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Abstract: Several decades of eye related research has shown how valuable eye gaze data are for
applications that are essential to human daily life. Eye gaze data in a broad sense has been used
in research and systems for eye movements, eye tracking, and eye gaze tracking. Since early 2000,
eye gaze tracking systems have emerged as interactive gaze-based systems that could be remotely
deployed and operated, known as remote eye gaze tracking (REGT) systems. The drop point of
visual attention known as point of gaze (PoG), and the direction of visual attention known as line of
sight (LoS), are important tasks of REGT systems. In this paper, we present a comparative evaluation
of REGT systems intended for the PoG and LoS estimation tasks regarding past to recent progress.
Our literature evaluation presents promising insights on key concepts and changes recorded over
time in hardware setup, software process, application, and deployment of REGT systems. In addition,
we present current issues in REGT research for future attempts.

Keywords: remote eye gaze tracking; hardware setup; software process; application area

1. Introduction

The speed of eye movements, regularity of blinks, lengths of fixations, and patterns of
visual search behavior are all significant to how a person is responding to any kind of visual
stimulus [1]. This is because our eyes automatically follow what interests or threatens us.
The eyes are a vital part of human physiology that have continued to hold the attention of
industry and academic researchers over several decades. Eye research and systems have
progressed over four distinct periods distinguishable by the type of data they provided
and the nature of their intrusiveness. The characteristics of these four periods are shown in
Figure 1.

The first period was characterized by the basic study of the eye’s structure (see
Figure 1a) and the theories of eye movement (see Figure 1b) [2]. The relevance of parts of
the eye, including the pupil, cornea, iris, and sclera; and eye movements, such as saccade,
fixation, smooth pursuit, and blink, has been studied extensively for REGT systems in [3].
In the second period, eye occulography and tracking emerged, using intrusive instruments
that are placed on the human body [4,5]; examples are shown in Figure 1c–f. The progress
achieved in hardware processors and image processing techniques paved the way for non-
intrusive gaze tracking applications in the third period [6]. These capabilities were explored
even further in the fourth period for the remote deployments shown in Figure 1g–k, which
were described as remote eye gaze tracking (REGT) systems in [7,8].

The four periods were characterized by specific concepts with similar terminologies,
which are: eye occulography, eye tracking, and eye gaze tracking. Eye occulography
identifies eye movements. The electro-oculogram (EOG), for example, was described
in [9,10] for recording eye movement using electrodes around the eye to measure skin
potentials. The electro-retinogram (ERG), which is another neurophysiological means
for recording eye movement with a head-mounted eye monitor camera, was described
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in [11]. Eye tracking locates the subject’s eye(s) in an image or video, as demonstrated
using methods such as electro-encephalography (EEG) in [12], the scleral search coil in [13],
psychophysical experimentation with foveal cone-target in [14], and the video-oculogram
(VOC) in [15]. Eye gaze tracking estimates the drop point of visual attention known as
the point of gaze (PoG) or point of regard (PoR); see early [8] and recent [16,17] research
attempts. Eye gaze tracking is also used for estimating the direction of visual attention
known as line of sight (LoS); see early [18] and recent [19–21] research attempts. In the
literature eye gaze tracking and eye gaze estimation terminologies refer to the same thing.
However, eye gaze estimation has been used as a broader term in [22], to refer not only
to processing continuous data with time dependencies, but also to refer to static images
in order to determine where the subject is gazing at on a device interface or in a real-
world scene.
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The operations of REGT systems can be classified into two modules, hardware and
software. In Figure 2, the hardware module comprising the display and camera is setup in
apposition (i.e., remotely) to the subject in order to feed the required data to the software
module for either PoG or LoS estimation.

To achieve PoG (2D) or LoS (3D) estimation, two components of the human physiology
are used: the eyeballs and the head pose [23]. Several research attempts at estimating gaze
using features of the eye have been reported in [24–28], and for the pose of the human head
in [29–32]. To improve the accuracy of gaze estimation further, researchers measured and
combined data from eye features and head pose in [33–36], and more recently in [37,38].
This method is popularly used to compensate for the errors caused by the head movements,
as further discussed in Section 2.3.

We presented the highlight-based evolution of REGT systems (before/after 2015)
in [39]. This paper proposes an extension by:

• Collecting more literature on REGT systems’ evolution (past periods before 2015, and
recent periods after 2015).
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• Comprehensively comparing the key concepts and changes recorded in the evolution-
ary periods of REGT’s hardware setups, software processes, and applications.

• Presenting current issues in REGT systems’ research for future attempts.
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to PoG 3.

To the best of our knowledge, this level of detail and coverage is not found in similar
published literature on this topic, as earlier review papers only focused on past periods
and recent review papers focused on recent periods.

The remainder of this paper is arranged and discussed in modules. Section 2 discusses
the various components of REGT systems’ hardware modules. Next, popular techniques
and algorithms for eye feature detection, extraction, gaze mapping, and datasets for
training and validating gaze estimation methods are reported in Section 3. REGT systems
as solutions across deployment platforms are discussed in Section 4. In Section 5, our
conclusion recapitulates on research changes in REGT systems across the different modules,
where we also present current issues for future attempts.

2. Hardware Setup

The physical setup of an REGT system is the hardware module. To achieve the gaze
estimation task, this module must provide data for the software module to process. The
physical setup is usually made up of various parts consisting of the device interface, which
provides the interaction point between the subject and the tracking software; an illuminator
which creates patterns of near-infrared on the subject’s eyes for the active light methods
discussed in Section 2.2; the camera, which captures images of the subject’s eyes, patterns
of near-infrared for processing by the tracking software; and lastly, the subject whose eye
gaze is being tracked.

It is imperative to note that there is no universal standard for setting up the hardware
module with regard to the number of cameras, number of illuminators, and subject to
camera positions. These factors are usually dependent on the purpose, method, and
deployment requirements of the REGT system. More so, hardware requirements for an
REGT setup have changed remarkably over time. In Figure 3, the traditional REGTs
utilized in the past required more hardware components and sessions to achieve the
gaze estimation task as compared to the more modern ones. Modern REGT systems
have drastically reduced sessions required for the same task, owing to advancements in
hardware technologies and software techniques. These advancements are highlighted and
discussed in the subsequent sections describing the four hardware components necessary
for an REGT setup.



Electronics 2021, 10, 3165 4 of 40

Electronics 2021, 10, x FOR PEER REVIEW 4 of 44 
 

 

It is imperative to note that there is no universal standard for setting up the hard-
ware module with regard to the number of cameras, number of illuminators, and subject 
to camera positions. These factors are usually dependent on the purpose, method, and 
deployment requirements of the REGT system. More so, hardware requirements for an 
REGT setup have changed remarkably over time. In Figure 3, the traditional REGTs uti-
lized in the past required more hardware components and sessions to achieve the gaze 
estimation task as compared to the more modern ones. Modern REGT systems have 
drastically reduced sessions required for the same task, owing to advancements in 
hardware technologies and software techniques. These advancements are highlighted 
and discussed in the subsequent sections describing the four hardware components 
necessary for an REGT setup. 

 
Figure 3. Changes in hardware components and session requirements for REGT over time. 

2.1. Interface 
In the literature, several interfaces (e.g., phone, tablet, laptop, desktop, and TV) have 

been utilized as points of interaction between the subject and the tracking software [40]. 
These device interfaces may operate as standalone (unmodified) gaze trackers or operate 
with other components (modified) that make up the gaze tracker, as shown in various 
setups in Figure 1g–k. A modified desktop device with an external light and camera is 
presented in Figure 1g [41]. An unmodified laptop device embedded with web camera 
gaze tracker software is presented in Figure 1h [42]. In Figure 1i, an unmodified tablet 
device is embedded with web camera gaze tracker software [43]. In Figure 1j, a modified 
TV device has web camera gaze tracker software [44], and Figure 1k presents an unmod-
ified mobile phone device with embedded web camera gaze tracker software [45]. 

The ideal setup for an REGT system’s interface, also known as display or screen, has 
been of great concern, particularly when there are no standards. In a desk-based device 
interface, setup orientation in traditional REGT systems was largely determined by the 
subject’s seating or standing position, screen size and positioning, and tracking distance, 
as illustrated in Figure 4a. In addition, the interface being parallel with the subject’s face 
was essential; great importance was attached to subject’s face being within a defined 
distance from the REGTs camera—e.g., 30 cm [46], 45–60 cm [47], 50–60 cm [48], 60 cm 
[49], 80 cm [50], and 81 cm [51]. Modern REGTs setup orientations, however, are more 

Figure 3. Changes in hardware components and session requirements for REGT over time.

