ensured by adjusting the control parameters appropriately.

To analyze the road holding and handling stability of suspension systems, we suppose
that the tracking errors e1 = 0 and z2 = 0 are bounded, i.e., the vertical displacement x1
and speed x2 converge to a small zero neighborhood. For this purpose, we focus the system
states of the unsprung mass with x3 and x4 in the system (3). Then, substituting (3) into
(63), we obtain

.
X = EX + FZ0 + Z (83)

where X =

[
x3
x4

]
; E =

[
0 1
− kt

mu
− ct

mu

]
; F =

[
0 0
kt
mu

ct
mu

]
; Z0 =

[
zr.
zr

]
Z =

[
0
ψ

]
;

ψ = ms
mu

(
WT

h S(X) + η(X)
)
+ 1

mu
(−msx5 −msd0).

Besides, the tracking errors z1, z2, and z3 with be bounded according to (82), so ψ is
bounded and there exists a constant ψ such that ‖ψ‖ ≤ ψ.

Then, the Lyapunov function is selected as

Va = XT PX (84)

where P is a positive definite symmetric matrix.
Then, we can describe the time derivative of V as follows

.
Va =

.
X

T
PX + XT P

.
X (85)

Substituting (83) into (85), we have

.
Va = XT

(
ET P + PE

)
X + 2XT PFZ0 + 2XT PZ (86)

There exists a positive definite symmetric matrix Q > 0 which is chosen to satisfy
the Lyapunov equation ET P + PE = −Q. Based on Young’s inequality theorem for two
nonnegative real numbers a and b, we have ab ≤ a2/2γi+b2γi/2. Therefore, we can apply
these results for 2XT PFZ0 and 2XT PZ as follows

2XT PFZ0 ≤ 1
γ1

XT PFFT PX + γ1ZT
0 Z0

2XT PZ ≤ 1
γ2

XT PPX + γ2ZTZ
(87)

where γi > 0, i = 1, 2 are the control parameters.
Applying (87) into (86), we obtain

.
Va ≤ −

[
λmin

(
P
−1
2 QP

−1
2

)
− 1

γ1
λmax

(
P

1
2 FFT P

1
2

)
− 1

γ2
λmax(P)

]
Va + γ1ZT

0 Z0 + γ2ZTZ (88)

where λmin and λmax denote the minimal and maximal eigenvalues of the matrix.
Select the appropriate matrix P, Q so that

γ1 > 2
λmax

(
P

1
2 FFT P

1
2

)
λmin

(
P
−1
2 QP

−1
2

) ; γ2 > 2
λmax(P)

λmin

(
P
−1
2 QP

−1
2

) (89)
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From (89), there exist γ and ν that satisfy

γ ≥ λmin

(
P
−1
2 QP

−1
2

)
− 1

γ1
λmax

(
P

1
2 FFT P

1
2

)
− 1

γ2
λmax(P) (90)

ν ≥ γ1ZT
0 Z0 + γ2ZTZ (91)

Then, the inequality (88) can be rewritten by

.
Va ≤ −γVa + ν (92)

We can integrate both sides of (92) to get

Va ≤
(

Va(0)−
ν

γ

)
e−γt +

ν

γ
≤ Va(0)e−γt +

ν

γ
(93)

Obviously, we can know

|xi(t)| ≤

√(
Va(0)e−γt +

ν

γ

)
/λmin(P) , i = 3, 4 (94)

Based on the relative tire force condition in (12), the tire forces Fst and Fdt can be
calculated as

Fst(zu, zr, t) ≤ kt

√(
Va(0)e−γt + ν

γ

)
/λmin(P) + kt‖zr‖∞

Fdt(zu, zr, t) ≤ ct

√(
Va(0)e−γt + ν

γ

)
/λmin(P) + ct

∥∥ .
zr
∥∥

∞

(95)

Substituting (95) into (2), we can obtain

|Fst + Fdt| ≤ (kt + ct)

√(
Va(0)e−γt +

ν

γ

)
/λmin(P) + kt‖zr‖∞ + ct

∥∥ .
zr
∥∥

∞ (96)

Based on (96) the RTF constraints are guaranteed by selecting the design parameters
γ1, γ2, and matrix P so that |Fst + Fdt| ≤ (ms + mu)g is ensured.

Besides, the suspension deflection condition (13) can be expressed as

|zs − zu| ≤ |x1|+ |x3| ≤ κρ(0) +

√(
Va(0)e−γt +

ν

γ

)
/λmin(P) (97)

Then the suspension deflection constraints will be ensured by selecting the PPF coeffi-
cients κ, κ, ρ(0) and design parameters γ1, γ2, P so that |zs − zu| ≤ zR.

Based on the above analysis, we can conclude that the three objectives of suspension
performance requirements are improved by designing initial conditions and suitable control
parameters, i.e., the mechanical structure and safety condition of the pneumatic active
suspension are satisfied.

Remark 8. Adaptive backstepping control based on PPF can guarantee not only the steady-state
error limitations but also the transient response of chassis displacement. Moreover, by select-
ing the appropriate PPF and feedback control parameters, the developed method can enhance the
suspension requirements.
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4. Simulation Results and Discussion
4.1. Simulation Description

The comparative simulations of the proposed control scheme are evaluated in compar-
ison with passive suspension, traditional backstepping, and ESO backstepping to verify
the effectiveness of the control design in this study. The passenger comfort of the vehicle
suspension is evaluated by the human body’s sensitivity to acceleration. Moreover, the ride
comfort is considered by the peak and the root mean square (RMS) values of sprung mass
acceleration. For this evaluation, a filter is proposed in [52] to find the RMS acceleration
during the simulation process.

