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Abstract: The generation and propagation of internal waves in the ocean are a common phenomenon
that plays a pivotal role in the transport of mass, momentum, and energy, as well as in global
climate change. Internal waves serve as a critical component of oceanic processes, contributing to the
redistribution of heat and nutrients in the ocean, which, in turn, has implications for global climate
regulation. However, the automatic identification of internal waves in oceanic regions from remote
sensing images has presented a significant challenge. In this research paper, we address this challenge
by designing a data augmentation approach grounded in a modified deep convolutional generative
adversarial network (DCGAN) to enrich MODIS remote sensing image data for the automated
detection of internal waves in the ocean. Utilizing t-distributed stochastic neighbor embedding
(t-SNE) technology, we demonstrate that the feature distribution of the images produced by the
modified DCGAN closely resembles that of the original images. By using t-SNE dimensionality
reduction technology to map high-dimensional remote sensing data into a two-dimensional space, we
can better understand, visualize, and analyze the quality of data generated by the modified DCGAN.
The images generated by the modified DCGAN not only expand the dataset’s size but also exhibit
diverse characteristics, enhancing the model’s generalization performance. Furthermore, we have
developed a deep neural network named “WaveNet,” which incorporates a channel-wise attention
mechanism to effectively handle complex remote sensing images, resulting in high classification
accuracy and robustness. It is important to note that this study has limitations, such as the reliance on
specific remote sensing data sources and the need for further validation across various oceanic regions.
These limitations are essential to consider in the broader context of oceanic research and remote
sensing applications. We initially pre-train WaveNet using the EuroSAT remote sensing dataset and
subsequently employ it to identify internal waves in MODIS remote sensing images. Experiments
show the highest average recognition accuracy achieved is an impressive 98.625%. When compared
to traditional data augmentation training sets, utilizing the training set generated by the modified
DCGAN leads to a 5.437% enhancement in WaveNet’s recognition rate.

Keywords: MODIS; internal waves; classification; DCGAN; transfer learning; deep neural network;
attention

1. Introduction
1.1. Internal Waves

Internal waves are a phenomenon arising from variations in temperature and salinity
within the ocean, typically occurring in regions with density stratification [1]. These waves
can exhibit significant amplitudes, exceeding 100 m, and travel distances spanning tens to
hundreds of kilometers [2], rendering their detection challenging. Consequently, internal
waves have emerged as a prominent focus of research within the field of oceanography.
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The generation and propagation of internal waves are pervasive phenomena in the
ocean, playing a crucial role in the transport of mass, momentum, and energy within
oceanic systems. Breaking oceanic internal waves induces turbulent mixing, which in turn
facilitates the vertical transport of water, heat, and other crucial climatic tracers within the
ocean. This process holds significant importance as it actively influences the circulation
patterns and the distribution of heat and carbon in the climate system [3], contributing to
global climate change [4]. As a result, they can exert substantial influence on the safety
and efficiency of marine engineering, oceanic communications, and oil exploration [5],
and contribute to broader environmental factors, including their role in global climate
change. Therefore, the study of internal waves in the ocean, particularly through the
automatic recognition of these waves in remote sensing imagery, holds immense academic
and practical significance.

With the continuous advancement of remote sensing technology, the exploration of
internal waves in the ocean has shifted away from traditional field observations. Instead,
researchers have embraced the use of remote sensing imagery, presenting a novel approach
to this study. Among the various remote sensing instruments, the moderate resolution
imaging spectroradiometer (MODIS) stands out as one of the most vital and distinctive
tools currently available. It is integrated into platforms like Terra and Aqua and represents
a state-of-the-art “all-in-one” optical remote sensing device in today’s world.

MODIS boasts an impressive array of data with 36 bands, offering varying spatial
resolutions of 250 m, 500 m, and 1000 m. Its scanning capacity spans an impressive
2330 km [6]. On average, local data can be acquired on a daily basis, and these data are
readily accessible, making them the premier data source for global monitoring purposes.
Nonetheless, the data provided by MODIS images are not only extensive in quantity but
also substantial in size. Given that internal waves within the ocean occupy only a small
fraction of the image area, the initial challenge lies in identifying and isolating images
containing internal waves from the vast MODIS dataset before embarking on the process
of detection and characterization.

1.2. Challenges and Research Objectives

To understand the characteristics of internal waves in MODIS satellite imagery, it is
important to consider their distinctive optical signatures. When examining internal waves
in the ocean through MODIS satellite imagery, they are frequently observed to be more
prevalent in the vicinity of optical glare areas. This phenomenon can be attributed to the
fact that signals received in these regions primarily result from sunlight reflecting off the
sea surface. The presence of internal waves induces alterations in the sea surface roughness,
leading to variations in the gradient of the sea surface at various scales. These variations, in
turn, modulate the intensity of reflected sunlight received by remote sensors. Consequently,
internal waves manifest as stripes with varying degrees of brightness in optical images. In
visible satellite images, the divergent regions within the glare area typically appear as dark
stripes, while the convergent regions appear as bright stripes. Outside the glare area, the
divergent areas are characterized by bright stripes, while the convergent areas exhibit dark
stripes. For a visual representation of how internal waves are depicted in MODIS imagery,
please consult Figure 1.

