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Abstract: Medical image registration is a fundamental and indispensable element in medical
image analysis, which can establish spatial consistency among corresponding anatomical structures
across various medical images. Since images with different modalities exhibit different features,
it remains a challenge to find their exact correspondence. Most of the current methods based on
image-to-image translation cannot fully leverage the available information, which will affect the
subsequent registration performance. To solve the problem, we develop an unsupervised multimodal
image registration method named DTR-GAN. Firstly, we design a multimodal registration framework
via a bidirectional translation network to transform the multimodal image registration into a unimodal
registration, which can effectively use the complementary information of different modalities. Then,
to enhance the quality of the transformed images in the translation network, we design a multiscale
encoder–decoder network that effectively captures both local and global features in images. Finally,
we propose a mixed similarity loss to encourage the warped image to be closer to the target image in
deep features. We extensively evaluate methods for MRI-CT image registration tasks of the abdominal
cavity with advanced unsupervised multimodal image registration approaches. The results indicate
that DTR-GAN obtains a competitive performance compared to other methods in MRI-CT registration.
Compared with DFR, DTR-GAN has not only obtained performance improvements of 2.35% and
2.08% in the dice similarity coefficient (DSC) of MRI-CT registration and CT-MRI registration on the
Learn2Reg dataset but has also decreased the average symmetric surface distance (ASD) by 0.33 mm
and 0.12 mm on the Learn2Reg dataset.

Keywords: multimodal image registration; image-to-image translation; unsupervised; deep learning

1. Introduction

Medical image registration establishes the precise alignment of medical images for
subsequent medical analysis. In medical image analysis, multimodal image registration has
a variety of applications, including image-guided interventions, diagnosis, and treatment
planning. MRI is frequently used in conjunction with CT for MRI radiation therapy [1–3].
MRI has great soft tissue contrast and may be utilized to accurately portray artificial
organs, and CT provides anatomical information along with the electron density for
treatment planning and dose computation. Due to their complementary advantages,
MRI-CT registration is often required to accurately characterize tumors and organs at risk
(OAR) [4]. However, CT and MRI images are often acquired using different devices from
the same patient, and the patient’s position inevitably varies across modalities. Therefore,
it is critical to align MRI images with CT images to facilitate diagnosis and treatment.
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Compared with unimodal registration, the main challenge for multimodal image
registration is the large differences in grayscale and texture between the different modalities,
as well as the difficulty in finding the optimal transformation parameters. As abdominal
images contain deformable organs and tissue caused by respiration and other physiological
processes, abdomen registration is a challenging problem. The multimodal registration of
the abdomen requires consideration of deformation, organ shape variation, and intensity
discrepancy between imaging modes. For example, in the case of the liver, the grayscale
values of CT and MRI images differ significantly, making it difficult to measure the similarity
between the two modalities. Due to the presence of lower tissue contrast in CT images and
the lack of obvious structured information in MRI, the image synthesis model from the CT
to MRI modality has stronger nonlinearity.

With the development of deep learning-based methods, significant results have been
obtained in medical image registration. Deep learning-based methods are mainly classified
as supervised and unsupervised. Supervised registration requires the ground truth to
guide more promising registration, whereby the dissimilarity between the deformation
field and the ground truth is minimized during training. Sun et al. [5] proposed DVNet for
CT-US registration, which used a patch-based CNN approach to estimate displacement
vectors (DVs), but it had not been demonstrated on clinical CT and US data. Fan et al. [6]
proposed BIRNet to achieve dual supervision registration, which used a dual-guided fully
CNN network and employed gap filling to achieve promising registration. By enhancing
the effectiveness of the label, the performance of the supervised method has been improved.
However, supervised registration demands a great deal of accurately labeled data that are
time-consuming and difficult to acquire.

The emergence of unsupervised methods can alleviate the lack of datasets that are
labeled by experts. For unsupervised registration, the appropriate image similarity metrics
need to be selected as the optimization objective. By training the DIRNet with a similarity
metric, De Vos et al. [7] achieved the same precise performance as the traditional deformable
image registration methods. Balakrishnan et al. [8] designed a CNN-based DIR approach
called VoxelMorph for the MRI brain datasets, which achieved rapid registration. However,
these methods are mainly utilized for unimodal registration. The intensity distribution
of the different modal images is uncertain and complex, making it difficult to use these
methods directly for multimodal registration.

The CNN was initially used to learn the mapping relationship for unsupervised
registration. By using a pretrained CNN to directly extract features from a pair of images,
Kori et al. [9] achieved zero-shot registration on the brain MRI dataset. Yu et al. [10]
introduced the regularization term to constrain the anatomical structure deformation for
PET-CT registration, in which the registration performance was improved. However, it is
challenging for a CNN to map the features of the multimodal image to spatial relationships,
as different modalities have significant gaps in appearance.