2.1. Interface

In the literature, several interfaces (e.g., phone, tablet, laptop, desktop, and TV) have
been utilized as points of interaction between the subject and the tracking software [40].
These device interfaces may operate as standalone (unmodified) gaze trackers or operate
with other components (modified) that make up the gaze tracker, as shown in various
setups in Figure 1g–k. A modified desktop device with an external light and camera is
presented in Figure 1g [41]. An unmodified laptop device embedded with web camera gaze
tracker software is presented in Figure 1h [42]. In Figure 1i, an unmodified tablet device is
embedded with web camera gaze tracker software [43]. In Figure 1j, a modified TV device
has web camera gaze tracker software [44], and Figure 1k presents an unmodified mobile
phone device with embedded web camera gaze tracker software [45].

The ideal setup for an REGT system’s interface, also known as display or screen,
has been of great concern, particularly when there are no standards. In a desk-based
device interface, setup orientation in traditional REGT systems was largely determined
by the subject’s seating or standing position, screen size and positioning, and tracking
distance, as illustrated in Figure 4a. In addition, the interface being parallel with the
subject’s face was essential; great importance was attached to subject’s face being within a
defined distance from the REGTs camera—e.g., 30 cm [46], 45–60 cm [47], 50–60 cm [48],
60 cm [49], 80 cm [50], and 81 cm [51]. Modern REGTs setup orientations, however, are
more concerned about the subject being anywhere within the camera’s field of view (FOV),
from any arbitrary position away from the REGTs camera [52,53]. FOV is the amount of
scene that a particular camera can capture. Wide FOV cameras or pan-tilt mechanisms are
famously used in the modern REGT setup to extend the area of the tracking regardless of
the subject’s position or distance from the REGTs camera, as shown in Figure 4b.

The pan–tilt mechanism is more versatile than the traditional fix in place setup in
Figure 4a. The mechanism is commonly based on the camera [54,55]; it gives the tracker
the ability to focus on the subject from a range of angles (x, y, and z), without having to
take the camera down for focus adjustments.
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screen (gx, gy).

2.2. Illumination

The common sources of illumination for REGT systems in the literature are visible and
infrared lights [50]. The visible light source referred to as passive light is natural illumination
found indoors or outdoors. On the other hand, active light is light from an infrared source. Re-
searchers in [56] demonstrated the use of single near infrared lights (NIR) for a traditional REGT
setup. In order to improve facial and eye feature detection for more accurate gaze estimation,
researchers further demonstrated the use of two or more NIR in [57–59] and [7,60], respectively.
In recent times, the illumination requirements for REGTs have changed because active light
methods do not work accurately outdoors (in the real world) due to the uneven lightening
properties. They achieve better results under controlled or constant laboratory lightening.

Passive light methods have been explored by researchers [61]. Those authors demon-
strated how they tracked the human face in visible light using a real-time video sequence
to extract the eye regions for gaze estimation. Both the active and passive light methods
have illumination properties that may affect their accuracies for gaze estimation [62]. We
describe those properties in Figure 5 together with mitigation strategies.
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The illumination properties that affect active light methods affect passive light meth-
ods as well. Effects common to both are: the light intensity, which is the amount of light
produced by a specific IR source, or outdoor visibility intensity created by the sun; the light
ray becomes a problem when it does not spread in a direction that is favorable to the gaze
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estimation methods; an illumination source placement is more pertinent to the active light
methods, which becomes a problem when the source of illumination is not placed relative
to the subject’s position.

2.3. Camera

A camera that is capable of providing high quality images and a reasonable trackable
area is very crucial for setting up gaze estimation experiments that achieve good results for
traditional REGT systems. A wide trackable area provided by wide-angle cameras tolerates
the subject’s free movements, whereas narrow-angle (zoom) cameras restrict such freedom,
but on the other hand, provide more focus on the subject being tracked. Past attempts
by researchers, such as [63], have demonstrated the use of two or more-camera systems
to address the issue of continuous change in the head position. The use of narrow-angle
cameras was demonstrated to allow huge head movement; for instance, Kim et al. [64] used
one narrow-angle camera with mirrors. The mirrors rotated to follow head movements in
order to keep the eyes within the view of the camera. Similarly, researchers in [51] used
narrow-angle cameras supported by pan–tilt to extend the tracking area, and in [65–67]
demonstrated the use of a wide-angle camera to estimate a rough location of the eye
region and directed another active pan–tilt-zoom camera to focus on the eye region for eye
feature extraction.

Selection of a suitable REGT camera will depend on the software process adopted. A
typical setup for feature-based methods would include an RGB camera that extracts essen-
tial 2D local eye features, such as pupil location, pupil contours, cornea reflection (glints),
and eye corner location information [68–70]. If 2D-regression is used to estimate the gaze,
this information is enough to facilitate the calibration procedure and gaze mapping func-
tion [71,72]. To compensate for the errors caused by the head movements, the model-based
methods that involve developing a 3D geometric model of the eye have to be employed.
The 3D model-based gaze estimation method uses stereo [73–78] and depth [79,80] cam-
eras that provide additional information, such as the subject’s head or face rotation (hx, hy,
hz) information and distance from the camera, as described in Figure 6.
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Figure 6. Camera is placed below the horizontal eye line to provide clear view of the eye below
or above the tracker’s interface, at a position that gives a clear view of the subject’s frontal face
relative to the source of illumination. The eye images are used to identify reflection patterns (glints),
pupil, and other useful features which are then used by algorithms common to traditional REGTs
to estimate the gaze vector. The head coordinate system (HCS) provides head information; the eye
coordinate system (ECS) provides eye information, and the camera coordinate system (CSS) provides
camera view information, where Cz points to the direction viewed by the camera.

Common to both feature-based and model-based methods is the use of NIR cameras.
There have been other efforts to estimate PoG and 3D LoS using visible light RGB cameras;
we could refer to these attempts as passive light feature or model-based methods. Some
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authors in [81] introduced a passive light method that estimates the 3D visual axis using
both an eye model and eye features that can work both indoors and outdoors.

Modern REGT based on conventional appearance-based methods requires RGB-D
cameras equipped with a set of depth-sensing hardware (such as LiDAR, NIR projectors
and detectors) for 3D face model reconstructions [82–85]. This 3D face model provides
head pose and facial landmark information that can be used to estimate the 3D LoS. Recent
appearance-based methods, in contrast, use images captured by visible light RGB cameras,
and then employ machine or deep learning algorithms that directly regress on these images
for gaze estimation.

2.4. Subject

The subject whose eye gaze is being tracked is central to the gaze estimation task. The
subject’s eye orientation is vital data, and in some cases the head pose is required. The
trackable area of the REGT system is determined by the correlation between the camera’s
FOV and the subject’s position vertically and horizontally.

In a traditional REGTs setup, the scope is established with a given distance. Figure 7
illustrates that a larger portion of the screen can be tracked if the eye tracker is placed
farther away from the subject, and a smaller portion of the screen can be tracked if the eye
tracker is placed closer to the subject. That was exemplified in [86] with Tobii’s X series
eye trackers: the subject was located within 65 cm from the eye tracker; they could do eye
tracking at an angle up to 35–36◦ out from the center of the built-in camera.
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3. Software Process

The software module of an REGT system includes algorithms that process data ac-
quired through the hardware module for gaze estimation. In these reviews [68,71,72,87,88],
the software process for gaze estimation is commonly classified by the source of light, kind
of data acquired from the subject’s face, and mapping techniques employed. In the existing
literature, this classification is made with variety of naming schemes such as appearance-
based versus model-based [52,89,90], appearance-based versus feature-based [88], shape-
based versus model-based [91], and appearance-based versus geometry-based [16,87]. It is,
however, apparent that some of these schemes represent alternative names for the same
schemes: appearance-based was referred to as learning-based in [40,92], and as view-based
in [71]; model-based was referred to as geometry-based in [16]. Classification into three
broad categories was suggested by researchers in [71,93] to clear up the confusion sur-
rounding these ambiguous naming schemes. We expanded on this in Table 1 to further
describe the REGT software methods by mapping techniques, data, and light, along with
their merits and demerits.
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Table 1. Summary of REGT systems’ methods by mapping techniques, data, and light, along with their merits and demerits. Ex. = examples of gaze mapping techniques from the literature.

Methods Ex. Gaze Mapping Techniques Data Light Merit Demerit

Feature-based
2D Regression [94–96]

Neural Network [36,97]
Cross Ratio [24,98,99]

Vectors, anchor
points

Active,
passive

• Creates mapping to gaze with relative high
accuracy [71].

• Discriminative in nature, because it focuses
on extracting specific rich features [71,89].

• Can be used for active light for PCCR,
ICCR, and Purkinje image [28,100] and
passive light using PC-EC, IC-EC [61,101].

• Don’t work well on low quality
images [87].

• Generally unsuitable for
miniaturized, or calibration free
gaze applications [50]

Model-based 2D/3D Geometry Fitting [43,70,102–107] Eye model Active,
passive

• Generative in nature, fits a geometry eye
model to the eye image [52].

• Commonly use the iris contours, eye ball
centre to infer gaze based on model
parameters [71].

• Geometric models can be used for active
light [98] and passive light [26].