The classification of remote sensing images depicting oceanic internal waves presents
two significant challenges. Firstly, owing to the high resolution and abundant spatial and
semantic information within remote sensing images, traditional machine learning methods
like SVM, KNN, and decision trees struggle to effectively capture the intricate features
inherent to these images. Secondly, the task of cropping and annotating remote sensing
images is exceptionally labor-intensive, rendering it challenging for researchers to amass a
substantial quantity of labeled image datasets for remote sensing data.

This study aims to address these challenges by developing an innovative approach to
automatically detect and classify internal waves in MODIS satellite imagery, leveraging
advanced deep learning techniques and data augmentation methods. By doing so, we aim
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to contribute to the field of oceanography and remote sensing by providing a more efficient
and accurate means of studying and monitoring internal waves in the ocean, ultimately
enhancing our understanding of their role in oceanic and global climate processes.

Figure 1. Oceanic internal waves in MODIS.

1.3. Contributions

The primary objective of this paper is to introduce an automated deep learning ap-
proach for the identification of internal waves within MODIS images.

1. We devised a modified DCGAN specifically tailored for data augmentation of
MODIS remote sensing images.

2. We developed WaveNet, which incorporates a channel-wise attention mechanism,
with the purpose of identifying internal waves.

3. We established a transfer learning methodology for the pre-training of WaveNet.

1.4. Paper Structure

The structure of this paper is organized as follows: Section 2 presents an overview
of related work. The proposed approach is detailed in Section 3. Section 4 outlines
the experimental methodology and reports the obtained results. Finally, in Section 5,
conclusions and discuss possible avenues for future research are presented.

2. Related Work

Previous classification models, such as neural networks and support vector machines
(SVMs) [7], typically featured a network structure with either one hidden layer node or
none at all, earning them the designation of “shallow” classification models. However,
these shallow classification models are categorized under shallow learning and possess
limited capability to extract deeper features from constrained datasets, thereby constraining
their overall model generalization ability [8].

In contrast, deep learning, as a novel machine learning paradigm, aspires to emu-
late the analytical learning capabilities of the human brain. By leveraging substantial
volumes of training data and employing deep models with multiple hidden layers, deep
learning can uncover more valuable features, consequently enhancing classification ac-
curacy. Unlike shallow learning, deep learning architectures are characterized by their
depth, typically consisting of more than three layers of hidden nodes. This depth enables
them to explore deeper and more abstract features, thereby acquiring more precise feature
information and ultimately affording superior generalization capabilities. In recent years,
deep learning has achieved remarkable success in various image classification applications,
prompting an increasing number of researchers to apply it to the domain of remote sensing
image processing.

Deep learning has been integrated into the classification of hyperspectral data to
harness the wealth of spectral information within hyperspectral images [1]. Notably, Haut
et al. [9] introduced an innovative classification model that leverages both spectral and
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spatial information present in hyperspectral data. This approach effectively mitigates the
issue of rapid overfitting and accuracy degradation typically encountered when using
convolutional neural networks (CNNs) with limited training data.

Bao et al. [10] employed the faster R-CNN framework, incorporating convolutional
neural network features, to detect oceanic internal waves. Their efforts resulted in an
impressive recognition rate of 94.78%. On a related note, Yu et al. [11] harnessed the
lightweight convolutional neural network MobileNetv2 to extract deep and abstract image
features. By combining feature fusion with bilinear pooling, they achieved higher accuracy
in the realm of remote sensing image classification while utilizing fewer parameters and
computational resources, surpassing other state-of-the-art methods.

In scenarios involving small-sample datasets, Li et al. [12] introduced a novel fault-
tolerant deep learning approach known as RSSC-ETDL for remote sensing image scene
classification. This method effectively mitigates the adverse effects stemming from inaccu-
rately labeled datasets.

In recent years, researchers have also proposed many excellent models. In 2022, Zheng
et al. [13] proposed a stripe segmentation algorithm based on SegNet for synthetic aperture
radar (SAR) images. This method effectively identifies the presence of oceanic internal
waves in SAR images and accurately locates both light and dark stripes associated with
these waves. Also using SAR images, Tao et al. [14] construct a comprehensive dataset of
390 Sentinel-1 synthetic aperture radar (SAR) images, spanning multiple oceanic regions.
These images are used to develop a machine learning model achieving high precision and
recall when applied to detect internal waves (IW) across different scales and propagation
directions in SAR imagery. Also in that year, Serebryany et al. [15] conducted an analysis
using a collection of optical multispectral satellite images, including Sentinel-2 and Landsat-
8 data, in conjunction with sea-truth data to identify internal wave features within the
Black Sea.

Deep learning models typically necessitate multiple iterations of data analysis and
processing, often involving substantial amounts of data [16]. Although the above work also
has high performance in identifying ocean internal waves, it either requires a large number
of high-quality datasets as data support, or the network model has room for improvement.
However, the challenges associated with image cropping, annotation, and the acquisition of
rare remote sensing images can present substantial obstacles for researchers when striving
to compile extensive remote sensing image datasets during the data collection phase.
Therefore, there is a special need in the field for a method that can greatly increase the data
volume of remote sensing datasets, thereby effectively reducing the cost of annotation, and
at the same time have a very high recognition rate of ocean internal waves.