Subsequently, several deformable image registration (DIR) frameworks based on
the GAN are proposed, which show promising performances by providing additional
regularization. Yan et al. [11] presented the AIR framework, which utilized adversarial
networks to distinguish good registration from poor registration. By connecting a
registration network and a discrimination network, Fan et al. [12] created a general
registration framework that can achieve monomodal and multimodal image registration.
Mahapatra et al. [13,14] designed a cGAN-based [15] model that directly generated the
warped image with the deformation field. Compared with the CNN, the GAN has an
adversarial training process that makes the DVF more precise. Nonetheless, GANs also have
some drawbacks, such as the long duration required for training and vanishing gradients.

Another major use of the GAN is to bridge the enormous appearance gap of different
modalities in translation-based multimodal registration. By employing the enhanced
CycleGAN [16] to transform a CT image into an MRI-like image, Xu et al. [17] estimated the
final deformation field in a dual-stream method and achieved a better registration accuracy.
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However, due to the lack of structural consistency across views, the cycle-consistent loss may
generate deformed images, which is unfavorable for the subsequent registration performance.

In this paper, we design an unsupervised medical image registration method, DTR-GAN.
The main idea is to simplify the complex multimodal image registration (images with an
inconsistent grayscale relationship) to unimodal image registration (images with a consistent
grayscale relationship) through the image-to-image translation algorithm. The main works
are summarized below:

(1) We design an unsupervised image registration framework, DTR-GAN, via a
bidirectional image-to-image translation network for MRI-CT registration. By using
complementary anatomical structure information from CT and MRI simultaneously,
DTR-GAN can overcome the grayscale differences in multimodal images and achieve
end-to-end registration.

(2) We propose a multiscale encoder–decoder network to minimize loss of image detail
during the image translation process, which can aggregate low-level and high-level features
and ensure the generated coherent anatomical feature in the translation network.

(3) We design a mixed similarity loss to penalize the discrepancy in appearance
between the target image and the warped image. By extracting the features common
to both the source and target images in the deep feature space, DTR-GAN can avoid
inconsistent structural deformations during training and enhance registration accuracy.

The rest of this paper is organized as follows. Section 2 reviews relevant studies.
Section 3 details the architecture and training loss of our proposed method. Section 4
presents datasets, implementations, and experimental results. In Section 5, we discuss our
proposed method. This work is summarized in Section 6.

2. Related Work

The GAN has been employed to transform multimodal image registration into unimodal
registration. Tang et al. [18] employed the CycleGAN to synthesize the missing modalities to
enhance the precision of multimodal registration algorithms. By employing the CycleGAN
to synthesize 3D images and using two multimodal similarity measures, Tanner et al. [19]
improved the registration performance effectively. Han et al. [20] used the CycleGAN
to synthesize CT images from MRI based on inverse consistency networks for MRI-CT
registration. Qin et al. [21] presented a translation-based image registration network for
decomposing the image into shape and appearance spaces, which achieved a competitive
performance to other methods. By using a translation-based registration method via
disentangled representations, Wu et al. [22] designed similarity measures defined in the
image space and content space to achieve a superior registration performance.

By applying image-to-image translation to multimodal image registration,
Arar et al. [23] used unimodal similarity metrics to train the network instead of using
cross-modality similarity measures, which alleviated the drawbacks of a hand-crafted
similarity measure. Cao et al. [24] implemented MRI-CT image registration using a
patch-wise random forest to bridge the appearance gap in two modalities, which employed
a bidirectional image synthesis network to generate two DVFs. Casamitjana et al. [25]
proposed a method to train the synthetic model through the registration loss, which avoided
unstable training when using GAN networks. Chen et al. [26] designed a discriminator-free
image-to-image translation method to mitigate inconsistencies and artifacts that arose from
the discriminator, thereby improving the performance of image registration.

To mitigate the coupling challenge between the registration and translation networks,
Liu et al. [27] proposed a geometry-consistent adversarial training scheme, which guided the
registration network to learn spatial deformation. Kong et al. [28] proposed a self-supervised
IMSE method, which evaluated spatial differences in multimodal image registration to
establish a novel image-to-image translation paradigm.

However, some multimodal image registration methods based on translation networks
tend to synthesize complex anatomical details into simple image modalities, such as
MRI to CT translation, which neglect the complex information in the other modality,
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leading to potential registration biases. Therefore, the quality of the transformed image
in an image-to-image translation network plays a crucial role in the effectiveness of the
subsequent image registration.

3. Methods

To better utilize the image anatomical information of CT and MRI modalities, we propose
an image registration framework named DTR-GAN. The network structure is depicted
in Figure 1. DTR-GAN comprises a registration network and a dual contrastive learning
translation network based on the GAN, named DT-GAN, to achieve end-to-end registration.

Figure 1. (A) shows the structure of the DTR-GAN framework. DTR-GAN consists of TP, R,
and TR networks. Our proposed method learns two mappings between MRI and CT images in
the translation network, which simplifies the complex multimodal image registration to unimodal
image registration. (B) shows the structure of the translation network TP for X → Y transformation.
(C) depicts the structure of the translation network TR for Y → X transformation.