• Modelling features generatively
to achieve fairly good accuracy
may require more resources

Appearance-based

K-Nearest Neighbors [93,108], Artificial
Neural Networks [109,110], Convolutional
Neural Networks [111–114], Support Vector

Machines [115,116], Random Forest [16,117,118],
Local Linear Interpolation [119–123],

Gaussian Process [124,125].

Pixel intensity,
texture deference Passive

• Regress from eye images to gaze direction
using machine learning [16,115] or deep
learning [112,114] algorithms.

• Works well on low quality images
captured from web cameras with visible
lightning [89].

• Widely used for miniaturized, or
calibration free gaze applications [50].

• Commonly use low quality
images to deduce gaze instead
of rich features thus suffer low
accuracy [71].



Electronics 2021, 10, 3165 9 of 40

REGTs based on active light methods rely on NIR to create reflection data known
as glint (dark or bright), and techniques that find the relationship between these reflec-
tions and the screen coordinates [68]. Common examples include Pupil Centre Corneal
Reflection (PCCR) [7,24,25,100,126], Iris Centre Corneal Reflection (ICCR) [28], Purkinje
image reflection [27,127], and the eye model [98,99]. On the other hand, REGTs based on
passive light methods rely on web cameras for visible data and techniques to map data
to screen coordinates [68]. Pupil Centre Eye Corner (PC-EC) [128], Iris Centre Eye Corner
(IC-EC) [61,101,118], the eye model [26,41,70], Appearance Image Pixel [129–131], and 3D
Image Reconstruction [93] are common examples.

Real-time gaze estimation is achieved using any of these methods, when the eyes
move and the image of the target object in a world scene or point in a device interface
fixates (i.e., settle) on the fovea of the retina. At this point, a high acuity area of vision
is achieved with approximately one degree of visual angle [132]. This fixation lasts for
100–1000 ms or 200–500 ms in a few and most situations, respectively, depending on the
current cognitive load and quality of information being processed [132,133]. Based on this,
REGT’s accuracy is commonly determined against one degree (1◦) of visual angle spanning
approximately 1 cm at 57 cm from the subject’s eye.

3.1. Feature-Based Versus Model-Based Methods

Active light feature-based and model-based methods are the foremost NIR methods,
and have been demonstrated to be more effective than passive light methods for accurate
gaze estimation [8]. In Figure 8, we describe the major components and procedures for
feature-based and model-based methods.

3.1.1. Image Acquisition and Pre-Processing

NIR images captured from infrared cameras are required for active light methods,
whereas visible RGB images are required for passive light methods. These images can be
acquired from static or continuous data. In real-time deployment of REGTs, the use of
continuous data is common for obtaining facial images of the subject via a video camera.
Raw data from the acquisition process may require some pre-processing before they can be
used for gaze estimation. When the images are input, most gaze estimation methods start
by applying binarization and normalization to convert them into grayscale and scale them
to having a reasonable threshold, resolution, and size. Noise reduction filters such as a
Gaussian filter are then applied to compensate for any noise present due to any anomalies
in the camera used.

3.1.2. Feature Detection

Feature detection is a popular Computer Vision (C.V) technique for identifying interest
points, which closely defines a feature in an image. Interest points can be a corner, ridge, or
edge. Traditional CV techniques capable of detecting rich features of interest are commonly
used by the feature-based and model-based methods [134,135], such as circular Hough
transform (CHT) [136–138], longest line detector (LLD) [139], subpixel detectors [140], and
Haar detectors [141,142]. A pupil feature detector, the Haar detector [142], was applied to
roughly estimate the pupil region and reduce the overall search space of the eye region
algorithms. This is a widely used approach of isolating the pupil blob to assume that it is
the darkest element in the image and then applying intensity thresholding to isolate it from
the background. Pupil thresholding is applied in [143]. Then k-means clustering algorithms
can be applied to the histogram image to obtain pupil and background pixels, respectively,
as proposed in [144]. To remove unwanted edges and reflections, and mitigate problems of
eye occlusion features, such as eyelashes, a series of open morphological operations are
applied [144–148].



Electronics 2021, 10, 3165 10 of 40Electronics 2021, 10, x FOR PEER REVIEW 10 of 44 
 

 

 
Figure 8. Major components and procedures for the feature-based and model-based gaze estima-
tion methods. 

3.1.1. Image Acquisition and Pre-Processing 
NIR images captured from infrared cameras are required for active light methods, 

whereas visible RGB images are required for passive light methods. These images can be 
acquired from static or continuous data. In real-time deployment of REGTs, the use of 
continuous data is common for obtaining facial images of the subject via a video camera. 
Raw data from the acquisition process may require some pre-processing before they can 
be used for gaze estimation. When the images are input, most gaze estimation methods 
start by applying binarization and normalization to convert them into grayscale and scale 
them to having a reasonable threshold, resolution, and size. Noise reduction filters such 
as a Gaussian filter are then applied to compensate for any noise present due to any 
anomalies in the camera used. 

3.1.2. Feature Detection 
Feature detection is a popular Computer Vision (C.V) technique for identifying in-

terest points, which closely defines a feature in an image. Interest points can be a corner, 
ridge, or edge. Traditional CV techniques capable of detecting rich features of interest are 
commonly used by the feature-based and model-based methods [134,135], such as cir-

Figure 8. Major components and procedures for the feature-based and model-based gaze estima-
tion methods.

3.1.3. Feature Extraction

Feature extraction for active light feature-based methods uses the feature points or
positions. The authors of [7,24,126] extracted intensity points of the pupil and glint area.
This happens when an IR light is shone into the subject’s eye and a reflection occurs on
the surface of the pupil/cornea. The reflection makes a bright spot (known as glint) on the
pupil/cornea (see Figure 9a); the position of the glint varies according to the gaze direction.
To estimate the point of gaze, Yoo and Chung [7] applied a projective invariant. Assuming
the property of the projective space as a relation between the main display screen and the
reflected screen, the projective invariant is constant under any projective transform. The
projective invariant of the main display screen (Invariant (DScreenx, DScreeny)) is equal to
that of the reflected screens (InvariantRScreen1, InvariantRScreen2, InvariantRScreen3). As
an alternative, given the detected glint and pupil points in [24,126], calibration procedures
such as linear polynomial, second-order polynomials, homography matrix, and interpo-
lation are commonly used to find the relationship between extracted feature parameters
(e.g., glint and pupil points) and screen coordinates. These methods are discussed a little
further on.
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The active light model-based method in [98,99] uses edge detection methods (such
as a canny edge detector) to get pupil contours (see Figure 9b), but these approaches
can be computationally inefficient [145,149]. These pupil contours are extracted and
evaluated using the ellipse fitting method, looking for the best candidate for the pupil
contour [145,150]. Ellipse evaluation and fitting is the final stage in the pupil detection
algorithms. The best method is to point to the exact pupil location by using the ellipse fitting
approach. The commonly used method is the ellipse least-squares fitting method [150], but
errors made in the pupil feature detection phase can highly influence the results. Instead,
the random sample consensus (RANSAC) method is sometimes used, as it is effective in
the presence of a large percentage of outliers of the pupil’s ellipse feature points [145,151].
When this is done, a calibration procedure to find the relation of the ellipse feature to screen
coordinates is performed using homography matrix.

Some examples of passive light featured-based applications in the existing literature
can be found in [61,101,128]. The supervised descent method was used in [101] to localize
the inner eye corners and perform the convolution of the integer-differential for the eye
localization method. In two studies [61,101], the authors extracted the feature points of the
iris center and eye corner (see Figure 9d). The pupil center and eye corner (see Figure 9c)
were extracted in [128]. In [26,41,70], the authors extracted feature contours using passive
light. In [101], the second-order polynomial was applied for the calibration procedure.

3.1.4. Gaze Calibration and Mapping

To map the extracted eye parameters to the screen coordinates, a relationship between
locations in the scene image and the eye parameters must be estimated through a calibration
procedure. The user-specific parameters are obtained by running calibration routines, such
as screen marker calibration and natural features calibration. Using Figure 6 as a reference,
some commonly used calibration procedures for both traditional feature-based and model-
based REGTs are discussed as follows:

• Five-point linear polynomial: The linear polynomial calibration points are the simplest.
The method presents a five-point marker on a screen for the subject to look at. By
looking at these points and clicking on them, the mapping between screen coordinates
and the extracted feature parameters is performed using following equation derived
in [152]:

sx = a0 + a1 ∗ fx
sy = b0 + b1 ∗ fy

(1)
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where (sx, sy) are screen coordinates and ( fx, fy) are the extracted feature parameters, e.g.,
pupil-glints vectors. Using the direct least squares method proposed in [150], the unknown
coefficients a0, a1 and b0, b1 can be found during calibration. The problem with this simple
linear method is that calibration mapping becomes inaccurate as the subject’s head moves
away from its original position [8].

