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Abstract: Early detection of breast cancer is an essential procedure to reduce the mortality rate among
women. In this paper, a new AI-based computer-aided diagnosis (CAD) framework called ETECADx
is proposed by fusing the benefits of both ensemble transfer learning of the convolutional neural
networks as well as the self-attention mechanism of vision transformer encoder (ViT). The accurate
and precious high-level deep features are generated via the backbone ensemble network, while the
transformer encoder is used to diagnose the breast cancer probabilities in two approaches: Approach A
(i.e., binary classification) and Approach B (i.e., multi-classification). To build the proposed CAD sys-
tem, the benchmark public multi-class INbreast dataset is used. Meanwhile, private real breast cancer
images are collected and annotated by expert radiologists to validate the prediction performance
of the proposed ETECADx framework. The promising evaluation results are achieved using the
INbreast mammograms with overall accuracies of 98.58% and 97.87% for the binary and multi-class
approaches, respectively. Compared with the individual backbone networks, the proposed ensemble
learning model improves the breast cancer prediction performance by 6.6% for binary and 4.6% for
multi-class approaches. The proposed hybrid ETECADx shows further prediction improvement
when the ViT-based ensemble backbone network is used by 8.1% and 6.2% for binary and multi-class
diagnosis, respectively. For validation purposes using the real breast images, the proposed CAD
system provides encouraging prediction accuracies of 97.16% for binary and 89.40% for multi-class
approaches. The ETECADx has a capability to predict the breast lesions for a single mammogram in
an average of 0.048 s. Such promising performance could be useful and helpful to assist the practical
CAD framework applications providing a second supporting opinion of distinguishing various breast
cancer malignancies.

Keywords: breast cancer; hybrid CAD system; ensemble transfer learning; convolution neural
network (CNN); transformer encoder; expert physician validation and verification

1. Introduction

Recently, among all other cancers, breast cancer is second only to lung cancer as the
most frequent type of cancer, increasing the mortality rate among women worldwide [1].
There are a variety of risk factors that can lead to the development of this cancer, including
sex, family history, aging, gene mutations, estrogen, and so on. However, there is no
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guarantee that any of these factors can show accurate proof of breast cancer incidence [2].
Breast cancer is always a silent disease and appears suddenly if there is no routine check
annually by the patients. Breast cancer has a multi-step process that involves various cell
types, and it is still difficult to prevent globally. One of the best ways to avoid breast cancer
is to diagnose it as soon as possible in the curable period of this malignant lesion [3,4].
Physicians and radiologists have advised using a variety of methods to find breast cancer,
including digital mammography (DM), ultrasound (US), and magnetic resonance imaging
(MRI). Breast cancer in females has surpassed lung cancer as the most often diagnosed
malignancy in 2020, with over 2.3 million new cases and 685,000 deaths, counting a total
rate of 11.7% among other cancers, followed by lung cancer with 11.4% [5,6]. Across
the globe, the radiologists use DM modality to screen breast images in cranio-caudal
(CC) and mediolateral oblique (MLO) views for breast cancer detection at the first stage,
because of its ability to present scan tumors with a very low X-ray dose, cheaper test,
and its availability in various hospitals around the world [7,8]. Due to a huge number of
patients, or to get another opinion from the AI-based machine about the detected cancer,
radiologists have been usually utilizing the computer-aided diagnostic (CAD) systems.
Indeed, such emerging software systems demonstrate a good candidate as diagnostic
tools that provide many benefits including lesion detection and segmentation even for
tiny breast lesions [1]. In addition, the CAD system could perform analysis of a huge
number of patients rapidly without any labor concentration and effort. The CAD system
alongside mammogram images could provide the related information about the breast
density, shape, and suspected anomalies including masses and calcifications, aiding in
positive prognosis and high survival rate [1,9]. Furthermore, the available mammography
modalities are in two types that provide 2D and 3D breast medical images; however,
the radiologists encounter difficulties in distinguishing normal tissues from abnormal
(benign or malignant) in the issued images. Therefore, it is crucial to develop an accurate
classification CAD system for mammograms in order to minimize the likelihood of false
positives and recall rates. Using the utility and power of the AI technology, the building
CAD system could be easier, trustable, and reliable. This is due to the fact that the AI could
derive a million or more deep high-level features at once without any user intervention [10].
Deep learning’s ability to handle enormous amounts of data has made it one of the most
promising technologies in prior study. In image processing, voice recognition, and pattern
recognition, the convolutional neural network (CNN) is the most used deep learning
method. Their end-to-end technique predicts from the input images’ meaningful and
relevant attributes. Since CNN techniques automatically extract features from the input
image, they outperform the traditional approach and are, therefore, more widely used in
the research community for image classification. Moreover, the usefulness of the ensemble
learning approach in this classification problem has not yet been explored, despite the
fact that most existing deep learning algorithms for medical disease detection rely on a
single CNN model [11]. In order to improve classification accuracy based on binary or
multi-classification, numerous studies have been presented in the literature based on a
variety of deep learning models, such as VGG16, DenseNet201, ResNet50, transformers
(ViT), ensemble, and so on [12–25]. In this regard, the objective of this study is to propose a
novel CAD system (i.e., ETECADx) based on the hybridization strategy to process feature
extraction from the input raw images and fuse both ensembles learning as well as the
transformer-based approaches. The paper uses a transfer learning technique to assess the
efficacy of six pre-trained deep learning models (namely, DenseNet201, VGG16, GoogleNet,
InceptionResNetV2, Xception, and ResNet50 network) on digital X-ray mammograms.
In the binary approach, DenseNet201, VGG16, and InceptionResNetV2 served as feature
extractors to the transformer encoder network, while DenseNet201, VGG16, and Xception
are used in the multi-class approach. The main contributions of this work are summarized
as follows:
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• A novel CAD system is designed to accurately and rapidly predict the breast cancer
based on the hybrid scenario of ensemble transfer learning as well as the emerging
transformer-based approach.

• Automatic image processing-based breast lesions region of interest (ROIs) extraction
from the entire mammograms to perform more accurate trainable parameters during
the fine-tuning process of the proposed AI models.

• A comprehensive experimental study over binary and multi-class approaches is con-
ducted using the benchmark INbreast dataset in terms of selecting the proper AI
models for the ensemble learning, achieving accurate and rapid prediction perfor-
mance, and establishing reliable and feasible CAD system.

• An ablation study is performed to show the contribution of each ETECADx component
in order to improve the diagnosis performance of the breast cancer.

• To validate and verify the proposed ETECADx framework, a private breast cancer real
dataset is collected and annotated by three expert radiologists.

The remainder of this article is structured as follows: The related works are summa-
rized in Section 2. The research techniques and materials are introduced in Section 3. The
experimental results are shown in Section 4. Section 5 presents the discussion of exper-
imental findings. Section 6 presents the suggestions for further research works and the
conclusion findings.

2. Related Work
2.1. Deep Learning Based-CNN for Medical Breast Imaging

Breast cancer is the second disease-led cause of mortality in women, affecting around
12.5% worldwide [26]. Therefore, to alleviate such disease, early detection of breast lesions
is very important to increase the survival rate. Thus, numerous studies based on deep
learning techniques have been proposed to improve the detection rate of breast cancer,
using mammogram images [1]. Many CNN-based CAD models that depended on the
transfer learning technique were employed to recognize normal from abnormal images,
aiming to enhance the classification accuracy, precision, and training and detecting speed.
The Uniform Manifold Approximation and Projection (UMAP), principal component anal-
ysis (PCA), and univariate methods were used to reduce the feature dimensional in the
proposed CNN-based CAD models [27–29]. In [18], the authors used the CNN model as fea-
ture extraction and PCA for the reduction of the feature dimensional. The proposed model
successfully classified data from the two datasets, MIAS and INbreast, with 97.93% and
96.646% accuracy, respectively. The computational cost and execution time were decreased
when PCA was used, but the classification performance did not change. Shen et al. [20]
used single and four models to examine a collection of deep learning methods for the detec-
tion of breast cancer on mammography images from the CBIS-DDSM and INbreast datasets.
For the CBIS-DDSM dataset, the specificity of the proposed model was 80.1%, the sensitivity
was 86.1%, and the AUC was 91%. The best single model for INbreast was employed,
which achieved a 95% AUC across all images for an independent test. However, AUC was
improved to 98%, sensitivity to 86.7%, and the specificity to 96.1% after averaging results
from four separate models. Finally, the authors in [3] used AlexNet, VGG, and GoogleNet
for feature extraction, while the dimension of the extracted features was reduced using a
univariate methods. The proposed model achieved 98.50% accuracy, 98.98% sensitivity,
98.99% specificity, and 98.06% precision. At another trend, the deep learning YOLO predic-
tor was used to separate benign from malignant tissue on mammography images [22,30].
Al-Antari et al. [10] used regular feed-forward CNN, ResNet-50, and InceptionResNet-V2
for breast cancer classification, while the YOLO was utilized for automatically detecting
breast tumors. An accuracy of 95.32% was achieved on the INbreast dataset when the
InceptionResNet-V2 classifier was applied. Even though the YOLO detector accurately
predicts input images, it might be challenging to find small clusters of micro-calcification
objects [30]. As the authors claimed, the micro-calcification is another trend and needs
more investigation. Hamed et al. [24,29] utilized the YOLO classifier to classify benign and
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malignant mammogram images that were collected from the INbreast dataset, reaching
an overall accuracy of 89.5% in [24] and 95% in [29]. Aly et al. [22] presented a study to
use the ResNet and Inception models as a feature extraction methods and the YOLOv3
model as a classifier to detect benign and cancer masses. Such a model was successful
in detecting 89.4% of the masses, with a precision of 94.2% and 84.6% for benign and
malignant masses, respectively.

