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Abstract: Flight testing in a realistic three-dimensional virtual environment is increasingly being
considered a safe and cost-effective way of evaluating aircraft models and their control systems. The
paper starts by reviewing and comparing the most popular personal computer-based flight simulators
that have been successfully interfaced to date with the MathWorks software. This co-simulation
approach allows combining the strengths of Matlab toolboxes for functions including navigation,
control, and sensor modeling with the advanced simulation and scene rendering capabilities of
dedicated flight simulation software. This approach can then be used to validate aircraft models,
control algorithms, handle flight characteristics, or perform model identification from flight data.
There is, however, a lack of sufficiently detailed step-by-step flight co-simulation tutorials, and
there have also been few attempts to evaluate more than one flight co-simulation approach at
a time. We, therefore, demonstrate our own step-by-step co-simulation implementations using
Simulink with three different flight simulators: Xplane, FlightGear, and Alphalink’s virtual flight test
environment (VFTE). All three co-simulations employ a real-time user datagram protocol (UDP) for
data communication, and each approach has advantages depending on the aircraft type. In the case of
a Cessna-172 general aviation aircraft, a Simulink co-simulation with Xplane demonstrates successful
virtual flight tests with accurate simultaneous tracking of altitude and speed reference changes
while maintaining roll stability under arbitrary wind conditions that present challenges in the single
propeller Cessna. For a medium endurance Rascal-110 unmanned aerial vehicle (UAV), Simulink is
interfaced with FlightGear and with QGroundControl using the MAVlink protocol, which allows to
accurately follow the lateral UAV path on a map, and this setup is used to evaluate the validity of
Matlab-based six degrees of freedom UAV models. For a smaller ZOHD Nano Talon miniature aerial
vehicle (MAV), Simulink is interfaced with the VFTE, which was specifically designed for this MAV,
and with QGroundControl for the testing of advanced H-infinity observer-based autopilots using a
software-in-the-loop (SIL) simulation to achieve robust low altitude flight under windy conditions.
This is then finally extended to hardware-in-the-loop (HIL) implementation on the Nano Talon MAV
using a controller area network (CAN) databus and a Pixhawk-4 mini autopilot with simulated
sensor models.

Keywords: co-simulation; flight control; autopilot; Matlab/Simulink; QGroundControl; FlightGear;
Xplane; virtual flight test; SIL; HIL; Pixhawk

1. Introduction

Since the release of Matlab and its graphical interface Simulink by Mathworks, inc.
as a commercial product in 1984, the model design and simulation capabilities of Matlab
have been widely used and developed across several engineering and science disciplines.
Matlab/Simulink are currently used for engineering education, research, and development
but also for a wide range of real-time engineering implementations. In this paper, the
focus is on the flight simulation capabilities of aerospace engineers, researchers, and
enthusiasts. Matlab has its own Aerospace Toolbox, which supports interfacing with free
flight simulation software FlightGear as well as more specialized toolboxes such as the
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UAV toolbox and UAV toolbox for PX4, an increasingly popular autopilot in the small UAV
community. The navigation and control toolboxes also enable the design and validation of
autopilots and guidance, navigation, and control systems (GNC), which is unsurprising
because Matlab was released at the 1994 American Control Conference. Co-simulation
using Matlab/Simulink is also becoming possible with an increasing number of popular
flight simulators with different areas of strengths and limitations. Personal-computer-based
flight simulators differ in graphics and flight model types and have mostly originated from
gaming before being used for virtual flight testing. These simulators typically also give their
communities the ability to upload and share their aircraft designs more widely. When those
flight simulators are used alone, flight control is either performed in an open loop or reliant
on built-in autopilots, but challenging flight scenarios increasingly require custom-made
flight controllers. Several flight simulators such as Xplane, FlightGear, Realflight, and
Microsoft Flight Simulator (SFX) have now been interfaced with Matlab, primarily for the
purpose of validating flight handling characteristics or GNC algorithms in a virtual flight
test environment. These flight co-simulation approaches are increasingly being developed
as a safe precursor to real flight tests.

Matlab/Simulink and Xplane were interfaced via the user datagram protocol (UDP)
in [1] for longitudinal flight modes characteristics testing of a reconnaissance UAV and
for autopilot testing in [2–4]. In the latter, the co-simulation was used to compare classical
proportional, integral, and derivative (PID) control to modern H∞ optimal robust control.
In [5], the same co-simulation approach was used for the development of a cost-effective
cockpit design interface. Matlab’s system identification toolbox and Xplane were also
interfaced in [6] for the analysis of measured pilot responses during flight. In [7], this
co-simulation approach is used to provide a platform for neural autopilot training.

There have, however, been insufficient systematic studies or comparisons of the
predominant solutions and of their strengths and limitations. Future trends in the use of
co-simulation are starting to emerge for certain classes of manned aircraft and unmanned
aerial vehicles (UAVs). The same co-simulation approach is used from generic aircraft
simulation in [8] to more innovative designs, such as flapping wing UAVs in [9].

Matlab and FlightGear co-simulation is also increasingly employed as in [10], where
the two programs are interfaced via UDP for fixed-wing aircraft model identification from
virtual flight test data. The approach is also used for the performance comparison of the
linear quadratic regulator (LQR), linear quadratic Gaussian (LQG), and model predictive
control (MPC) optimal control algorithms under turbulent weather conditions. Matlab and
the RealFlight G3 simulator are interfaced in [11] to evaluate the performance of autopilots
developed for a Raptor 90 rotorcraft, including an open loop pseudo-spectral optimal
controller. In [12], the Realflight drone simulator was interfaced with Gazebo to evaluate
pilot workload using the NASA Task Load Index (TLX) tool. The approach was also used
for other types of aerospace vehicles, as in [13], where it was applied to the visualization of
reusable rocket motion.

The co-simulations are increasingly followed by actual flight tests. In [14], a Matlab–Xplane
co-simulation was used to simulate small fixed-wing UAV aerobatics before flight tests.

Software-in-the-loop (SIL) simulation is also increasingly used for the analysis of
UAV formation flight, using Matlab or more general-purpose programming languages.
In [15], JAVA-based formation and path planning modules based on the NASA World-
Wind API are interfaced with Xplane for a ground-controlled simulation of the formation
of multiple UAVs. Path planning simulation for a swarm of UAVs was also performed
in [16] using the robot operating system (ROS) together with Gazebo and a 3D probabilistic
roadmaps approach. In [17], a synchronized wirelessly networked UAV simulator Flynet-
sim is developed using a Python simulation together with C/C++ Ardupilot software and
communication software middleware. A Matlab/Simulink and FlightGear co-simulation
approach was also demonstrated in [18] for a 3D scene simulation of UAVs in a formation.