The bidirectional translation network DT-GAN includes TP and TR networks, which
represent the two mapping directions from the source image X to the target image Y and
the target image Y to the source image X, respectively. Inspired by VoxelMorph, we employ
a registration network that consists of U-net [29] and a Spatial Transformer Network
(STN) [30] to warp the source image into the warped image. When the source image
X and target image Y are used as input, the registration network R predicts an optimal
mapping ϕ to achieve an excellent alignment of the warped image X

′
w with the target

image Y. Meanwhile, translation networks TP and TR take X and Y as inputs, respectively,
to output the transformed images Y

′
and X

′
. The STN transforms the input images into

warped images, where the source image X is warped into the registered image X
′
w and

the translated image Y
′

is warped into the registered image Y
′
w. The entire process can be

summarized as follows:

ϕ = R(X, Y)

Y
′
= TP(X)

X
′
= TR(Y)

Y
′
w = STN(Y

′
, ϕ) = Y

′ ◦ ϕ = R(TP(X), R(X, Y))

X
′
w = STN(X, ϕ) = X ◦ ϕ = R(X, R(X, Y))

(1)



Appl. Sci. 2024, 14, 95 5 of 18

The loss of the translation network includes the adversarial loss, LGAN; contrastive loss,
LPatchNCEX(TP, HX, HY, X) and LPatchNCEX(TR, HX, HY,Y); and similarity loss, LsimX(TP, TR)
and LsimY(TP, TR). Adversarial loss LGAN strives to minimize the disparity between the
generated image and the corresponding target image, contrastive loss keeps the original
structure of the image to retain the shape consistency in the image-to-image translation, and
similarity loss avoids mode collapse in the translation process. The loss of the registration
network includes the mixed similarity loss, Lreg(R) and L(TP, R), as well as the smooth
loss Lsmooth(ϕ), which maintains the appearance consistency between the warped image
X

′
w and the target image Y, making the warped transformed image Y

′
w and target image Y

consistent in appearance. The smooth loss Lsmooth(ϕ) is utilized to prevent the discontinuity
in the deformation field. The detailed calculation procedure for each loss function is shown
in the subsequent section.

3.1. Registration Network

Figure 2 depicts the architecture of the registration network R, which is made up of
U-net and the STN. U-net is utilized to capture the mapping between the input image pairs,
while the STN transforms the source image into the warped image.

Figure 2. Structure of the registration network.

The registration network takes X and Y as input image pairs and produces the
deformation field ϕ as output, in which ϕ = R(X, Y) and ϕ is a 2D vector. The STN
resamples the source image X and the transformed image Y

′
into the warped images X

′
w

and Y
′
w, respectively. The STN is defined as

X
′
w[u] = STN(X, ϕ)[p] = X[p + ϕ(p)]

= ∑
q∈N(p+ϕ(p))

X(q) ∏
d{i,j}

(1 − |pd + ϕd(p)− qd|) (2)

Y
′
w[u

′
] = STN(Y

′
, ϕ)[p

′
] = Y

′
[p

′
+ ϕ(p

′
)]

= ∑
q′∈N(p′+ϕ(p′ ))

Y
′
(q

′
) ∏

d{i,j}
(1 −

∣∣∣p′
d + ϕd(p

′
)− q

′
d

∣∣∣) (3)

where q and q
′

are pixel neighbors of p + ϕ(p) and p
′
+ ϕ(p

′
), respectively, and d{i, j}

represents the two dimensions of the image.

3.2. Dual Contrastive Translation Network

Since it is difficult to perform multimodal image registration with significant intensity
differences using a single registration network, we use the bidirectional translation network
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to ensure a consistent shape in the image-to-image translation. It contributes to aligning
two modalities well in the subsequent registration network.

The CycleGAN learned both mappings simultaneously in image-to-image translation,
utilizing anatomical information of two modalities, but it led to shape variations in the
transformed images. CUT [31] employed contrastive learning to maintain content consistency
but used the same embedding to capture information from two different image domains,
which might not adequately capture the significant variability in different modalities.

To overcome these constraints, we design a bidirectional translation network DT-GAN.
Specifically, we combine an improved CycleGAN with contrastive learning, which replaces
the cycle-consistency loss with PacthNCE loss to avoid shape distortion in image-to-image
translation. DT-GAN includes translation networks TP and TR, which comprise two
generators Gx→y and Gy→x and two discriminators DX and DY, the structure of the
TP is shown in Figure 3. Generator Gx→y has an encoder Gx→y

enc and a decoder Gx→y
dec .

And generator Gy→x is made up of an encoder Gy→x
enc and a decoder Gy→x

dec . When the image
pairs X and Y are used as input, we obtain transformed images Y

′
and X

′
from generator

Gx→y and generator Gy→x during the translation process, respectively.

Figure 3. Structure of translation network TP.

