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Abstract: Bone morphogenetic proteins (BMPs) are a diverse class of growth factors that belong to 

the transforming growth factor-beta (TGFβ) superfamily. Although originally discovered to possess 

osteogenic properties, BMPs have since been identified as critical regulators of many biological 

processes, including cell-fate determination, cell proliferation, differentiation and morphogenesis, 

throughout the body. In the ocular lens, BMPs are important in orchestrating fundamental 

developmental processes such as induction of lens morphogenesis, and specialized differentiation 

of its fiber cells. Moreover, BMPs have been reported to facilitate regeneration of the lens, as well as 

abrogate pathological processes such as TGFβ-induced epithelial-mesenchymal transition (EMT) 

and apoptosis. In this review, we summarize recent insights in this topic and discuss the 

complexities of BMP-signaling including the role of individual BMP ligands, receptors, extracellular 

antagonists and cross-talk between canonical and non-canonical BMP-signaling cascades in the lens. 

By understanding the molecular mechanisms underlying BMP activity, we can advance their 

potential therapeutic role in cataract prevention and lens regeneration. 

Keywords: bone morphogenetic protein (BMP); transforming growth factor-beta (TGFβ); ocular lens; 

cellular signaling; cataract; epithelial-mesenchymal transition 

 

1. Introduction 

The activity of bone morphogenetic proteins (BMPs) was described by orthopedic 

surgeon, Marshall Urist in 1965 when he found that they could induce ectopic bone 

formation in rodents [1]; however, it was not until the late 1980s that the responsible BMP 

proteins were identified and characterized [2–5]. Since their initial discovery, BMPs have 

been shown to exert pleiotropic effects on many tissues and processes beyond bone and 

osteogenesis, now recognized as multifunctional proteins belonging to the transforming 

growth factor-beta (TGFβ) superfamily [6–9]. To date, over twenty BMPs have been 

identified to play important roles in embryogenesis, organogenesis and maintenance of 

adult tissue homeostasis [10]. BMPs are involved in many vital physiological processes 

including cell proliferation, differentiation, inhibition of growth and maturation in 

different cell types, dependent on their cellular microenvironment. Given our current 

knowledge, it is not surprising that they have been more aptly referred to as “body 

morphogenetic proteins” [11]. 

In an ocular context, BMPs are essential for early eye specification and patterning of 

the retina and lens [12]. In this review, we focus specifically on the role of BMPs in the 

lens in both normal and pathological contexts. Firstly, we briefly introduce BMPs 

including their receptors, signaling cascades and antagonists. We then discuss the 

importance of BMPs during the phases of lens development from the initial induction of 

the lens ectoderm in embryogenesis to later lens fiber differentiation processes. We follow 
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this with a discussion of the role of BMPs in promoting lens regeneration and in 

abrogating lens pathology, including its potential as a therapeutic for cataract prevention. 

We conclude by highlighting opportunities to fill the gaps in our current understanding 

of BMP-signaling in the lens and propose directions for future research. 

2. Bone Morphogenetics Proteins (BMPs) 

2.1. Synthesis of BMPs 

BMPs are synthesized as large precursor molecules of approximately 400–525 amino 

acids in length, to form 30–38 kDa homodimer proteins, with an amino (N)-terminal 

secretory signal peptide, a pro-domain for folding, and a carboxyl (C)-terminal mature 

peptide with seven cysteine residues [13]. These residues at the protein core form the 

highly conserved TGFβ-like cysteine knot configuration [13]. The seventh cysteine is 

critical for its biological activity, enabling dimerization with a second monomer through 

a covalent disulfide bond [14]. 

BMP precursor molecules undergo many post-translational modifications before the 

mature form is secreted. Following cleavage of the signal peptide, the precursor protein 

is glycosylated and dimerizes [15]. Cleavage of the pro-domain by pro-protein 

convertases in the trans-Golgi network, generates N- and C-terminal fragments that are 

secreted into the extracellular space [16]. The C-terminal segment containing the mature 

dimeric BMP protein with the cysteine knot is capable of binding to its receptor [16], while 

the pro-domain plays a more regulatory role [10]. 

The mature dimeric BMP proteins can either be homodimers, comprising two similar 

disulfide-linked BMPs (e.g., BMP-4/BMP-4) or heterodimers comprising of two different 

BMPs (BMP-2/BMP-4) [17]. This flexible oligomerization pattern broadens the scope of 

BMP interactions with its receptors, leading to activation of numerous signaling pathways 

for different cellular functions [17]. 

2.2. Classification of BMPs 

Based on amino acid sequences and functional differences, the BMP subfamily is 

divided into different subgroups: BMP-2/4, BMP-5/6/7/8, BMP-14/13/12 (GDF5/6/7), 

GDF8/11, BMP-9 (GDF2)/BMP-10, GDF1/3 and GDF10/BMP-3 [16,18–20]. It should be noted 

that BMP-1 does not belong to the TGFβ superfamily as it shares homology with a pro-

collagen, C-proteinase [21]. Although their monikers imply that all BMP members are 

inducers of bone, some can act as inhibitors of bone formation [10]. For instance, BMP-3 is a 

negative regulator of bone density [22], and BMP-13 strongly inhibits bone formation [23]. 

From gene inactivation studies in mice, it is clear that BMPs are critical for the 

development of various organ systems beyond bone [18]. BMP-2 knockout mice die due to 

amnion/chorion defects, and highlight the importance of BMP-2 for cardiac development 

[24]. BMP-4 deficient mice show early defects in limb patterning [25], as well as thymus and 

parathyroid morphogenesis [26]. BMP-7 knockout mice also display defects in 

skeletogenesis [27], as well as defects in neurogenesis [28], kidney [27], eye [27] and cardiac 

development [29]. In the adult, BMP-7 expression remains highest in the kidney [30–32], and 

to a lesser extent in cartilage [33], brain [34] and the eye [17]. Loss of BMP-3, BMP-5, BMP-

6, BMP-8, GDF5/6/7, GDF8, GDF10, or GDF11 does not cause lethality, emphasizing the 

functional redundancy of BMPs in skeletal, cardiac and limb development [18]. 

Although some BMP subgroups share overlapping functions, some individual 

members display unique functions [18]. For instance, in the BMP-5/6/7 subgroup, BMP-5 

and BMP-7 share similar functions, with BMP-6 uniquely involved in iron hemostasis, 

stimulating expression of hepcidin, a key regulator of iron absorption [35,36]. 

2.3. BMP Receptors: Specificity and Activation 

Members of the TGFβ superfamily bind to two types of serine/threonine kinase 

receptors (type I and type II receptors) [37]. Both type I and type II receptors share similar 
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structural properties, comprised of a short extracellular domain of 10–12 cysteine 

residues, a transmembrane domain, and a cytosolic serine/threonine kinase domain [14]. 

The intracellular domains of type I receptors, but not type II receptors, have a 

characteristic glycine and serine-rich domain (GS domain) located N-terminally to the 

serine/threonine kinase domains [37]. Both types of receptors are required to form a 

functional complex to propagate downstream signaling events [17,38,39]. 

While TGFβ binds exclusively to its type I receptor, TGFBR1 (activin receptor-like 

kinase (ALK)-5 or TβRI) and type II receptor, TGFBR2, BMPs have five type I receptors; 

Acvrl1 (also known as ALK1), ActRI (ALK2), BMPR-IA (ALK3), ActRIb (ALK4) [40] and 

BMPR-IB (ALK6), and three type II receptors; BMPR-II, ActRIIa, and ActRIIb [14]. BMPR-

II is specific for BMPs, whereas ActRIIa and ActRIIb are also shared by activins and 

myostatin [37]. Differing affinities for the various BMP molecules and their preferred 

ligand-receptor complexes have been identified (summarized in Figure 1) [37,41]. 

In general, ligand binding of TGFβ superfamily members induces the constitutively 

active serine/threonine domains of type II receptors to transphosphorylate the GS domain 

of the type I receptor, forming a heterotetrameric complex [37]. In contrast, the binding of 

BMP-2 in particular, follows a different sequential binding mechanism [42,43], with BMP-

2 first binding to its type I BMP receptor (high affinity receptor) that then activates 

recruitment of the type II BMP receptor (low affinity receptor) into a ternary complex [42], 

similar to TGFβ. Type I and type II BMP receptors can independently bind BMP-2, but in 

the presence of both receptor types, there is enhanced binding affinity [43–45]. 

 

Figure 1. Bone morphogenetic protein (BMP) ligands and receptors. Different BMP ligands bind to different type I and II 

BMP receptors to activate the canonical Smad-signaling pathway involving the receptor regulated-Smads (R-Smads) and 

the common Smad (Co-Smad). GDF (growth differentiation factor); ALK (activin-like kinase); ActR (activin receptor). 