A SIL simulation was also used in [19] for UAV flight simulation and risk mitigation
using a Javascript Object Notation (JSON) interface for ArduPilot SITL Matlab and Xplane.
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Gazebo was also interfaced with the Ardupilot SITL in [20] for the flight simulation of a
quadplane, which enabled a flight test.

In [21], Labview and Xplane were interfaced for the analysis of the failure modes and
effects of a small UAV using a Systems-Theoretic Process Analysis (STPA) framework. There
have, however, been insufficient systematic studies or comparisons of the predominant
solutions and of their strengths and limitations. Future trends in the use of co-simulation
are starting to emerge for certain classes of manned aircraft and unmanned aerial vehicles
(UAVs).

Hardware-in-the-loop (HIL) simulation using Matlab/Simulink is becoming increas-
ingly simpler, particularly in the case of UAV autopilots such as the Pixhawks, for which
a UAV toolbox for PX4 is available, which can be linked to virtual flight tests and to
ground control software tools. Commercially available SIL and HIL solutions are also being
developed for small UAVs, such as Alphalink’s Nano Talon UAV, which is used as part
of a flying lab kit using Matlab/Simulink and the virtual flight test environment (VFTE)
software. This solution can be used for both SIL simulation using a Matlab/Simulink-VFTE
3D co-simulation and for HIL co-simulation using those two programs together with a
Pixhawk-based Nano Talon UAV via controller area network (CAN) bus networking with
QGroundControl interfacing. Even though the kit is flight capable, SIL and HIL tools add a
safety layer with the ability to verify navigation and control algorithms and settings ahead
of real flights.

The paper aims to demonstrate how different state-of-the-art approaches to co-simulation
add new capabilities to test trajectory tracking efficiency under challenging flight conditions.
In the case of the Matlab–Xplane co-simulation, the aim is to demonstrate the ability to
control and visualize the aircraft motion in 3D under arbitrary wind conditions for general
aviation aircraft, such as the Cessna, where the use of a single propeller that induces a
yaw motion makes control challenging for inexperienced pilots. In the case of the Matlab–
FlightGear co-simulation, the aim was to demonstrate that the approach is increasingly
helpful for in-depth analysis of path following for emerging aircraft applications such as
medium endurance unmanned aircraft. Using the VFTE, the aim was to demonstrate how it
is becoming increasingly simpler to validate more advanced optimal robust flight controllers,
such as observer-based robust H-infinity control, to achieve optimal tradeoffs between external
disturbance rejection and trajectory tracking accuracy. The paper also discusses the ability to
extend the co-simulation approaches to SIL and HIL validation. The paper is organized as
follows. In Section 2, the communication protocols are presented for real-time co-simulation
using Matlab/Simulink flight simulation. In Section 3, a review of co-simulation using
Matlab/Simulink and popular flight simulators is presented, with a comparison of their key
strengths and limitations. The Mission Planner and QGroundControl ground station software
and Mavlink communication protocols are discussed in Section 4. In Section 5, we present
our own more detailed implementation of flight simulation using Xplane and FlightGear, the
two approaches currently emerging as the most popular. Matlab/Simulink interfacing with a
virtual flight test environment (VFTE) is then described for both SIL and HIL cases. Section 7
discusses the limitations of co-simulation methods. Section 8 concludes the paper.

2. Communication Protocols for Real-Time Co-Simulation

The user datagram protocol (UDP) is currently the most commonly used protocol
for co-simulation solutions using Matlab/Simulink and other flight simulators such as
Xplane and FlightGear. Compared to the transmission control protocol (TCP/IP), UDP also
operates on top of the internet protocol (IP) but allows for faster communication thanks to
the absence of any handshaking or error recovery, which also means that a smaller header
is needed in the message protocol. UDP has an optional checksum, but it is only used to
verify the transmitted message, and transmission errors will not be corrected. The UDP
protocol message format typically consists of 2 bytes for the source port, 2 bytes for the
destination port, 2 bytes for the UDP message length, 2 bytes for the optional checksum,
followed by the data payload, which is typically up to 512 bytes per frame in practice even
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if the theory allows for up to 65,527 bytes (with a 16 bits message length field). TCP/IP is,
however, still considered for applications where data integrity is of paramount importance.

In Matlab/Simulink, UDP send and UDP receive blocks are readily available using
different IP addresses as two independent unidirectional transmissions. This is also the
case in Xplane, which allows for selected data to be transmitted or received at a prescribed
frequency from Matlab/Simulink with specific IP addresses that depend on whether the
flight simulator is installed on the same personal computer (PC) or if a separate PC is used.

For UDP communication with FlightGear, Matlab/Simulink also allows for the gener-
ation of an aircraft-specific batch file (extension .bat) that can then be run from the MS-DOS
command prompt in order to open FlightGear and run the three-dimensional (3D) flight
simulation with the specified aircraft. The process is, however, not very straightforward
as it is sometimes necessary to manually edit the lines of the bat file using a syntax that is
specified in the FlightGear command line help.

3. A Comparison of Flight Simulation Software Used for Co-Simulation

Matlab/Simulink has been successfully interfaced to date with several popular flight
simulators. Most co-simulation examples in the literature use Xplane, followed by FlightGear.

Xplane has indeed been used in multiple projects [1,2,8,9] to combine the GNC and
advanced toolbox functionalities of Matlab with the realistic 3D visualization capabilities
of Xplane. Xplane is also popular because its flight dynamics model is based on blade
element theory, which provides a more realistic flight dynamics simulation than most
PC-based flight simulators. Xplane also has a professional and a Federal Aviation Authority
(FAA) approved version, which, if interfaced with adequate control, can be used for pilot
instruction purposes.

FlightGear is also increasingly popular [10,18] for being free and open source, with
multi-channel graphics, the ability to generate geometrically correct views, and for the fact
that a dedicated FlightGear simulator interface block is available within the animation tools
of the aerospace blockset toolbox in Matlab/Simulink.