3.2.1. Generator

Considering the existence of domain gaps between different domains, we use different
embeddings (HX and HY) to extract features of image X and image Y to capture variability
in both two image domains. The generator module consists of Gx→y and Gy→x in translation
networks TP and TR. Generator Gx→y and generator Gy→x use the same structure but
represent translation in different directions, where Gx→y enables the mapping X → Y and
Gy→x enables the mapping Y → X. The generator Gx→y and generator Gy→x are both
composed of the encoder, the decoder, nine residual blocks, and the multiscale feature
fusion (MFF) module.

We randomly select the query sample, the positive sample, and the negative samples
from the input image pairs at each time, which are represented by the green, purple, and
orange image patches in Figure 3, respectively. We map the query, positive, and N negative
samples into K-dimensional vectors with two-layer MLP, denoted as g, g+ ∈ RK and
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g− ∈ RN×K. The distance between the computing query, positive, and negative samples is
translated into a classification problem with N + 1 classes. The loss is defined as

ℓ(g, g+, g−) = −log

[
exp(sim(g, g+)/τ

exp(sim(g, g+)/τ + ∑N
n=1 exp(sim(g, g−n )/τ

]
(4)

where sim(r, s) = rTs/||r||||s|| represents the cosine similarity. We set the value of τ to 0.07.
We use Gx→y

enc to extract the L-layer features of the generator Gx→y and employ HX to
map the image patches to a stack of features {zl}L =

{
HXl(G

x→y
enc l(X))

}
L
, where Gx→y

enc l(X)

represents the output of the selected l-layer, l ∈ 1, 2, 3, ..., L, and HX is a two-layer MLP. For
the transformed images Y

′
, a two-layer MLP HY is used to extract features from domain Y.

Likewise, we obtain another stack of features ẑl =
{

HYl(G
y→x
enc l(TP(X)))

}
L
. For the mapping

direction of Y → X, {ml}L =
{

HYl(G
y→x
enc l(Y))

}
L

and m̂l =
{

HXl(G
x→y
enc l(TR(Y)))

}
L
, where

ml and m̂l represent the stack of features.
MFF module. Compared with the original generator structure of DCL-GAN [32], the

DT-GAN can capture local and global features by aggregating the spatial information of
early feature maps. The structure of the MFF module is shown in Figure 3. MFF is employed
to establish connections between the feature maps obtained during the downsampling
path and the corresponding feature maps in the upsampling path. The MFF module is
composed of two residual units, the separable convolution layer (SC), the convolution layer,
the BatchNorm layer(BN), the Leaky-ReLU layer(LReLU), and the skip connection. The
convolution layer kernel is 3 × 3. The structure is formulated as

zi = LReLU(BN(Conv2D(LReLU(BN(SC(xi))) + xi))) + xi (5)

where xi and zi represent input and output feature maps.

3.2.2. Discriminator

The discriminator structure of DT-GAN is PatchGAN [33]. The network mainly
comprises five layers: the first layer is a convolution with LReLU nonlinearity; the next
three layers are all composed of convolution, instance normalization, and LReLU layers;
and the last layer is convolution. And all convolutional kernels are 4 × 4.

In traditional GANs, the discriminator was employed to distinguish the entire generated
image as real or fake. However, PatchGAN operates at a patch level instead of the entire
image level. PatchGAN utilizes a size of 70 × 70 for the local patch, resulting in a final
output of a matrix of size 30 × 30 by stacking convolutional layers, where each element
represents a larger receptive domain in the source image, corresponding to a patch in the
original image. By evaluating local patches, PatchGAN can capture and enforce precise
details and textures in the generated images, achieving higher quality image translation.

3.3. Training Loss
3.3.1. Registration Loss

(1) Mixed similarity loss
The existing multimodal similarity measures utilized as loss functions in the network

remain inefficient, thereby impacting the registration performance of the training process.
For instance, the NMI is computationally difficult and unsuitable for gradient-based
methods. Similarly, the NCC is dependent on the domain and cannot be generalized
to all modalities. The translation-based registration framework can alleviate the problem
of hand-crafted multimodal similarity measures. However, during the image-to-image
translation process, there may be a distribution mismatch, especially when dealing with
images that have a complex appearance. Therefore, it is unreliable to rely solely on
translation algorithms to transform multimodal registration into unimodal registration.
Hence, to reduce the impact of mismatched images generated during the translation process,
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we propose a mixed similarity loss that focuses on the structural information of the images,
aiming to maximize the similarity between the registered image and the target image.

To penalize appearance discrepancies between target and warped images, we propose
a similarity loss Lreg(R). Lreg(R) is defined as

Lreg(R) =
∥∥∥HYP(G

y→x
enc (Y))− HXP(G

x→y
enc (X

′
w))
∥∥∥sum

1
(6)

where sum represents summing them up together. We utilize separate embeddings HXP
and HYP to extract the 256-dimensional feature stacks from the input image pairs and
then project them onto 64-dimensional vectors. HXP and HYP consist of 2-layer MLP,
alongside convolutional, ReLU, average pooling, linear transformation, ReLU, and final
linear transformation layers. To explore the potential mapping relationships in the feature
space, we extract features shared between the warped image and the target image to guide
the accurate registration.