• Nine or 25-point second-order polynomial: By fitting higher order polynomials, the
second-order polynomial has been shown to increase the accuracy of this system
compared to linear ones [8]. A second-order polynomial calibration function was used
with a set of nine calibration points in [25,101] and 25 calibration points in [152]. The
polynomial is defined as:

sx = a0 + a1 ∗ fx + a2 ∗ fy + a3 ∗ fx ∗ fy + a4 ∗ fx
2 + a5 ∗ fy

2

sy = b0 + b1 ∗ fx + b2 ∗ fy + b3 ∗ fx ∗ fy + b4 ∗ fx
2 + b5 ∗ fy

2 (2)

where (sx, sy) are screen coordinates and ( fx, fy) are the extracted feature parameters, e.g.,
pupil-glints vectors. During calibration, the coefficients a0 − a5 and b0 − b5 can be found
using the least squares method proposed in [150].

• Homography matrix: Under homography, the calibration routines capture homoge-
neous coordinates as screen points s = (sx, sy, 1), and their corresponding feature
points e = ( fx, fy, 1) are captured (homogeneous coordinates). The transformation of
point in 3D from screen points s to the feature points e is given by;

s = He⇔

 sx
sy
1

 =

 a b c
d e f
g h i

 fx
fy
1

 (3)

where H is a (3 × 3) homography matrix, and He is a direct mapping of points in the screen.
Once the matrix H is determined, the gaze in the screen can be estimated.

• Interpolation: The authors of [140] had the subject look at several points on a screen
to record the corresponding eye feature points and positions. These points served
as the calibration points. Then they computed the gaze coordinates by interpolation
(a 2D linear mapping from the eye feature to the gaze on screen). The details of this
mapping function are as follows:

s = s1 +
f x− f x1

f x2 − f x1
(s2 − s1), f = f1 +

f y− f y1

f y2 − f y1
( f2 − f1) (4)

where ( f x, f y) are the eye feature vectors; the calibration points p1 and p2 for screen
coordinates and eye features are ((s1, f1), ( f x1, f y1)) and ((s2, f2), ( f x2, f y2)), respectively.

3.1.5. Calibration Error Calculation

The averaged mapping error for the calibration methods we have described can
be calculated by the following equations derived in [152]. Firstly, the mapping error of
individual calibration point (ierror) is computed as:

ierror =
√
(sx − fx)

2 − (sy − fy)
2 (5)

where (sx, sy) are the actual screen coordinates, and ( fx, fy) are the feature vectors. Further,
the average calibration mapping error can be computed as:

caliberror =

n
∑

i=1
ierror

n
(6)

where caliberror is the calibration technique mapping error, and n is the number of calibra-
tion points.
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3.2. Appearance-Based Methods

Old reflection-based methods face challenges when applied in real-world settings
because they require dedicated NIR devices. These methods are majorly subject to eye
occlusion, and other reflection irregularities, such as pupil dilation [19,153,154]. To solve
these bottlenecks, recent attempts by researchers have been based on techniques which
focus on image appearance to extract the characteristics of the entire eye region instead
of specific features that require a dedicated device [155]. As described in Figure 10, the
appearance-based methods are inspired by machine and deep learning algorithms and
depend on the features learned.
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3.2.1. Image Acquisition and Pre-Processing

Regardless of the gaze estimation method, similar procedures for image acquisition
and pre-processing are commonly used. The feature detection and extraction procedure by
appearance-based methods is most often treated as a part of pre-processing. This procedure
commonly uses modern C.V techniques based on machine or deep learning for extracting
features from visible RGB or depth images. These images are obtained of a subject gazing
at a known location on the screen to generate gaze coordinates as training data, which are
used to train models that make predictions on the new data.

3.2.2. Model Training

The learning procedure for appearance-based methods depends on the characteristics
(i.e., annotation) of the training data, such as the gaze-vector angles and the 3D location
of the eye in the camera coordinate system, and the 2D coordinates of the gaze point on
the screen in the screen coordinate system. The supervised appearance-based methods
described in [53,155,156] rely on appropriately labelled or ground truth gaze data. This
approach, however, is expensive and time consuming. Unsupervised appearance-based
methods in [157–159] have demonstrated the effectiveness of learning on unlabeled data.
Both procedures learn the mapping from a large set of data, and generalize this map-
ping to other subjects via training. Specifically, the task of feature extraction and feature
vector to gaze point mapping have been demonstrated using common machine learn-
ing algorithms, such as the genetic algorithms (GA) [160], the Bayesian classifier [161],
the Kalman and adaptive thresholding algorithm [162], AdaBoost [163,164], k-nearest
neighbor (KNN) [93,108,117,130], adaptive linear regression (ALR) [37], random forest (RF)
regression [16,117,118], gaussian process (GP) regression [124,125], linear ridge regression
(LRR) [165], support vector machines (SVM) [36,115,116,166], artificial neural networks
(ANNs) [109,110,167,168], and generalized regression neural networks (GRNNs) [36]. In-
stances of deep learning algorithms include region-based convolutional neural networks
(RCNNs) [164,169,170] and You Only Look Once (YOLO) [171,172], convolutional neural
networks (CNNs) [17,38,53,173–175], recurrent neural networks (RNNs) [20,176,177], and
generative adversarial networks (GANs) [178–182]. Typically, using these learning-based
algorithms for mapping requires a training period or implicit calibration [183]. The subject
is asked to look at a number of predefined points on the screen while their gaze and
eye locations are estimated and recorded for each of the points. The model is trained on
the recorded points, depending on the size of training sample; the model is expected to
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implicitly learn the mapping between the camera coordinate system and screen coordi-
nate system.

The training complexity of machine and deep learning algorithms used for appearance-
based gaze estimation in the literature is between O(n3) and O(log(n)). ALR, SVM, and
GP regression deal with sparse collections of training samples. These algorithms are not
fit for operation on large datasets because their complexities can reach O(n3) for datasets
with sample size n. RF and KNN are friendly to large datasets and could computationally
train rapidly on such datasets at more moderate complexities, O(n2) and O(n). An ANN
outperformed other baseline machine learning methods for appearance-based gaze estima-
tion, such as RF and KNN, for a large scale complex problem (O(n), O(log(n))). It is able to
perform in complex computations involving much data, making it possible for researchers
to explore deeper attributes of data—now popularized as deep learning (DL). Recent DL
models utilized for gaze estimation include CNNs, RNNs, and GANs.

1. Convolutional Neural Networks

CNNs, also known as ConvNets, use perceptrons to analyze data [184]. Typical
components of a CNN include the input and output layers, and various hidden layers.
These hidden layers include convolutional layers, which detect patterns from images, a
pooling layer, which reduces number of parameters and amount of computation in the
network to control overfitting, and a fully connected (FC) layer, which gives the output.
CNNs’ successful use in image processing tasks, particularly 2D image classification, has
inspired its use for gaze estimation in the recent literature [155,185]; see Figure 11.
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Features are directly extracted from input data. These data include images of the
eye, face, and others (described in Table 2) that need to be fed into the CNN. Using some
mathematical functions, results are passed between successive layers [184,186]. A single-
region CNN processes its inputs through a single network, as shown in Figure 11a, whereas
a multi-region CNN processes its inputs in multiple separate networks for increased
efficiency of the general network, as shown in Figure 11b. The outputs of a CNN for gaze
estimation are classification results, i.e., discrete values suitable for gaze zone classification;
or regression results, i.e., continuous values suitable for estimating more specific gaze
angles and points of gaze.

One of the early attempts that demonstrated the use of CNNs for gaze estimation
was reported in [53]. Their attempt was based on a LeNet inspired by MnistNet architec-
ture [187] consisting of two convolutional layers, two connecting maxpooling layers, and a
fully connected layer. To predict gaze angle vectors, linear regression training is performed
on top of the fully connected layer. Motivated by this progress, the authors improved the
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idea and proposed the GazeNet framework, the first deep appearance-based gaze estima-
tion method based on a 13 convolutional layer VGG Network, in [38]. They combined the
data from face pose and eye region and injected head angle into the first fully connected
layer, as described in Figure 11a, and then trained a regression model on the output layer
that predicted with angular accuracy of 10.8◦ for cross-dataset evaluation. Comparatively,
Itracker [17] was based on AlexNet architecture. It uses a multi-region network with vari-
ous inputs to provide more valuable information than using eye images alone and achieved
a prediction error for a pixel distance of between 1.71 and 2.53 cm without calibration.
Since then, several other works have applied CNNs and other deep learning models for
gaze estimation using different architectures and structures, as summarized in Table 2.

Table 2. Recent (2015–2021) work on CNNs and other DL models for gaze estimation, presented by network type.