2.2. Ensemble Learning as a Backbone for Accurate Deep Feature Generation

An ensemble approach in machine learning is a technique that combines a number
of single models in order to address a specific issue [31]. A few studies used an ensemble
approach to distinguish benign from abnormal images for the breast cancer research
domain [32]. Indeed, all of these studies concluded that the ensemble strategy has more
capability than the individual AI model to achieve a higher prediction accuracy. This is
because the ensemble learning could combine the best qualities of various contributions
from multiple classifiers at once [32]. From a practical overview, it seems initially a more
complex approach and costs more time for the computation, especially for the training
process since various AI models are involved at the same time and fine-tune their weights
simultaneously. To minimize such worries, domain researchers usually try to optimize and
fine-tune the weights of the AI models individually using the same datasets in a unique
environmental execution. Then, the trained models are fused all together using a single
backend database structure for performing the testing and validation procedure. Such
remedies could support and help the researchers as well as the real applications in the
business company production line. Currently, many companies around the world try to
involve AI technology for providing accurate and rapid smart solutions, especially in the
medical domain. During a pandemic or epidemic, smart solutions are always required to
support the limited medical staff in the hospital, healthcare centers, and so on. The authors
in [32] presented a study using the Inception v4 Ensemble model with the fuzzy rank-based
Gompertz function, in which the accuracy obtained was 99.32%. Chakravarthy et al. [33]
developed an improved crow search-optimized extreme learning machine (ICSELM), and
such a model attained an accuracy of 98.26% for the INbreast dataset. Thuy et al. [34]
improved classification performance using a hybrid deep learning model that combined
the VGG19 and VGG16 models with a generative adversarial network (GAN) and achieved
98.1% accuracy. On the other hand, Savelli, Benedetta, et al. [35] proposed a multi-context
ensemble of convolutional neural networks for detecting small tumors (microcalcification)
using the mammograms of the INbreast dataset. Such a model achieved a 36.25% free
receiver operating characteristic (FROC) score based on the INbreast dataset. Furthermore,
Sahu, Yatendra, et al. [36] suggested an ensemble technique by using ReNet18 and support
vector machines (SVM) as a CAD system, where the pretrained ReNet18 model is used as a
feature extraction and SVM to classify breast cancer lesions based on the BreakHis dataset.
The proposed model provides superior accuracy at 200× magnification of 92.6%. The
100×magnification factor yields the maximum specificity and precision, which are 93.1%
and 86.5%, respectively [11]. Last but not least, Samee, Nagwan Abdel, et al. [37] used
a hybrid technique based on logistic regression (LR) and principal components analysis
(PCA), targeting the important components involved in the classification process. Using
the INbreast and mini-MAIS datasets, the suggested CAD system could reach the best
performance accuracies of 98.60% and 98.80%, respectively.

2.3. Vision Transformer-Based Medical Image Classification

Recently, the vision transformer (ViT), based on a self-attention mechanism, has
demonstrated considerable promise in image classification [38]. The ViT principle was
involved to classify images in which the input images were breaking into patches with a
fixed size and which are then connected together linearly to form a vector and processed by
a traditional converter encoder [39]. A few studies have been suggested based on the ViT
principle, for example, the authors in [38] used a ViT model for classifying breast cancer
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using ultrasound images. In [40], the local features of the input images were extracted using
a CNN module, while a ViT module was used to improve the global features for identifying
different regions in the input images. The proposed hybrid model attained values of
90.73%, 90.77%, 85.58%, and 90.73% in terms of recall, precision, specificity, and F1 score,
respectively. In [41], the ViT-based semi-supervised learning model using ultrasound and
histopathology datasets was also used for the classification of breast cancer. The suggested
model outperformed CNN models of DenseNet201, ResNet101, and VGG19 by achieving
96.29% precision, a 96.15% F1-score, and 95.29% accuracy. Chen et al. [42] suggested using
the local and global transformer blocks to model within four mammograms taken from
both views for each side. The four images were then combined into a single sequence global
transformer and passed into the MLP head for classification. They achieved AUC of 0.784.
Al-Tam et al. [2] proposed a new hybrid model that involved a transformer encoder with
multiple layer perceptron (MLP) for classification based on the high-level deep features
extracted via ResNet50. Their proposed model outperformed against others individual
classification models of ResNet50, VGG16, and Custom CNN. The suggested CAD system
was built and tested using two datasets, CBIS-DDSM and DDSM. The evaluation findings
for the proposed hybrid CAD system reached overall accuracies for the binary and multi-
class predictions of 100% and 95.80%, respectively. In [43], He et al. used a Deconv-
Transformer (DecT) model that includes a color deconvolution as convolution layers to
classify breast cancer based on histopathological images collected from the BreakHis
dataset. Their proposed model achieved an average accuracy of 93.02% and an F1-score of
93.89%. The ensemble of the Swin transformer (SwinT) model was proposed to differentiate
benign from malignant cancer in the histopathology breast images from the BreakHis
dataset [44]. The model investigated eight different subtypes for each of the two classes,
and it demonstrated an average test accuracy of 96.0% for the eight-class and 99.6% for the
binary classification.

3. Material and Methodology
3.1. The Proposed AI-Based ETECADx Framework

To achieve the goal of breast cancer malignancy diagnosis in an accurate and rapid
manner, the ETECADx framework is proposed. We design and build the proposed AI
framework considering the practical CAD application perspective starting with the medical
data collection into the final prediction scores of the potential breast cancer malignancy level:
benign or malignant. Figure 1 shows the consecutive processing stages of the proposed
ETECADx, including medical benchmark data collection, preprocessing, constructing the
desired AI model based on recent technologies, and fine-tuning, validating, and evaluating
the prediction performance. We adopt and fine-tune the AI framework using the benchmark
INbreast dataset since it has proven class-wise labels (i.e., normal, benign, and malignant)
as well as the contour of the breast lesions. After that, private medical breast images are
carefully collected and annotated for further validation and verification. Generally, the
first step to build a proposed CAD system is to design the end-to-end scenario considering,
in some sense the practical abstract pipeline view. While breast cancer is one of the most
silent diseases, the patient should regularly visit the healthcare center and consult the
specialist at least twice a year. Such health recommendation is announced by the United
States National Center Institute (NCI) [45]. After consulting with the specialist radiologist
or physician, the mammogram test might be assigned. In this case, the patient’s breasts
will be X-ray scanned using the standard tool of the mammographic device providing at
least two MLO and CC views for each breast. The scanned breast images are stored in a
DICOM format for investigating and providing the proper recommendation to the patient.
From the R&D perspective, the data DICOM format must be converted into a readable
format (i.e., png, jpg, jpeg, tiff, etc.) for the PC machines. Meanwhile, we request the
expert radiologist for a further annotation process to accurately determine the class-wise
classification label, lesion boundary segmentation, and detection bounding box. Once the
breast images and their annotations are available, the AI researchers and developers are
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able to launch and build the proper diagnosis CAD framework. The preprocessing step is
required to remove unwanted details, and improve the image quality, image dimension
adjusting, and intensity normalization. In the medical research domain, it is proven that
such preprocessing process could significantly improve diagnosis accuracy [46]. One of
the most important prior steps is to extract the potential lesion ROIs or patches. This is to
consciously optimize the proper input image size, allowing the AI model to fine-tune its
trainable parameters based on specific and accurate malignancy areas. In this way, the AI
models could enrich their knowledge better than if they train using the whole input images.
This is because the lesion size inside the medical images is mostly tiny comparing the whole
image size. Such critical issue to building a more feasible and reliable CAD system was
investigated in detail in our previous studies [10]. Here, we extend our work to further
check the possibility of the most recent AI strategies to improve prediction performance.
Thus, we target both new strategies of ensemble transfer learning and the ViT based on the
self-attention mechanism. Such a hybridization strategy encouraged us to take a further
step for more improvement to enrich the research domain and might support the real
practical sectors, such as companies, research health centers, and so on.
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Figure 1. Abstract view of the proposed ETECADx framework to distinguish the breast cancer lesions
to normal, benign, and malignant tissues.