To minimize the appearance dissimilarity between the warped image of the translated
image Y

′
w and the target image Y, L(TP, R) is defined as

L(TP, R) =
∥∥∥Y

′
w − Y

∥∥∥
1

(7)

So, the mixed similarity loss Lms is computed by

Lms = Lreg(R) + L(TP, R) (8)

(2) Smooth loss
To prevent discontinuity in the deformation field ϕ when making the warped image

closer to the target image, the smooth loss Lsmooth, which is simiar to the TV loss [34], is
employed to constrain ϕ to avoid excessive distortion of the warped image.

Lsmooth(ϕ) = ∑
p∈Ω

∥∇ϕ(p)∥2 (9)

∇ϕ(p) =
(

∂u(p)
∂x

,
∂u(p)

∂y

)
(10)

∂u(p)
∂x

≈ ϕ((px + 1), py)− ϕ(px, py) (11)

∂u(p)
∂y

≈ ϕ(px, (py + 1))− ϕ(px, py) (12)

where Ω represents the positions of the neighboring pixels of p.

3.3.2. Translation Loss

(1) Adversarial loss
The adversarial loss, LGAN(TP, DY, X, Y) and LGAN(TR, DX , X, Y), is utilized to match

the distributions of the transformed image with the target image. Therefore, the overall
adversarial loss LGAN is

LGAN = LGAN(TP, DY, X, Y) + LGAN(TR, DX , X, Y)

= Ey∼Y[logDY(Y)] +Ex∼X [1 − logDY(TP(X))]

+Ex∼X [logDX(X)] +Ey∼Y[1 − logDX(TR(Y))]

(13)

(2) PatchNCE loss
Inspired by CUT, we introduce PatchNCE loss to enforce content consistency during

bidirectional image translation, which can ensure the maximum preservation of the shape
of the input image. PatchNCE loss in the transformation directions of X to Y and Y to X
can be estimated by
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LPatchNCEX (TP, HX , HY, X) = Ex∼X

L

∑
l=1

Sl

∑
s=1

ℓ(ẑs
l , zs

l , zS\s
l ) (14)

LPatchNCEY (TR, HX , HY, Y) = Ey∼Y

L

∑
l=1

Sl

∑
s=1

ℓ(m̂s
l , ms

l , mS\s
l ) (15)

where Sl represents the number of spatial locations in the generator encoder of each layer
l, zs

l ∈ RCl , ms
l ∈ RCl , zS\s

l ∈ R(Sl−1)Cl , mS\s
l ∈ R(Sl−1)Cl , and Cl represents the number of

channels in each layer l.
(3) Similarity loss
To prevent mode collapse during the generation of the transformed images into the

translation network, the overall similarity loss Lsim(TP, TR) is used to encourage the
translated image’s depth features to resemble the original image. The Lsim(TP, TR) is
defined as

Lsim(TP, TR) = LsimX (TP, TR) + LsimY (TP, TR)

=
[∥∥∥Hxr(HX(G

x→y
enc (X)))− Hx f (HX(G

x→y
enc (TR(Y))))

∥∥∥sum

1

]
+[∥∥∥Hyr(HY(G

y→x
enc (Y)))− Hy f (HY(G

y→x
enc (TP(X))))

∥∥∥sum

1

] (16)

where Hxr, Hx f , Hyr, and Hy f are four light networks, which are used to project the embedded
features to 64-dim vectors. Each light network is composed of a convolutional layer, which is
subsequently followed by a ReLU activation function, average pooling, a linear transformation,
another ReLU activation function, and, ultimately, a linear transformation.

3.4. Objection Function

The total loss function LR of DTR-GAN is calculated by

LR = λRLreg(R) + λT L(TP, R) + λSLsmooth(ϕ) + λGLGAN+

λP(LPatchNCEX (TP, HX , HY, X) + LPatchNCEY (TR, HX , HY, Y))+

λMLsim(TP, TR)

(17)

where we set λR = 10, λT = 1, λS = 0.2, λG = 0.15, λP = 0.3, and λM = 10.

4. Results
4.1. Dataset and Preprocessing

We utilize two abdominal datasets for verifying the effectiveness of our method, the
Learn2Reg dataset [35] and the CHAOS dataset [36]. The Learn2Reg dataset consisted of
16 MRI and CT datasets and each scan included the liver, spleen, and left and right kidneys,
four organs, which were labeled with manual and automatic organ segmentation. Each scan
had a 3D volume of size 192 × 160 × 192 with a voxel spacing of 2 mm. For the experiment,
we use Elastix [37] for coarse affine registration and set the train/validation/test datasets
in 10/2/4 pairs randomly. The healthy abdominal organs were from 80 patients, where
40 of them went through CT scans and 40 of them went through MRI scans in the CHAOS
dataset. We use 20 volumes of CT and T1-DUAL MRI images in the CHAOS dataset
and randomly divide them into 14/2/4 pairs for train/validation/test datasets. For the
preprocessing of both datasets, we select 70 central slices of each piece of data for our
experiments. The input size of the slice is 256 × 256. Figure 4 illustrates examples from
both the Learn2Reg dataset and the CHAOS dataset. Table 1 shows a concise description of
the two datasets utilized in our method.
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Figure 4. Instances from the Learn2Reg and CHAOS datasets.