Matlab/Simulink was also successfully interfaced for real-time flight simulation using
Microsoft Flight Simulator X and Microsoft Flight Simulator 20, for which a Simconnect
toolbox was made available on Github [22], which uses an s-function block in Simulink for
the communication with the flight simulator, where the data to be transmitted or received
can be specified by the user. Microsoft Flight Simulator X also had helpful features that led
to Lockheed acquiring the ESP commercial version of the software. This flight simulator
is, however, not included in the comparison in Table 1, as the versions that have been
interfaced with Matlab are no longer supported.

RealFlight is another flight simulation software that currently offers more flexibility for
the simulation of certain types of aircraft, such as small UAVs [11,12], including innovative
designs such as quadplanes, quadcopters, and other UAV configurations. RealFlight was
interfaced with Ardupilot’s SITL software-in-the-loop software tool, which increasingly
accommodates autonomous small UAV systems.

In Table 1, Xplane, FlightGear, and RealFlight are compared, with an emphasis on
the mathematical models used to represent aircraft dynamics, the types of aircraft under
consideration, as well as other implementation considerations.

The above analysis has allowed us to compare and contrast the state-of-the-art ap-
proaches to flight co-simulation. To summarize the findings of this comparison, all three
approaches are generally suitable for flight co-simulation with Matlab–Simulink toolboxes,
but Xplane should be used when the focus is on high fidelity flight dynamics, FlightGear
has comparative advantages in terms of ease of real-time implementation and scene render-
ing, and RealFlight adds more flexibility when smaller UAV systems are considered but is
not multi-platform with less straightforward real-time software interfacing, that is why and
alternative tool (VFTE) will be considered instead in Section 6.2 in the case of small UAV.
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Table 1. Flight simulators features comparison.

Xplane [1,2,5,8,9,20] FlightGear [10,18,20] RealFlight [11,20]

Dynamical model

Blade element method allows
for a higher fidelity modeling

of the effects of local
aerodynamic forces and
moments acting on the

aircraft, even if there are
limitations under certain

conditions such as stall [1].

Default model JBSim: A
generic 6DoF flight dynamics
model written in C++. Mass
properties, aerodynamic and

control parameters are entered
in an XML configuration file.
The alternative YASim model

can also be selected in
FlightGear, which allows for
the simulation of the airflow

on different parts of the
aircraft to account for aircraft

geometry information.
Live weather model using

Metar data.

RealPhysics™ 3D, model was
RC pilot tested. Accurate

Truflo wind dynamics.

Aircraft types

General aviation, airliners,
large rotorcraft, military

aircraft, and custom designs
including drones, eVToL,
quadcopters, but some

popular hybrid configurations
such as conventional

quadplanes are missing and
not straightforward to design
using Planemaker. Users can
additionally upload aircraft

models on
https://forums.x-plane.org/
index.php?app=downloads
accessed on 30 August 2022.

General aviation, airliners,
military aircraft, large drones
(MQ9) and custom designs are

available for small to large
UAVs (Rascal, Aerosonde,

HALE and MALE UAV) but
there is a lack of working

quadcopter designs, hybrid
UAV, which were not the

intended use case of
FlightGear at its creation.

Very popular for small UAV
designs [20], Remotely

controlled (RC) aircraft, from
small quadcopters,

quadplanes, hybrid aircraft
and other autonomous aerial
vehicles. More conventional
large aircraft from general

aviation to airliners,
helicopters and fighter jets are

also present.

Aircraft design tools

Planemaker allows for a
detailed definition of aircraft

geometry for aircraft parts
from fuselage to body.

Openscenegraph opens
several formats including

AC3D VRML1, DXF. It also
has a Model Airplane

Designer tool.

AccuModel™ aircraft editor
can be used to enter key

aircraft mass and geometry
characteristics.

3D scene realism

High quality scenery with
global coverage. Free

OpenSceneryX library of 3D
objects.

High definition scenery with
particularly good detail over
Europe and the USA, as part

of a global scenery [18].

Advanced 3D graphics
technology Compatible with

the Oculus Rift and HTC Vive

Product availability Commercial (USD 60) Freeware including source
code Commercial (USD 100)

Platforms Multi-platform, Windows,
macOS, and Linux

Multi-platform Windows,
macOS, and Linux

MS Windows only, does not
support Linux

Program execution and
co-simulation simplicity

Easy to execute and well
documented interfacing with

other tools such as
Matlab/Simulink and SITL.

Simple to run but
co-simulation process requires

careful editing and use of
batch files [9].

Co-simulation has been
developed with Ardupilot

SITL, which was itself
interfaced with Matlab. There

is a lack of data on direct
Simulink interfacing, with

very few exceptions as in [11].

4. Groundstation Programmes and Communication Protocols

QGroundControl and MissionPlanner are the most popular ground station software
programs for small UAV systems and are both freely available. They both allow the setup
of flight plans for real but also simulated flights and a sequence of flight modes defined

https://forums.x-plane.org/index.php?app=downloads
https://forums.x-plane.org/index.php?app=downloads
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in the Ardupilot documentation. It is also possible to upload the default flight code for
the most popular UAV configurations from the standard tail aft on fuselage aircraft to the
flying wind, helicopter, multirotor, and hybrid aircraft designs. MissionPlanner is generally
limited to being PC-based, while QGroundControl is more multi-platform.

Communication between Matlab Simulink and QGroundControl is typically via the
miniature aerial vehicles MAVLink protocol, with a message structure where a payload
field allows to distinguish the key data being sent from Simulink to QGroundControl,
allowing to follow the path of the UAV on a Google map. Mavlink is also used for the
communication between ground control software and autopilots, such as the very popular
ARM-cortex-based Pixhawk autopilot family. More detail about the Mavlink protocol can
be found in [21,23]. Enhanced security protocols such as MAVsec [24] were also developed
for missions requiring more secure communication.