Deep Network
Classification Literature Year Input Network Description Output

Single-region CNN [114] 2017 Full face • Spatial weighted CNN

Point of
gaze (2D)Multi-region

CNN

[17] 2016 Right & Left eye, face,
and face grid

• Four-region CNN model
• AlexNet backbone
• Dark knowledge method

[188] 2017 Head pose, and eye
• Two-region CNN model
• AlexNet backbone
• Gaze transform method

[189] 2020 Right & Left eye, full face,
and face depth

• Two-region CNN model
• ResNet-18 backbone
• Facial landmarks global optimization

Single-region
CNN

[53] 2015 Double eye, and head pose • LeNet backbone

Gaze angle
(3D)

[38] 2019 Double eye, and head pose • VGG backbone

[190] 2020 Full face • ResNet-50 backbone

Multi-region
CNN

[191] 2016 Right & Left eye • Two-region CNN model
• Modified Viola-Jones algorithm

[111] 2018 Right & Left eye, and
head pose

• Four-region CNN model
• Asymmetric Regression (AR-Net), and

Evaluation Network (E-Net).

[112] 2018 Right & Left eye, and face

• Three-region CNN model
• Semantic image inpainting Net, landmark

detection deep Net, and head pose
estimation Net

[173] 2019 Right & Left eye
• Two-region CNN model
• Based on RT-GENE [51], and blink

detection Net

CNN with RNN
fusion

[177] 2018 Full-face, eye-region,
facial landmarks

• Two-region CNN for static feature extraction.
• VGG-16 backbone, and ADAM optimizer
• Many-to-one recurrent Net for temporal

feature extraction and final prediction.

Gaze angle
(3D)

[176] 2019 Left & Right eye, and face

• Two-region CNN for static feature extraction.
• AlexNet backbone
• Many-to-one bi-LSTM for temporal feature

extraction and final prediction.

[20] 2019 Full face
• Multi-frame bidirectional LSTM for

temporal features and final prediction.
• ResNet-18 backbone

[192] 2020 Right & Left eye • ResNet-18 architecture backbone
• GRU Cell for temporal model
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Table 2. Cont.

Deep Network
Classification Literature Year Input Network Description Output

GAN [193] 2020 Full face • Self-Transforming GAN (ST-ED) for gaze
and head redirection

Gaze angle
(3D)

GAN [194] 2021 Eye region, head pose • Multi-task conditional GAN (cGAN) for
gaze redirection

CNN with GAN
fusion

[195] 2017 Eye • SimGAN to improve realism of synthetic
images

[178,179] 2020 Eye
• ResNet backbone
• EnlightenGAN to improve to lightening

condition of dark input images.

The accuracy of gaze estimation methods largely depends on the effectiveness of
feature detection and extraction [196,197]. Appearance-based gaze estimation using deep
learning has recently demonstrated robustness against image input noise, blur, and lo-
calization errors [191,198]. Several works have primarily focused on appearance-based
methods using CNN within the past five years. A few are described in Table 2, and others
are reported in [52,68,89,155]. In addition, the recently published results shown in Table 3
suggest the appearance-based methods using CNNs work better with unconstrained se-
tups than feature-based and model-based methods [38,52]. However, a feature-based or
model-based method with constrained illumination (i.e., NIR) still achieves better accuracy
for the gaze estimation than an appearance-based method under visible light [199]. For
this reason, researchers have intensified efforts to improve the accuracy of unconstrained
appearance-based gaze estimation [38,114], hence the exploration of other deep learning
frameworks, such as RNNs and GANs.

2. Recurrent Neural Network

RNNs use long short-term memory (LSTM) to process temporal information in video
data. The use of temporal (i.e., sequential) features was demonstrated in [20,176,177,192] to
be effective at improving gaze estimation accuracy. This is because the video data contain
more valuable information than image data. A framework in which fusion information
from static features is obtained from the images and sequential features are obtained from
video, is described in Figure 12.

The authors of [177] used a multi-region CNN to extract and process static features
from the face, eye region, and face landmarks to estimate gaze. They then fed these learned
features of all the frames in a sequence to an RNN that predicted the 3D gaze vector
of the last frame. They achieved 14.6% superiority over the state-of-the-art method [53]
on EyeDiap dataset using static feature only, adding that the temporal feature further
improved the performance by 4%. Similarly, the authors of [176] enhanced the itracker
network proposed in [17]. They removed face-grid, thereby reducing one network branch
from the original, and then used a static feature from a concatenate of the two-eye region
images to predict gaze. They further employed the bidirectional LSTM (bi-LSTM) to fit
the temporal feature between frames to estimate the gaze vector for a video sequence.
They achieved improved performance with the enhance itracker network—11.6% over
the state-of-the-art methods, such as those in [17,114,199], on MPIIGaze dataset for static
features, and a further 3% improvement with the bi-LSTM for temporal features on the
EyeDiap dataset. Both works achieved better estimation accuracy by combining a static
network and temporal network instead of only using a static network for gaze estimation.
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Figure 12. A CNN with RNN fusion for gaze estimation [177].

3. Generative Adversarial Networks

GANs are effective for data generation. The basic theory of the GAN and its generative
models has been discussed in [200]. The use of GANs for gaze estimation was demonstrated
recently in [178,179,193–195]. In [193], the authors used adversarial learning to manipulate
the gaze of a given face image with respect to a desired direction. Similarly, the authors
of [194] adopted the use of flow learning and adversarial learning; the network is described
in Figure 13a.
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Figure 13. (a) GAN for gaze redirection [194]; (b) CNN with GAN fusion for gaze estimation [178].

Eye region x and the head pose h are taken in as encoder inputs. The decoder outputs
fine-grained image fx; the generator g outputs the residual image r, which is added to
fx. The refined results rfx and the ground truth gr are fed to the discriminator d. The
discriminator network with gaze regression learning ensures that the refined results and
the ground truth have the same distribution and the same gaze angles. Gaze redirection
error achieved was about 5.15◦.

The authors of [178] used a fusion of a GAN and a CNN for recovering the missing
information of images captured under low-light conditions using the framework described
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in Figure 13b. They first used the GAN to recover (i.e., separating the noise) near to original
eye images from the low-light images, and then fed the recovered images into the CNN
network proposed in [38] to estimate the gaze. Their experimental results on the GAN
enhanced image dataset demonstrated an improved performance compared to GazeNet by
6.6% under various low light conditions.

3.3. Evaluation and Performance Metrics for REGTs

The performance of REGT is usually described by using three terms, which are:
accuracy, robustness, and stability [22]. All three terms are important considerations for
well performing REGT systems, but the accuracies and precisions of REGT systems hold
greater implications for real applications [201].

3.3.1. Precision Evaluation of REGT Systems

Precision is the ability of the REGT system to reliably predict or reproduce relative
gaze positions. It measures the variations in the recorded gaze positions using a confusion
matrix. Precision mprecision can be computed for classification problems as:

mprecision =
(TPb1 + TPb2 + . . . + TPbn)

((TPb1 + TPb2 + . . . + TPbn) + (FPb1 + FPb2 + . . . + FPbn))
(7)

where TP is the true positive predictions; FP is the false positive predictions of successive
samples b1–bn as described in Figure 14b. The regression problem as the root mean square
error aerror of successive samples b1–bn, derived in [62,202], is:

aerror =

√
1
n

n

∑
i=1

α2
i =

√
α2

1 + α2
2 + . . . + α2

n
n

(8)

where α is the visual angle in degrees and n is the number of recorded samples in the
dataset. α1–αn is the successive visual angle between samples b1–bn. Precision is calculated
for each eye individually and as a mean of both eyes.
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Figure 14. Illustration of the two common evaluation methods for REGT systems: (a) accuracy;
(b) precision.

3.3.2. Accuracy Evaluation of REGT Systems

Described in Figure 14a, accuracy has been reported through various metrics in the
literature as angular resolution, recognition rate, and pixel distance. The angular resolution
describes the mean error of estimating the gaze angle α, as a deviation between real gaze
position (ground truth) a and the estimated gaze position b, measured in degrees. The
lesser the deviation in gaze angle between real gaze position and the estimated position,
the better the accuracy of REGTs. The recognition rate is measured in percent, and it
describes the average recognition rate of ground truth gaze positions; the pixel distance,
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also known as the Euclidean distance, describes the mean error in distance between the
real gaze position and estimated gaze position in millimeters or centimeters.

Measuring the classification accuracy of REGTs is simply done as the ratio of correct
predictions (true positives TP and true negative TN) to total predictions npredictions of sam-
ples. Using a confusion matrix, the accuracy maccuracy can be computed for the recognition
rate as:

maccuracy =
(TP + TN)

npredictions
(9)

On the other hand, the measuring regression accuracy of REGT systems can be
computed for angular resolution and pixel distances (as derived in [62]) as follows:

pixelerror =
√
(actx − estx)

2 + (acty − esty)
2 (10)

pixelerror is derived for both eyes, actx and acty are the actual gaze positions, estx and
esty are the estimated gaze positions.

angularerror =
(pixelsize × pixelerror × cos (gazeangle)

2)

gazepoint
(11)

angularerror is derived for both eyes, pixelerror is the mean value of gazepoint, gazeangle
is the mean value of the gaze angle, and gazepoint is the mean distance of the eyes from the
tracker. Computations for gazepoint and gazeangle are derived in [62].