This paper conducts classification on full-space images acquired through the Moderate
Resolution Imaging Spectroradiometer (MODIS), encompassing four distinct categories:
ocean scenes, clouds, terrestrial landscapes, and ocean waves. To address the challenge of
limited dataset availability, the author employs an enhanced deep convolutional generative
adversarial network (DCGAN) to substantially augment the data within each category
sample. Additionally, a novel residual network is designed, taking into consideration the
channel information of deep features, termed “WaveNet,” to enable automated detection
of internal ocean waves in MODIS images through an end-to-end approach.

3. Methods and Data

This section will introduce in detail the collection of remote sensing data, the construc-
tion of datasets, the modified DCGAN model structure and the WaveNet model structure.
The entire workflow diagram is shown in Figure 2.



Appl. Sci. 2023, 13, 11235 5 of 20

Figure 2. Flow chart of internal waves detection framework.

3.1. Data Augmentation
3.1.1. MODIS Images

First, obtain the HDF format data of MOD02QKM from the official website of the
National Aeronautics and Space Administration (NASA) (https://ladsweb.modaps.eosdis.
nasa.gov, accessed on 1 October 2022) [17]. Research [18] shows that internal ocean waves
in the South China Sea occur frequently in summer, but less frequently in other seasons.
Therefore, the MODIS data collection time used in this article is from 1 June to 31 August
every year, and is conducted in the northern South China Sea. In order to reflect the data
enhancement work, this article only collected a total of 1217 pieces of data from 2019 to
2022. Then, use ENVI Classic 5.3 professional softwareto read the HDF format file in
Earth View 250M Reflective Solar Bands Scaled Integers format into BSQ format, then save
it into IMG image format, and apply histogram equalization operation to improve the
brightness of the image, where the maximum resolution. The rate is 5416 × 8120. The image
is then split into smaller sub-images, each 64 × 64 pixels in size. Finally, experts who have
studied remote sensing for many years divided these sub-images into different categories,
including 700 images each of internal waves, clouds, oceans, and land. Figure 3 shows
some classification results. The above process finally provides data support for this study,
allowing us to study the existence and characteristics of internal waves in the ocean.

Clouds

Ocean

Land

Ocean
internal
waves

Figure 3. Partial data samples of clouds, ocean, land, and oceanic internal waves.

3.1.2. Data Augmentation

Currently, data augmentation techniques can be categorized into two main groups: tra-
ditional data augmentation methods and image generation algorithms based on generative
adversarial networks (GANs), which are relatively new and capable of generating images
with similar features to the original dataset but different from them. This approach signifi-
cantly enhances dataset diversity, thereby improving the model’s generalizability [19].

https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
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In order to compare the effects of these two data enhancement methods on training
models, we applied these two methods to the original data and conducted experimental
comparisons. First, we applied ten traditional data augmentation methods to each class
of training samples. These methods include color truncation, min–max normalization,
standard normalization, flipping, sharpening, Gaussian filtering, random erasing, random
brightness transformation, random contrast transformation, and uniform noise. For each
augmentation, we randomly selected 130 images, resulting in a total of 1300 augmented
samples for each class of training data. When combined with the original dataset, this
created a total of 2000 training samples for each class, constituting our Training Set 1.

Subsequently, we applied the GAN to data augmentation. Generative adversarial
networks (GANs) are a type of deep learning model employed for generating synthetic
data, including images [20]. This method leverages two neural networks: a generator and a
discriminator. The generator’s objective is to produce synthetic data that closely resembles
real data by learning the distribution of real data [21]. Conversely, the discriminator is
tasked with distinguishing between real and synthetic data. These two networks engage
in a competitive process during training, leading to the continual improvement of the
generator’s ability to produce realistic synthetic data and the discriminator’s ability to
effectively differentiate between real and synthetic data.

The objective function V(D; G) for the GAN is as follows:

minGmaxDV(D, G) = EX∼Pdata(x)
[logD(x)]Ez∼Pz(z)[log(1− D(G(z)))] (1)

In the equations provided, where x represents a real sample, D(x) signifies the prob-
ability assigned by the discriminator networks for classifying x as a real sample. G(z)
corresponds to a sample generated from noise z by the generator network G, and D(G(z))
indicates the probability assigned by the discriminator network D for classifying G(z) as a
real sample.

Deep convolutional generative adversarial networks (DCGAN) [22] represent a vari-
ant of GANs designed to transform noise into images. They excel at generating images that
fall within the same category as those present in the training set. DCGANs combine convo-
lutional neural networks (CNNs) with unsupervised learning in the context of supervised
learning, finding widespread applications in image generation.

In order to facilitate the generation of remote sensing images with dimensions of
64 × 64 pixels, we have made modifications to the DCGAN network architecture, as de-
picted in Figure 4. These modifications include the use of convolutional neural networks
as both the generator and discriminator, the implementation of batch normalization for
expedited training, the utilization of the LeakyReLU activation function to overcome the
limitations of ReLU, the elimination of fully connected layers to prevent overfitting, the
adoption of the Adam optimizer, and the capacity to generate high-quality images.

Figure 4. Modified DCGAN network structure.

We applied the modified DCGAN data augmentation to clouds, land, ocean, and
internal waves, with parameters listed in Table 1.
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Table 1. Experimental parameters for the modified DCGAN network.