The UAV toolbox in Matlab/Simulink has Mavlink blocks (see Figure 1), which allow
for communication with QGroundControl. The first Mavlink heartbeat block from the
Figure 1 library was used to select the payload type and data rate for synchronization. The
Mavlink serialized block was used to convert the virtual bus message into an unsigned
integer 8 bits data stream. The Mavlink de-serializer block can be used when needed to
decode Mavlink message data, but in our implementation, Mavlink was used to send data
to QGroundcontrol, but there was no need to receive data back, which could be helpful in
situations where the path plan is specified directly in QGroundControl.
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An example of interfacing the attitude and altitude signals in Matlab Simulink with
QGroundControl via Mavlink protocol is shown in Figure 2, where the bus assignment
block is used to send attitude and angular velocity data as a message payload.
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QGroundControl also has a MAVLink Inspector tool in the Analyze Tools menu. All
incoming commands for the vehicle are listed in the inspector, which also displays the
update frequency, count, and component id of the message, the variable types, and their
values in different message fields. The heartbeat message is generally received at a relatively
low frequency (typically 1 Hz) compared to sensors such as GPS, which typically operates
at 5 Hz to 10 Hz frequencies, and the IMU, which operates at higher frequencies.

5. Implementations of Matlab/Simulink with Xplane and FlightGear

This section describes our own implementation at Coventry University of the Matlab–
Simulink co-simulation with Xplane and FlightGear. It is shown that this tool allows for
the evaluation of autopilot designs and of some key aircraft flight handling characteristics.

5.1. The Matlab/Simulink and Xplane Co-Simulation

The Xplane co-simulation was taken to be for a conventional Cessna-172 airplane,
which is available on Xplane-11. Pitch, altitude, speed, and heading autopilot designs can
be implemented in the Matlab/Simulink model, then evaluated and validated using Matlab
and 3D Xplane co-simulation.

The initial condition on Matlab was matched with the initial altitude and location in
Xplane using the MAP functionality.

The frame rate was taken to be 20 packets per second.
The IP address used for Matlab and Xplane communication via UDP was 1270.0.0.1.

The output ports 49,000 and 49,004 were respectively used for Matlab to Xplane and Xplane
to Matlab communication via UDP. The UDP send setup on the Matlab side is shown in
Figure 3. The UDP setup and inputs and outputs selection are shown in Figure 4.
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Figure 4. Xplane inputs and outputs selection for UDP communication.

Wind disturbance can be entered either using Matlab–Simulink or from Xplane, where
clear, windy, and even stormy conditions can be simulated at different times of the day. In
Matlab, a formal Dryden wind gust model is also available from aircraft autopilot examples.

The Simulink altitude and speed autopilots with Xplane interfacing are shown in
Figure 5. The altitude control is performed using a conventional successive loop closure
approach with a pitch in an inner loop as in [25]. We added a speed autopilot to enable
simultaneous speed and altitude control.
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of the aircraft, as shown in Figure 7. The initial speed and altitude have to match the one 
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More precisely, the following simplified altitude and speed control laws are used:

δe = kθ(θc − θ)− kqq (1)

where δe represents the elevator deflection, θc is the desired pitch, θ is the actual pitch angle,
q is the pitch rate and kθ , kq are positive controller gains. To track the desired altitude, the
desired pitch is given by:

θc = kh(hc − h) (2)

where h, hc respectively represent the actual and desired altitudes and kh is an altitude con-
trol gain. Likewise, speed control is performed using autothrottle with proportional control.

δτ = kτ(uc − u) (3)

where δτ is the throttle lever angle, u and uc respectively represent the desired and actual
axial speeds and kτ is a positive constant gain. All control inputs are saturated to keep
them within an admissible range. Note that the gains may be replaced by proportional plus
integral control to add flexibility to the tuning, but we verified that proportional control in
all loops is sufficient for constant setpoint tracking.

The chase view is selected from the Xplane menu, as shown in Figure 6.
The Xplane map is then selected, and by typing the N key, the map is centered on the

aircraft. Once the map is opened, it is then possible to enter the initial altitude and speed of
the aircraft, as shown in Figure 7. The initial speed and altitude have to match the one on
the Simulink side.

The flight co-simulation is then shown in Figure 8. The aim of this simulation was to
simultaneously control altitude and speed reference changes using throttle and elevator
inputs while maintaining roll stability. The speed and altitude can be visualized in real-time
on the Simulink scopes during the flight and are part of the displayed data on Xplane. The
speed and altitude are both controlled to their desired references. The altitude is indeed
controlled from 8000 m to the desired altitude of 6000 m in this scenario, and the speed
is successfully controlled from 100 to 120 knots. Note that the initial speed of zero in the
graphs should be ignored as it just represents the data before giving the aircraft its initial
position in Xplane. The Cessna can present challenges to control for an inexperienced
pilot because it has a single axial propeller, which causes a yawing moment that needs
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to be counteracted. That is why a roll control loop was also enabled to avoid roll motion
disturbing the longitudinal control.
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5.2. The Matlab/Simulink and FlightGear Co-Simulation

This co-simulation was taken to be for a Rascal 110 fixed-wing small UAV, for which a
FlightGear model was developed by Thunderfly Aerospace (available from GitHub). This
allows for the description of the process of interfacing with a customized aircraft design.
The aircraft design, which consists of a compressed zipped folder, just had to be extracted
and installed in the FlightGear 2020.3\data\Aircraft folder. It is important to remove the
“-master” part of the filename often generated by GitHub by default. Before generating
the batch script, the file name and version of the aircraft installed must be confirmed by
launching FlightGear on its own and looking it up in the command window, as shown in
Figure 9.

The command window is used to look up the correct aircraft names, currently set
options, and other commands that can be passed on to FlightGear by the batch file. The
same commands are used in the .bat file itself.

In Matlab, the batch script is generated using a dedicated FlightGear bat file generator
block. This block is the blue one shown in Figure 10, and it allows us to select the initial
parameters, initial location, aircraft geometry, etc. In our case, no sceneries were pre-
downloaded, so the option to install scenery during the simulation was on. Disabling
shader options is the recommended choice as it greatly improves the performance of the
simulation for machines that are not fitted with high-end graphics cards and CPUs. The
parameters of the run script setup from Simulink are shown in Figure 11.

Executing the batch file automatically opens FlightGear with the Rascal UAV, as shown
in Figure 12. The software launched that way is prepared to receive data from Simulink.
When the simulation is started in Simulink, the UAV starts from the initial condition
specified in Matlab.
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Executing the batch file automatically opens FlightGear with the Rascal UAV, as 
shown in Figure 12. The software launched that way is prepared to receive data from 
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Figure 12. Batch file running in the Windows console. 