3.2. Dataset: Digital X-ray Mammograms

To train or fine-tune the AI models, the benchmark public multi-class INbreast
dataset [47] is used. In addition, the private real breast cancer images are collected and anno-
tated by expert radiologists to only validate the proposed AI-based ETECADx framework.
The details description of both datasets are addressed in the following sections.

3.2.1. INbreast Public Dataset

The breast images of the INbreast dataset were collected at a breast center located in a
university hospital (Centro Hospital de So Joo [CHSJ], Breast Center, Porto, Portugal) with
the approval of the Portuguese National Committee for Data Protection and the Hospital’s
Ethics Committee from April 2008 to July 2010 [47]. INbreast comprises a total of 410 images
collected from 115 patients, including 360 images from 90 women affected in both breasts
(four images for left and right sides with both views CC and MLO). A total of 25 patients
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underwent mastectomy (one side only with two views). Multiple forms of lesions, such as
masses, calcifications, and deformities, are included in the dataset. Specialists produced
contours of lesions in XML format with DICOM images [47]. There are 107 breast lesions
analyzed and scored by the BI-RAD system where 36 mammograms with BI-RAD of 2, and
3 are considered to represent benign mass cases. Whereas, 71 mammograms with BI-RAD
scores of 4, 5, and 6 are considered to represent the malignant mass cases. For normal class,
67 cases were collected. Figure 2 displays breast mammograms for three distinct patients
collected from the INbreast dataset (i.e., Dataset1), where normal, benign, and malignant
examples are shown in Figures 2a, 2b and 2c, respectively.
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Figure 2. Examples of breast cancer mammograms from INbreast dataset (i.e., dataset1) for normal,
benign, and malignant cases as depicted in (a–c), respectively. The breast tumor regions of interest
(ROIs) for benign or malignant cases are accurately determined by expert radiologists as they are
superimposed in a blue contour on the original mammogram.

3.2.2. Private Real Breast Images

The real breast mammograms are used only to validate the proposed ETECADx
framework. All mammograms are collected from Al-Ma’amon diagnostic center in Sana’a,
Republic of Yemen from March to August 2022 under the supervision of two local expert
radiologists: Amal Abdulrahaman Bafagih and Muneer Abdulwasea Fazea. Both of these
experts are officially working in the Al-Ma’amon diagnostic center to consult patients
regarding breast scanning, investigation, diagnosing, and recommendations. To scan the
patient breasts, the standard tool of the mammographic device is used: a Senographe
800T High-Frequency X-Ray Generator delivering constant voltage, GE, Florida USA
(3D mammography machine). The detailed clinical English report of each case is well
prepared by those expert radiologists (local experts), to explain the case condition, diagnosis
annotation, tumor size, location, and so on. The experts always follow the BIRAD scale to
score the breast cancer as a benign or malignant. For further data investigation in terms
of accurate breast cancer annotation (benign or malignant) and the lesion localization on
the mammograms, we invite the international expert radiologist Dr. Rajesh Kamalkishor
Agrawal who is the director of the Nanded Life-Line Private Clinic, India. He has deep
work experience as a radiologist in a breast cancer clinic for around 30 years. Due to the
lack of supported ultrasound scans for some cases, the international expert could not judge
the exact cancer findings. Thus, the number of benign and malignant cases are decreased
to 25 and 101 cases, respectively. To use such a dataset in our study, we carefully check
and pick up the class-wise annotation or label (i.e., normal, benign, malignant) for each
mammogram based on the recommendation from both local and international experts. The
annotation agreement ratios among local and external expert radiologists are calculated
based on the kappa agreement factor to be 80.16%, 50.0%, and 100% for malignant, benign,
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and normal cases, respectively. Therefore, we carefully choose only the accurate label
images where both local and external evaluators agree on their labels (i.e., Dataset2-B in
Table 1). Other cases with annotation conflicts are excluded from this study. Table 1 shows
the data distribution over each class: normal, benign, and malignant. All breast images are
collected for both CC and MLO views, except for six cases, where the tumor area is located
in the upper quarter towards the axillary side, which makes it impossible to appear on the
CC views. Figure 3 shows examples of the breast mammograms in normal, benign, and
malignant conditions.

Table 1. Real benchmark private breast images dataset. The class-wise labels (normal, benign, and
malignant) were evaluated twice with three local and international expert radiologists.

Dataset Evaluation
Type

Annotation
Type Normal Benign Malignant

Dataset2-A Internal evaluation: two local
expert radiologists Class-wise label 100 54 126

Dataset2-B * External evaluation: international
expert radiologist

Class-wise label and
contour the breast tumor 100 25 101

* Dataset2-B is the final dataset that we use to validate and verify the proposed ETECADx framework.
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Figure 3. Some examples of real breast cancer mammograms. Normal, benign, and malignant cases
are depicted in (a–c), respectively. The breast lesion localization is accurately superimposed on the
breast mammograms of benign and malignant cases via the cyan color counter.

3.3. Medical Data Preprocessing

The medial data preprocessing is always needed to well prepare the trainable breast
images, remove unwanted or useless information for the AI classifiers, improve the image
spatial resolution and quality, and normalize and resize the pixel intensities to fit in a
single gray scale range for all images [46]. First, the breast images are converted from
the DICOM image format into the “png” format according to the unique patient ID and
BI-RADS classification scores, 0, 1, 2, 3, 4, 5. The “0” score reflects the normal cases, “1” and
“2” reflect the beaning cases, and the scores of “3” to “5” explain the malignant cases. In
addition, the breast lesion accurate contour of each breast tumor is precisely determined
by expert radiologists for training AI models based only on these regions instead of using
the whole mammograms. Such medical sensitive information is carefully prepared by
expert radiologists and is publicly available. Second, all mammograms are read as a whole
full-size image without downscaling to keep images in high resolution before the image
patch extraction process. Third, the patch images are extracted to include only the ROIs
of the breast lesions ignoring other background information. This is the most important
preprocessing step, to enable the AI models to fine-tune their weights based on the accurate
malignancy regions instead of using the whole image [20], as it is known that the tumor
size in the medical images is very small compared with the whole image size. So, if the
AI model is trained on the whole image where the majority of pixels are not related to the
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tumor itself, the optimized weight parameters will be weak and not be enough to achieve
an impressive overall diagnosis accuracy. In this study, we extract the tumor ROIs based
on the available ground truth (GT) annotation mask in the XML file per mammogram.
Furthermore, all extracted image patches are resized into 512 × 512 pixels. This is to enable
the AI models to train on the same image characteristics and reduce the GPU processing
time, especially with a huge dataset; this is mandatory for deep learning models. To do this,
we use the OpenCV bitwise_AND image processing technique where the morphological
operations match both the contour binary mask with its associated original images [48].
Figure 4 shows an example of the extracted breast lesion ROI from the whole mammogram,
Figure 4a the original image with lesion couture, Figure 4b the output of the OpenCV
bitwise_AND image processing strategy, and Figure 4c extracted ROI image. The detailed
scenario in how the ROI is accurately extracted is explained in the next section.
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3.4. Patch Image Extraction