Original Data
Volume Batch Size Learning Rate Training Epochs Optimizer

Exponential Decay
Rate for the First

Moment Is
Estimated in the

Optimizer

Exponential Decay
Rate for the

Second-Moment
Estimates in the

Optimizer

700 16 0.0005 1000 Adam 0.5 0.999

The modified DCGAN network is trained using the original dataset, with the addition
of a dropout layer at the end of each layer in the generator. This dropout layer serves to
reduce the model’s reliance on specific input features, enhance its generalization ability,
and mitigate overfitting. The dropout parameter is set to 0.5, indicating that 50% of the
neurons are randomly deactivated during each training iteration.

The training process for the modified DCGAN network has demonstrated success, as
evidenced by the stabilization of loss functions for both the generator G and the discrimina-
tor D after 500 rounds. This suggests that the model has effectively learned the underlying
data features and can generate images that closely resemble those in the original dataset.

Following this, the generator G is employed to generate 1300 images for each category,
including ocean internal waves, clouds, land, and ocean. A selection of these generated
images is presented in Figure 5. To further enhance the dataset, these generated images were
combined with the original dataset, resulting in the creation of a new data augmentation
training set referred to as Training Set 2.

The generated images, whether depicting clouds, oceans, land, or internal waves,
convincingly simulate various real-world scenarios. These images effectively capture the
texture of cloud layers, the topography of the land, the undulations of the ocean’s surface,
and the oscillations of internal waves. Consequently, our approach provides an effective
means to expand existing remote sensing image datasets, with potential applications
extending to various other applications within the realm of remote sensing. The dataset
consisting of original data, traditional data augmentation, and the modified DCGAN-
generated data are shown in Table 2.

In Part 4, we will compare the effects of two data enhancement methods in model training.

Clouds

Ocean

Land

Ocean
internal
waves

Figure 5. Some of the images generated by the modified DCGAN network.
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Table 2. Number of training and testing sets.

Unit: Images Original Data
Volume

Dataset Size for
Traditional Data
Augmentation

Dataset Size
Generated by
the Modified

DCGAN

Training Set 1 Training Set 2 Test Set

Cloud 700 1300 1300 2000 2000 400
Land 700 1300 1300 2000 2000 400
Ocean 700 1300 1300 2000 2000 400

Oceanic internal waves 700 1300 1300 2000 2000 400

3.2. Construction of the WaveNet Network Model

This article provides a detailed introduction to a residual convolutional neural network
called “WaveNet,” enhanced by a channel attention mechanism. WaveNet is designed
to effectively process complex remote sensing images while achieving high classification
accuracy and robustness. It achieves greater network depth by sequentially combining
convolutional layers and pooling layers, enabling autonomous learning and the capture of
essential features in remote sensing images. Simultaneously, it employs a channel attention
mechanism to assign varying weights to channels within the feature map. These learned
features are subsequently consolidated through a fully connected layer to produce the
final classification result. The experimental findings presented in Section 4 unequivocally
demonstrate the outstanding performance of WaveNet in diverse image classification tasks.
Consequently, this method holds immense potential for widespread application in remote
sensing image processing and is poised to contribute significantly to advancements in the
field of remote sensing image classification.

3.2.1. Residual Block

The residual block structure in WaveNet is illustrated in Figure 6. The size of the input
feature map is C/2 × H × W, where C represents the number of channels in the feature map,
and H and W represent the height and width of the feature map, respectively. Between
every two convolutional layers, there is a batch normalization layer and a rectified linear
unit (ReLU) activation function [23]. The use of batch normalization ensures that the input
distribution of each neuron remains consistent, which can accelerate the convergence speed
of the network and avoid the issues of gradient vanishing and exploding, thereby improving
the generalization performance of the model. ReLU is a commonly used activation function
in deep learning. ReLU is defined as follows:

f (x) = max(0, x) (2)

In short, for input x, if x is greater than zero, then output x, otherwise output zero. The
advantage of the ReLU activation function is its simplicity and non-linearity. Compared
with traditional activation functions (such as sigmoid or tanh), ReLU is more stable for
the back propagation of gradients and helps alleviate the vanishing gradient problem.
In addition, ReLU introduces non-linearity, allowing the neural network to learn more
complex functions.

In the architecture of the residual block within WaveNet, the initial convolutional
layer plays a pivotal role. Its primary function is to double the number of channels in the
feature map while halving its spatial size. This process is crucial for maintaining consistent
feature map sizes during the initial addition operation. To achieve this, we employ a 1 × 1
convolutional layer that processes the input data, augmenting dimensionality along the
channel axis and aligning it with the dimensions of other components within the residual
block [24].
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Figure 6. Residual block structure in WaveNet.

Following this dimension alignment, a 3 × 3 convolutional layer is utilized for feature
extraction. Importantly, the resulting feature map maintains the same spatial dimensions as
the input feature map. Subsequently, the output feature map from the initial convolutional
layer undergoes further feature extraction via another 3 × 3 convolutional layer. An
element-wise addition operation is then applied to the output feature map of the second
convolutional layer, effectively creating a residual connection. This connection enables the
network to learn the difference between the input and output, which enhances network
optimization and training.

After the residual connection, we apply a ReLU activation function to the feature
map, effectively setting all negative values to zero. This introduces non-linear features and
amplifies the network’s representational capacity. Through this sequence of operations,
the residual block efficiently extracts and propagates essential feature information, thereby
enhancing the network’s overall performance and its ability to learn complex patterns
within remote sensing images.