In Table 3, cited accuracies are presented for various gaze estimation methods re-
ported as angular resolution, gaze recognition rate and the pixel distance. The error for
angular resolution and pixel distances are the commonly used metric to measure the ac-
curacy of REGTs methods and systems in the literature. Deviating from this practice, the
authors of [68] presented an argument against these metrics and their implications for
inter-comparison of gaze estimation methods. They also stressed the need for a holistic
consideration of sources of error that arise from the different components that went into
the gaze estimation, such as the subject, device, and environment. Thus, they suggested
that various parameters be evaluated within each component and across deployment
platforms (for example, subject component: head pose variation, eye occlusion, human eye
condition; device: camera quality, properties of the deployment device; environment: user
distance, illumination changes, and motion caused by deployment device) to make fair
inter-comparisons of gaze estimation methods possible.

Table 3. An accuracy comparison of different gaze estimation methods. Abbreviations: near infrared light (NIR), point
interpolation (PI), linear interpolation (LI), eye corner (EC), ellipse shape (ES), iris center (IC).

Methods Literature Accuracy Hardware Setup Software Process

Active light
feature-based

[203] <1◦ Desktop, stereo infrared camera, 3 NIR Purkinje Image, 1 point

[24] 0.9◦ Desktop, 1 infrared camera, 2 NIR PCCR, Multiple points

[204] 96.71% Desktop, 2 infrared camera, 4 NIR PCCR, Multiple points

[205] 10.3 mm 1 infrared camera, 4 NIR PCCR, Multiple point

Active light
model-based

[206] <1◦ Desktop, 1 infrared camera, 4 NIR Eye model, 1 point

[207] 1◦ Desktop, stereo camera, Pan-tilt infrared
camera, 1 NIR Eye model, 2 points

[98] <1◦ Desktop, 1 infrared camera, 2 NIR Eye model, Multiple

Passive light
feature-based

[208,209] 1.6◦ Desktop, 1 web camera PC-EC, GP, Grid

[61,101,128] 1.2◦–2.5◦ Desktop, 1 web camera PC-EC, PI, Grid

[210] >3◦ Desktop, 1 web camera EC, LI
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Table 3. Cont.

Methods Literature Accuracy Hardware Setup Software Process

Passive light
model-based

[26] 2.42◦ Desktop, 1 web camera ES-IC, Grid

[70] <1◦ Desktop, 1 web camera ES, Grid

[41] ~500 Hz Desktop, 2 web camera Eye model, Grid

Passive light
appearance-based

with machine
learning

[118] 1.53◦ Desktop, 1 web camera RF, 25 points

[124] 2◦ Desktop/Handheld, 1 web camera GP, Grid

[120–122] 2.2◦–2.5◦ Desktop, 1 web camera LLI, Grid

[110] <3.68◦ Desktop, 1 web camera ANN, 50 points

[119,123] 3.5◦–4.3◦ Desktop, 1 web camera LLI, Saliency

[108] 4.8◦–7.5◦ Desktop, 1 web camera KNN, Calibration free

Passive light
appearance-based
with deep learning

[211] 7.74◦ Handheld, 1 web camera CNN, Calibration free

[191] 81.37% Desktop, 1 web camera CNN, Calibration free

[17] 1.71 cm and 2.53 cm Handheld, 1web camera CNN, Calibration free

To unite and standardize the diversity of evaluation protocols used in the literature,
they proposed a framework in [212] to report system performance in formats that are
quantitative and uniform for angular accuracy metrics, statistical metrics, sensitivity met-
rics, and a new metric based on receiver operating characteristic (ROC). This evaluation
framework takes into consideration the characteristics of gaze estimation methods to fairly
describe the quality of REGT systems. The ROC curve is plotted using Equation (12).

TPR =
TP

TP + FN
, FPR =

FP
FP + TN

(12)

In order to approximate the values of the true positive rate (TPR) and false positive
rate (FPR), data from the gaze tracker are obtained to estimate the numbers of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). Then, validating
the ROC curve, the TPR and FPR values are computed with random error thresholds for
TP, TN, FP, and FN. This metric, however, is yet to gain much recognition for evaluating
REGT systems.

3.4. Dataset

Datasets are important data acquisition means for REGTs, built to store image or video
data. Data stored in a dataset are usually labeled or annotated for head pose, gaze direction,
gaze point, resolution, and illumination conditions. In early literature on appearance-based
methods, datasets presented collected data under controlled laboratory conditions from
synthesized images [117], and natural faces were referred to as realistic or naturalistic
images [124,213–218]. However, because it was difficult to obtain well-labeled data in
these datasets, the authors of [16,219,220] presented well-labeled datasets for naturalistic
images, and dataset of synthesized images are presented in [93,221]. Recent methods for
gaze estimation are focused on the real world; they use datasets containing data from
real-world settings for validation. In Table 4, we present some datasets that have been used
for real-world gaze estimation in the recent literature.
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Table 4. Recent datasets (2015–2020) for real-world gaze estimation. The listed datasets contain varied data for gaze targets,
head pose, and illumination conditions. Ex. = example of accuracies reported for training sets. # = number of samples.

Sample Dataset Year Mode
(Annotation) # Samples Resolution

(Pixels)
Ex. Accuracy for

Training

Image

MPIIGaze [53] 2015 RGB eye, 2D & 3D gaze 213,659 1280 × 720 7.74◦ [211], 4.3◦ [112],
4.8◦ [114]

GazeCapture [17] 2016 RGB full face, 2D gaze 2,445,504 640 × 480 3.18◦ [185]

RT-GENE [112] 2018 RGB-D full face, 3D gaze 277,286 1920 × 1080 7.7◦ [112], 24.2◦ [20],
8.4◦ [222]

RT-BENE [173] 2019 RGB-D full face, 3D gaze 210,000 1920 × 1080 0.71◦ [173]

Gaze360 [20] 2019 RGB full face, 3D gaze 172,000 4096 × 3382 2.9◦ [20]

XGaze [190] 2020 RGB full face, 2D & 3D gaze 1,083,492 6000 × 4000 4.5◦ [190]

Video

EyeDiap [223] 2014 RGB-D full face, 2D & 3D gaze 94 1920 × 1080 5.71◦ [222], 5.84◦ [176],
5.3◦ [224]

TabletGaze [16] 2017 RGB full face, 2D gaze 816 1280 × 720 3.63◦ [53], 3.17◦ [16],
2.58◦ [17]

EVE [192] 2020 RGB full face, 2D & 3D gaze 161 1920 × 1080 2.49◦ [192]

Each of these datasets was composed under varied illumination conditions suitable
for passive light gaze estimation. The XGaze [190] dataset was collected in the laboratory
using 18 custom high definition SLR cameras with 16 adjustable illumination conditions.
Participants included 110 subjects (63 male, 47 female) who were required to stare at an
on-screen stimulus. EVE [192] was collected using a desktop setup. The study included
54 participants and four camera views, and natural eye movements as opposed to fol-
lowing specific instructions or smoothly moving targets. Gaze360 [20] captured videos of
238 subjects, and five indoor (53 subjects) and two outdoor (185 subjects) locations, over
nine recording sessions using a Ladybug5 camera. RT-BENE [173] was released based on
the RT-GENE [112] dataset collection. RT-GENE was captured using mobile eye tracking
glasses, and contains recordings of 15 participants, 9 male, 6 female; two participants were
recorded twice. TabletGaze [16] was captured on a mobile tablet setup using 51 subjects of
varying race, gender, and glasses prescription. GazeCapture [17] contains data from over
1450 subjects, recorded using crowdsourcing: 1249 subjects used iPhones, whereas 225 used
iPads. MPIIGaze [53] was collected with a laptop setup involving 15 participants during
natural everyday laptop use. EyeDiap [223], was collected from 16 subjects (12 males and
4 females) using a Kinect sensor and an HD camera.

The characteristics of these datasets largely determine the kinds of applications they
are suitable for. In Figure 15, we describe some important characteristics of the dataset and
their application suitability.