As stated previously, the size of a whole breast image is extremely huge and the
unwanted area must be removed. In this research, image processing based on the function
of bitwise_AND operation is used to extract or segment lesion ROIs based on the experts’ an-
notation. The OpenCv functions of cv2.threshold, cv2.findContours, and cv2.boundingRect
are used to perform the lesion segmentation as follows. First, the cv2.threshold function
is applied to the input image via the lower and upper threshold limits. Here, we use the
binary Otsu thresholding approach to pass as an additional flag where the threshold value
can be chosen at random [49]. Second, the cv2.findContours function is used to find the
breast lesion contour with the following inputs: first step segmented image, cv2.RETR
EXTERNAL, and cv2.CHAIN APPROX SIMPLE. The RETR EXTERNAL is just used to
retrieve the extreme outer contours, while the CHAIN APPROX SIMPLE returns the end-
points that are necessary for drawing the contour over the input image. Finally, the largest
contour is detected by the max value operator from the contour area using cv2.contourArea
function. The extracted bounding rectangle with new dimensions of x, y, width, and height
are extracted using the function of cv2.boundingRect as shown in Figure 4c. The final
segmented and cropped ROIs are used as input patch images to execute our experiments
for this study. This method is used because it saves memory without sacrificing output
quality. Algorithm 1 shows the pseudo-code for preprocessing procedure.
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Algorithm 1: Patch Image Extraction via Image Preprocessing Approach

Start:
Input: Original image with its mask
Step 1: load data
Image
Mask
cv

← image; {read DICOM image format}
←mask; {load mask from XML file}
← openCV2; {python library for computer vision task}

Step 2: Apply bitwise_AND
Image← cv2.bitwise_and (Original Image, Mask, cv2.COLOR_BGR2GRAY)
Step 2: Binary thresholding

1. BEGIN
2. READ bitwise_And image, s(x,y) where x and y denotes the pixel coordinates
3. def crop (bitwise image) {
4. threshold value, t = 0
5. maximum value, m = 255
6. thresh = cv2.threshold (bitwise_images, t, m, cv2.THRESH_OTSU +
cv2.THRESH_BINARY) [1]
7. cnts, _ = cv2.findContours (thresh, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
8. cnt = max (cnts, key = cv2.contourArea x, y, w, h = cv2.boundingRect (cnt)
9. return bitwise image [y:y + h, x:x + w]

END

For normal cases, the mammograms are segmented and cropped into multiple 512 × 512
pixel patches. However, since the breast image is on one side of the image and the opposite
side has a black background, we do not require the majority of clips with a black back-
ground. Since the image size is 512 × 512 pixels, images are read pixel by pixel and black
pixels are counted and removed if they exceed 25% of the whole image size. Algorithm 2
demonstrates the segmentation and cropping of normal images.

Algorithm 2: Patch Image Extraction for Normal Cases

1. START:
2. def tile (image,input_path,output_path,dim) {
3. Declare name, ext, image, w, h
4. image = Image.open (os.path(image))
5. w, h = Image.size
6. grid = product (range(0, h-h%d, d), range(0, w-w%d, d))
7. FOR i, j in grid:
8. box = (j, i, j + d, i + dim)
9. out = os.path.join(dir_out, f’{name}_{i}_{j}{ext}’)
10. img.crop(box).save(out)
11. ENDFOR
12. END
Ignore the images with the majority in black
1. START
2. zero = skimage.io.imread(fname = image_name)
3. declare black_counter = 0
4. for i in range (image.size [1]):
5. for j in range (image.size [0]):
6. if zero[i,j].any() <=0:
7. black_counter = black_counter + 1
8. if black_counter<=image.size/4:
9. shutil. copy2 (image_name, new_path)
END
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3.5. Data Preparation for Training, Validation, and Testing

The data are split into binary classification and multiclass recognition approaches. A
total of 70%, 20%, and 10% of all breast images from each class are randomly divided into
training, testing, and validation sets, respectively, for both approaches. The distribution
of data for the first approach, in which they were classified as normal and abnormal, is
depicted in Table 2. After augmentation procedures, a number of normal images were taken
to balance the abnormal images. For the second approach, according to total number of
mass images, Table 3 shows the distribution of multi-classes. In the private real dataset, the
data splitting in binary approach is 101 images for malignant, and 110 images for normal.
Whereas the multi-class approach is 25 images for benign, 101 images for malignant, and
110 images for normal.

Table 2. INbreast data distribution of Approach A (binary classification) of each class. The number of
augmented training breast images is listed in the second column of each class.

Data Splitting Normal Abnormal Total

Training (70%)
418

74 74
Training + Augmentation 592 1010
Validation (10%) 60 11 71
Testing (20%) 119 22 141

Total 597 625 1222

Table 3. INbreast data distribution of Approach B (multi-class classification) of each class. The
number of augmented training breast images is listed in the second column of each class.

Data Splitting Normal Benign Malignant Total

Training (70%)
418

25 49 74
Training + Augmentation 400 392 1210
Validation (10%) 60 4 7 71
Testing (20%) 119 7 15 141

Total 597 411 414 1422

3.6. Training Data Augmentation

A large enough dataset is necessary for the training of deep learning-based mod-
els. When working with medical images, for example, such a dataset is often not readily
available; as a result, data augmentation has become a common technique for solving this
problem [50,51]. In the INbreast dataset, the images for each class are not balanced. After
splitting the data, the training data is made up of 25 benign images and 49 malignant
images. For normal cases, we use, in both approaches, all 597 patches that generated
from a whole image segmentation process. The benign training set are flipped vertically
to 50, then all benign and malignant training sets are added by rotating 45, 90, 135, 180,
225, 270, and 315. In a binary approach, the total of training set is 1010 (418 normal and
592 abnormal), but in a multi-class approach, the total is 1210 (i.e., 418 normal, 400 benign,
and 392 malignant). Tables 2 and 3 present the original and augmented dataset distribution
per class for Approach A (binary classification) and Approach B (multi-class classification), re-
spectively. The normal patch images are generated from the original normal mammograms
without augmentation, while the augmentation is done for abnormal cases to enlarge the
number of instances and balance the normal and abnormal cases. This is to avoid any bias
due to the majority samples of any class during the training and optimization process of
the trainable parameters. The balanced dataset per class is helpful to improve the diagnosis
performance of the AI-based models [10].
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3.7. Ensemble Transfer Learning

Recently, the concept of ensemble learning has been employed in place of a single
deep learning model in order to learn several deep learning models [11,52]. Therefore, the
prediction process is finally done by merging multiple different models. This makes it
possible to take advantage of more useful information from the different classifiers and
obtain more accurate classification results. In previous studies, most of the deep learning
techniques for breast cancer prediction relied on a single convolutional network, as the
applications of ensemble and transformer learning for the early detection of breast cancer
are still in the infant stages, and some studies apply to histopathological images. In this
paper, the ensemble learning method was built by selecting the best set of pre-trained
deep learning models as a main structure for the extraction of features. As illustrated in
Figure 5, this paper’s ensemble technique concatenates pre-trained deep learning models
for feature extraction.
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For the proposed ensemble learning model, we combined the deep learning features of
DenseNet201, VGG16, and InceptionResNetV2 for the binary approach, while DenseNet201,
VGG16, and Xception are combined for the multi-class approach. Each model’s first top
layer, its classification layer, is eliminated, and its last block convolution layer is mined for
its deep features. As shown in Figure 1, the proposed hybrid AI model is built based on
fusing or ensembling the high-level features from three CNN-based backbone networks.
For each CNN model, the classification dense layers are eliminated first. Thus, the final
deep features are extracted from the top layers of DenseNet’s, VGG16, and Xception, as
represented by (None, 16, 16, 1920), (None, 16, 16, 512), and (None, 16, 16, 2048), respectively.
To average the high-level deep features from each model and convert them to a vector
feature, global average pooling (GAP) is applied. After that, the high-level deep feature
vectors from three CNN models are fused or concatenated together to produce the feature
vector space. Finally, the feature vector is embedded and passed into this prediction stage
of ViT, as discussed in the Section 3.8.

To build and select the proper candidates of our study, six CNN-based deep learning
models are randomly selected due to their excellent reputation in the computer vison
research domain for image classification. More explanation of these models is described
as follows:

• AI-based VGG16: VGG16 is one of the popular CNN pre-trained models used for classi-
fication tasks. In this work, the classification layers from the pre-trained VGG16 model
that was trained on the ImageNet dataset were deleted before this model is applied.
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Therefore, a new classification layer is added for binary and multi-classification, in
which the highest performance is achieved. A conventional layer with 1024 neurons,
batch normalization, and dropout (50% of dropout rate) layers are added, respectively.
The fine-tune used for binary and multi-classification is 17, in which all layers start-
ing from the layer number 17 to the classification layers are trainable, while the rest
are untrainable.

• AI-based ResNet: ResNet is a deep convolutional neural network with 50 layers that
has been used for image identification applications. ResNet50 was trained using the
ImageNet dataset for classifying almost 1000 classes, similar to the pre-trained VGG16
model, and the classification layers are also deleted. We add the same layers for binary
and multiple classifications, just like in the AI-based VGG16 in the above section.
Two fine-tuned configurations are applied for the ResNet50 model: 143 is used for
binary classification and 123 is applied for multi-classification, since they recorded the
highest performance.