The mapping relationship in the residual block can be succinctly represented as follows:

y = F(x, Wi) + Wsx (3)

In this context, we utilize the symbols x and y to represent the input and output
feature maps of the residual block, respectively. The primary objective of the residual
block is to acquire knowledge of the residual mapping function F(x, Wi), with Wi denoting
the set of parameters involved in the learning process. To facilitate the integration of
shortcut connections and ensure dimension alignment, a 1 × 1 convolutional layer is
introduced, with parameters Ws responsible for managing dimension adjustments. These
pivotal steps within the residual blocks of WaveNet effectively facilitate the extraction
of essential features and maintain stable gradient flow during training. Consequently,
this simplifies the training of deep neural networks by addressing challenges related to
vanishing and exploding gradients.

3.2.2. SE Residual Block

The squeeze and excitation (SE) residual block, illustrated in Figure 7, represents an
essential architectural component within WaveNet. It combines the benefits of a traditional
residual block with a channel-wise attention mechanism. This integration enhances the
model’s capability to capture and leverage crucial global information across feature chan-
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nels, facilitating the recognition of important patterns and relationships within the data.
The SE residual block plays a pivotal role in enhancing the overall performance of the
WaveNet model.

Figure 7. The squeeze and excitation attention mechanism in the residual block (SE residual
block) structure.

The initial size of the input feature map X0 of the SE residual block is C × H × W.
and the output feature map X after two layers of convolution operations will be used as
the input of global average pooling. We will perform feature compression on the feature
map X along the spatial dimension by applying global average pooling. This operation
transforms each two-dimensional feature channel into a single scalar value. Each scalar,
in a sense, possesses a global receptive field and shares the same dimensionality as the
number of input feature channels. These scalars represent the global response distribution
across feature channels and enable layers closer to the input to access global information.
Consequently, feature compression transforms the size of the feature map from C × H × W
to C × 1 × 1. Following feature compression, the resulting compressed feature vector
serves as the input to the channel-wise attention mechanism. This integrated mechanism
effectively allows the model to capture and leverage global information across feature
channels, thereby enhancing its capacity to recognize important patterns and relationships
within the data.

The formula of global average pooling of the SE residual block can be expressed
as follows:

Fc(X) =
1

H ×W

H

∑
i=1

W

∑
j=1

X(i, j) (4)

In the equation, Fc represents the compressed feature map, and X represents the output
feature map of the last convolutional layer.

The subsequent two fully connected layers are used to model the correlations between
channels and output weights equal to the number of input feature channels. Firstly, in
the first fully connected layer, we reduce the dimensionality of the channel features to
1/16 of the original size. Then, a ReLU activation function is applied for non-linear
transformation, followed by another fully connected layer to increase the dimensionality
back to the dimension of the original feature channels. This design, compared to using
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only one fully connected layer, offers greater non-linear capability, enabling better fitting
of complex correlations between channels, while also reducing the number of parameters
and computational complexity. For the fully connected layer input FC, the output can be
expressed as:

Fo = (ReLU(Fc × w1 + b1))× w2 + b2 (5)

In the equation, Fo represents the final output of the fully connected layer, and w1 and
b1 denote the weight and bias of the first fully connected layer, respectively. Similarly, w2
and b2 represent the weight and bias of the second fully connected layer.

The output from the final fully connected layer undergoes a non-linear transforma-
tion facilitated by a sigmoid activation function. The formula of the sigmoid function is
as follows.

Sigmoid(x) =
1

1 + e−x (6)

The sigmoid function generates a normalized weight for each channel within the range
of 0 to 1. These normalized weights are then applied in an element-wise multiplication
operation with the original channel features, thus finalizing the re-scaling of the original
features along the channel dimension. This re-scaling process allows the network to assign
weights to individual features based on their importance for the given classification task.
Channels that are more relevant to the task receive higher weights, while the influence of
less relevant channels is suppressed. By employing this approach, the network effectively
harnesses the inter-channel correlations, elevates its feature representation capacity, and
enhances overall classification performance. This mechanism ensures that the network
pays greater attention to the most informative features, thereby improving its ability to
recognize complex patterns and make accurate predictions. This process can be represented
as follows:

X́ = X� Sigmoid(Fo) (7)

X́ represents the feature map after re-scaling. X denotes the output feature map of the
last convolutional layer. Fo represents the output of the last fully connected layer.

For the SE residual block, the size of the final output feature map Y is also C × H × W,
which can be expressed by the following formula:

Y = ReLU(X0 + X′) (8)

Among them, X0 represents the input feature map of the SE residual block, X́ repre-
sents the feature map after re-scaling.

3.2.3. WaveNet

The WaveNet network architecture is composed of several key components, including
convolutional layers with a 3 × 3 kernel size, max-pooling layers with a 2 × 2 size, three
residual blocks, three channel-wise attention mechanism residual blocks, and a global
average pooling layer. The final layer is a fully connected layer that utilizes softmax
transformation to derive the probability distribution for each sample across different classes.

For input remote sensing images with dimensions of 3 × 64 × 64, each layer of the
WaveNet network has specific input and output feature map sizes, as illustrated in Table 3.

To manage computational complexity effectively, WaveNet initially employs a se-
quence of 3 × 3 convolutional layers and 2 × 2 max-pooling layers to reduce the feature
map size. However, in the first residual block, the feature map size remains unchanged to
preserve crucial information, while the number of channels is doubled. In the subsequent
three residual blocks, the channel count is doubled, but the height and width are halved by
the first convolutional layer.