Image samples, for example, would make a dataset with them more suitable for
image-based gaze estimation and not video-based. If a dataset includes on screen gaze
annotation, then it is most applicable for 2D gaze estimation. The resolution and quality of
input images impacts the model’s resources. Lower resolution would perform much better
with lighter deployment resources, a shallower model architecture, and a lower model
inference speed. Having a larger number of data samples is suitable for a deeper model,
but could negatively impact resource-constrained deployment, for instance, on mobile
devices. However, for training any model, error decreases considerably as the number of
samples is increased, showing the significance of collecting much data.
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Important progress has been made for large-scale dataset collection in the recent
literature. First, collecting large-scale images required by supervised gaze estimation
methods through synthesis became popular because it is time consuming and tedious to
label naturalistic images [225]. Even though learning-by-synthesis has the potential to
save time and resource for data collection, the desired performance for highly accurate
gaze estimation is still not achieved by this method due to the different illumination
distribution. While early attempts in [226–228] trained models to improve the realism of
the synthetic images, a different approach was presented to purify naturalistic images
in [225,229,230]. The authors adopted the style transfer technique proposed in [227] to
convert an outdoor naturalistic image distribution into indoor synthetic images. Their
proposed method utilizes three separate networks: a coarse segmentation network, a
feature extraction network, and a loss network. The coarse network takes in two images
(naturalistic image and a synthetic reference style image) with their mask as the input for
segmentation into the pupil (white) and the iris (red), followed by a feature extraction
network that extracts gaze direction and pupil center position as the image content of
the naturalistic image. Then, through a standard perception loss network, they retain the
information of the naturalistic image and the distribution of the synthetic image (i.e., image
color structure and semantic features) to the fullest extent in the output image. Using the
proposed method, they purified the MPIIGaze [53] dataset. Experimental results have
shown how purifying naturalistic images for training an appearance-based gaze estimator
leads to improved performance compared to some state-of-the-art techniques.

Second, a broader range of settings for datasets was addressed. The authors of [20,190]
proposed a broader range of settings for datasets in order to increase robustness to a larger
variety of environmental conditions, as previous datasets are limited to relatively narrow
ranges of head poses and gaze directions, such as the frontal face setting. In [190], the
authors collected and made public the ETH-XGaze dataset of varied viewpoints, lighting,
extreme gaze angles, resolutions, and occluders, such as glasses. Their dataset provided
maximum head poses and gaze in horizontal (around yaw axis) and vertical (around
pitch axis) directions in the camera coordinate system: ±80◦, ±80◦, and ±120◦, ±70◦

respectively. The image resolution is 6000 × 4000. Similarly, the dataset [20] in provides
±90◦, unknown, and±140◦,−50◦ for maximum head poses and gaze in the same axis with
image resolution of up to 4096 × 3382. These attempts have paved the way towards robust
gaze estimation for unconstrained environmental conditions, particularly with respect
to lighting and coverage of extreme head pose and gaze, which are critical for emerging
gaze-based applications.
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Benchmarks for Evaluating REGT Performance

At present, five evaluation protocols are available in the literature, two of which
are popular:

1. Cross-dataset Evaluation

A given gaze estimation method is trained on one dataset (e.g., dataset A) and tested
on another dataset (e.g., dataset B). These data samples may have the same or different
characteristics, which correlates with the purpose of this method, which is to show the
generalization capabilities of a given gaze estimation method. Examples of gaze estimation
research that have utilized this evaluation method can be found in [20,38,53,112,231].

2. Within-dataset Evaluation

Examples of this evaluation can be found in [117]. The gaze estimation method is
trained and tested with the same dataset, which is randomly separated into training and
test samples. These samples may also have the same or different data characteristics.
However, the generalization capability is verified less with this method compared to the
cross-data evaluation method.

Recent studies have proposed subject-specific, cross-device, and robustness evalua-
tions. These new evaluation methods have focused on specific data and device characteris-
tics for evaluating emerging gaze estimation methods as follows:

3. Subject-specific Evaluation

This evaluation technique became popular due to the recent attention paid to subject-
specific gaze estimation [185]. The evaluation is based on sampling a little subject-specific
training data to improve the adaptation of a generic gaze estimator to a specific person
from a few samples due to insufficient data samples. Other works [16,19,232] have also
used this method.

4. Cross-device Evaluation

Emergence of cross-device training necessitated cross-device evaluation. This method
evaluates a given gaze estimation method across multiple devices to measure cross-device
performance. Researchers in [40] demonstrated the significance of this evaluation method
on five common devices (mobile phone, tablet, laptop, desktop computer, smart TV).

5. Robustness Evaluation

Researchers in [190] proposed assessing the robustness of gaze estimation methods
across head poses and gaze directions. The authors have stressed its importance to previous
gaze estimation methods that only report the mean gaze estimation errors for cross-dataset,
within-dataset, and person-specific evaluations on insufficient data samples that do not
cover a wide range of head pose and gaze direction. They also argued that knowing the
performance of a gaze estimation method with respect to robustness across head poses and
gaze directions is important, since a method with a higher overall error might have a lower
error within a specific range of interest. They further demonstrated and compared recent
methods to assess their robustness and reported gaze estimation error distribution across
head poses and gaze directions in horizontal and vertical directions to facilitate research
into robust gaze estimation methods.

4. Applications

The use of gaze applications as a solution has expanded over time. We present
how gaze application usage has evolved over time across fields of human endeavors and
deployment platforms in Figure 16. The authors of [233] presented an early review on gaze
applications. They broadly classified gaze application usage into two fields, diagnostic
(see examples in [234–236]) and interactive (see examples in [237,238]). Later reviews
in [63,91,239] presented wider usage for gaze applications, which included that by REGT
systems, augmented reality systems [240–244], human behavior analysis [245–250], and
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bio-metric authentication [251–255]. Recently, the usage of REGTs has gotten even wider
with emerging usage in privacy-aware interactions.
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We have identified emerging eye solutions and classified them under the existing
categories, such as device interactions (IoT smart home control [256], semi-autonomous
driving [257,258], artistic drawing in robots [259–262]), human behavior analysis (confu-
sion prediction [263–265], intention extraction [266,267], driver’s attention [30,32,268–270],
detecting personality traits [271]), medical support (medical image interpretation [272–275],
patients support [276]), augmented reality (social games [277,278], virtual space con-
trol [279]), and privacy issues (privacy-aware eye tracking [280–283], gaze-touch authenti-
cation [284–288]). The arrow pointers indicate a solution application in a field and across
deployment platforms.

The emerging solutions are responsible for the recent shift in requirements for REGT
system deployment on desktop platforms as a decades old practice [68] to those for dynamic
platforms such as handheld devices and wearables [155]. In addition to applications, the
large number of REGT systems produced today is research based, most of which are
fabricated to suit research objectives. Several commercial REGT systems are also available
on the market. Recently, ref. [289] ranked the top 12 REGT companies based on the
number of patents and equipment testing. Tobii [290], SensoMotoric Instruments [291],
now acquired by Apple Inc, and EyeLink [292], were ranked as leading companies. Several
open-source REGT systems were released for free online to give new researchers a starting
point, ensuring the sustainability of this research field. We have classified and described a
few from academia and industry in Table 5.
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Table 5. Available open-source REGT software.

Method Provider Language Description

Passive-light

Itracker [17] Python,
Matlab

A CNN based eye tracker, which runs in real
time (10–15 fps) on a modern mobile device

RecurrentGaze [177] Python Based on a fusion of CNN-RNN

NNET [293] - ANN based eye tracker implementation
for iPad devices

EyeTab [294] Pthon, C++ Webcam model-based approach for
binocular gaze estimation

Opengazer [295] C++, C
Based on the Viola-Jones face detector,

that locates the largest face in the video
stream capture from PC webcam

TurkerGaze [296] JavaScript,
HTML

A webcam-based eye tracking game for
collecting large-scale eye tracking data via

crowdsourcing

Camgaze [297] Python Binocular gaze estimation for webcam

ITU gaze tracker [298] - Based on remote webcam setup

CVC ET [299] C++

Enhanced Opengazer with head
repositioning feature which allows users to
correct their head pose during eye tracker

usage in order to improve accuracy.

xLabs [300] - Webcam-based eye tracker, built as a
browser extension for Google Chrome.

Gazepointer [301] C#, HTML Windows-based web camera gaze
estimation

MyEye [302] -
Gaze-based input designed for use by

people with amyotrophic lateral sclerosis
(ALS), a neuromuscular disease.

NetGazer [303] C++ Port of Opengazer for the Windows
platform

Active-light

OpenEyes [304] Matlab Based on infrared illumination.

Ogama [305] C#.NET Uses infrared ready webcams

GazeParser [306] Python Based on infrared illumination. Python.

Pygaze [307] Python Wrapper for EyeLink, SMI, and
Tobii systems.

It is likely that most of the passive light open-source applications will be supported and
remain active much longer than the active light ones, because the active light open-source
applications have been made available for a long time with no further support. Recently,
ref. [308] has been providing implementation files (i.e., code, models, and datasets) for
open-access academic papers.

5. Summary

We have discussed REGT systems that process both continuous and static data for eye
gaze estimation. We focused on REGT’s remote applications for PCs, laptops, and mobile
devices, and have presented a thorough evaluation of the past and recent research. We have
classified and discussed our evaluation in three parts: hardware, software, and applications.
In our evaluation, we have compared key research trends in REGT to show how its research
has changed over time. These key research trends have been summarized in Table 6. We
mean by past progress, earlier information provided in the literature before 2015, and
by recent progress, new information provided in the literature after 2015. Although our



Electronics 2021, 10, 3165 26 of 40

literature search expanded over seven publishers (i.e., IEEE, ACM, Springer, MDPI, Elsevier,
BOP, and PLOS) of academic journals and conference papers, we only cited some, not
all literature relevant to the components discussed in this paper. The search for relevant
literature was done using the keywords: remote eye gaze tracking; hardware setup for eye
gaze tracking; software process (techniques and datasets) for eye gaze tracking; application
for eye gaze tracking. In some cases, eye gaze tracking was replaced with gaze estimation.