• AI-based DenseNet201: All layers in the DenseNet model are linked together in a
feedforward approach. Each successive layer receives its own feature maps and
also receives inputs from all preceding levels [53]. The structure is finished with the
addition of global average pooling, one fully connected layer, and a SoftMax layer. All
training is done on the fine-tune layer, with a fine-tune value of 481. This is utilized
for both binary and multi-classification approaches.

• AI-based GoogleNet: The purpose of developing this model was to solve the issue of
overfitting whilst also delving further into the network layer [54]. Out of a total of
311 layers structured into convolution layers, max-pooling layers with nine linearly
stacked Inception modules, 252 are trained using fine tuning. Then, global pooling is
added with one fully connected layer and output layer.

• AI-based InceptionResNetV2: The network architecture is similar to that of Inception-
ResNetV1, but the stem is based on InceptionV4 [55]. On the far left of each module is
a shortcut link. For better classification results, it blends inception architecture with
residual connections. The convolutional operation in the inception module needs to
take the same input and output for the inception convolutional operation.

• AI-based Xception: This is a stack of linearly connected convolution layers that can be
separated by their depth. It is made up of 36 convolutional layers that are organized
into 14 modules. Each module has linear residual connections around it, which serve
as the network’s backbone for extracting features [56].

3.8. The Proposed Hybrid AI Model

The proposed Hybrid AI model is designed and constructed based on the promising
advantages of recently developed ensemble transfer learning AI approaches as well as the
ViT as shown in Figure 1. By combining different CNN-based models, ensemble learning
is used as the backbone network to provide high-level deep features. In order to strongly
derive more accurate features instead of employing a single model, the fusing technique
has recently been introduced in computer vision image classification [57]. The vision
transformer is primarily utilized due to its ability to diagnose objects more precisely based
on the precious, deeply derived sensible features, whilst the self-attention features are
utilized due to their high performance and reduced demand for vision-specific inductive
bias [58]. The transformer is a deep learning-based method that uses self-attention to apply
various weights for calculating the significance of each input data in an encoder–decoder
configuration [41]. The CNN models merely examine the association between spatially
adjacent pixels in the receptive area established by the filter size [11], and thus distant
pixels cannot be handle by such models. Therefore, to address this issue, a new trend
was implemented based on the attention mechanism. The attention technique depends on
determining and processing the most informative parts of the data (images), in which the
redundant parts will be discarded; thereby, false negative results well be reduced. In this
paper, the vision transformer via encoder was adopted and fine-tuned. A self-attention
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network, a multi-linear perceptron block, and a classification layer make up the proposed
transformer encoder. The self-attention mechanism is responsible for connecting various
locations within the same input data, creating a single input sequence [41]. Figure 1 shows
how the ViT model linearly concatenates 16 × 16 2D patches of the input image into 1D
vectors, which are then fed into a transformer encoder of multi-head self-attention (MSA)
and MLP blocks. To determine the connection between each patch and all other patches in
a single input sequence, the MSA uses a scaled dot-product form of attention, as shown in
Equation (1):

Attention(Q, K, V) = So f tmax
(

Qkt
√

dk

)
v, (1)

where Q means query vector, V is a value dimensional vector, and K refers to the key vector.
The dk represents the variance of the product Qkt, which has a zero mean. In addition,
normalizing the product by dividing it by the standard deviation

√
dk. The SoftMax

function converts the scaled dot-product into an attention score. This mechanism is the
key of the transformer model for offering parallel attention to comprehending the input
image’s overall content. The model can respond to input from numerous representation
subspaces at various locations simultaneously due to the multi-head attention. The multi-
head attention linearly extends the queries, keys, and values h times using a variety of
learnt linear projections, and can be calculated by Equation (2).

MultiHead(Q, K, V) = Concat(head1, . . . , headh) Wo

where headi = Attention(QWQ
i , KWK

i , VWV
i ),

(2)

where the projections are parameter matrices WQ
i ∈ Rdmodel x dk , WK

i ∈ Rdmodel x dk ,
WV

i ∈ Rdmodel x dv and Wo ∈ Rhdv x dmodel . On the other hand, the MLP block consisted
of a non-linear layer of Gaussian error linear unit (GELU) with 1024 neurons and batch
normalization, with a dropping rate of 50% across all dropout layers.

3.9. Experimental Setup

End-to-end training is used for the proposed AI hybrid model. In this study, we
employed a learning rate of 0.001, an Adam optimizer with a clip value of 0.2, and a
patience of 30 when conducting our training and in stopping callback early. We train all AI
models using 100 epochs to fine-tune the hyper-parameters of the models. In the encoder
section, an image size of 512, a patch size of 2, an input size of 20, a drop rate for all layers is
0.01, and 8 heads. Meanwhile, to show the dimension by which high-dimensional vectors
are converted to low-dimensional vectors without loss, the embed dim and num_mlp are
empirically optimized to be 64 and 256, respectively.

3.10. Evaluation Strategy

The evaluation matrices of Accuracy (Acc.), Specificity (SPE), Sensitivity (SEN), F1-
score, Matthews correlation coefficient (MCC), Cohen’s kappa coefficient, and the receiver
operating characteristic (ROC) curve are used to measure the prediction performance of
the proposed AI framework, as in our previous works [59]. The mathematical definitions
of all these metrics are defined as:

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
. (3)

Specificity (SPE) =
TN

TN + FP
. (4)

Sensitivity (SEN) =
TP

TP + FN
. (5)

F1-Score =
2Precision× Sensitivity
Precision + Sensitivity

. (6)
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MCC =
TP.TN− FP.FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

kappa =
Po − Pe

1− Pe
, where Po =

TP + TN
Total

, and Pe =
(TP + FP)(TP + FN) + (TN + FP)(TN + FN)

Total2 (8)

The binary and multi-class confusion metrics are used to derive the parameters of true
positive (TP), true negative (TN), false positive (FP), and false negative (FN). Meanwhile,
the area under the receiver operator characteristic (ROC) curve (AUC) was used to evaluate
a classifier’s capacity to distinguish between classes. We solve the binary class problem ap-
proach by employing the “roc_auc_score” built-in function included in the Python Sklearn
module [60]. Similar to our prior work [9], we use a one-class-versus-others technique to
construct ROC curves with their AUC values for the multi-classification approach. After
that, the estimated mean AUC values are reported. Due to the imbalanced testing set per
class, the weighted evaluation metrics strategy is used for both A and B approaches.

3.11. Execution Environment

An MSI GS66 laptop with the following specifications is used to carry out the experi-
ment: INTEL CORE I 7 11TH GENERATION (11800H), 32 GB RAM with 2 TB SSD NVME
and RTX 3080 (16 GB) GRAPHICS CARD. Python 3.10 running on Windows 11 along with
the Keras and TensorFlow backend libraries were utilized in the conduct of the experiments
that are analyzed in this study.

4. Experimental Results

The evaluation prediction results are presented in this section for Approach A (binary
classification) and Approach B (multi-class classification) as shown in Figure 6. For each
approach, the results of individual AI-based CNN model are presented first. Then, the
comparison results between the ensemble learning model as well as the proposed ETECADx
are consecutively demonstrated.
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4.1. Approach A: Binary Classification Results
4.1.1. Individual Pre-Trained Deep Learning Models

For this study, the state-of-the-art deep learning individual models of DenseNet201,
VGG16, GoogleNet, InceptionResNetV2, Xception, and ResNet50 are selected and investi-
gated in order to choose the best combination of the ensemble backbone network of the
proposed ETECADx framework. We optimize and fine-tune these models individually
using the INbreast dataset. Their trainable parameters are experimentally selected based on
the strategy of multi-trail errors [61]. The evaluation prediction results of this approach for
each AI model are presented in Table 4. The best classification results are clearly recorded
for the DenseNet201 and VGG16 in terms of all evaluation metrics where the overall accu-
racy and F1-score are achieved with 95.74% and 95.66%, respectively. The second better
prediction performance is achieved using the InceptionResNetV2 recording the overall
accuracy and F1-score of 93.62% and 93.60%, respectively. On the other hand, the ResNet50
achieved the lowest performance compared with other AI models. As a conclusion of this
study, the proper candidates that could be used to build the ensemble AI backbone model
are DenseNet201, VGG16, and InceptionResNetV2.