The final layer in the network is a fully connected layer that incorporates softmax
transformation. The last layer in the network is a fully connected layer containing a softmax
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transformation. This layer converts the final output of the network into a probability
distribution between 0 and 1. The formula of the softmax function is as follows:

pi =
ezi

∑K
j=1ezj

(9)

Among them, pi represents the probability of the i-th category, zi is the i-th element of
the input vector z, and K is the total number of categories, which is 4 in this article.

The softmax function has specific advantages in classification tasks because it can
calculate the predicted probability for each class, which is very useful for the training and
interpretation of neural networks. The softmax function will emphasize the element with
the largest value in the input vector so that its corresponding category probability is the
highest, thereby classifying, and ultimately determines the final classification result.

Table 3. Size changes of feature map.

Network Layer Input Feature Map Size Output Feature Map Size

3 × 3 Conv 3 × 64 × 64 64 × 64 × 64
2 × 2 Max Pooling 64 × 64 × 64 64 × 32 × 32

Residual Block 64 × 32 × 32 128 × 32 × 32
SE Residual Block 128 × 32 × 32 128 × 32 × 32

Residual Block 128 × 32 × 32 256 × 16 × 16
SE Residual Block 256 × 16 × 16 256 × 16 × 16

Residual Block 256 × 16 × 16 512 × 8 × 8
SE Residual Block 512 × 8 × 8 512 × 8 × 8

Global Average Pooling 512 × 8 × 8 512 × 1 × 1
Fully Connected 512 4

3.3. Transfer Learning

In the domain of deep learning models, training models with numerous hidden layers
and parameters often demand a substantial amount of high-quality labeled data, which can
result in significant time and computational costs. However, when dealing with satellite
imagery of oceanic internal waves, data availability is frequently limited, presenting a
challenge in training an effective deep learning model with a small dataset. To address this
limitation, transfer learning has emerged as a valuable approach in deep learning model
training, alleviating the data requirement.

Transfer learning involves leveraging a pre-trained model, which is then fine-tuned
for a new task. The fundamental concept of transfer learning is to initially train the network
model parameters using large-scale datasets and subsequently fine-tune them for the
specific image recognition task at hand. This approach greatly assists the classifier in
performing image recognition tasks, even when confronted with limited data resources.

The EuroSAT remote sensing dataset, as described in reference [25], comprises 10 dis-
tinct scene categories, including agricultural land, forest, herbaceous vegetation, highways,
industrial areas, pastures, permanent crops, residential areas, rivers, and lakes, with a
total of 3000 samples for each category. The primary objective of this study is to evaluate
the performance of employing the pre-trained WaveNet network for classification tasks
using the EuroSAT remote sensing dataset. Detailed parameter settings for this study are
provided in Table 4. These settings cover various aspects of the model and training process,
offering a comprehensive overview of the experimental configuration and methodology
employed in the classification task using the EuroSAT dataset.

Table 4. Pre-trained network parameters.

Batch Size Learning Rate Training Epochs Optimizer

32 0.001 500 Adam



Appl. Sci. 2023, 13, 11235 13 of 20

During the fine-tuning stage, the parameters of the WaveNet network model are
initialized with pre-trained parameters, and the output of the last fully connected layer is
adjusted to 4 in order to perform classification on the MODIS image dataset. Utilizing a
pre-training strategy instead of initializing the network parameters with random weights
allows the WaveNet model to initially learn rich texture features from the EuroSAT dataset.
This approach not only eliminates the need to train the model from scratch but also
helps overcome potential overfitting issues, thereby enhancing the model’s performance
in situations with limited data. By leveraging pre-training, the model can benefit from
the learned representations, enabling it to generalize more effectively and achieve higher
performance even when the available data are limited.

4. Experiments and Results

In this paper, we will use PyTorch as a deep learning framework to build network
models. We also utilize graphics processing units (GPUs) to improve computing speed and
training efficiency during network training.

In the experimental phase, we will first analyze the quality of data generated based on
the modified DCGAN through the t-SNE dimensionality reduction method. Then, compare
the training effects of Datasets 1 and 2 obtained by using two different data enhancement
methods on the WaveNet network. Subsequently, we will compare the training effects
of the WaveNet network using the transfer learning strategy and not using the transfer
learning strategy. Finally, we compare the results of WaveNet with previous related work.

Table 5 outlines the hardware and software environment during the experiment.

Table 5. Parameters of experimental conditions.

Hardware Equipment Software Environment

CPU: Intel(R) Xeon(R) Gold 5218R 2.10 GHz Rocky Linux 8
RAM:32GB CUDA 11.4

GPU: NVIDIA RTX 3090 Pytorch 1.12.1

4.1. Analysis of Generated Images Using the Modified DCGAN

In order to analyze the data distribution generated by the modified DCGAN more intu-
itively, the t-distributed stochastic neighbor embedding (t-SNE) [26] dimensionality reduc-
tion method is used in this paper. t-SNE is an algorithm for visualizing high-dimensional
datasets by measuring the distance between each data point and other data points to
calculate their correlation [27]. We randomly select 200 images from each category of the
original data and the modified DCGAN-generated data for testing (as shown in Figure 8),
where different colors represent different labels.