Table 6. Summary of research trends in REGT. The cited works present examples of the points stated.

Component Past Research Trend (<2015) Recent Research Trend (>2015)

Hardware
setup

• Gaze tracking on modified devices was a
common practice [41,48,267]

• Relied on NIR illumination, quality cameras,
high computational power, and a defined subject
position [26,28,41,98,100,127]

• Multiple cameras used in device setup to
address the change in head position [63,64]

• Unmodified devices utilized for gaze tracking [16,43]
• Gaze interaction from arbitrary positions and

orientations [52], multiple displays [40]
• Utilization of low-resolution cameras for visible light

gaze tracking in both indoor and outdoor [17,61,92,112]

Image
acquisition

• Gaze data was acquired via video
camera [61,110], and from dataset e.g.,
video [213] or image [215,218]

• The acquisition of large quantity images required for
training deep learning gaze estimators are generated by
synthesis [93,117,221]

Feature
extraction

• Largely depended on high quality images to
extract rich features e.g., CHT [136–138],
LLD [139], Subpixel [140]

• Extraction of features from low quality images
commonly used hand-engineered classifiers e.g.,
haar-cascade [141,142]

• Scalable classifiers was used to extract visible and deep
features based on Machine learning, e.g., Genetic
algorithms [160], SVM [36], and Deep leaning e.g.,
R-CNN [169,170], and YOLO [171,172]

Gaze
mapping

• Naming schemes for gaze estimation methods
were broadly categorized into two with so much
ambiguity [87].

• Supervised learning was used for gaze mapping
by early appearance-based methods [53,155,156]

• Explicit calibration was largely required for gaze
mapping [24,41]

• Gaze mapping techniques were driven by face or
eye model [61]

• Naming schemes for gaze estimation methods regrouped
into 3 broad categories [71,93]

• Directly regress from eye image to gaze direction using
machine, or deep learning algorithms [89,108,112,211]

• Unsupervised learning for appearance-based methods
demonstrated [157–159]

• Calibration requirement became implicit (i.e., less
required), researchers achieved gaze mapping through
automatic calibration procedures [119,183]

• Gaze mapping techniques were driven by large and well
annotated data [17,93]

• Proposal to have a standardized evaluation metric for
gaze estimation methods that ensure accurate validation
and comparison [68,190]

Dataset

• Data collection was largely done under
controlled laboratory conditions [124,213–218]

• Datasets were limited to the frontal face setting
that provides only narrow range of head poses
and gaze directions [215,218,223]

• Presentation of datasets with data from the
real-world [53,223]

• Attempts to purify naturalistic images through style
transfer [225,229,230]

• Cross-dataset evaluation for utilizing several datasets
and domain adaptation for a more generalized, robust
gaze model validation [20,38,231,232]

• Attempts to create a broader range of settings for
datasets [20,190] to ensure robustness to a larger variety
of conditions such as varied viewpoints, extreme gaze
angles, lighting variation, input image resolutions

Application

• Early gaze applications were used as
diagnostic [233–235], and interactive [236,237] tools

• Desktop-based platforms for deployment was a
commonly used [68]

• REGTs have been used recently in Social games [271,272],
and Privacy-aware interactions [273–276]

• Gaze application deployed on dynamic platforms e.g.,
handheld devices, and wearables [155]
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In the past five (5) years, efforts by researchers have been made to eliminate the inher-
ent challenges that have made highly accurate gaze estimation results difficult. Various
attempts at appearance-based gaze estimation were focused mainly on addressing:

• Feature detection and extraction: The accuracy of gaze estimation depends largely on
effective feature detection and extraction. Recent learning-based feature detection and
extraction have brought remarkable progress for appearance-based gaze estimation,
as researchers have continued to demonstrate its effectiveness [170–172]. However,
the issue of deviations in location and degree of eye openness remains a challenge for
this method.

• Variability issues in data collection: Collection of relevant data of varied character-
istics has been a challenge for appearance-based gaze estimation. Recent attempts
by researchers to create and make available robust datasets have been presented
in [20,112,190]. However, the reported accuracies on these datasets are still not satis-
factory, and thus require more attention.

• Subject calibration: Gaze estimation methods require a subject calibration process for
different individuals. Appearance-based methods have demonstrated less stringent
processes of calibration, where only a few samples of calibration data are required
before they work for other individuals [185,232]. Even with this development, an
appearance-based gaze estimation method that tries to either make the calibration
process less stringent or absolutely remove it does so at the expense of estimation ac-
curacy. Thus, the need to develop absolute appearance-based calibration-free methods
with very good estimation accuracy remains a challenge.

• Head fixation: Although several appearance-based gaze estimation methods have
been able to perform well with considerable accuracies, without requiring fixed head
poses [93,108,111,113,211], most of them still can only handle small head movements
to achieve high accuracy [110,116]. As such, more robust methods that freely allow
for head movement are still sought.

Notwithstanding, more recent attempts in the past 2–3 years have focused on appearance-
based deep learning methods. The use of CNNs, RNNs, and GANs has shown greater
promise in addressing quite effectively some of the challenges mentioned for appearance-
based methods. However, there are still factors negatively influencing overall performance
of appearance-based deep learning methods. These factors include eye blink, occlusion,
and dark scenes. Eye blink and occlusion are caused by obstructions which affect eye
feature detection. Eye blinking is a temporary closure of both eyes, involving movements
of the upper and lower eyelids. Occlusions may occur from eye illness, aging, and objects
such as lenses and glasses. Dark scenes produce dark images, which reduce the sensitivity
of local features, thereby affecting effective eye feature detection. Other concerns generated
by appearance-based using deep learning that can lower accuracy are:

• Model input: Researchers are trying to determine if the choice of model input has
any effect on the performance of the model. For instance, does a model that uses
both eyes perform better than one that uses one eye in terms of accuracy? We have
seen several attempts with models that use one (single) eye [188,191], both (double)
eyes [17,53,111,112], or full face images [114,190], augmented with other inputs, such
as head pose and face grid information, to estimate gaze. At the moment, there is not
a clear understanding of how to determine the best or standard model input for deep
learning gaze estimation methods. It is done at the discretion of researchers, and still
remains a choice of convenience for the models proposed.

• Resolution of input images: Does training and testing a model with different input im-
age sizes improve performance? In [38,53], the model trained with images of one size
achieved much worse results than the one trained on images of multiple sizes. On the
other hand, Zhang et al. [190] demonstrated an improved performance when training
and testing with a single image size at high resolutions. Based on this, researchers are
suggesting methods to handle training of cross-resolution input images.
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• Model augmentation: Are there working step-up techniques employed for improving
gaze estimation errors on public datasets from recent years? Early attempts used
a single-region CNN model for gaze estimation, as demonstrated in [53,114], but
recent step-up attempts are opting for multi-region CNNs [17,112,173,188], where
each input is processed through a separate network to provide each network with a
higher resolution of the input image and improve the processing capabilities of the
networks for a better performance of the overall model. Another step-up technique
is to improve early CNNs’ poor generalization performances due to appearance and
head pose variations using adversarial learning approaches. As recently attempted
by researchers [179–182], the basic idea is to improve the generalization performance
of a traditional CNN-based gaze estimator by incorporating adversarial nets with
ConvNet. The adversarial nets are commonly used to improve the input image fed
into the ConvNet to estimate gaze.

• Data annotation: Training a deep learning gaze estimation model by supervision
requires data annotation for the model to learn the task. Grid-based annotation
has been widely adopted for this method. How can its effectiveness be judged? It
divides the screen into horizontal w, vertical h, and grids g, which produces (w ∗ h)/g
grids. This usually causes more calculations and affects the accuracy of the model’s
output. Considering these drawbacks, bin-based annotation was proposed in [174] to
control the number of labels on the gaze image. It divides the screen into horizontal
and vertical bins and set the bin size as b, making (w + h)/b bins. The grid-based
annotation yields more annotation data, whereas the bin-based annotation yields less
annotation data but requires more processing steps. Due to lack of sufficient reports
on alternative annotation techniques, it is difficult to judge the effectiveness of the
grid-base annotation.

6. Conclusions

This paper has presented a thorough comparative evaluation on REGT research. Our
evaluation has discussed key components and research changes over time. In addition,
issues inherent in the recent state of REGT research have been outlined. The prevalence
of the issues outlined negatively impacts the performance and accuracy of the recently
proposed gaze estimation methods which utilize deep learning. This has raised new
concerns about how to further enhance the recent appearance-based deep learning methods
through continued research efforts for developing new algorithms and augmentation
techniques that will ensure REGT systems become more useful throughout fields of human
endeavor in the very near future.
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