Table 4. Binary approach classification evaluation results of the individual pre-trained deep learning
models using the testing set of the INbreast dataset.

AI Model ACC SEN SPE F1-Score AUC MCC Kappa

DenseNet201 0.9574 0.9574 0.9565 0.9566 0.9007 0.8335 0.8322
VGG16 0.9574 0.9574 0.9565 0.9566 0.9007 0.8335 0.8322

GoogleNet 0.8582 0.8582 0.9257 0.8738 0.9160 0.6601 0.6070
InceptionResNetV2 0.9362 0.9362 0.9375 0.9360 0.8881 0.7623 0.7620

Xception 0.9078 0.9078 0.9420 0.9157 0.9459 0.7482 0.7178
ResNet50 0.8511 0.8511 0.8924 0.8637 0.8377 0.5672 0.5442

Based on the confusion matrix, the DenseNet201 and VGG16 achieved the best predic-
tion performance with only six cases wrongly classified (four in abnormal class and two in
normal class). The InceptionResNetV2 misclassified five abnormal cases as normal. The
Xception achieved good classification behavior to accurately distinguish the normal cases,
but it is the worst to predict the abnormal cases where the false negative is very high at
thirteen cases. Figure 7 shows examples of the confusion matrices of the three AI-based
CNN models: DenseNet201, InceptionResNetV2, and Xception.
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4.1.2. Ensemble Learning vs. the Proposed ETECADx

Based on the results of the individual pre-trained AI models, DenseNet201, VGG16,
and InceptionResNetV2 are used to build the ensemble backbone network for the binary
approach of the proposed ETECADx system. In this section, we perform the evaluation
performance in two steps. First, the ensemble learning model is constructed, trained, and
evaluated separately without using the ViT. Second, we construct the proposed hybrid
model by allowing the ViT to perform the final prediction performance based on the
ensemble high-level deep features that are generated by fusing three different CNN models:
DenseNet201, VGG16, and InceptionResNetV2. The evaluation performance results of the
breast cancer diagnosis using the ensemble learning and the proposed hybrid ETECADx
are summarized in Table 5. It is clearly shown that the proposed AI ETECADx model could
achieve the superior diagnosis evaluation results when the ensemble learning model is
used. Figure 8 presents the confusion matrices for the proposed ensemble learning and
ETECADX AI models for the binary classification approach.

Table 5. Binary approach classification evaluation performance of the proposed ETECADx framework
against the ensemble learning model using the testing set of INbreast dataset.

AI Model ACC SEN SPE F1-Score AUC MCC Kappa

Ensemble learning model 0.9716 0.9716 0.9733 0.9721 0.9647 0.8973 0.8961
The proposed hybrid

ETECADx: Ensemble + ViT 0.9858 0.9858 0.9858 0.9858 0.9731 0.9461 0.9461
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4.2. Approach B: Multi-Classification Results
4.2.1. Individual Pre-Trained Deep Learning Models

For the multi-class approach, the same individual deep learning models are selected and
investigated for building the proposed models: ensemble backbone as well as the proposed
ETECADx. For Approach B, the individual models show their capabilities to distinguish the
multi-classes as shown in Table 6. The high evaluation prediction of accuracy is achieved
via VGG16 and Xception with 95.74%, and 95.04%, respectively. Whereas, the GoogleNet
achieves the lowest classification accuracy of 85.11%. Thus, the best candidates for building
the ensemble learning models are VGG16, Xception, and DenseNet201.
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Table 6. Approach B multi-classification evaluation results of the individual pre-trained deep learning
models using the testing set of the INbreast dataset.

AI Model ACC SEN SPE F1-Score AUC MCC Kappa

DenseNet201 0.9433 0.9433 0.9452 0.9412 0.8603 0.7855 0.7836
VGG16 0.9574 0.9574 0.9558 0.9549 0.8658 0.8365 0.8312

GoogleNet 0.8511 0.8511 0.9185 0.8766 0.8478 0.5963 0.5709
InceptionResNetV2 0.9007 0.9007 0.9183 0.9030 0.8179 0.6530 0.6478

Xception 0.9504 0.9504 0.9508 0.9500 0.8695 0.8128 0.8115
ResNet50 0.9291 0.9291 0.9370 0.9321 0.8552 0.7423 0.7418

The examples of the confusion matrix of the best three individual models are depicted
in Figure 9. The VGG16 could achieve the superior classification performance where
only one benign case is misclassified as a normal. These three AI models get confused in
classifying three benign cases as a normal, achieving similar false negative ratios. Based
on this behavior, we build the backbone network using the best individual CNN models:
VGG16, Xception, and DenseNet201.
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4.2.2. Ensemble Learning vs. the Proposed ETECADx

Similarly, the proposed ETECADx framework is evaluated twice. First, the ensemble
learning model is considered to provide the final prediction of breast cancer. Second,
the proposed hybrid ensemble and ViT model is used to perform the final breast cancer
prediction. The evaluation performance results of both cases are summarized in Table 7.
For the multi-classification approach, the proposed ETECADx using the hybrid ensemble
learning as a backbone and ViT as a predictor could achieve the superior evaluation
performance with an accuracy of 97.87% compared with 96.45% for the ensemble model
alone. Although the prediction performance of the ensemble AI model is better than
individual models, the use of ViT is recommended to increase the prediction performance
of breast cancer. The evaluation result is also presented in terms of confusion matrices for
the ensemble learning model as well as the proposed hybrid ETECADx. Figure 10 presents
the confusion matrices for the proposed ensemble learning and ETECADX AI models in
the multi-classification approach.



Diagnostics 2023, 13, 89 19 of 30

Table 7. Evaluation performance of the proposed ETECADx framework against the ensemble learning
model for the multi-class classification approach using the INbreast testing set.

AI Model ACC% SEN SPE F1-Score AUC MCC Kappa

Ensemble learning model 0.9645 0.9645 0.9656 0.9638 0.9131 0.8683 0.8676
The proposed hybrid

ETECADx: Ensemble + ViT 0.9787 0.9787 0.9788 0.9785 0.9506 0.9210 0.9206
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5. Discussion

Recently, deep learning techniques such as convolutional networks and transfer pre-
trained learning have shown significant success in many medical image analysis applica-
tions. To aid clinicians and professionals in predicting the early identification of breast
cancer, we propose an artificial intelligence-based ETECADx framework based on the
ensemble learning as well as the transformer-based self-attention mechanism to iden-
tify the breast cancer lesions for both binary and multi-class approaches. To achieve the
goal of the study, six pre-trained individual deep learning models are adopted and used:
DenseNet201, VGG16, GoogleNet, InceptionResNetV2, Xception, and ResNet50. In the
proposed ETECADx model, we use the ensemble learning as a backbone network to aid
the ViT in providing the superior classification performance.

5.1. The Findings of the Binary Approach

DenseNet201 and VGG16 achieve the best classification accuracy in pre-trained models
for the binary approach recording 95.74% for both. The InceptionResNetV2 recorded a
prediction accuracy of 93.62%, while the Res-Net50 model performed with the lowest
accuracy achieving 85.11%. In contrast, the ensemble learning model outperformed the
AI individual models in accuracy by 97.16%, whereas the proposed ETECADx model
outperformed against the ensemble model with an accuracy of 98.58%. The performance in
terms of F1-score is also recorded to be 97.21% and 98.58% for the ensemble learning model
and the proposed hybrid ETECADx models, respectively. Furthermore, the ensemble
learning model is recorded to be 0.8973, and 0.8961 for MCC and Kappa, respectively.
Whereas the ETECADx model reaches better than the ensemble model with 0.9461 for MCC
and 0.9461 for Kappa. The ensemble learning model is predicted three cases wrong for the
normal class, and one case in the abnormal class. Meanwhile the ETECADx model could
distinguish predictions better than the ensemble learning model with one case wrong only
in both normal and abnormal classes.
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Moreover, the proposed ensemble learning and ETECADx models are compared to
other AI individual pre-trained models in terms of the number of fine-tune layers, train-
able parameters, costs of training time consumption for each epoch, and testing time for
each model and per image, as shown in Table 8. The InceptionResNetV2 model with
fine-tune 672 and the DenseNet201 model with fine-tune 481 are the heaviest models,
while GoogleNet and Xception are relatively light. The proposed ETECADx model is a
combination of the three best AI models that have already been trained; it may still need
more time cost, and epochs, but it provided a promising evaluation performance as well as
outperforming the state-of-the-art AI individual models.