2.4. BMP Intracellular Signaling Pathways 

BMPs can activate different signaling pathways through distinct receptor complexes 

(summarized in Figure 2) [46]. For example, BMP-2 has been shown to have two modes 

of signal transfer; (i) BMP-2 binds to a preformed complex (PFC) of BRIa and BRII that 

triggers clathrin-mediated endocytosis and initiates the canonical Smad-signaling 

pathway [43,47]. (ii) BMP-2 binds to its high affinity receptor BMPR-IA, upon which 

BMPR-II is recruited into the complex, forming a BMP-induced signaling complex (BISC) 

[48] resulting in its internalization via caveolae and activation of the non-Smad, mitogen-

activated protein kinase (MAPK) pathway [49]. 
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Figure 2. Transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) receptor signal transduction. 

TGFβ and BMP bind to their respective type I and II receptors to activate the downstream canonical Smad-signaling to 

initiate gene transcription by binding various co-activators and co-repressors. While TGFβ activates Smad2/3 and BMP 

activates Smad1/5/8, both require the common Smad, Smad4, to form a complex for nuclear translocation. Inhibitory 

Smads (Smad6/7) and Smurf1/2 act as intracellular negative regulators of the TGFβ- and/or BMP-pathway. Several 

extracellular BMP antagonists/agonists and the pseudo-receptor, BAMBI, regulate BMP-signaling. 

2.4.1. Canonical Signaling Pathway 

The canonical BMP-signaling pathway involves the small mothers against 

decapentaplegic (Smad) proteins [50]. Smads are proteins that mediate intracellular signals 

and regulate gene transcription of TGFβ and BMP target genes. Based on their function, they 

are divided into three classes of Smads: the receptor-regulated Smads (R-Smads), the 

common-mediator Smads (Co-Smads) and the inhibitory Smads (I-Smads) [37]. The 

activated receptor complex relays the signal to the cytoplasm by phosphorylating the 

carboxy-terminus of receptor-regulated Smad proteins (R-Smads) [51]. R-Smads of the 

TGFβ/activin pathway include Smad2 and Smad3, whereas Smad1, Smad5 and Smad8 

participate in BMP-signaling [37]. Similar to the Smad anchor for receptor activation (SARA) 

cofactor in TGFβ-signaling that interacts directly with and recruits Smad2/3 to the TGFβ 

receptor [52], the Smad1 anchor for receptor activation for BMP-signaling is endofin, that 

enhances Smad1 phosphorylation and its translocation to the nucleus [53]. 
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Phosphorylated R-Smads hetero-oligomerize with Smad4, a Co-Smad shared by both 

TGFβ- and BMP-signaling [18]. This complex translocates to the nucleus, binding to the 

Smad-binding element (SBE), or BMP-responsive element (BRE), to regulate transcription 

of respective target genes [50]. As Smads have a lower intrinsic binding affinity to DNA, 

they cooperate with transcriptional co-activators or co-repressors, and chromatin 

remodeling factors, to facilitate the integration of different signaling inputs, accounting 

for the multitude of gene responses generated by the few Smad proteins [18]. 

The inhibitory I-Smads (Smad6 and Smad7) can interrupt phosphorylation of R-

Smads by negatively regulating Smad activation [54]. Their absent SSXS phosphorylation 

site allows Smad6 and Smad7 to form stable associations with the activated type I 

receptors, preventing subsequent phosphorylation of R-Smads and Co-Smads [10]. Smad7 

can inhibit both TGFβ- and BMP-signaling, while Smad6 inhibition is specific to BMP-

signaling [55]. Smad6 can also inhibit signaling by acting as a transcriptional co-repressor 

and competing with R-Smads for Co-Smad binding [49]. Furthermore, I-Smads have been 

found to mediate receptor interaction with E3-ubiquitin ligases; Smad6 and Smad7 

facilitate Smad ubiquitin regulatory factors (Smurf)1 and Smurf2 ubiquitinating and 

degrading R-Smads and BMP receptors [56]. Smad6 and Smad7 expression can be 

upregulated by TGFβ, activin and BMP, suggesting that I-Smads function in a negative 

feedback loop to antagonize both TGFβ- and BMP-signaling [49]. Moreover, TGFβ, activin 

and nodal pathways can also interact with BMP type I receptor to phosphorylate Smad2/3, 

hence diverting the canonical BMP-signaling pathway [57]. 

2.4.2. Non-Canonical Signaling Pathway 

In addition to the canonical signaling cascade, BMP can also signal through several 

non-canonical, Smad-independent pathways [49]. These include the MAPKs, p38 and the 

extracellular signal-regulated kinase (ERK), C-Jun N-terminal kinase (JNK), nuclear factor-

kappa beta (NF-κB) [14] and PI3K/Akt pathways [58–60]. Activation of the non-Smad 

pathways is believed to be through the interactions with BRAM1 (bone morphogenetic 

protein-receptor-associated molecule 1) and XIAP (X-linked inhibitor of apoptosis protein), 

and downstream molecules such as TAK1 (TGFβ-activated kinase 1) and TAB1 (TAK1 

binding protein), that form the TAB1-TAK1 complex [14]. Integration and cross-talk of 

diverse non-Smad and Smad pathways broadens the cellular responses elicited by BMP, 

and is a key mechanism for modulation of specific developmental responses [61,62]. 

2.5. Antagonists of BMP-Signaling 

The specificity, intensity, and duration of BMP-signaling is regulated on multiple 

levels by extracellular and intracellular modulators ranging from interaction of the ligand 

with secreted antagonists, crosstalk with other signaling cascades, or modes of receptor 

oligomerization and internalization [10]. Several secreted extracellular antagonists 

modulate the activity of BMP at the cell surface by preventing its binding to its receptor 

complex (reviewed by Massague and Chen) [61,63]. BMP antagonists also possess a 

cysteine knot structure and according to the size of their cysteine knot, they have been 

classified into three subfamilies: the CAN family (eight-membered ring); twisted 

gastrulation protein (nine-membered ring); and chordin and noggin (ten-membered ring) 

[64]. The CAN family is further subdivided into Gremlin/DRM/IHG-2, Cerberus, Coco, 

DAN, protein related to DAN and Ceberus (PRDC), Sclerostin and USAG-1 [64]. 

BMP antagonists exhibit different binding affinities for various members of the BMP 

family [65]. Noggin binds BMP-2 and BMP-4 with 10–15 times greater affinity than the 

BMP receptors, effectively abolishing the activity of BMP-2 and BMP-4 [66]. Noggin also 

binds to BMP-7, but with lower affinity [63]. Interestingly, BMP is capable of inducing 

noggin expression and initiating a negative feedback loop to limit its own activity [67–69]; 

however, BMP-6 and BMP-9 are naturally insensitive toward noggin [70,71]. Chordin 

binds BMP-2 and BMP-4 with 10 times lower affinity compared to noggin [66]. The 
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chordin/BMP complex may be cleaved by BMP-1 metalloproteinase to release biologically 

active BMP, suggesting a complex regulation of BMP interaction with its receptors [72]. 

Intracellular antagonists of BMP-signaling include I-Smads, microRNAs, such as 

miR-21 that negatively regulates BMP-4 [73], phosphatases, such as PP1 and PP2A that 

dephosphorylate the BMP receptors, and R-Smad and FK506-binding protein 1A that 

binds to the GS domain of type I receptors to inhibit receptor internalization [63]. Co-

receptors in the plasma membrane, such as endoglin, betaglycan and the repulsive 

guidance molecule (RGM) family including RGMa, RGMb (also known as Dragon), RGMc 

(also known as hemojuvelin or HJV), and RGMd, modulate the interactions between BMP 

ligands and type I and II BMP receptors to enhance the level of regulation [74,75]. BMP-

signaling can also be blocked by the pseudo-receptor BAMBI (BMP and activin membrane 

bound inhibitor), a transmembrane protein with an extracellular domain similar to that of 

type I BMP receptors [76]. BAMBI’s inhibitory effects are mediated by a short intracellular 

domain that lacks the serine/threonine-kinase segment, thus preventing the formation of 

receptor complexes and subsequent BMP-signaling [76]. 

3. Role of BMP-Signaling in Lens Development 

The vertebrate lens is an ideal model system for studying organ morphogenesis and 

cell differentiation due to the ease of manipulation and visualization of lens tissues [77]. 

Since Hans Spemann introduced the concept of inductive interactions during the study of 

lens development in 1901, developmental biologists have used the lens as a tool to 

elucidate the general molecular mechanisms underlying embryonic induction, cell 

specification, and patterning of different tissues and organs [78]. 

The development of the eye involves a hierarchy of inductive interactions between the 

embryonic forebrain and the overlying surface head ectoderm (see McAvoy 1980) [79]. 