The results of t-SNE dimensionality reduction highlight the effectiveness of the mod-
ified DCGAN in generating synthetic remote sensing images that closely resemble real-
world images while introducing valuable diversity. The key takeaways from this re-
search include:

1. Realism and Diversity: The modified DCGAN has demonstrated its capability to
produce synthetic remote sensing images that exhibit realism, making them highly similar
to authentic remote sensing data. Additionally, the diversity observed within the generated
images is a significant advantage. The ability to generate diverse samples within each class
contributes to a more comprehensive and representative dataset.

2. Matching Feature Distribution: The use of t-SNE for dimensionality reduction and
visualization has substantiated that the feature distribution within the generated images
closely aligns with that of real images. This alignment suggests that the modified DCGAN
has successfully captured and retained essential features present in real remote sensing
data, enhancing the data’s quality.

3. Enhanced Data for Training: By effectively generating realistic and diverse data
samples, the modified DCGAN provides a valuable resource for training neural network
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models. This expanded dataset can be instrumental in improving the generalization
capabilities of recognition models, as it exposes them to a wider range of scenarios and
variations present in the real world.

Figure 8. T-SNE dimensionality reduction is applied to different data augmentation datasets, where
red represents the data generated by the modified DCGAN and blue represents the original data.

4.2. Comparison of Classification Results of the WaveNet Network Using Different Training Sets

This article evaluates the WaveNet model using the overall accuracy (OA) and average
accuracy (AA) metrics for classification. The confusion matrix S is a L× L matrix, L that
represents the number of classes. Sij represents the number of test samples that belong to the
class i and were classified as a class j. The total number of test samples is M = ∑L

i ∑L
j Si,j.

The overall accuracy (OA) metric provides a good description of the overall classi-
fication accuracy, where OA is calculated by dividing the number of correctly classified
samples by the total number of test samples, which can be represented as follows:

OA =
∑L

i Si,j

M
× 100% (10)

The average accuracy (AA) metric provides a good description of the classification
performance differences among each class, representing the average classification accuracy
for each class, which can be represented as follows:

AA =
∑L

i (
Si,j

∑L
j Si,j

)

L
× 100% (11)
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Precision is a metric widely used to evaluate the performance of classification models.
It measures the accuracy of the model in predicting positive examples. The calculation
formula of accuracy is as follows:

Precisioni =
Si,i

∑L
j Sj,i

× 100% (12)

In this formula, Precisioni represents the precision for class i. Si,i denotes the number
of samples correctly classified as class i, and ∑L

j Sj,i represents the total number of samples
predicted as class i.

Recall is also one of the indicators widely used to evaluate the performance of clas-
sification models. It measures the proportion of actual positive examples identified by
the model, that is, how many of all actual positive examples were correctly predicted as
positive by the model. The calculation formula of recall rate is as follows:

Recalli =
Si,i

∑L
j Si,j

× 100% (13)

In this formula, Recalli represents the recall for class i. Si,i denotes the number of
samples correctly classified as class i, and ∑L

j Si,j represents the total number of samples
actually belonging to class i.

To investigate whether the images generated by the modified DCGAN network possess
features similar to those of real images and whether they are more effective as a data
augmentation technique than traditional methods, enhancing the network’s generalization
ability, we conducted a series of comparative experiments. The overall accuracy (OA) and
average accuracy (AA) experimental results are shown in Table 6. The precision of each
category is shown in Table 7. The recall rates of each category are shown in Table 8.

Table 6. Accuracy results of WaveNet under the same experimental parameters using training sets
based on traditional data augmentation and DCGAN-generated data augmentation.

Traditional Data
Augmentation/%

Data Augmentation Based
on the Modified DCGAN/%

Overall accuracy 93.188 98.625
Accuracy of cloud recognition 97.000 99.750
Accuracy of land recognition 90.750 97.250
Accuracy of ocean recognition 90.250 98.500
Accuracy of oceanic internal

waves recognition 94.750 99.000

Table 7. Results of precision of WaveNet under the same experimental parameters using a training
set based on traditional data augmentation and DCGAN-generated data augmentation.

Traditional Data
Augmentation/%

Data Augmentation Based
on the Modified DCGAN/%

Precision of cloud recognition 92.38 98.28
Precision of land recognition 91.44 98.73

Precision of ocean recognition 91.62 98.25
Precision of oceanic internal

waves recognition 97.43 99.25

By using the modified DCGAN data augmentation method proposed in this paper,
we observed an overall improvement of 5.437% in the classification accuracy of the test
set, with all four types of remote sensing images showing increased recognition rates.
Specifically, the recognition accuracy of clouds, land, oceans and internal waves improved
by 2.75%, 6.5%, 8.25%, and 4.25%, respectively. Thanks to the modified DCGAN data
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enhancement method proposed in this article, the WaveNet model has also been greatly
improved on the test set in terms of precision and recall indicators of each category. For
example, the recognition accuracy of land increased by 7.29%, while the internal accuracy
of identifying waves increased by 1.82%; the recall rate of identifying oceans increased by
8.25%; and the recall rate of identifying internal waves also increased by 4.25%.

Table 8. Results of recall of WaveNet under the same experimental parameters using a training set
based on traditional data augmentation and DCGAN-generated data augmentation.