Table 8. Performance comparison of the proposed ensemble learning and the hybrid ETECADx
models against the individual AI models to the computation costs in binary approach.

AI Model No. of Fine-Tune
Layers

No. of Trainable
Parameters
(Million)

Training
Time/Epoch (ms)

Testing
Time/Image (s)

Frame Per
Second (FPS)

DenseNet201 481 8.95 187 0.018 55.56
VGG16 17 2.89 197 0.024 41.67

GoogleNet 252 12.64 164 0.009 250
InceptionResNetV2 672 18.49 680 0.054 18.52

Xception 106 10.50 164 0.009 250
ResNet50 143 17.08 169 0.013 76.92

Ensemble model 32.06 238 0.047 21.28
The proposed

ETECADx 25.74 260 0.048 20.83

The standard deviation is also computed to evaluate the variety of the AI models
with respect to the proposed ETECADx model. Figure 11 shows the results of this study
performance characteristics for all AI models. It is clearly indicated that the Densenet201
and VGG16 had the closest accuracy performance compared with the proposed model,
since the prediction error is 0.028. On the other hand, ResNet50 shows the worst error
deviation in terms of SPE with 0.234 and 0.204 F1-scores. The closest model with ETECADx
is the Xception model in terms of sensitivity and AUC, with error rates of 0.0277 and
0.0274, respectively. Furthermore, the Densenet201 model achieves the best match with
the ETECADx, achieving the lowest specificity error deviation with 0.039. To determine
whether the proposed ensemble ETECADx is significantly prominent, performing better
predictions than other individual or even ensemble AI models, the paired t-test with a
significance level of 0.05 p-value is investigated. Assuming the null hypothesis, there is no
significant performance difference between our proposed models and others. Whereas, the
alternative hypothesis is the opposite to show how much the proposed model is prominent.
To perform the t-test study, we conduct two experiments using the evaluation metrics of the
models in charge. First, the paired t-test is investigated between the best individual VGG16
and the ensemble AI models. The p-value of 0.11 is recorded to show that the ensemble
model is more significant than the individual models. Second, we repeat the same study
between the ensemble model against the proposed ETECADx where the p-value is recorded
to be 0.08. Thus, the null hypothesis is rejected to show that the proposed ETECADx is
significantly prominent than the ensemble as well as the individual models.
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5.2. Multi-Classification Approach Findings

For the multi-class approach, the best evaluation accuracies of the pre-trained models
are recorded to be 95.74%, 95,04%, and 94.33% via VGG16, Xception, and DenseNet201,
respectively. Unfortunately, GoogleNet could not perform well; it achieves the lowest
accuracy with 85.11%. As shown in Figure 7, the individual models predict the benign
and malignant cases similarly, where three and two cases are misclassified, respectively.
For normal cases prediction, the VGG16 performs better than other models, where it
misclassifies only one case to be as a benign case. In addition, the proposed ensemble
learning model (i.e., VGG16, Xception, and DenseNet201) could achieve better performance
than individual models providing overall accuracy of 96.45%. Furthermore, the proposed
ETECADx framework could outperform all individual or ensemble models achieving an
overall accuracy of 97.87%. The performance in terms of F1-score is recorded to be 96.83%
and 97.85% via the ensemble learning and ETECADx models, respectively. Moreover,
the ensemble learning model is recorded to be 0.8683 and 0.8676 for MCC and Kappa,
respectively. Whereas the ETECADx model performs better than the ensemble model with
0.9210 for MCC and 0.9206 for Kappa. As shown in Figure 10b, the proposed ETECADx
could predict very well, as only one case is misclassified in terms of normal and malignant
cases, achieving better rates of FPs and FNs. Generally, the ensemble learning model
misclassified five cases (i.e., two in benign, one in malignant, and two in normal cases),
while the ETECADx could predict very well, as only one case per class is misclassified.
For comparing the proposed models to other AI models in multi-class, Table 9 shows the
comparison performance in terms of number of fine-tune layers, trainable parameters, costs
of training time consumption for each epoch, and testing time for a single breast image. As
presented in Table 9, the DenseNet201 model is the heaviest model, while the GoogleNet
has the lowest testing time cost.
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Table 9. Performance comparison of the proposed ensemble and ETECADx models against other
individual AI models for the multi-classification approach.

AI Model No. of Fine-Tune
Layers

No. of Trainable
Parameters (Million)

Training Time/Epoch
(ms) Testing Time/Image (s) Frame Per Second

(FPS)

DenseNet201 481 08.95 195 0.018 55.56
VGG16 17 02.890 186 0.02 50

GoogleNet 252 12.644 165 0.008 125
InceptionResNetV2 720 12.384 174 0.012 83.33

Xception 96 12.119 150 0.010 100
ResNet50 123 19.316 182 0.011 90.91

Ensemble model 25.491 270 0.047 21.28
The proposed hybrid

ETECADx: Ensemble + ViT 19.571 290 0.048 20.83

For evaluating the variety of models with regard to the proposed ETECADx model,
Figure 12 shows the standard deviation performance characteristics for all AI models in the
multi-classification approach. The prediction error is 0.021 for the VGG16 model, which
performed the closest accuracy performance when compared to the proposed model. With
0.317 in terms of SPE and 0.296 F1-score, InceptionResNetV2 demonstrates the worst error
deviation. With error rates of 0.077, the Xception model has the best AUC compared
to ETECADx. Additionally, the ETECADx model achieves the lowest specificity error
deviation of 0.048 and the Densenet201 model has the best match with ETECADx. Similarly,
we perform the paired t-test to determine the significance of the multi-class approach results.
The paired samples test between the best pre-trained individual model (i.e., VGG16) and
the ensemble model produce a p-value of 0.16, which is greater than the significance level
of 0.05. In contrast, the p-value between the ensemble and ETECADx models is recorded to
be 0.46. In this case, the null hypothesis is rejected and the alternative hypothesis shows the
proposed ETECADx is significantly more prominent than individual and ensemble models.
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5.3. Ablation Study Using the Real Breast Image Dataset

As described in Section 3.2, we used the private real dataset to validate and verify the
capability of the proposed ETECADx framework ability in handling unseen mammograms.
The real dataset contains 3D X-ray breast images with confidence labels annotated by three
expert radiologists. It consists of 110 normal, 25 begin, and 101 malignant breast images.
To perform the ablation study, we similarly apply both binary and multi-classification
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approaches. For the binary classification approach, the benign and malignant cases are
combined together to represent the abnormal cases. For the multi-classification approach,
the normal, benign, and malignant cases are used as independent classes.

5.3.1. Approach A: Binary Classification Approach

The validation results for the binary classification approach of all AI models including
the proposed ensemble and ETECADx are shown in Table 10. It is clearly shown that
the proposed ETECADx model achieved the highest prediction performance in terms of
all evaluation mercies: 97.16% Accuracy, 97.16% Sensitivity, 97.18% Specificity, 97.16%
F1-score, and 97.19% AUC.

Table 10. Validation classification results for the binary approach using all AI models including the
ensemble learning and the proposed ETECADx framework. The real unseen dataset (Dataset2-B) is
used for this study.

AI Model ACC SEN SPE F1-Score AUC MCC Kappa

DenseNet201 0.9005 0.9005 0.9164 0.8990 0.8965 0.8155 0.7988
VGG16 0.9526 0.9526 0.9566 0.9524 0.9505 0.9087 0.9046

GoogleNet 0.7725 0.7725 0.8388 0.7635 0.7814 0.6116 0.5525
InceptionResNetV2 0.7820 0.7820 0.8502 0.7734 0.7909 0.6322 0.5711

Xception 0.9289 0.9289 0.9323 0.9289 0.9310 0.8612 0.8580
ResNet50 0.9573 0.9573 0.9595 0.9574 0.9587 0.9167 0.9147

Ensemble model 0.9621 0.9621 0.9627 0.9619 0.9620 0.9245 0.9239
The proposed hybrid

ETECADx: Ensemble + ViT 0.9716 0.9716 0.9718 0.9716 0.9719 0.9432 0.9430

As shown in Figure 13 for the binary approach on real datasets, confusion matrices of
the ensemble learning model misclassifies six abnormal and two normal cases. Meanwhile,
the ETECADx model could predict the abnormal cases very well, as only two abnormal
cases are wrongly predicted. Thus, the proposed ETECADx performs well, achieving a
better performance in terms of FPs and FNs as well compared with the individual AI
models or even with the ensemble model. To compare the evaluation performance of the
proposed ETECADx using both INbreast and unseen real dataset, we designed a further
investigation study to show the capability of the ETECADx to predict breast cancer from
the unseen images during the training time. Figure 14 shows the evaluation of the binary
approach for the ETECADx in contrast to an ensemble deep learning model using both
INbreast and real datasets.
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5.3.2. Approach B: Multi-Class Classification Approach