A nonlinear 6DoF model was developed for the Matlab/Simulink Simulink of a Ras-
cal 110 UAV. The model was trimmed using the fminsearch Matlab command with a loss 
function to minimize the errors in solving nonlinear equations used to trim the model 
using the process described in [26]. It was then linearized using the linmod Matlab com-
mand. The FlightGear block in the simulator model requires longitude, latitude, and alti-
tude (LLA) information as well as aircraft roll, pitch, and yaw angles. 

In vector form, the nonlinear dynamics are given by: 𝑚(𝐕 + 𝛚𝐛 × 𝐕 ) = 𝐅  (4)𝐉 𝛚 + 𝛚 ×  𝐉𝛚 = 𝐦  (5)

where 𝐕  represents the velocity vector of the aircraft, expressed in body coordinates, 𝛚𝒃represents the angular velocity vector of the body frame with respect to the inertial 
frame, 𝐅  represents the resultant external force in the body frame, 𝐦  denotes the mo-
ment vector acting on the UAV, m is the UAV mass and J is the moment of inertia matrix. 
The forces and moments models that relate 𝐅  and 𝐦  to the elevator, aileron, rudder, 
throttle inputs, and the states of the system were taken and modified from the model de-
veloped by Christopher Lum for the RCAM research aircraft, which was originally devel-
oped by the Garteur group (see [27]), but the model was modified for the Rascal-110, 
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agonal weighting matrices that are used for numerical conditioning and are typically mul-
tiples of the identity matrix. Minimizing the cost function leads to the equilibrium condi-
tion 𝐱∗ = 𝟎𝟗×𝟏, 𝐮∗ = 𝟎𝟒×𝟏. The four components of the control vector 𝐮∗ = [𝛿∗, 𝛿∗, 𝛿∗, 𝛿∗] 
respectively represent the trimmed elevator, aileron, rudder, and throttle commands. The 
Simulink model is shown in Figure 13. Note that for Matlab versions 2021A or earlier, the 
GPS sensor should not be used. The operating condition for the simulation was a trim 
speed of 85 m/s with an altitude of 1000 m. Flight testing for this model consisted of man-
ual control inputs with elevator inputs between −10 degrees and 25 degrees, throttle in-
puts between 0.5 degrees and 10 degrees, aileron inputs between −25 degrees and 25 de-
grees, and rudder inputs between −30 degrees and 30 degrees to validate the aircraft re-
sponses for nine state variables, namely the axial, vertical and lateral speeds, the attitudes 
and angular rates on all three axes. 

Figure 12. Batch file running in the Windows console.

A nonlinear 6DoF model was developed for the Matlab/Simulink Simulink of a Rascal
110 UAV. The model was trimmed using the fminsearch Matlab command with a loss
function to minimize the errors in solving nonlinear equations used to trim the model using
the process described in [26]. It was then linearized using the linmod Matlab command.
The FlightGear block in the simulator model requires longitude, latitude, and altitude
(LLA) information as well as aircraft roll, pitch, and yaw angles.

In vector form, the nonlinear dynamics are given by:

m(
.

Vb +ωb ×Vb) = Fb (4)

J
.
ωb +ωb × Jωb = mb (5)

where Vb represents the velocity vector of the aircraft, expressed in body coordinates, ωb
represents the angular velocity vector of the body frame with respect to the inertial frame,
Fb represents the resultant external force in the body frame, mb denotes the moment vector
acting on the UAV, m is the UAV mass and J is the moment of inertia matrix. The forces and
moments models that relate Fb and mb to the elevator, aileron, rudder, throttle inputs, and
the states of the system were taken and modified from the model developed by Christopher
Lum for the RCAM research aircraft, which was originally developed by the Garteur group
(see [27]), but the model was modified for the Rascal-110, which has a single central axial
propeller. The trim condition x∗, u∗ where x∗ =

[
Vb
∗T ,ωb

∗T , φ∗, θ∗, ψ∗
]T is the state vector

and u∗ is the trimmed control inputs vector was computed by minimizing the quadratic
error cost function J =

.
x∗TW1

.
x∗ +

.
u∗TW2

.
u∗, where φ∗, θ∗, ψ∗ are trim conditions on the

roll pitch and yaw angle and W1, W2 are diagonal weighting matrices that are used for
numerical conditioning and are typically multiples of the identity matrix. Minimizing
the cost function leads to the equilibrium condition

.
x∗ = 09×1,

.
u∗

= 04×1. The four
components of the control vector u∗ = [δ∗e , δ∗a , δ∗r , δ∗t ] respectively represent the trimmed
elevator, aileron, rudder, and throttle commands. The Simulink model is shown in Figure 13.
Note that for Matlab versions 2021A or earlier, the GPS sensor should not be used. The
operating condition for the simulation was a trim speed of 85 m/s with an altitude of 1000
m. Flight testing for this model consisted of manual control inputs with elevator inputs
between −10 degrees and 25 degrees, throttle inputs between 0.5 degrees and 10 degrees,
aileron inputs between −25 degrees and 25 degrees, and rudder inputs between −30
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degrees and 30 degrees to validate the aircraft responses for nine state variables, namely
the axial, vertical and lateral speeds, the attitudes and angular rates on all three axes.
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Figure 13. Simulink model for 6DoF FlightGear and QGroundControl co-simulation. 
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model, which was developed in Simulink with FlightGear for 3D visualization. 

 
Figure 14. FlightGear and QGroundControl windows during the Simulink-FlightGear-QGround-
Control simulation of the Rascal 110 UAV. 

6. Software-in-the-Loop Co-Simulation Using Matlab/Simulink and VFTE 
Two approaches are described for SIL and HIL simulation using Matlab/Simulink. 

The first one is based on the UAV toolbox for PX4, and the second one is based on a co-
simulation using Matlab/Simulink with flight simulation software, which is taken in this 
section to be the Alphalink virtual flight simulation environment (VFTE) without loss of 
generality. 
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The 3D simulation obtained by interfacing Matlab/Simulink with FlightGear via UDP
is shown in Figure 14 for an open loop maneuver using a 6DoF nonlinear UAV dynamical
model, which was developed in Simulink with FlightGear for 3D visualization.
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simulation of the Rascal 110 UAV.



Automation 2022, 3 501

6. Software-in-the-Loop Co-Simulation Using Matlab/Simulink and VFTE

Two approaches are described for SIL and HIL simulation using Matlab/Simulink.
The first one is based on the UAV toolbox for PX4, and the second one is based on a
co-simulation using Matlab/Simulink with flight simulation software, which is taken in
this section to be the Alphalink virtual flight simulation environment (VFTE) without loss
of generality.