Table 1. A concise description of the two datasets utilized in our method.

Source Modality Size Train/Validation/Test Resize

Learn2Reg CT, MRI 192 ×160 10/2/4 ✓
CHAOS CT, MRI -* 14/2/4 ✓

* - represents that there are many different sizes and we cannot list them all.

4.2. Implementation Details

We utilize the Pytorch framework to implement DTR-GAN, which runs on a hardware
environment equipped with a GeForce RTX 3080Ti GPU and 12 GB RAM. The network is
trained for 300 epochs with a batch size of 1. The DTR-GAN employs the Adam optimizer,
the initial learning rate is 2 × 10−4, and there is linear decay in the learning rate after
200 epochs. The optimization parameters are β1 = 0.5 and β2 = 0.999.

4.3. Evaluation Metrics

DSC. The DSC [38] is primarily utilized to assess the overlapping degree of two images.
The DSC is defined as

DSC =
2|W ∩ T|
|T|+ |W| × 100% (18)

where T and W represent the labels of the target image and warped image, respectively.
The DSC ranges from 0 to 1, with 0 indicating no overlap and 1 indicating complete overlap
in the labels of the two images.

ASD is a metric employed to evaluate the surface similarity between two images, and
it represents the average distance between two surfaces. The ASD considers the differences
in edge positions after registration. The formula of the ASD is

ASD =
1

|W|+ |J|

(
∑

w∈W
d(w, J) + ∑

j∈J
d(j, W)

)
(19)

where w and j are the points on the propagated surface W and the reference surface J,
respectively. d(·) is expressed as the minimum Euclidean distance.

4.4. Results on the Learn2Reg and CHAOS Datasets

To validate the performance of DTR-GAN, we compare it with Affine [37], VoxelMorph [8],
CR-GAN, SbR [25], RoT [23], IMSE [28], and DFR [26] on the Learn2Reg and CHAOS
datasets. Affine represents the registration framework using the Elastix toolbox. VoxelMorph
is a CNN-based registration network. CR-GAN is a VoxelMorph registration network based
on the CycleGAN translation network with PatchNCE loss. SbR is a 2D synthesis-based
registration network using contrastive learning to enforce geometric consistency. RoT is a
multimodal registration network based on the geometric-preserving translation network.
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IMSE is a self-supervised multimodal image registration network with a multimodal
spatial evaluator to evaluate spatial differences. DFR is the translation-based multimodal
registration network that removes the discriminator in translation work.

Results on the Lean2Reg dataset. Table 2 illustrates average DSC scores and ASD
scores on the Lean2Reg dataset. Compared with DFR, the DSC scores of DTR-GAN are
improved by 2.35% and 2.08% in MRI-CT registration and CT-MRI registration, respectively.
In addition, compared with DFR, the ASD values of DTR-GAN are decreased by 0.33 mm
and 0.12 mm, respectively. In addition, among the above methods, DTR-GAN achieves the
best results for the DSC and ASD. Bidirectional translation networks TP and TR generate
promising translated images in DTR-GAN, thereby improving the registration performance.
Specifically, MFF aggregates multiscale information in the translation network DT-GAN,
allowing DTR-GAN to better capture local and global features in images. By designing a
mixed similarity loss, the anatomical details in the two modalities can be aligned well.

Table 2. Quantitative results of different methods on the Learn2Reg dataset. The best results are
marked in bold for clarity. ↑ means a better registration performance should obtain higher metric
values. ↓ means a better registration performance should obtain lower metric values.

MRI-CT CT-MRI

DSC (%) ↑ ASD (mm) ↓ DSC (%) ↑ ASD (mm) ↓
Affine [37] 65.51 ± 3.10 5.63 ± 1.77 64.91 ± 3.10 6.10 ± 1.77

VoxelMorph [8] 68.21 ± 2.42 6.10 ± 1.37 66.60 ± 3.94 6.32 ± 1.67
CR-GAN 77.81 ± 1.80 5.15 ± 1.57 76.19 ± 2.70 5.50 ± 1.51
SbR [25] 76.52 ± 2.62 4.55 ± 1.36 75.51 ± 1.60 4.55 ± 1.36
RoT [23] 74.81 ± 0.78 5.05 ± 1.79 73.30 ± 2.20 5.65 ± 1.79