Briefly, lens development is morphologically first seen as a thickening of the embryonic 

surface head ectoderm into the lens placode, apposed to the optic vesicle [78]. The lens 

placode invaginates into the optic vesicle to form the lens pit that then deepens to pinch off 

from the surface ectoderm (the prospective cornea), to form a hollow structure, the lens 

vesicle [80]. The posterior lens vesicle cells elongate and differentiate into primary lens fibers 

filling the vesicle lumen [80]. The anterior lens vesicle cells go on to form a monolayer of 

lens epithelial cells that continuously proliferate and subsequently differentiate at the lens 

equatorial region into secondary fiber cells [80]. The differentiation of lens epithelial cells 

into secondary lens fiber cells is characterized by extensive cell elongation and accumulation 

of specialized crystallins [81]. All intracellular membrane-bound organelles are eventually 

degraded, with cessation of DNA, RNA and protein synthesis [81]. The process of lens fiber 

differentiation continues throughout life, forming a mass of secondary fiber cells arranged 

in concentric layers surrounding a dense central nucleus of mature primary fibers [82]. A 

summary of the studies investigating the role of BMPs in different aspects of lens 

development (Figure 3), regeneration and pathology is provided in Table 1. 
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Table 1. Summary of the studies investigating the role of BMPs in lens induction, lens fiber 

differentiation, gap junction-mediated communication, lens regeneration and cataract prevention in 

various experimental models. 

Author (Year) Experimental Model BMPs Investigated 

Lens Induction 

Luo et al. (1995) [27] In vivo mouse BMP-7 

Furuta et al. (1998) [83] In vivo mouse BMP-4 

Wawersik et al. (1999) [84] In vivo mouse BMP-7 

Zhao et al. (2002) [85] In vivo mouse BMP-7, noggin 

Sjödal et al. (2007) [86] In vivo chick BMP-4 

French et al. (2009) [87] In vivo zebrafish BMP-4, GDF6a 

Rajagopal et al. (2009) [88] In vivo mouse 
BMP receptor Acvr1 and 

Bmpr1a 

Huang et al. (2015) [89] 
In vivo chick, in vivo 

mouse 
BMP-7, Acvr1, Bmpr1a 

Lens Fiber Differentiation 

Hung et al. (2002) [90] In vivo mouse BMP-7 

Faber et al. (2002) [91] In vivo mouse Bmpr1b 

Belecky-Adams et al. (2002) 

[92] 
In vivo chick BMP-2, BMP-4, BMP-7, noggin 

de Iongh et al. (2004) [93] In vivo mouse, rat lenses 
ActRIIA, ActRIIB, BmprII, 

ALK3 

Jarrin et al. (2004) [94] In vivo chick Noggin 

Pan et al. (2006) [95] In vivo mouse BMP-4 

Boswell et al. (2008) [81] In vitro embryonic chick BMP-2, BMP-4, BMP-7, noggin 

Rajagopal et al. (2009) [88] In vivo mouse BMP receptor Acvr1 

Pandit et al. (2011) [96] In vitro in vivo chick BMP-4 

Wiley et al. (2011) [97] In vivo mouse BMP receptor Acvr1 

Jidigam et al. (2015) [98] In vivo chick BMP-4, BMP-7 

Boswell et al. (2015) [99] In vitro embryonic chick BMP-2, BMP-4, BMP-7, noggin 

Gap-junction Mediated Communication 

Boswell et al. (2008) [100] In vitro embryonic chick BMP-2, BMP-4, BMP-7, noggin 

Boswell et al. (2009) [101] In vitro embryonic chick BMP-4 

Lens Regeneration 

Grogg et al. (2005) [102] In vivo newt 
BMP-4, BMP-7, chordin, 

Bmpr1a 

Kurata et al. (2001) [103] Xenopus BMP-4 

Day and Beck (2011) [104] Xenopus Noggin, Nipsnap1 

Yang et al. (2010) [105] 
Human embryonic stem 

cells 
BMP-4, BMP-7, noggin 

Cataract Prevention 

Kowanetz et al. (2004) [106] Mouse epithelial cell line BMP-7, Id2, Id3 

Saika et al. (2006) [107] In vivo mouse BMP-7, Id2, Id3 

Shu et al. (2017) [108] In vitro rat lens explant BMP-7, Id2, Id3 

Shu et al. (2021) [109] In vitro rat lens explant BMP-4, ventromorphins 

Du et al. (2021) [110] 
HLE-B3 human lens cell 

line 
BMP-4 
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Figure 3. Involvement of bone morphogenetic protein (BMP) signaling in lens development. 

3.1. Lens Specification 

The optic vesicle plays a key role in lens formation by providing inductive signals to 

the surface ectoderm to form the lens placode [78]. BMPs have been identified as putative 

signaling molecules contributing to this inductive event [80,111]. At the gastrula stage, 

BMP-2 and BMP-4 have been detected at the anterior neural plate border [112,113] where 

both prospective lens and olfactory progenitor cells are located [114]. BMP downstream 

mediators, phospho-Smad1/5/8, have also been identified in this region, indicating active 

BMP-signaling [112,113]. In mice, expression of BMP-4 rapidly decreases in the 

presumptive lens ectoderm by embryonic day 9.5 (E9.5), and is completely absent in the 

lens placode at E10 [83,84]. Similarly, BMP-7 is also expressed in the head surface 

ectoderm at E9.5, but slowly diminishes in the lens placode by E10, before becoming 

absent from the lens vesicle by E10.5 [115]. 

At the gastrula stage, prospective lens and olfactory placodal cells intermix in a 

domain at the rostral neural plate border [114]. The spatial separation of lens and olfactory 

progenitor cells occurs at the neural fold stage and by early neural tube stages, the 

presumptive lens ectoderm overlies the optic vesicle [116]. Sjödal et al. (2007) showed that 

BMP activity is both required and sufficient to induce lens and olfactory placodal cells. 

Prospective forebrain explants from chick embryos in the gastrula stage, cultured in the 

presence of BMP-4, generated cells of an olfactory and lens placodal character [86]. 

Continued exposure of placodal progenitor cells to BMP signals resulted in lens 

specification whilst olfactory placodal cells were generated once BMP signals were 

downregulated. Hence, temporal changes in BMP activity can act as a switch in 

establishing olfactory and lens placodal identity. The concentration of BMP activity also 

plays a crucial role. Exposure of prospective rostral border cells to a higher level of BMP-

signaling (>50 ng/mL) promoted an epidermal cell identity and repressed neural cell fate 

[86]. Conversely, culturing these prospective lens and olfactory cell explants in the 

presence of noggin generated cells of neural forebrain character [86]. This is consistent 

with the theory that BMP-activity suppresses neural fate and varying the temporal onset 

and concentration of BMP-signaling can modulate the differential specification of 

olfactory, lens and epidermal cell fates. 
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Pandit et al. (2011) further explored the temporal requirement of BMP during early 

lens development in relation to L-Maf, a lens-specific member of the Maf family of 

transcription factors. During the lens placodal stage, L-Maf expression is upregulated in 

chick [80], and C-Maf in mouse [117]. Following this, an early step of primary lens fiber 

differentiation involves the upregulation of crystallin proteins, including δ-crystallin in 

chick [77]. In the developing lens ectoderm, BMP-4 and pSmad1/5/8 expression precedes 

the onset of both L-Maf and δ-crystallin expression [96]. While BMP activity is both 

required and sufficient to induce L-Maf expression, the subsequent cell elongation and 

upregulation of δ-crystallin occurs independently of further BMP-signaling. These results 

extend the knowledge of lens development and cell fate, highlighting the role of BMP in 

lens specification and subsequent BMP-induced L-Maf as a regulator of early 

differentiation of primary lens fiber cells. 

Huang et al. (2015) showed that autoregulation of BMP-signaling is a key molecular 

mechanism underlying lens specification [89]. BMP inhibition by targeted deletion of type 

I BMP receptors, Bmpr1a and Acvr1, in murine lens-forming ectoderm, and exposure of 

chick pre-lens ectodermal explants to noggin, resulted in an upregulation of Bmp2 and 

Bmp4 transcripts to generate olfactory cells [89]. Conversely, exposure to BMP-4 lowered 

expression of Bmp2 and Bmp4 transcripts resulting in characteristic epidermal cells [89]. 

This agrees with previous studies showing that lens specification requires continued BMP 

activity and that high levels of BMP signals promote epidermal specification [86,96]. 