6.1. UAV Toolbox for PX4

Matlab’s UAV Toolbox Support Package for PX4® allows for the use of Matlab/Simulink
for SIL but also HIL simulation with small UAV NuttX-based autopilots, including the
Pixhawk autopilots family. After installing the toolbox, it is necessary to set it up to work
with a chosen hardware board using the configuration parameters options. The toolbox also
has libraries allowing different types of connections for the key aircraft sensors, including
inertial navigation sensors (INS), global positioning system (GPS) receivers, speed pressure
sensors, servo actuation for the control surfaces and DC motors, battery monitoring, and
other features. Figure 15 shows the Matlab/Simulink layout for a simple model used for
initial sensor testing, and the HIL testing of the sensors and gyros is simply started by
clicking on Monitor and Tune. Example models are also provided by Matlab to allow for
gyro sensor calibration to remove bias and scaling errors, for example.
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Figure 15. A simple UAV support package for PX4 example for initial sensor testing. 

The toolbox also provides libraries for the uORB asynchronous publish/subscribe 
messaging system. This middleware allows components to publish data about a topic, 
such as gyro readings, and other components to receive messages by subscribing to the 
corresponding topics. Additional generic uORB read and write blocks are also provided 
to add flexibility, such as defining new or combined topics using Simulink bus assignment 
blocks. The libraries of the UAV toolbox for PX4 are shown in Figure 16. The uOrb blocks 
can be used in both SIL and HIL modes of operation. 

Figure 15. A simple UAV support package for PX4 example for initial sensor testing.

The toolbox also provides libraries for the uORB asynchronous publish/subscribe
messaging system. This middleware allows components to publish data about a topic,
such as gyro readings, and other components to receive messages by subscribing to the
corresponding topics. Additional generic uORB read and write blocks are also provided to
add flexibility, such as defining new or combined topics using Simulink bus assignment
blocks. The libraries of the UAV toolbox for PX4 are shown in Figure 16. The uOrb blocks
can be used in both SIL and HIL modes of operation.
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Figure 16. Key sensing, actuation and communication libraries of the UAV support package for PX4 
from The Mathworks, Inc. 

SIL simulation is possible using the Pixhawk host target option under the hardware 
setup instead of an actual Pixhawk board. Several SIL example models are provided by 
Mathworks. In [28], a SIL example is provided for the position tracking of an X-configu-
ration quadcopter. This SIL simulator allows for the evaluation of autopilots through 3D 
simulation using the jMAVSim flight simulator. Conventional roll, pitch yaw, and altitude 
autopilots are used. The block diagrams of the autopilots and control allocation/mixing 
are shown in Figures 17 and 18, respectively. 

 
Figure 17. PID autopilots in the X-configured quadcopter SIL position tracking example by The 
Mathworks Inc. [28]. 

Figure 16. Key sensing, actuation and communication libraries of the UAV support package for PX4
from The Mathworks, Inc., Natick, MA, USA.

SIL simulation is possible using the Pixhawk host target option under the hardware
setup instead of an actual Pixhawk board. Several SIL example models are provided
by Mathworks. In [28], a SIL example is provided for the position tracking of an X-
configuration quadcopter. This SIL simulator allows for the evaluation of autopilots
through 3D simulation using the jMAVSim flight simulator. Conventional roll, pitch
yaw, and altitude autopilots are used. The block diagrams of the autopilots and control
allocation/mixing are shown in Figures 17 and 18, respectively.
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Mathworks, Inc. [28].
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Figure 18. Control channels allocation/mixing for the X-configured quadcopter SIL position tracking 
example by The Mathworks, Inc. [28]. 

To deploy custom flight controllers or navigation algorithms from Simulink to the 
Pixhawk boards, it is necessary to suppress the execution of certain startup processes and 
to force the autopilot to run the Simulink model. This is performed by using a startup 
script, which is copied to the micro-SD card to be mounted on the Pixhawk® Series flight 
controllers. This requires the installation of the Embedded Coder® Support Package for 
PX4 Autopilots. 

In [29], a Pixhawk-4-based quadcopter HIL simulation model is provided as a Math-
works example. The PX4 firmware is configured using QGroundControl for HIL simula-
tion. UDP interfacing is used for communication with QGroundControl and with a 3D 
scene simulation using Unreal Engine, which has particularly good scene rendering in a 
city environment. The dynamical model is implemented in Simulink with Mavlink bridge 
sink and source blocks to communicate with the Pixhawk 4 autopilot as well as QGround-
Control and the 3D scene simulation, as shown in Figure 19. Actuators and sensors are, 
however, not used in this example. For actual flight, the flight controller program can still 
be used but without the dynamical model. The PX4 firmware would have to be configured 
for real flight, and the Pixhawk 4 connections to the propellers would have to match the 
one assumed in the SIL simulation. 

 
Figure 19. HIL simulation architecture using a Pixhawk 4 with a Simulink-Unreal Engine co-simu-
lation [29]. 

  

Figure 18. Control channels allocation/mixing for the X-configured quadcopter SIL position tracking
example by The Mathworks, Inc. [28].

To deploy custom flight controllers or navigation algorithms from Simulink to the
Pixhawk boards, it is necessary to suppress the execution of certain startup processes and
to force the autopilot to run the Simulink model. This is performed by using a startup
script, which is copied to the micro-SD card to be mounted on the Pixhawk® Series flight
controllers. This requires the installation of the Embedded Coder® Support Package for
PX4 Autopilots.