W(s) =
80.03s2 + 989s + 0.02108

s3 + 78.92s2 + 2412s + 5614
(98)

Furthermore, the simulation results of RSD and RTF are analyzed to prove two objec-
tives of driving safety and suspension deflection. The main parameters of pneumatic active
suspension are listed in Table 1.

Table 1. Pneumatic vehicle suspension parameters.

Parameter Value Unit

ms 550± 100 sin(πt) kg
mu 60 kg
ks 16,000 Nm−1

kt 145,000 Nm−1

ca 2300 Nsm−1

ct 1100 Nsm−1

zR 0.04 m
zas0 0.18 m
R 287.5 J·kg−1·K−1

Aas 0.0047 m2

κ 1.4 -
T 293.15 K

The sin road profile is chosen for these simulations zr = 0.02 sin(4πt). The initial
condition of the system states are set by x1(0) = 0.05 (m), x2(0) = x3(0) = x4(0) = 0 (m),
and x5(0) = 0.5× 105 (Pa).

The prescribed performance constraints are given by ρ0 = 0.058, ρ∞ = 0.0029, ϕ = 1.5
and design parameters κ = 0.98, κ = 0.98. The bandwidth of the ESO system is chosen
by ω0 = 150. Moreover, the constant gains of the adaptive estimation law of RBFNNs are
selected as Λh = 50, n = 21, and δh = 30. The comparison of the control parameters is
given in Table 2.

Table 2. Control parameters.

Controller Parameter

Backstepping k1 = 100, k2 = 20, k3 = 5

ESO
k1 = 100, k2 = 20, k3 = 5

ω0 = 150

Proposed
k1 = 100, k2 = 20, k3 = 5

ω0 = 150, n = 21, Λh = 50
σ = 0.01, ζ = [−2, 0.1, 2]

4.2. Simulation Results

The simulation results of sprung mass displacement and acceleration, tracking error of
sprung mass displacement, RSD, RTF, and control signals of passive suspension, traditional
backstepping, and ESO backstepping, and developed control are displayed in Figures 3–9.
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With the developed control, the ride comfort is strongly improved because the sprung mass
acceleration and displacement have been reduced. By introducing a PPF, the proposed
control can guarantee the displacement of sprung mass convergence in a finite time to get
the ride comfort as shown in Figure 3. Besides, we can see that the time of zero convergence
for the error signals e1 is about t = 1.2 (s) as shown in Figure 4. Moreover, passenger
comfort is strongly improved thanks to the developed method because root mean square
values of chassis acceleration are decreased by 69.43% as shown in Figure 5.
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In comparison with passive suspension, the sprung mass displacement can reduce
with traditional backstepping but there have some high peak values because of external
disturbance. Moreover, the developed method can guarantee the sprung mass deflection,
which is smaller than traditional backstepping and passive suspension. From Figure 6, the
proposed control gives the magnitude of the RSD smaller than the conventional backstep-
ping and passive, and this RSD is guaranteed within limits. The proposed control design
can improve passenger comfort by selecting the sprung mass vertical displacement under
the exogenous road disturbance while keeping the result of RSD within the limit value. It is
also possible to see from the RTF values in Figure 7 that dynamic stroke constraints are satis-
fied because the limit is less than 1. Although both ESO backstepping and proposed control
can ensure that dynamic and steady tracking errors are limited in the PPF constraints, only
the proposed control can converge the system state x1 in a small neighborhood of the origin.
Under the effect of parametric uncertainties, the ESO backstepping needs to consume more
than the proposed control to compensate for this model error as shown in Figure 8.

Figures 10–12 plotted the estimation results of system states under the effect of external
disturbances and their estimation errors. The simulation results show that the ESO can
estimate system states accurately. Because the stiffness coefficient of the air spring depends
on the rubber behavior under vertical displacement, the disturbance observer can estimate
the influent of air spring stiffness and unmodeled dynamic of air pressure to guarantee
the suspension performance. Although estimation errors exist between the real external
disturbance and estimated value, they can be as low as possible by the approximate
selection of observer parameters. The model estimation result of adaptive NNs law is
shown in Figure 13. With the RBFNNs, the developed control approach can provide a
good tracking performance for pneumatic vehicle suspension. Simulation results show that
the proposed control with the PPF is able to satisfy the performance requirements of the
pneumatic suspension more than the traditional backstepping control.
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5. Conclusions

In this study, an ESO-Based Adaptive NNs Backstepping Control with PPF was pro-
posed for pneumatic vehicle suspension under the effect of parametric uncertainties. The
stability problem for suspension systems subject to uncertain parameters, external distur-
bances, and the unmodeled dynamic was solved in this paper. The nonlinear dynamics and
unknown parameters are estimated by the ESO and the uncertainty continuous function of
the car-body mass is compensated by RBFNNs. An improved backstepping scheme based
on PPF constraints is developed for an air bellow actuator to guarantee the system stability
and steady-state tracking error of sprung mass vertical displacement. When the observer
bandwidth of ESO was chosen, the convergence of the ESO and the output tracking are
established in this work. Moreover, the proposed controller-based adaptive NNs can be
more efficient than traditional backstepping control. Finally, the system stability of the
developed control is guaranteed by applying the Lyapunov theory. Simulation results
of RMS of acceleration values decreased by 69.43% when using the proposed control. In
conclusion, this proposed control scheme is not only effective to enhance the passenger
comfort but also to guarantee the road holing, which can be considered as a promising
method for the vehicle industry.
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