Hence, an intermediate and balanced level of BMP activity is required for lens 

specification, and a reduction or increase in BMP activity can result in the generation of 

olfactory placodal or epidermal cells, respectively [89]. Exposure of chick ectoderm 

explants to noggin did not affect Bmp7 levels; however, addition of BMP-7 increased 

expression of Bmp7 transcripts, indicating positive autoregulation of BMP-7-signaling in 

the chick pre-lens ectoderm [89]. In contrast, blocking BMP-signaling (by deletion of type 

I BMP receptors) in mice resulted in an increase in Bmp7 expression [89]. This discrepancy 

in Bmp7 autoregulation may be attributed to differences in animal models, but also to 

temporal differences in upregulation of Bmp4 and Bmp7 transcripts in mice as Bmp4 

expression increases much faster compared to Bmp7 [89]. Hence, long-term inhibition of 

BMP-signaling may be necessary to upregulate Bmp7 expression in chick. Future studies 

are required to understand this discrepancy and elucidate the signaling pathway(s) 

responsible for BMP autoregulation in the pre-lens ectoderm. 

3.2. Lens Induction 

Disruption to the BMP pathway consistently led to disturbances in lens induction 

[83,84,118]. In BMP-4 knockout mice, there was no lens induction despite the close contact 

between the head ectoderm and optic vesicle, with concurrent loss of Sox2 expression, a 

transcriptional regulator of crystallin genes in early lens fiber differentiation [83,119]. Lens 

formation and Sox2 expression could be restored in BMP-4 null mutant embryo tissues by 

exogenous application of BMP-4-soaked beads to the optic vesicle in explant cultures; 

however, replacement of the optic vesicle in wild-type mouse eyes with BMP-4-carrying 

beads, or other Bmp4-expressing tissues, was not able to induce lens formation or Sox2 

expression in head ectoderm, indicating that BMP-4 alone is not sufficient to mimic the 

inductive properties of the optic vesicle. These results suggest that BMP-4 may regulate 

induction by acting synergistically with additional factors expressed within the optic 

vesicle. Since BMP-4 is secreted, the use of tissue recombination techniques is limited in 

elucidating its function separately in the ectoderm and optic vesicle, and hence, future 

studies should address this by inhibiting BMP-4-signaling in a cell-type-specific manner 

during lens induction. 

Another BMP family member, BMP-7, is also expressed in regions of the early 

developing eye that partially overlap with BMP-4 [115]. BMP-7 is present in both the optic 

vesicle and the surface ectoderm at the time of lens placode thickening and is crucial in 

the early lens induction process [84,120]. While Bmp4 null mice consistently showed an 
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absence of lens formation in all cases, variability in the phenotype of Bmp7 null mice is 

evident, with mice displaying unilateral or bilateral eye defects [84,115,121]. The majority 

(60%) of BMP-7-deficient embryos displayed profound bilateral deterioration of the 

developing retina, optic nerve and lens, while the remaining 40% exhibited either 

unilateral or bilateral microphthalmia with morphologically normal ocular structures but 

half their normal size [115]. The variable penetrance of eye abnormalities may be 

attributed to the rapidly changing expression levels of BMP-7, between E9.5 and E11 [84]. 

In Bmp7 null mice, the expression of Pax6, an essential transcription factor for early eye 

development, was maintained in the optic vesicle but no longer detected in the surface 

ectoderm [84]. These results indicate that BMP-7-signaling is required for the maintenance 

of Pax6 expression in the prospective lens placode ectoderm, but not for its initial 

induction. It is likely that a linear pathway exists in that BMP-7 functions upstream of 

Pax6 to regulate lens placode induction. 

3.3. Lens Placode Invagination 

The invagination of the lens placode to become the lens pit involves a series of 

molecular and cellular processes including cell proliferation, cell crowding and 

cytoskeletal reorganization [122]. Initially, cell proliferation in the thickening lens placode 

results in cell crowding [122], with a redistribution of components of the actin 

cytoskeleton including filamentous actin (F-actin) and tight junction proteins, such as 

zonular occludens (ZO)-1 [123]. With placode invagination, phalloidin staining for F-actin 

decreases along the lateral surfaces of cells and increases at their apical ends, with the 

apical distribution of ZO-1 remaining continuous [88]. This is consistent with the 

“drawstring” mechanism for tissue invagination that proposes that the contraction of 

apical F-actin filaments draws the apical ends of cells together to enable bending of the 

placode to form the lens pit [88]. The importance of BMP-signaling in regulating this 

“drawstring” mechanism for lens placode invagination is highlighted in mice lacking both 

BMP receptors, Bmpr1a and Acvr1, using a Pax6-Cre transgene, LeCre [88]. Here, the lens 

did not form, with F-actin remaining uniformly distributed at the cell periphery, not 

accumulating at the apical ends of the lens placode cells. Concurrently, ZO-1 remained 

discontinuous at the apical ends of the cells suggesting the absence of apical contraction. 

Interestingly, deletion of the genes encoding the canonical transducers of BMP-signaling, 

Smad1, Smad5 and Smad4 did not affect apical re-localization of F-actin and these mice 

were able to form lenses, suggesting that actin cytoskeleton reorganization is regulated by 

Smad-independent BMP-signaling. Upregulation of the expression of lens-specific 

markers, including FoxE3 (transcription factor), and αA-crystallin (an abundant structural 

lens protein), were also found to be regulated by BMP receptors in a Smad-independent 

manner [88]. Moreover, Yoshimoto et al. (2005) showed that FoxE3 is indirectly dependent 

on Smad-interacting proteins, specifically, Smad8 augments Smad interacting protein-1 

(Sip1)-activity, a transcription factor upstream of FoxE3. Notably, based on mouse dataset 

mining (iSyte), Smad8 is one of the select Smad members not found in the developing lens 

(from E10.5) nor postnatal lens [124]. Further studies are required to define the alternative 

downstream BMP Smad-independent pathways mediating lens placode invagination, 

and the initial upregulation of lens-specific markers. 

Both Bmpr1 and Acvr1 play redundant roles as either receptor is sufficient for lens 

formation [88]. Despite their redundancy, these two BMP type I receptors display unique 

functions in lens development. Bmpr1a promotes the survival of placode lens cells, while 

Acvr1 promotes cell proliferation. Such distinct functions of these receptors in the lens 

appears to be mediated by differing downstream signaling pathways. Promotion of cell 

survival involves R-Smads, Smad1 and Smad5, whereas cell proliferation is regulated by 

one or more Smad-independent pathways. Future studies should examine which BMP 

ligands are responsible for eliciting these distinct responses from the type I BMP receptors. 

Interestingly, Smad4 is not required for cell survival or proliferation in the lens placode [88], 

suggesting that R-Smads may bind to factors other than Smad4 to mediate BMP-signaling. 
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Targeted deletion of type I BMP receptors from the pre-lens ectoderm using LeCre 

not only prevented lens formation, but also resulted in coloboma-like defects, highlighting 

the importance of BMP activity for the closure of the optic cup [89]. Lens placode 

invagination occurs in concert with the invagination of the optic vesicle to form the lens 

pit and optic cup, respectively. The interplay between inductive signals from the 

presumptive retina and lens remains unclear, and further research in this area will shed 

light on the complexities of the ocular morphogenesis machinery. 

3.4. Lens Fiber Differentiation 

3.4.1. Role of FGF in Lens Fiber Differentiation 

Since the seminal work of the McAvoy laboratory in the 1980s, it is now widely accepted 

that members of the fibroblast growth factor (FGF) family play a central role in lens fiber 

differentiation [82,125]. In vitro studies provided compelling evidence that FGF was the only 

growth factor with the ability to induce mammalian lens epithelial cells to undergo fiber-

specific morphologic [126,127] and molecular changes [125] including cell elongation, 

structural membrane specialization and initiation of specific crystallin gene expression. This 

was further supported by in vivo studies where overexpression of a dominant-negative FGF 

receptor in transgenic mice [128–130] and conditional deletion of FGF receptors (Fgf1-3) [131] 

both led to the inhibition of fiber differentiation, elegantly highlighting the importance of FGF 

receptor signaling in regulating lens fiber differentiation. 

3.4.2. Role of BMP Ligands in Lens Fiber Differentiation 

Although there is convincing evidence that FGF signaling is required for lens fiber 

differentiation, FGFs alone cannot account for all the fiber differentiation-activity of the 

vitreous humor [82]. There has been growing evidence that other ocular growth factors, 

in particular, BMPs, are able to enhance the synthesis of fiber-specific proteins (reviewed 

in Lovicu and McAvoy, 2005) [82]. BMP-4 and BMP-7 on organ cultures of embryonic 

chick lens placodes and optic vesicles enhanced lens growth and expression of the fiber 

differentiation marker, δ-crystallin [132]. Boswell et al. (2008) also found that exogenous 

BMP-2, -4 and -7 upregulated both morphological features and biochemical markers of 

fiber differentiation, including δ-crystallin and CP49, in dissociated cell-derived 

monolayer (DCDML) cultures from primary embryonic chick lens epithelial cells [81]. In 

contrast, two previous studies in vitro that examined the effect of BMPs on chick [92] and 

rat [133] lens epithelial cells did not find any evidence to show that BMPs could enhance 

the morphological differentiation or the expression of fiber cell marker proteins. This may 

be due to differences in model systems as both these groups used central lens epithelial 

explants, whereas Boswell et al. (2008) utilized embryonic DCDML cultures that include 

peripheral epithelial (pre-equatorial and equatorial) cells that are more responsive to 

differentiation stimuli compared to central epithelial cells [127,134]. Since epithelial-to-

fiber cell differentiation is localized to the peripheral regions of the lens in situ, models 

such as DCDML cultures and whole lens epithelial explants, are a more physiologically 

relevant model system for recapitulating the process of fiber differentiation [134]. 