Traditional Data
Augmentation/%

Data Augmentation Based
on the Modified DCGAN/%

Recall of cloud recognition 97.00 99.75
Recall of land recognition 90.75 97.25

Recall of ocean recognition 90.25 98.50
Recall of oceanic internal

waves recognition 94.75 99.00

4.3. Discussion

For fair comparison, all works are pre-trained on the EuroSAT dataset. And the hyper-
parameter settings are as shown in Table 9.This article shows the performance comparison
results of each model on the test set in Table 10. Our proposed WaveNet achieves the
highest accuracy, which further illustrates the effectiveness of the WaveNet model. Other
models have a high number of layers and a large number of parameters, but their perfor-
mance is poor. This may be because the larger the model, the larger the dataset required for
learning to ensure that the model is effective.

Figure 9 shows the t-SNE 2D visualization of semantic features extracted by WaveNet
on datasets enhanced by traditional data augmentation and data augmentation based on
the modified DCGAN, respectively. The feature distribution of the same type of data has
a large overlap, while the data of different types are far apart. The feature distribution
of each type of image shows an obvious balloon-like distribution, which shows that for
WaveNet, these subtle features are distinguishable.

(a) (b)

Figure 9. Classification results of WaveNet using different data augmentation methods. (a) Classifica-
tion results of WaveNet using the DCGAN-augmented dataset. (b) Classification results of WaveNet
using the traditionally augmented dataset.

Table 9. Hyperparameters for training.

Batch Size Learning Rate Training Epochs Optimizer

128 0.001 500 Adam
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Table 10. Performance comparison on the dataset.

Methods Overall Accuracy/% Accuracy of Oceanic Internal Waves Recognition/%

AlexNet [28] 95.00 95.25
VGG11 [29] 97.875 96.75
VGG16 [29] 97.50 96.25

GoogLeNet [30] 98.50 98.75
Resnet18 [24] 98.125 98.75

WaveNet (ours) 98.625 99.00

4.4. Display of Test Results

The results shown in Figure 10 demonstrate that by cropping the original remote
sensing images and inputting them into the WaveNet network for classification, the ocean
internal waves in the MODIS images were successfully identified with high accuracy. This
is a notable achievement as accurately identifying oceanic internal waves is a challenging
task in remote sensing image analysis.

By outlining the areas classified as “internal waves” in the original image, the figure
provides a visual representation of the algorithm’s effectiveness in detecting these features.
This successful identification of oceanic internal waves has practical implications for various
applications, including oceanography and environmental monitoring, where the detection
and tracking of such phenomena are crucial.

(a) (b)

Figure 10. Display of test results: (a) a whole remote sensing image; (b) remote sensing images after
being detected.

5. Conclusions

This paper uses MODIS remote sensing data to produce different types of remote
sensing image samples, including internal waves, processes these images, and generates a
database including internal waves. In addition, this paper proposes an end-to-end method
that uses deep learning technology to improve the recognition performance of MODIS
remote sensing images. One of the key contributions is the use of a modified DCGAN
network for data augmentation, which significantly improves the diversity of the dataset
and enhances the generalization ability of the recognition model. This method has the
following advantages: (1) Reduce data collection costs: collecting and labeling large-scale
remote sensing datasets is expensive and time-consuming. By using the modified DCGAN
to generate data, the time and resources for collecting real data can be effectively reduced;
(2) Increase data diversity: The data generated by the modified DCGAN are very similar to
real remote sensing images. The data it generates contain a wider range of variations and
scenarios, helping network models learn and process more complex real-world data more
effectively; (3) Improve generalization ability: The combination of real data and synthetic
data improves the generalization ability of the model. This means that the trained model is
more able to accurately classify and identify new, unknown data.
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Another contribution lies in the design of the WaveNet network with excellent recog-
nition performance. By adding a channel attention mechanism to the deep convolutional
layer, WaveNet can pay different attention to each channel of the feature map, thereby
more effectively learning features related to remote sensing classification. Moreover, the
convolutional layers of WaveNet have a residual structure, which allows WaveNet to avoid
overfitting problems caused by too deep layers in actual training.

By combining the above methods, we have improved the recognition accuracy of
remote sensing image classification tasks. This has practical applications in many fields,
such as environmental monitoring, early warning of marine disasters, detection of internal
ocean waves, etc. However, due to the fact that the data come from optical remote sensing
satellites, it may be difficult to obtain sea surface data when the weather is bad, resulting in
certain limitations in actual citation.

In future research, we plan to further explore how to integrate geographical location
information into remote sensing images to further improve the practicality of the research.
Specifically, we plan to collect data on the geographical coordinates of where remote sensing
images were taken and associate these data with the images. Through this association we
can achieve the following goals.

Geographical information feature extraction: We plan to use geolocation information
to extract information related to geographical features in images. For example, we can
determine the distance of waves within the ocean from the shoreline in an image, as well as
the shape and wavelength of the waves. This information is of great significance to fields
such as ocean research.

Environmental monitoring and management: Geolocation information can also be
used for environmental monitoring and management. We plan to use this information
to track changes in specific areas, such as changes in land use or changes in ocean water
quality. This will lead to a better understanding and management of natural resources.

Geographic Information System (GIS): We also plan to use remote sensing images
in conjunction with GIS technology to create a geographic information system. This will
enable users to better visualize and analyze geographic data and support a variety of
applications, from urban planning to natural disaster management.

These works will help apply remote sensing images to a wider range of fields and
improve the practicality and adaptability of models.
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