IMSE [28] 74.29 ± 2.37 5.05 ± 2.12 73.79 ± 2.21 5.06 ± 1.62
DFR [26] 78.50 ± 2.50 4.54 ± 1.22 77.65 ± 2.50 4.74 ± 1.11

DTR-GAN 80.85 ± 2.09 4.21 ± 1.65 79.73 ± 2.03 4.62 ± 1.76

Figure 5 shows the registration results of some methods on the Learn2Reg dataset.
Figure 5A,E show warped images, Figure 5B,F show deformation fields, and Figure 5C,D,G,H
show checkerboard grids and overlapping images, respectively, which are visualizations of
image alignment effects. Figure 5A,E show the warped images in DTR-GAN are closer to
the target image. The first in column (A) denotes that the cycle-consistency loss would lead
to shape distortion in CR-GAN. We can observe that DTR-GAN with similarity loss is more
effective for appearance preservation in image registration. Figure 5D,H show the effects of
overlaying the target image with the warped image, in which the target image is set to blue,
the warped image is set to red, and the two images are superimposed together in purple.
The purple in the image is more evident, indicating that the warped image and target image
are better aligned. As shown in Figure 5, DTR-GAN shows an optimum performance.

Results on the CHAOS dataset. Table 3 shows the experimental results on the CHAOS
dataset. Compared with DFR, the DSC scores of DTR-GAN increased by 1.98% and 1.51%
on average in MRI-CT registration and CT-MRI registration, respectively. In addition, the
ASD scores of DTR-GAN are decreased by 0.28mm and 0.26mm on average. Figure 6
illustrates the registration results of different methods. Figure 6A,E show warped images,
Figure 6B,F show deformation fields, and Figure 6C,D,G,H depict checkerboard grids and
overlapping images, respectively, which are visualizations of image alignment effects. As
shown in Figure 6, we can observe that the warped image in DTR-GAN is closer to the
target image. Figure 6C,G show that the alignment of DTR-GAN is more optimum than
the other approaches. The registration results are shown in Figure 7, which shows that our
DTR-GAN has a fine registration performance.
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Figure 5. Experimental results on the Learn2Reg dataset: (A,E) are warped images, (B,F) are
deformation fields, (C,G) are checkboard grids, and (D,H) are overlapping images.

Table 3. Quantitative results of different methods on the CHAOS dataset. The best results are marked
in bold for clarity.

T1-CT CT-T1

DSC (%) ↑ ASD (mm) ↓ DSC (%) ↑ ASD (mm) ↓
Affine [37] 65.15 ± 6.20 7.54 ± 2.56 64.23 ± 6.40 7.66 ± 2.40

VoxelMorph [8] 69.59 ± 6.81 7.23 ± 2.41 68.83 ± 6.10 7.43 ± 2.40
CR-GAN 76.67 ± 4.20 7.08 ± 3.93 75.18 ± 4.81 7.26 ± 2.78
SbR [25] 75.49 ± 6.18 6.77 ± 2.65 74.63 ± 6.18 6.82 ± 2.66
RoT [23] 73.52 ± 5.62 7.55 ± 2.36 72.20 ± 5.29 7.62 ± 2.05

IMSE [28] 74.26 ± 2.07 7.17 ± 2.86 73.42 ± 2.30 7.40 ± 2.18
DFR [26] 78.19 ± 6.06 6.35 ± 2.41 77.53 ± 6.35 6.54 ± 2.08

DTR-GAN 80.17 ± 1.77 6.07 ± 2.19 79.04 ± 2.40 6.28 ± 2.50

Figure 6. Experimental results on the CHAOS dataset. (A,E) are warped images, (B,F) are
deformation fields, (C,G) are checkboard grids, and (D,H) are overlapping images.
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Figure 7. Visual comparison of registration accuracy using various methods is conducted on the
Learn2Reg and CHAOS datasets. The first two columns display the original inputs, and all columns
show vivid colors to visualize the label.

4.5. Ablation Experiment

To verify the effectiveness of network components, we perform detailed ablation
studies, using a dual contrastive translation network and MFF module, as well as Lreg(R)
in different configurations. TR-GAN indicates the registration network, which contains
the unidirectional translation network TP and utilizes the similarity loss Lreg(R). DR-GAN
represents the registration network, which contains bidirectional translation networks
TP and TR with similarity loss Lreg(R). DTR-GAN denotes the DR-GAN with the MFF
module, and similarity loss Lreg(R) is used. In addition, to verify the effectiveness of
Lreg(R), we replace Lreg(R) in DTR-GAN with PatchNCE loss, which is used in DFR, named
PDTR-GAN. Figures 8 and 9 show the average DSC and ASD of the MRI-CT registration on
the Learn2Reg dataset and the CHAOS dataset, respectively. DTR-GAN achieves the best
performance, which is comparable with other methods. The improvements with statistical
significance represent that the bidirectional translated network can generate more refined
translated images, improving the subsequent image registration performance.

Figure 8. Boxplot of the distributions of the DSC and ASD of the MRI-CT registration on the
Learn2Reg dataset.
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Figure 9. Boxplot of the distributions of the DSC and ASD of the T1-CT registration on the CHAOS dataset.