Hung et al. (2002) overexpressed BMP-7 in lenses of transgenic mice that resulted in 

widespread apoptosis and ablation of the neural retina [90]. This process occurred rapidly 

such that only a small fraction of the neural retina remained by E15.5 and disappeared 

altogether by postnatal day 1 (P1). Interestingly, retinal ablation was correlated to shifting 

of the lens bow region posteriorly until the LECs completely surrounded the lens, 

highlighting the importance of the retina in providing positional lens fiber cell 

differentiation cues. In these mice, when FGF-3 was overexpressed in lens, this rescued 

the loss of fiber cell differentiation, indicating that BMP-7 overexpression in the lens does 

not incapacitate the ability of LECs to respond to differentiation signals. Consistent with 

these findings, Pandit et al. (2015) showed that BMP signals emanating from the lens are 

critical for the specification of neural retinal identity and induction of neural retinal cells 
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[135]. Further studies are required to characterize the crosstalk between lens and retina in 

providing complementary survival and differentiation cues to each other. French et al. 

(2009) extended the spectrum of BMP molecules that affect lens fiber differentiation to 

include GDF6a. Knockdown of gdf6a in zebrafish resulted in the absence of pSmad1/5/8 

in the lens and downregulation of multiple lens-specific genes including cryba2a and 

lim2.3 [87]. The addition of dorsomorphin, a Bmp-signaling inhibitor, disrupted lens fiber 

cell differentiation. Hence, in the zebrafish eye, lens fiber development requires both 

GDF6a and other sources of BMP-signaling that are yet to be elucidated. 

BMP-4 and its receptors have been detected in the adult rat eye, showing abundant and 

differential expression in various ocular structures including the cornea, iris, ciliary body, 

lens and retina [136]. Specifically, in the lens, BMP-4 and its receptors BMPR-IA, BMPR-IB 

and BMPR-II were identified in lens epithelial cells and lens cortical fiber cells; however, 

they were not expressed in the central region of the lens [136]. Therefore, in addition to 

regulating primary lens fiber differentiation, the abundance of BMP-4 and its receptors 

indicate a role for BMP-signaling in secondary lens fiber differentiation in adult life. 

3.4.3. Role of BMP Antagonists in Lens Fiber Differentiation 

Consistent with the BMP culture studies, Faber et al. (2002) highlighted the 

importance of BMP-signaling in primary lens fiber differentiation using noggin, a BMP 

ligand antagonist [91]. The addition of noggin to organotypic cultures of E10.5 mouse 

whole eye explants resulted in smaller lenses, mostly due to the reduction in primary fiber 

cell mass [91]. Beebe et al. (2004) corroborated these findings by showing that noggin 

partially inhibited epithelial cell elongation in embryonic chick lens epithelial explants, 

with higher levels unable to further inhibit this elongation [118]. Follistatin, an activin-

binding protein antagonist, had no effect on cell elongation. Adding noggin and follistatin 

together; however, completely inhibited cell elongation, indicating that both BMP and 

activin contribute to lens fiber differentiation [118]. 

Injection of noggin-expressing retrovirus into optic vesicles of E2 chick embryos 

resulted in delayed lens fiber differentiation [92]. At E4, noggin-infected lenses displayed 

fiber cells that had not elongated or had only elongated slightly, and by E6, these fiber cells 

were essentially normal, apart from slightly retarded cell elongation at the lens equator. This 

highlights the importance of BMP in the earlier stages of lens fiber cell differentiation. 

Similarly, overexpression of noggin in the lenses of transgenic mice resulted in defects of 

the equatorial epithelial cells. Instead of forming a lens bow at the equator, the epithelial 

monolayer extended beyond this to the posterior lens with cells retaining a similar 

morphology to anterior epithelial cells, with no evidence of apoptosis, multilayering, 

elongation or even aberrant mesenchymal transdifferentiation [81]. Mice overexpressing 

noggin did display visibly smaller lenses than wild-type mouse controls, with 32% less total 

protein per lens at 2 weeks of age, and a striking reduction in the synthesis of all three major 

mammalian crystallin families, α, β and γ [81]. Taken together, these results emphasize the 

key requirement for BMP-signaling in secondary lens fiber differentiation [81]. A 

confounding issue acknowledged in these experiments is that noggin overexpression can 

affect other ocular structures, including loss of the vitreous body. Since the vitreous humor 

is considered the major reservoir of FGF for lens differentiation, the absence of fiber 

differentiation could be due to the compromised vitreous body. 

3.4.4. Role of BMP Receptors in Lens Fiber Differentiation 

BMP receptors, ALK3, ALK6 and BMP receptor II, have been identified in the lens 

epithelium [90,93,137]. Beebe et al. (2004) showed that targeted deletion of ALK3 in the lens 

resulted in a small lens phenotype, with a thin epithelial layer by E13.5 that remained 

smaller than normal throughout development, indicating a role for ALK3-signaling in 

maintaining cell viability and/or proliferation [118]. The fiber cells appeared disorganized, 

vacuolated and degenerated by postnatal day 9, and in some cases the anterior capsule was 

ruptured [118]. Moreover, lenses lacking in ALK3 were surrounded by abnormal 



Cells 2021, 10, 2604 13 of 27 
 

mesenchymal cells, with a condensed pigmented mass surrounding the hyaloid vasculature 

and hypercellular vitreous body. Despite specific targeted deletion of ALK3 in the lens, 

these lens extrinsic ocular defects suggest that aberrant signals from the lens may be 

negatively impacting other parts of the eye. Alternatively, a compounding factor may be the 

use of the Le-Cre transgene that is known to impact ocular tissues other than lens [138]. 

Immunoreactivity for BMP type 2 receptor and nuclear phosphorylated BMP-

responsive Smads are localized to the equatorial cells of the lens vesicle, indicating the active 

role of BMP-signaling in these primary differentiating cells [91]. This is supported by the 

inhibition of primary fiber cell elongation at E13.5, when a dominant-negative form of the 

type I BMP receptor, ALK6, was overexpressed in the lenses of transgenic mice [91]. 

Interestingly, the observed inhibition of primary fiber differentiation was asymmetrical, 

appearing only in the ventral half on the nasal side of the lens, suggesting that distinct 

differentiation stimuli may be active in different quadrants of the eye [91]. As the lens 

continues to develop, the equatorial epithelial cells proliferate, migrate posteriorly and 

differentiate into secondary lens fiber cells. Belecky-Adams et al. (2002) identified the 

accumulation of pSmad1 in the nuclei of epithelial cells immediately before and at the 

beginning of their elongation into secondary lens fiber cells. The expression of pSmad1 later 

subsided in fiber cell elongation and was barely evident in deeper cortical lens fiber cells 

[92]. Anterior to the lens equator, epithelial cells show no nuclear staining for pSmad1, with 

Beebe et al. (2004) showing strong immunoreactivity for pSmad1 in nuclei of cells at the lens 

equator that decreased soon after the cells elongated [118]. In contrast, activin-induced 

upregulation of pSmad2 was absent at the lens equator, and appeared during lens fiber 

elongation, remaining strong throughout the later stages of lens fiber differentiation and 

maturation, signifying distinct roles for both BMP and activin in lens differentiation [118]. 

The type I BMP receptor, Acvr1, plays an important role in regulating lens cell 

proliferation and cell cycle exit during early fiber cell differentiation [88]. Using the Acvr1 

conditional knockout mouse (Acvr1CKO) model, Acvr1-signaling was found to promote 

proliferation in early stages of lens development. At later stages, however, Acvr1 inhibits 

proliferation of LECs in the transitional zone to promote cell cycle exit; a process necessary for 

the proper regionalization of the lens epithelium and subsequent secondary lens fiber 

differentiation. Acvr1-promoted proliferation was Smad-independent, whereas its ability to 

stimulate cell cycle exit was through the canonical Smad1/5-signaling pathway. Loss of Acvr1 

also led to an increase in apoptosis of lens epithelial and cortical fiber cells, and together with 

the reduction in proliferation, led to a small lens phenotype in these Acvr1CKO mice. 