For the multi-class approach, Table 11 presents the validation results of the proposed
ETECADx framework against the ensemble learning model and other AI individual models
using the real dataset (i.e., Dataset2-B). We can summarize that the proposed ETECADx
model could successfully outperform other individual and their ensemble models. The best
validation classification results are achieved via the proposed ETECADx model by recording
89.41% Accuracy, 89.41% Sensitivity, 91.27% Specificity, 87.77% F1-score, and 83.83% AUC.
The ensemble learning model got twenty-one cases wrong predicted for benign cases,
and six cases in malignant cases. Meanwhile, the ETECADx model is distinguished in
prediction better than the ensemble learning model with wrong predictions of eighteen, one,
and six cases in benign, malignant, and normal cases, respectively, as shown in Figure 15.
Similarly, we perform one more validation study to validate the capability of the proposed
ETECADx system predicting new mammogram instances. The proposed CAD system is
trained only using INbreast images, while the real breast images are totally isolated during
the training time. Figure 16 summarizes the validation results using both INbreast and real
datasets for the multi-class approach.

Table 11. Validation classification results for the multi-classification approach using all AI models
including the ensemble learning and the proposed ETECADx framework. The real unseen dataset
(Dataset2-B) is used for this study.

AI Model ACC SEN SPE F1-Score AUC MCC Kappa

DenseNet201 0.8771 0.6543 0.5850 0.6177 0.7899 0.7921 0.7774
VGG16 0.8690 0.7798 0.7409 0.7478 0.8621 0.7831 0.7783

GoogleNet 0.6229 0.5741 0.6897 0.5652 0.6812 0.4347 0.3620
InceptionResNetV2 0.6186 0.5278 0.7072 0.5554 0.6476 0.3343 0.3166

Xception 0.8771 0.6543 0.5850 0.6177 0.7899 0.7847 0.7829
ResNet50 0.8686 0.7184 0.7293 0.7217 0.8267 0.7762 0.7744

Ensemble model 0.886 0.886 0.896 0.857 0.8158 0.8052 0.7949
The proposed hybrid

ETECADx: Ensemble + ViT 0.8941 0.8941 0.9127 0.8777 0.9071 0.8252 0.8123
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5.4. Comparison Evaluation Results against the Latest Research Works

In Table 12, we present the results of the comparison among the proposed ETECADx
and the most recent deep learning studies for breast cancer classification. It is possible that
the proposed ETECADx could produce competitive and encouraging evaluation results on
real-world datasets. For this study, we summarize the related studies that used INbreast
dataset for indirect comparisons. Such indirect comparison lacks fair comparison with other
studies in the literature research domain due to different dataset distribution, different data
splitting settings, different AI models used, or even different execution environments to
perform the AI models training and evaluation.
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Table 12. Comparison evaluation results against the latest AI research works for breast cancer.

Reference Dataset Classes Prediction Method Accuracy (%)

Samee et al. (2022), [3] INbreast Normal/Abnormal AlexNet, VGG, and
GoogleNet 98.50

Al-antari et al. (2018), [10] INbreast Benign/Malignant YOLOV2 95.32

Chakravarthy et al. (2022), [33] INbreast Normal/Abnormal ICSELM 98.26

Hamed et al. (2020), [29] INbreast Benign/Malignant YOLO model 89.50

Hamed et al. (2021), [24] INbreast Benign/Malignant YOLOV4 95.0

Aly et al. (2021), [22] INbreast Benign/Malignant YOLO v3 89.40

Chakravarthy et al. (2022), [18] INbreast Benign, Malignant, and
Normal CNNs and SVM 96.64

Shen et al. (2019), [20] INbreast
5-class (Normal, Benign,

Malignant with mass and
calcification)

Many CNN models 86.70 (SEN) 96.10 (SPE)

Lee, Sanghoon, et al. (2019),
[62]

The Cancer Genome
Atlas (TCGA), Tumor vs. lymphocytes Ensemble of SVM, LR, and

RF 96.90

Kadam et al. (2019), [63] UCI WDBC dataset Benign and Malignant
Ensemble of Sparse
Autoencoders and

Softmax Regression
98.60

Moon et al. (2020), [64] Private Ultrasound
dataset

Benign, Malignant, and
Normal

Ensemble of VGGNet,
ResNet, and DenseNet 94.62

Abbasniya et al. (2022), [65] BreakHis Benign and Malignant

Inception-ResNet-v2,
Ensemble of (CatBoost),

(XGBoost) and
(LightGBM)

LightGBM has given the
best average accuracy

Jiang et al. (2022), [66] CBIS-DD, INbreast,
MIAS

Benign and Malig-
nant(mass/calcification)

PAA, EfficientNet-B3 and
two-stage detector +

image classifier

96.30 (INbreast)89.40
(CBIS-DDSM)

He, Zhu, et al. (2022), [43] BreakHis dataset Benign and Malignant Deconv-Transformer
(DecT) 93.02

The proposed ETECADx
Framework: Hybrid ensemble

learning and ViT

INbreast & private real
mammogram dataset

Approach A: Normal and
Abnormal The proposed AI Hybrid

Model (Ensemble
backbone and ViT)

98.58

Approach B: Normal,
Benign, and Malignant 97.87

5.5. Limitations and Future Work

Since medical image labeling is expensive and time-consuming for radiologists, it is
still the main limitation for the supervised-based AI applications. The automatic ROIs
extraction is required for the practical applications where we intend to deploy such de-
tectors for real application scenarios for hospitals and cancer centers in order to assist the
physicians providing accurate and rapid diagnosis decisions. As we prove in our previous
works [10], segmentation and detection of the suspicious ROIs could be performed automat-
ically before the classification stage as a mandatory practical procedure of any CAD system.
Using automatic segmentation or detection AI algorithms, such as MobileNetSSDv2, De-
tectron2, Faster-RCNN, or YOLO, could automate the proposed ETECADx for practical
applications not just for breast cancer but for various medical imaging modalities in future
studies. Moreover, we would test the proposed AI model again by collecting breast cancer
risk factors from patients alongside images of their medical diagnoses (e.g., ultrasound or
mammograms). In addition, we intend to integrate the newest outstanding AI technologies,
such as explainable AI [67], and federated learning [68], to further enhance the performance
behavior and provide more interesting breast cancer identification performances.



Diagnostics 2023, 13, 89 27 of 30

6. Conclusions

This article presents the potential of using hybrid AI models to build a novel ETECADx
framework for breast cancer identification. We design and build the proposed CAD system
by combining the recent emerging techniques of the ensemble learning of multiple AI-
based CNN models and the Transformer encoder (i.e., ViT) to improve breast cancer
prediction using digital X-ray mammograms. The INbreast public multi-class dataset is
used to train and evaluate the proposed ETECADx framework. Meanwhile, private real
breast cancer images are collected and annotated by expert radiologists to validate and
verify the prediction performance. In this study, a comprehensive experimental study
is similarly performed in terms of investigating the prediction performance for binary
and multi-classification approaches in three stages: (1) individual pre-trained transfer
learning; (2) ensemble deep learning; and (3) the proposed ETECADx model based on
the ensemble Transformer encoder. For the binary approach, the evaluation results of
the proposed deep learning ETECADx framework are recorded as 98.58% accuracy, a
97.31% F1-score, and 0.9461 for MCC. For the multi-class identification approach, the
overall prediction performance achieved 97.87% accuracy, a 94.80% F1-score, and 0.9210 for
MCC. For predicting a single mammogram, the proposed ETECADx shows its capability
to identify the breast cancer type within an average of 0.048 s. Based on the evaluation
metrics, the proposed model is superior and more effective than other state-of-the-art deep
learning methods for detecting breast cancer in its earliest stages using digital X-ray breast
images. Furthermore, the evaluation of private real datasets shows the proposed ETECADx
model’s potential to yield reasonable accuracy results.
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CNN Convolution Neural Network
DICOM Digital Imaging and Communications in Medicine
ROI Regions of Interest
MLP Multiple Layer Perceptron
TE Transformer Encoder
GT Ground Truth
PCA Principal Component Analysis
ViT Vision Transformer
FP False Positive
MSA Multi-head self-attention
GAN Generative Adversarial Network Ok, Confirm
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