In [29], a Pixhawk-4-based quadcopter HIL simulation model is provided as a Math-
works example. The PX4 firmware is configured using QGroundControl for HIL simulation.
UDP interfacing is used for communication with QGroundControl and with a 3D scene
simulation using Unreal Engine, which has particularly good scene rendering in a city
environment. The dynamical model is implemented in Simulink with Mavlink bridge sink
and source blocks to communicate with the Pixhawk 4 autopilot as well as QGroundControl
and the 3D scene simulation, as shown in Figure 19. Actuators and sensors are, however,
not used in this example. For actual flight, the flight controller program can still be used
but without the dynamical model. The PX4 firmware would have to be configured for
real flight, and the Pixhawk 4 connections to the propellers would have to match the one
assumed in the SIL simulation.
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Figure 18. Control channels allocation/mixing for the X-configured quadcopter SIL position tracking 
example by The Mathworks, Inc. [28]. 
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Figure 19. HIL simulation architecture using a Pixhawk 4 with a Simulink-Unreal Engine co-
simulation [29].
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6.2. SIL Simulation Using Matlab/Simulink and VFTE

In this section, we present one example of SIL implementation using Matlab/Simulink
together with the VFTE Nano Talon UAV simulator, taken and adapted from Alphalink
training resources. The control objective is simultaneous roll and yaw control, with ro-
bustness to disturbances such as the sideslip disturbance due to the wind. Roll and yaw
motions are well known to be coupled in fixed-wing aircraft. The inputs and outputs of
this SIL model are very similar to those of the Alphalink-based HIL flight simulation, but
sensors and actuators are both virtualized.

More details about the ZOHD Nano Talon UAV and its use as a flying lab is presented
in [30]. The UAV has a 0.86 m wingspan and a length of 0.57 m. A pusher prop with a
maximum thrust of 425 g is used for axial propulsion. Yaw and pitch control is performed
using a twin rudder. Conventional control mixing is used to derive the required right and
left rudder inputs for pitch and yaw control.

The Simulink model template for VFTE interfacing has multiple inputs that can
directly be used from the sensors (IMU, GPS, pitot tube, lidar), and attitude estimates are
also available from an extended Kalman filter input as shown in Figure 20, where roll
angle feedback is obtained from the EKF using simulated sensor readings in the case of SIL
and HIL. A very similar model is also available for flight testing, with the key difference
that actual sensor readings are used instead of simulated ones. For both SIL and HIL
simulations, all control inputs can be sent to the four actuators onboard the Nano Talon
UAV, namely a ruddervator with mixing from elevator and rudder commands, an aileron
command, and a throttle input. Wind inputs can easily be injected into the flight simulation
using either using Simulink or directly using the VFTE flight simulator.
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function dependent), and energy consumption. The robust optimization problem that is 
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Figure 20. Example Nano Talon flight control model for Simulink/VFTE lateral flight co-simulation
(Developed from Alphalink Technologies Inc. (Newark, OH, USA) training resources).

A robust mixed sensitivity H-infinity controller is used by calling Matlab command
mixsyn in a Matlab script that is executed to generate the model and controller parameters
before running the Simulink model. The H-infinity state feedback places the poles to
minimize a weighted cost function that ensures a weighted tradeoff between disturbance
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rejection (sensitivity function dependent), reference tracking (complementary sensitivity
function dependent), and energy consumption. The robust optimization problem that is
solved using mixsyn can be formulated as:

min
K(s)

∥∥∥∥∥∥
WsS(s)

WKSK(s)S(s)
WTT(s)

∥∥∥∥∥∥
∞

(6)

where S is the sensitivity function from low-frequency disturbance to output and T is
the complementary sensitivity function from reference to noisy output. S needs to be
minimized at low frequencies, and T needs to be minimized at low frequencies, and the two
conditions cannot both be satisfied at the same frequency because S + T = I. The conditions
in one frequency domain are, however, compatible because, at low frequencies, T has to
approach identity to ensure reference tracking. S and T are 2 × 2 matrices.

The controller transfer function K (s) takes sideslip and bank angle data as inputs
and outputs the aileron and rudder deflections. In the SIL example of Figures 17 and 18,
given that high-frequency IMU noise is filtered, WT is taken to be zero to focus on wind
disturbance rejection and reference tracking, but noise rejection can also be explicitly ac-
commodated if necessary using the same H-infinity commands. The Ws matrix is diagonal
with a low-frequency gain of 60 dB for disturbance rejection in both the aileron to roll and
the rudder to yaw loops.

A Luenberger observer is also used, as shown in Figure 21, to provide the required
state feedback for the lateral controller because the sideslip angle is not directly measured,
unlike the roll, roll rate, and yaw rate. The full detail of the observer block and the H-infinity
function is not provided here because they were modified from a commercially available
Simulink/VFTE simulation lesson by Alphalink Systems plc. Angular rate information
is obtained from the simulated Pixhawk gyros with low pass filters to reduce the effects
of noise. The bank angle feedback is directly obtained, as shown in Figure 17, from an
extended Kalman filter (EKF), which is available by default as PX4 code.
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Figure 21. Detail of the observer-based Nano Talon lateral flight controller block of Figure 20. 

The VFTE window during the Simulink-VFTE flight co-simulation of the observer 
enhanced lateral control of the Nano Talon UAV is shown in Figure 22. The Nano Talon 
self-stabilizes after a bank angle maneuver to change the heading and is robust to 
bounded wind velocities. 

The trim condition for the simulation was an axial speed of 17 m/s at 100 m altitudes 
with the correct angle of attack and throttle settings to maintain that speed constant with-
out a turn. 

Figure 21. Detail of the observer-based Nano Talon lateral flight controller block of Figure 20.

The VFTE window during the Simulink-VFTE flight co-simulation of the observer
enhanced lateral control of the Nano Talon UAV is shown in Figure 22. The Nano Talon
self-stabilizes after a bank angle maneuver to change the heading and is robust to bounded
wind velocities.
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Figure 22. VFTE window view during the SIL co-simulation using the Simulink lateral ob-
server/controller loop. 
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Talon UAV. The HIL architecture is shown in Figure 23 and uses a controller area network 
(CAN) bridge (configured and tested using the CANoe software) to connect the Pixhawk 
4 mini flight controller on the one hand and Matlab Simulink dynamical and sensor mod-
els on the other hand. VFTE is also interfaced with Matlab/Simulink for real-time 3D flight 
simulation, and the Pixhawk-4 mini is connected to all the onboard sensors and actuators 
of the Nano Talon UAV, as well as an RC transmitter. For HIL simulation, a VMware-
player virtual machine is used to represent the virtual world and upload the flight con-
troller code to replace actual sensor measurements with virtual measurements. 

 
Figure 23. HIL architecture using Pixhawk (courtesy of Alphalink Technologies Inc.). 