The fiber cells of the Acvr1 conditional knockout mouse exhibited increased nuclear 

staining for the tumor suppressor protein, p53 (encoded by Trp53) [97]. In double 

conditional knockout (Acvr1;Trp53DCKO) mice, loss of p53 reduced Acvr1-dependent 

apoptosis in postnatal lenses, indicating that p53 may be important for eliminating aberrant 

fibers that escape cell cycle exit [97]. As these surviving cells were deficient in BMP-

signaling, they were unable to respond to signals promoting cell cycle withdrawal and thus, 

their continued proliferation led to tumor-like masses at the posterior of the lens that 

exhibited morphological and molecular similarities to human posterior subcapsular cataract 

(PSC) [97]. With age, these masses grew to the form vascularized tumors [97]. Trp53DCKO 

lenses also resulted in PSC-like changes; however, the cells in these plaques did not 

proliferate, unlike those in Acvr1;Trp53DCKO lenses [97]. These observations support the role 

of Acvr1 as a tumor suppressor in the lens, as concurrent loss of Acvr1 allows the aberrant 

fiber cells to escape the normal growth-inhibitory signals transduced by Acvr1-signaling. 

3.4.5. Synergistic Roles of FGFs and BMPs in Lens Fiber Differentiation 

A balance of FGF and BMP signals is required to regulate the early differentiation of 

primary lens fiber cells in embryonic chick lens [94]. Equarin, a soluble protein, is 

upregulated in the early-formed lens vesicle before the formation of the first primary lens 

fiber cells, and its expression is subsequently restricted to sites of fiber differentiation at the 

lens equator [139]. BMP activity was found to induce Equarin, in a FGF-dependent manner 
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[94]. Although FGF activity is necessary for the induction of Equarin expression, alone it is 

not sufficient [94]. For FGF-induced lens cell proliferation, in the absence of BMP-activity, 

cell cycle length was prolonged, or cells were arrested in the cell cycle, suggesting that a 

counterbalance of BMP- and FGF-activity is required to regulate cell cycle exit. Taken 

together, these results indicate that while FGF activity can regulate lens epithelial cell 

proliferation, BMP-signaling is required to promote cell cycle exit and early differentiation 

of primary lens fiber cells. Future studies are needed to investigate the downstream 

signaling pathways involved in this complex interplay of FGF- and BMP-activity. 

The synergistic role of FGF and BMPs has also been demonstrated in secondary lens 

fiber differentiation. Boswell et al. (2008) showed that inhibition of BMP-activity with 

noggin or anti-BMP antibodies, prevented FGF from upregulating fiber differentiation 

markers including δ-crystallin, CP49 and filensin in DCDMLs [81]. This was further 

explored by Boswell et al. (2015) where noggin prevented FGF from stimulating FRS2, its 

docking protein constitutively bound to FGF receptors, indicating that BMP-activity is 

required at the level of FGF receptor activation. Interestingly, FGF promoted the 

expression of both BMP-4 and BMP target genes in lens cells [99], highlighting a novel 

mode of reciprocal cooperation between FGF and BMP pathways, whereby BMP keeps 

lens cells in an optimally FGF-responsive state, with FGF potentiating endogenous BMP-

signaling by promoting BMP-mediated gene expression. This agonistic relationship 

between BMP and FGF may explain why disruption of either FGF or BMP signaling in the 

lens results in deleterious effects on lens development. 

3.5. Gap Junction-Mediated Intercellular Communication in Lens Cells 

Gap junctions are highly specialized intercellular channels that facilitate the 

exchange of ions, low molecular mass (<1 kD) second messengers, and nutritional 

metabolites between functionally and structurally distinct regions of tissues, including the 

lens [140]. Due to its avascularity, a network of gap junctions is required in facilitating the 

lens syncytium, permitting both electrical and biochemical coupling between cells. The 

anterior lens epithelial cells are in closer contact with nutrients of the aqueous humor, 

providing the metabolic energy to maintain correct ion and metabolite concentrations 

within the lens fiber mass, hence maintaining tissue homeostasis and thus, lens 

transparency [140]. Mature fiber cells contain a significantly large number of gap 

junctions, the highest concentration in any tissue of the body [101]. Aberrant expression 

of constituent gap junction proteins, including connexin46 and connexin50, result in 

cataract and defective lens growth in humans and transgenic mice [141–143]. 

Gap junction-mediated intercellular coupling (GJIC) is higher at the lens equator, 

relative to either lens pole, and this asymmetry is critical for maintaining lens 

transparency [144]. Immunofluorescent labeling, and electron microscopy have revealed 

no quantitative differences in the number of connexins between equatorial and polar fiber 

cells [145]. Instead, the enhanced GJIC observed at the equator appears to be attributed, 

in part, to a greater flux through gap junctions within this region [134,146]. Using 

DCDMLs, FGF-1 or -2 was found to reversibly upregulate GJIC without detectably 

increasing connexin synthesis or assembly, in an ERK-dependent manner [147]. The 

ability of FGF to upregulate GJIC is blocked by co-treatment with noggin or highly 

selective anti-BMP-2, -4 and -7 antibodies [100]. This effect was attributable to inhibition 

of endogenous lens-derived BMP-4 and -7, that enables FGF-induced ERK-dependent 

upregulation of GJIC. Although FGF may be necessary for this process, it is not adequate. 

Inhibition of BMP activity using noggin or chordin abolished the ability of both vitreous 

humor and FGF to induce GJIC. Furthermore, a selective anti-BMP-7 monoclonal antibody 

(1B12) inhibited both Smad1 activation and GJIC induced by BMP-7, but not by BMP-2 or 

BMP-4. This antibody partially blocked the ability of vitreous to upregulate GJIC, and 

when combined with the anti-BMP-2, 4 antibody, reduced GJIC to control levels. Taken 

together, these findings again support the importance of the synergistic role of BMP and 
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FGF signal transduction cascades in regulating gap junctional intercellular coupling, an 

essential postnatal process in lens. 

BMP-2, -4 and -7 were shown to increase GJIC in DCDMLs to a comparable extent to 

that obtained with FGF-treatment. The source of BMP required for increased GJIC was 

found to originate from the lens and not the vitreous [100], with relatively high 

concentrations of exogenous BMP-2, -4 and -7 able to promote GJIC in lens cells independent 

of FGF- or ERK-signaling. At lower, intermediate concentrations, BMPs can stimulate ERK-

independent GJIC, but only in the presence of FGF. It is interesting that high levels of BMP-

signaling can compensate for the absence of FGF here, but not vice versa. The non-reciprocal 

crosstalk between FGF- and BMP-signaling pathways is believed to maintain the high levels 

of GJIC at the lens equator. The high expression of BMP receptors and pSmad1 in the 

equatorial regions, and declining BMP-signaling in older fiber cells at lens poles, may 

contribute to the observed reduction in GJIC at these poles, despite the exposure to 

endogenous FGF [92,93]. Future studies should be aimed at developing in vivo models to 

better elucidate the role of lens-derived BMPs in regulating GJIC. 

4. Genetic Mutations in BMPs 

Human genetic studies have identified deletions/mutations in four BMP genes, 

including bmp-4, bmp-7, gdf6 (bmp-13) and gdf3, that are associated with a spectrum of 

ocular developmental anomalies as well as non-ocular defects [148]. Frameshift and 

missense mutations in BMP-4 are found in families with ocular defects, including 

microphthalmia (small eye), coloboma (incomplete optic fissure closure), myopia, retinal 

dystrophy and in some cases, anophthalmia (absent eye) [149,150]. Systemic defects 

varied widely, and typically included structural brain anomalies, macrocephaly, cognitive 

impairment, diaphragmatic hernia, dental anomalies, polydactyly and short stature 

[149,150]. Expression studies in human embryos found BMP-4 in the early stages of eye, 

brain and digit development, consistent with BMP-4 mutation phenotypes observed in 

impacted patients [149]. Moreover, BMP-4 was localized to the optic vesicle in human 

embryos, and later restricted to the lens, highlighting its importance in lens/eye 

development, consistent with earlier reported animal studies [83]. 

Wyatt et al. (2010) found three heterozygous BMP-7 mutations, including frameshift, 

missense and Kozak sequence mutations associated with a spectrum of ocular and non-

ocular abnormalities, including anophthalmia, coloboma, cleft palate, developmental 

delay and skeletal defects [151]. Similarly, mice lacking BMP-7 had severe eye defects 

including anophthalmia, in addition to kidney and skeletal defects [152]. Incomplete 

penetrance and variable expressivity were demonstrated in all families, consistent with 

the variable penetrance of eye abnormalities observed in BMP-7 knockout mice [84,152]. 