Tables 4 and 5 show the quantitative results in the enhancing registration performance
on the Learn2Reg and CHAOS datasets, respectively. Compared with DR-GAN, DTR-GAN
can capture more multiscale information and improve the registration performance, which
is beneficial for generating consistent anatomical features during the image translation
process. In addition, compared with PDTR-GAN, the DSC score of DTR-GAN is further
improved, which demonstrates the effectiveness of maintaining appearance consistency in
multimodal registration. Figures 10 and 11 show the visualization of the registration results
of different methods. According to the results, our proposed method using a bidirectional
translation network works better than using only a unidirectional network. The results in
Figures 10 and 11 indicate that bidirectional translation networks can preserve a consistent
shape to enhance the subsequent registration performance.

Table 4. Quantitative comparison of the proposed method on the Learn2Reg dataset. The best results
are marked in bold for clarity.

MRI-CT CT-MRI

DSC (%) ↑ ASD (mm) ↓ DSC (%) ↑ ASD (mm) ↓
TR-GAN 76.02 ± 2.68 4.91 ± 1.62 75.67 ± 2.64 5.10 ± 1.24
DR-GAN 77.03 ± 2.99 5.00 ± 1.88 76.30 ± 2.08 4.96 ± 1.94

DTR-GAN 80.85 ± 2.09 4.21 ± 1.65 79.73 ± 2.03 4.62 ± 1.76

PDTR-GAN 78.70 ± 2.70 4.79 ± 1.93 77.28 ± 2.07 4.87 ± 1.01

Table 5. Quantitative comparison of the proposed method on the CHAOS dataset.

T1-CT CT-T1

DSC (%) ↑ ASD (mm) ↓ DSC (%) ↑ ASD (mm) ↓
TR-GAN 77.47 ± 2.09 6.83 ± 2.82 76.68 ± 2.91 6.93 ± 2.90
DR-GAN 78.80 ± 2.97 6.45 ± 2.63 77.40 ± 2.33 6.76 ± 2.06

DTR-GAN 80.17 ± 1.77 6.07 ± 2.19 79.04 ± 2.40 6.28 ± 2.50

PDTR-GAN 79.92 ± 2.28 6.23 ± 2.09 78.36 ± 2.72 6.40 ± 2.67
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Figure 10. Comparison of our variant methods on the Learn2Reg dataset. (A,E) are warped images,
(B,F) are deformation fields, (C,G) are checkboard grids, and (D,H) are overlapping images.

Figure 11. Comparison of our variant methods on the CHAOS dataset. (A,E) are warped images,
(B,F) are deformation fields, (C,G) are checkboard grids, and (D,H) are overlapping images.

5. Discussion

During the process of image-to-image translation, it is common to lose detailed information
and generate inconsistent features, which can potentially disrupt the performance of subsequent
image registration. In this paper, we design DTR-GAN to achieve MRI-CT registration, which
can generate consistent grayscale images and transform multimodal image registration into
unimodal image registration.

To alleviate the cycle-consistency loss limitation of the CycleGAN, which would
lead to the generation of distorted shapes, we improve the CycleGAN with PatchNCE
loss to generate a shape-consistent transformed image, which enables the registration
network to better complete alignment tasks. Specifically, the translation network is
designed to implement bidirectional MRI-CT transformation, capturing and preserving
more comprehensive anatomical information, which leads to more accurate translated
images. During the encoding stage, the information obtained decreases layer by layer
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as the network layers deepen. Downsampling can result in the loss of low-level feature
information that is extracted from the previous layers. To capture global and local features
of the image in the translation network, we introduce the MFF module between the
downsampling and upsampling layers in the translation network DT-GAN. By aggregating
deep-level and top-level information, it leverages the quality of the translated image
and improves the subsequent registration performance. In addition, we design a mixed
similarity loss to calculate the similarity between warped and target images, which enhances
the appearance of alignment in DTR-GAN.

One of the challenges in abdominal registration is the deformation at organ boundaries,
which can be impacted by a variety of causes, such as large organ deformation, the filling
and activity of adjacent organs, and respiratory movement. However, there are still
some limitations in our approach. Our method is primarily designed for 2D registration
and lacks the spatial structure information of the image. Hence, we will extend our
network to 3D in the future. In addition, we will consider the decomposition of the
target deformation field into several simpler ones in the next work, because it is hard to
generate the accurate deformation field when the displacement between the images is large.
Moreover, considering our proposed model has high computational complexity, we will
focus on lightweight networks.

6. Conclusions

In this paper, an unsupervised multimodal image registration network, DTR-GAN,
based on a bidirectional translation network, is designed for MRI-CT registration. The
overall framework is based on two directional mapping translation networks to transform
multimodal image registration into unimodal image registration. We incorporate the MFF
module into the generator to effectively capture both global and local features during the
image-to-image translation. By designing a mixed similarity loss, DTR-GAN is improved
to focus on minimizing the dissimilarity in appearance between target and warped images
and achieving high-quality MRI-CT registration. DTR-GAN shows its effectiveness and
superiority in the experimental results compared with state-of-the-art methods on two
abdominal MRI-CT datasets.
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