A screenshot of the working Nano Talon virtual flight test excitation of all 6DoF using 
manual RC transmitter commands to the HIL simulation using VFTE-Simulink and 
QGroundControl is shown in Figure 24. The servos connected to the Pixhawk were acti-
vated during this experiment. This setup would allow for a practical comparison of energy 
consumption between different control methods, although the power readings would be 
without the aerodynamic load that would be present in real flight tests. It is, however, still 
possible to relate power consumption without load to the one with a speed-dependent 
aerodynamic load through propeller thrust measurement in wind tunnel experiments, 
which would allow predicting the expected difference between real flight and HIL flight 
test. 

Figure 22. VFTE window view during the SIL co-simulation using the Simulink lateral ob-
server/controller loop.

The trim condition for the simulation was an axial speed of 17 m/s at 100 m altitudes
with the correct angle of attack and throttle settings to maintain that speed constant without
a turn.

6.3. HIL Simulation of A Small UAV Using Matlab/Simulink, VFTE, and CAN Interfacing

Alphalink’s VFTE was also successfully used for a HIL co-simulation with Mat-
lab/Simulink and QGroundControl for a virtual flight test using the ZOHD Nano Talon
UAV. The HIL architecture is shown in Figure 23 and uses a controller area network (CAN)
bridge (configured and tested using the CANoe software) to connect the Pixhawk 4 mini
flight controller on the one hand and Matlab Simulink dynamical and sensor models on
the other hand. VFTE is also interfaced with Matlab/Simulink for real-time 3D flight
simulation, and the Pixhawk-4 mini is connected to all the onboard sensors and actuators
of the Nano Talon UAV, as well as an RC transmitter. For HIL simulation, a VMwareplayer
virtual machine is used to represent the virtual world and upload the flight controller code
to replace actual sensor measurements with virtual measurements.
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A screenshot of the working Nano Talon virtual flight test excitation of all 6DoF
using manual RC transmitter commands to the HIL simulation using VFTE-Simulink
and QGroundControl is shown in Figure 24. The servos connected to the Pixhawk were
activated during this experiment. This setup would allow for a practical comparison of
energy consumption between different control methods, although the power readings
would be without the aerodynamic load that would be present in real flight tests. It
is, however, still possible to relate power consumption without load to the one with a
speed-dependent aerodynamic load through propeller thrust measurement in wind tunnel
experiments, which would allow predicting the expected difference between real flight and
HIL flight test.
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Figure 24. HIL co-simulation using RC commands to the Simulink/VFTE/QGroundControl environment.

For autonomous control, a similar approach can be used to the SIL setup in Figure 17.
As part of the future work, we are developing autonomous longitudinal feedback control
of the Nano Talon using a wind perturbation observer for adaptive control in the presence
of wind gusts, assuming that there are insufficient measurements to directly measure the
wind gusts and their angular rate effects. The Alphalink Nano Talon kit is also capable
of flight tests, but the HIL setup allows for improved flight safety through virtual flight
tests before real flights. HIL evaluation of power consumption is also possible but will
not include the aerodynamic load effects. Model-based corrections would be needed to
evaluate the corresponding power fraction under the simulated aerodynamic loads.

7. Discussion of the Limitations of Co-Simulation Methods

The co-simulation methods used in this paper employ commercial software, including
Matlab/Simulink by The Mathworks Inc., Alphalink’s VFTE, and Xplane. Matlab script
was found to work on all attempted recent Matlab versions, and it is noteworthy that some
Simulink toolboxes features, such as those of the UAV toolbox, will only work in the latest
Matlab versions (The GPS block in Matlab 2021a or later, for example) and when using a
new Matlab version, it is can be necessary to make modifications to the models developed
in earlier versions before they can be used. Using Xplane, additional features are available
using the professional version of the software, and plugins may be necessary to extend
the work to more complex simulations such as formation flight. The Alphalink software
is currently specific to the NanoTalon UAV, and SIL/HIL simulations can, in this case,
be interfaced with a realistic flight simulation, which is remotely accessed on the cloud,
although this did not present any issues in terms of real-time flight simulation, and it has
the advantage of using less onboard PC resources for the flight simulation. Real-time flight
co-simulation was found to work efficiently on one PC with a moderate capability of 8 GB
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RAM and a 1.8 GHz intel quad-core processor, with sufficient hard disk memory to run
Xplane–Matlab, VFTE–Matlab, or FlightGear–Matlab co-simulations from the same PC.

8. Conclusions

A review on the use of Matlab/Simulink with a range of popular flight simulation
programs has highlighted that different PC-based flight simulators have different areas of
strength in terms of 3D simulation.

Commercial software Xplane was found to provide a relatively simple approach to
real-time co-simulation via UDP with a realistic flight dynamics model based on blade
element theory for a wide range of aircraft configurations, but it was primarily designed for
manned aircraft. The Simulink–Xplane co-simulation approach was found to be particularly
suited to general aviation aircraft and was successfully used to verify the simultaneous
altitude and speed control characteristics of a Cessna-172 aircraft, where roll stabilization
was also used to counteract the yawing moment due to the use of a single propeller.

Free software FlightGear was shown to allow for flexibility in the choice of the flight
dynamics model, with the ability to simulate medium to high endurance UAVs. FlightGear
A Rascal-110 UAV was therefore chosen as a FlightGear example. FlightGear was found to
provide simple interfacing with ground control station software QGroundControl, which is
particularly convenient for path following. A step-by-step tutorial is given to describe the
co-simulation process for both Xplane and FlightGear.

Despite the fact that Realflight is well-suited for small UAV simulation, little infor-
mation is available on its direct interfacing with Matlab/Simulink, and that is why the
VFTE software was evaluated for co-simulation in the small UAV case. Approaches to the
software-in-the-loop and hardware-in-the-loop flight simulation using Matlab/Simulink
are also described using the UAV toolbox or by interfacing Simulink with the VFTE soft-
ware for virtual flight testing of a Nano Talon MAV. The approach also allows for direct
interfacing between Matlab/Simulink and QGroundControl during flight co-simulation in
three-dimensional space and for more advanced observer-based robust H-infinity control
to optimize a tradeoff between wind disturbance rejection and trajectory tracking accuracy.

The interfaces and conditions for software-in-the-loop virtual flight testing are becom-
ing increasingly similar to hardware-in-the-loop implementation, particularly in the case of
small UAVs using tools such as the VFTE or the Pixhawk host target option of the UAV
toolbox for PX4. Co-simulation is now becoming the norm for both SIL and HIL testing,
particularly in small UAVs where the Mavlink protocol is used, and the trends are towards
increased interfacing simplicity.
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