Developmental expression of BMP-7 in human embryos revealed strong labeling 

throughout the optic stalk, optic cup and lens vesicle at Carnegie stage (CS)13 and in the 

retina and lens at CS16, 17 and 19, correlating with the patterns of expression reported in 

mice [120]. In particular, bmp-7 expression was elevated at the presumptive fusional edges 

of the optic fissure, suggestive of a role in fissure closure, and consistent with the presence 

of coloboma in individuals with BMP-7 mutations. 

Numerous studies have reported genetic mutations in gdf6 in individuals with 

anophthalmia, coloboma and extraocular anomalies including cleft palate, absent ossicles, 

polydactyly and skeletal defects, including Klippel-Feil syndrome, hemivertebrae as well 

as rib and vertebral fusion [153–156]. Heterozygous missense mutations in gdf3 also 

exhibited ocular (microphthalmia and/or coloboma) and skeletal (scoliosis, vertebral 

fusion, rudimentary 12th rib) defects [157]. Morpholino inhibition of gdf6a in zebrafish 

accurately recapitulated human phenotypes, with ocular defects such as microphthalmia, 

coloboma, retinal disorganization and hypoplastic optic nerve. Increasing the morpholino 

impact/dosage resulted in more severe defects of anophthalmia, highlighting the critical 

role of GDF6 in ocular development [154]. These results were further explored in Xenopus 

with morpholino inhibition of gdf6a resulting in defective lens fiber differentiation, with 
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significant downregulation of lens intrinsic membrane protein 2.3 (lim2.3) and crystallin 

ba2a (cryba2a) [87]. These findings indicate that GDF6a may play an important role in later 

stages of lens development involving terminal differentiation of fiber cells. 

Further analyses of larger cohorts manifesting developmental ocular and associated 

systemic anomalies is important in establishing the full spectrum of defects associated with 

genetic mutations in BMPs. In turn, this will inform experimental models of transgenic mice 

and CRISPR knockout studies to elucidate the molecular and genetic basis of normal ocular 

development and human developmental eye disease. Promising results are emerging with 

the use of CRISPR technology in the field of bone regeneration. Freitas et al. (2021) used 

CRISPR-Cas9 to overexpress BMP-9 in mesenchymal stem cells (MSCs) and when these 

genetically edited cells were injected into rat calvarial bone defects, the BMP-9-

overexpressing MSCs were able to repair these defects, with increased bone formation and 

bone mineral density [158]. Hutchinson et al. (2019) described an innovative methodology 

using CRISPR/Cas9 to generate endogenous transcriptional reporter cells for the BMP 

pathway, and this technique could be applied to ocular lens cells to enable future 

investigations of BMP transcriptional activity in lens development and pathology [159]. 

5. BMPs in Lens Regeneration 

Regeneration of the vertebrate lens is a remarkable phenomenon restricted to frogs, 

salamanders and newts [160–162]. Lens regeneration in the adult newt was first observed 

by Colucci (1891) [163] and independently by Wolff (1895) [164] who provided a more 

thorough analysis of the process, and hence, this phenomenon has since been referred to as 

“Wolffian” lens regeneration [165]. Upon removal of the original lens (lentectomy), the 

process of Wolffian lens regeneration commences with the dedifferentiation of the dorsal 

iris pigmented epithelium (IPE) [165]. Cells within the IPE become depigmented, expel their 

melanosomes and these normally mitotically quiescent cells proliferate and 

transdifferentiate, forming a lens vesicle by day 10 post-lentectomy. The newly formed lens 

vesicle further differentiates into primary lens fiber cells at 12–16 days. Primary lens fiber 

cells continue to proliferate from the inner layer while cells from the outer layer of the vesicle 

differentiate into secondary fibers, and by 25 days, a complete lens is regenerated [166]. 

Members of the FGF-, BMP- and Wnt-signaling pathways have been implicated in 

the control of Wolffian lens regeneration [167]. In particular, the dorsal-ventral differences 

in lens regenerative potency have been partly attributed to spatial differences in BMP-

signaling between the dorsal and ventral iris [102]. Grogg et al. (2005) treated newt iris 

explants (dorsal or ventral) with chordin, or a competitor for the receptor BMPR-IA, to 

block BMP-signaling, and then re-implanted the iris explants into a host newt. Notably, 

inhibiting BMP-signaling resulted in the induction of a lens from the normally 

incompetent ventral iris, with the gene expression profile of the treated ventral irises 

capable of lens regeneration, similar to that of the dorsal iris during regeneration [102]. 

This indicated that ventral irises can become “dorsalized” if exposed to the patterns of 

regulatory events seen in the dorsal iris, conferring the ability to transdifferentiate into 

lens [102]. Likewise, BMP-7 treatment of dorsal iris explants, and to a lesser extent BMP-

4, suppressed its ability to transdifferentiate into lens [102]. This concurs with the 

established function of BMPs in maintaining ventral identity during embryogenesis, and 

the resultant dorsalization observed with inhibition of BMP [168]. 

A different mode of lens regeneration occurs in frogs, in particular in the genus 

Xenopus, specifically X. laevis, X. tropicalis and X. borealis [103,165]. Lens regeneration in 

Xenopus arises from ectodermal central corneal epithelial cells through a process known as 

corneal-lens transdifferentiation (CLT) [167]. While newts undergo lens regeneration into 

adult years, lens regeneration in Xenopus is restricted to larval stages, with a gradual decline 

in regeneration potential with aging of the tadpole [167]. Freeman described five distinct 

phases of CLT based on histological analyses in X. laevis [169]. At stage 1 (1–2 days post-

lentectomy) cells of the inner corneal epithelium undergo a change in morphology from 

squamous to cuboidal. At stage 2, the cells begin to thicken into the lens placode. At stage 3 
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(3 days post-lentectomy), a cell aggregate begins to detach from the corneal epithelium and 

enters the vitreous body. At stage 4, a definitive lens vesicle forms five days post-lentectomy, 

containing elongated primary lens fiber cells. Finally, a complete lens is observed ten days 

post-lentectomy, and the cornea reverts to its original squamous epithelial cell phenotype. 

The initiation of the CLT process is triggered by exposure of the cornea to factors in 

the vitreous humor released from the neural retina [170,171]. These factors are normally 

prevented from reaching the cornea as the lens and corneal endothelium act as simple 

barriers to the diffusion of these retinal factors [161]. The BMP-, FGF- and Wnt-growth 

factor signaling pathways have been identified as candidates for induction of lens 

regeneration in Xenopus [167]. Surprisingly, inhibition of BMP-signaling in Xenopus 

induced the opposite effect on lens regeneration compared to the newt [104]. Using a 

transgenic line of Xenopus tadpoles, sustained overexpression of noggin for the first 48 h 

following lentectomy significantly reduced regeneration [104]. Noggin overexpression 

appeared to have no effect on the first stage of lens regeneration, as the corneal epithelial 

cells continued to thicken and transform from a squamous to a cuboidal morphology, 

similar to wildtype regenerating animals [104]. Prolonged inhibition of BMP-signaling, 

however, prevented the subsequent progression of cells to transdifferentiate into a new 

lens and instead, these cells reverted back to a squamous state [104]. The thickened corneal 

cells were observed to become hypertrophic and died, supporting the role of BMP as a 

survival factor for cells during regeneration [104]. Using microarrays to identify genes 

upregulated during the CLT process, the authors identified an increased expression of 

Nipsnap1, a known direct target of BMP. This suggested that Nipsnap1 was a downstream 

effector of BMP-signaling, and may facilitate the specification of lens cell fate [104]. The 

differences in mechanism of BMP-signaling between Wolffian lens regeneration in newts, 

and CLT in Xenopus, may reflect the inherent differences between these distinct 

regenerative phenomena; however, the extent to which these regenerative processes share 

specific conserved underlying molecular mechanisms remains unclear. 

6. BMPs in Cataract Prevention 

Although TGFβ and BMPs are members of the same superfamily, they exhibit 

opposing effects in the lens. TGFβ induces LECs to undergo epithelial-mesenchymal 

transition (EMT)—a process whereby polarized, immotile LECs acquire apolar, migratory 

myofibroblastic features bearing morphological and biochemical resemblance to forms of 

fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsular 

opacification (PCO) [172]. ASC is evident clinically as a dense, white opacity directly 

beneath the anterior lens capsule [173], while PCO (also known as ‘secondary cataract’ or 

‘after-cataract’) manifests as excessive proliferation and migration and EMT of residual 

LECs over the posterior capsule following cataract surgery [172]. 

During EMT, LECs abandon their cobblestone morphology and transdifferentiate into 

characteristic spindle-shaped mesenchymal cells [174–176]. In undertaking this phenotypic 

and morphologic transformation, LECs first experience a loss of tight junction complexes 

including ZO-1, followed by the loss of E-cadherin, resulting in the redistribution, 

stabilization and nuclear accumulation of β-catenin [177,178]. LECs undergo a dramatic 

remodeling of their cytoskeleton, with the de novo expression of α-smooth muscle actin (α-

SMA) that is incorporated into the newly formed actin stress fibers [179]. 

Numerous studies in vitro and in vivo, examining the effects of TGFβ on LECs, have 

supported the role of this molecule in promoting fibrogenesis via an aberrant 

transdifferentiation pathway [177,180]. Treatment of LECs with TGFβ results in 

myofibroblastic transdifferentiation and production of aberrant ECM in rat [181], mouse 

[182], and human [183] lens epithelial explant systems. In vivo models, including 

intravitreal injection of active TGFβ into rodent eyes [184], ectopic overexpression of mature 

TGFβ1 in transgenic mouse lenses [185] and adenoviral gene delivery of TGFβ into mouse 

anterior chambers [186] have all induced ASC with characteristic EMT features. 
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There is much evidence that BMP-7 can directly counteract TGFβ-induced EMT in 

different organ systems [187]. For example, TGFβ promotion of EMT in the kidney, resulting 

in renal fibrosis, is associated with down-regulation of BMP-7 expression [188]. This EMT 

response can be reversed with exogenous administration of BMP-7, with restoration of the 

epithelial phenotype (expression of E-cadherin, ZO-1), and reduction in mesenchymal 

markers (α-SMA, collagen I, fibronectin and connective tissue growth factor) [189,190]. The 

activation of Smad1/5 by BMP-7 is reported to block the activation of both Smad3-

dependent and Smad-independent pathways, including p38, ERK and MAPKs 

[188,191,192]. Furthermore, in models of both pulmonary [193] and hepatic [194] fibrosis, 

adenoviral overexpression of BMP-7 attenuated TGFβ-induced fibrogenic activity via 

upregulation of inhibitor of differentiation-2 (Id2), a downstream target gene of BMP-7; 

however, the therapeutic effect of BMP-7 in pulmonary fibrosis is contentious as other 

studies refute BMP-7’s capacity to reverse or inhibit EMT, suggesting organ specificity for 

its protective effects [195,196]. Currently, BMP-7, known commercially as osteogenic 

protein-1 (OP-1) has FDA approval for use in bone repair [197]. Although current animal 

studies show promising data in the safety and efficacy of systemic administration of BMP-

7 for combating fibrosis, it has yet to be applied in human clinical trials. 

In the lens, the protective role of BMP-7 has been explored using in vitro and in vivo 

models (Figure 4). Co-treatment of TGFβ1 and BMP-7 in an α-TN4 murine lens epithelial 

cell line completely blocked the EMT response, with maintenance of ZO-1 levels and a 

reduction in α-SMA expression [106]. The inhibitory effect of BMP-7 was diminished with 

Id2 and Id3 knockdown, highlighting the importance of Id2/3 as nuclear effectors 

modulating the antagonism between TGFβ and BMP pathways [106]. Work in our 

laboratory corroborated these findings using a primary rat lens epithelial explant model 

[108]. We showed that exogenous administration of BMP-7 suppressed TGFβ2-induced 

EMT by concurrent upregulation of pSmad1/5 and downregulation of pSmad2/3. In 

addition to the differential Smad upregulation, it is important to note that both BMP-7- and 

TGFβ-signaling share the common Smad (Smad4) to initiate transcriptional activity and 

thus, it is possible that their respective antagonistic activity may be attributed to their 

competition for Smad4. Treatment with TGFβ2 alone suppressed Id2/3 gene expression and 

addition of BMP-7 restored Id2/3 expression to basal levels indicating a key role for the Id2/3 

genes in regulating the inhibitory activity of BMP-7 on TGFβ2-induced lens EMT. 

Studies in situ by Saika et al. (2006) investigated the effect of adenoviral-mediated 

expression of BMP-7, Id2 or Id3 in a mouse lens capsular injury-induced model of EMT 

[107]. Lens capsular injury induced low expression levels of endogenous BMP-7 mRNA 

and protein, that subsequently upregulated expression of Id2 and Id3 [107]. Gene transfer 

of BMP-7, Id2 or Id3 effectively delayed injury-induced EMT by maintenance of the 

epithelial phenotype and reductions in EMT markers (α-SMA and collagen type VI) [107]. 

This suppression of EMT was accompanied by a reduction in Smad2 phosphorylation and 

upregulation of pSmad1/5/8. Although this gene transfer attenuated the EMT response, 

its inhibitory effect did not last beyond 10 days, with elongated fibroblastic cells present 

despite the BMP-7, Id2 and Id3 expression persisting. Although BMP-7 has been shown 

to effectively antagonize TGFβ using in vitro lens epithelial cell models, it merely delays 

the progress of EMT in lens in vivo. It is likely that the combined activity of BMP-7 and 

various inherent growth factors in the aqueous humor, may impact its efficacy. Continued 

research is required to elucidate the conditions responsible for enhancing or diminishing 

the inhibitory capabilities of BMP-7. Work in bone formation highlighted a role for Ski 

and SnoN, transcriptional co-factors, in regulating the antagonistic relationship between 

TGFβ- and BMP-signaling [198]. Specifically, the authors showed that TGFβ1 blocked 

both BMP-2 and BMP-7 Smad-signaling in primary human osteoblasts by upregulating 

Ski and SnoN and increasing histone deacetylase (HDAC) activity. Thus, adding a HDAC 

inhibitor such as valproic acid as an adjunct to BMP therapy, may improve the efficacy of 

BMP therapy to further suppress TGFβ activity. 
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More recently, BMP-4 has also emerged as a potential inhibitor of lens EMT. Work in 

our laboratory showed that BMP-4 can block TGFβ2-induced EMT in rat lens epithelial 

explants by suppressing Smad2/3 nuclear translocation [109]. The protective effect of 

BMP-4 has been further demonstrated in the human lens epithelial cell lines (HLE-B3), 

where exogenous addition of BMP-4 blocked apoptosis of lens epithelial cells under H2O2-

induced oxidative stress [110]. Intriguingly, small molecule agonists of BMPs, 

ventromorphins, were unable to suppress TGFβ2-induced lens EMT in rat lens explants, 

highlighting that not all approaches to promote BMP-signaling can block TGFβ2-induced 

lens EMT [109]. Rather, particular conditions may exist that favor the efficacy of certain 

BMP isoforms in blocking TGFβ2 activity. Further unravelling of these intricate and 

nuanced differences will enable us to develop more effective, targeted novel therapies to 

combat fibrotic cataract. 

 

Figure 4. Involvement of bone morphogenetic protein (BMP) antagonistic signaling in anterior subcapsular cataract (ASC) 

and posterior capsular opacification (PCO) progression. 

7. Conclusions and Future Directions 

Although important advances have been made in elucidating the role of BMPs and BMP-

signaling in the lens, it is clear from this review that there are still significant gaps in our 

understanding. Specifically, detailed investigations of spatiotemporal expression patterns of 

BMPs and their receptors in embryonic lens development also need to be further explored in 

adult lens. Moreover, the majority of studies on BMPs have utilized animal models, with very 

few human studies reported, with no current clinical trials for BMPs, highlighting the 

important research direction for translating animal research to human therapeutics. 

Significant progress has been made in characterizing the canonical and non-canonical 

BMP-signaling pathways in non-ocular tissues; however, many of these advances are yet to 

be explored in the lens. Do specific BMP isoforms or receptors play more prominent roles 

in certain aspects of lens development, regeneration or cataract prevention? If so, what are 

the precise intracellular and extracellular regulators that activate certain lens programs, and 

suppress alternate programs? Are there additional regulatory mechanisms, such as post-

translational modifications or epigenetic changes, that dictate the cellular response to BMPs 

in the lens? Are there regulatory signals upstream of BMP-signaling and how do they 

ultimately converge to exert the numerous biological roles of BMPs? 

Since the BMP family consists of multiple ligands and receptors that interact 

promiscuously with each other, a multitude of distinct signaling complexes can be 

generated [199]. Using mathematical modeling and computational analysis, Antebi et al. 

(2017) showed that cells are able to perform complex computations with their given set of 

ligands and receptors, based on the specific functions of ligand combinations, rather than 

base their activity purely on ligand abundance and binding affinities. Clearly, there is 
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much versatility and regulatory flexibility in BMP-signaling. Further characterization of 

the combinations of ligands, and introducing the effects of diffusible inhibitors, such as 

noggin and chordin into the computational analysis, will enable a better understanding 

of lens embryogenesis and development that are already dependent on many different 

BMP ligands, receptors and modulators, all expressed in spatially and temporally 

overlapping patterns. Continued research in the role of BMPs in the lens will not only help 

elucidate key developmental lens processes but also open avenues for the development 

of novel therapeutic strategies for lens regeneration and possibly cataract prevention. 
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