i:;l?é electronics

Article

Towards Enhancing Coding Productivity for GPU Programming
Using Static Graphs

Leonel Toledo **(, Pedro Valero-Lara >**({, Jeffrey S. Vetter >*

check for
updates

Citation: Toledo, L.; Valero-Lara, P;
Vetter, J.S.; Pefia, A.J]. Towards
Enhancing Coding Productivity for
GPU Programming Using Static
Graphs. Electronics 2022, 11, 1307.
https://doi.org/10.3390/
electronics11091307

Academic Editor: Shinichi Yamagiwa

Received: 3 March 2022
Accepted: 12 April 2022
Published: 20 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Antonio J. Pefia 1'*

Barcelona Supercomputing Center (BSC)—Fundacio i2CAT, 08034 Barcelona, Spain

2 Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

* Correspondence: leonel.toledo@i2cat.net (L.T.); valerolarap@ornl.gov (P.V.-L.); vetter@ornl.gov (J.S.V.);
antonio.pena@bsc.es (A.].P.)

t These authors contributed equally to this work.

Abstract: The main contribution of this work is to increase the coding productivity of GPU program-
ming by using the concept of Static Graphs. GPU capabilities have been increasing significantly in
terms of performance and memory capacity. However, there are still some problems in terms of
scalability and limitations to the amount of work that a GPU can perform at a time. To minimize
the overhead associated with the launch of GPU kernels, as well as to maximize the use of GPU
capacity, we have combined the new CUDA Graph API with the CUDA programming model (in-
cluding CUDA math libraries) and the OpenACC programming model. We use as test cases two
different, well-known and widely used problems in HPC and Al: the Conjugate Gradient method
and the Particle Swarm Optimization. In the first test case (Conjugate Gradient) we focus on the
integration of Static Graphs with CUDA. In this case, we are able to significantly outperform the
NVIDIA reference code, reaching an acceleration of up to 11x thanks to a better implementation,
which can benefit from the new CUDA Graph capabilities. In the second test case (Particle Swarm
Optimization), we complement the OpenACC functionality with the use of CUDA Graph, achieving
again accelerations of up to one order of magnitude, with average speedups ranging from 2x to
4x, and performance very close to a reference and optimized CUDA code. Our main target is to
achieve a higher coding productivity model for GPU programming by using Static Graphs, which
provides, in a very transparent way, a better exploitation of the GPU capacity. The combination of
using Static Graphs with two of the current most important GPU programming models (CUDA and
OpenACC) is able to reduce considerably the execution time w.r.t. the use of CUDA and OpenACC
only, achieving accelerations of up to more than one order of magnitude. Finally, we propose an
interface to incorporate the concept of Static Graphs into the OpenACC Specifications.

Keywords: coding productivity; tasking; data dependencies; static graph; CUDA; OpenACC;

conjugate gradient; particle swarm optimization

1. Introduction

It is undeniable that GPU capabilities have been increasing significantly in terms of
performance and memory capacity. However, some applications are facing problems in
terms of scalability and some algorithms seem to limit the amount of work that one GPU
can perform at a given time [1]. This is mainly due to the assignment of hardware resources
and the occupancy of the device, which makes it difficult to benefit from the whole GPU
capacity. On the other hand, tasking allows algorithms with run-time dependent execution
flows to be parallelized. Tasking provides a solution by implementing a queuing system,
which manages all of the assignment of threads/kernels dynamically and decides which
chunk of the work needs to be performed [2]. NVIDIA developed the CUDA Graph API as
a potential solution to improve scalability. In CUDA Graph AP], it is possible to represent
the workflow as a graph, as an alternative for submitting kernels. These graphs are built

Electronics 2022, 11, 1307. https:/ /doi.org/10.3390/ electronics11091307

https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11091307
https://doi.org/10.3390/electronics11091307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1196-9189
https://orcid.org/0000-0002-1479-4310
https://orcid.org/0000-0002-2449-6720
https://orcid.org/0000-0002-3575-4617
https://doi.org/10.3390/electronics11091307
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11091307?type=check_update&version=1

Electronics 2022, 11, 1307

20f18

from a series of operations that could range from kernel invocations to memory copies, as
well as host code or calls to libraries, such as CUBLAS and CUSPARSE. Every call inside
the graph is represented as a node, and each node is connected by dependencies. This
article is an extension of a conference publication focused on OpenACC [3]. In this work,
we have included additional research using CUDA and a new application, the Conjugate
Gradient method. The main contributions of this work are:

1. Increase coding productivity of GPU programming by using Static Graphs, minimiz-
ing the overhead associated with the launch of kernels and maximizing the use of
GPU capacity;

2. Accelerations of up to more than one order of magnitude in OpenACC and CUDA
applications;

3. Anew easy-to-use proposal for integration into the OpenACC Standard, which defines
the use of Static Graphs into this programming model.

Those HPC applications that are composed of multiple memory bound kernels which
have to perform the operations repeatedly or have an iterative nature, such as those
leveraged in this work, but many others as well, such as CFD simulations [4-7], image
processing [8,9], Al kernels [10], or Linear Algebra kernels [11-14], just to mention of
few, can benefit from the use of Static Graphs by reducing the CPU-GPU communication
overhead and achieving higher GPU occupancy. To the best of our knowledge, this is the
first time that CUDA Graph has been integrated with OpenACC and effectively adapted
to the two different algorithms used as test cases in this work: the Conjugate Gradient
Method and Particle Swarm Optimization.

The rest of this document is organized as follows: Section 2 describes: (i) the pro-
gramming models used in this paper, CUDA and OpenACC and (ii) the most important
concepts about the new CUDA API to implement Static Graphs. Section 3 presents a
detailed analysis of the implementations and performance achieved by using CUDA Graph
in combination with CUDA and OpenACC on the two algorithms studied, Conjugate
Gradient (CUDA) and Particle Swarm Optimization (OpenACC). In Section 5, we propose
a new specification to use Static Graphs in the OpenACC Standard. Section 6 presents
the most relevant state-of-the-art references. Section 7 concludes with the most important
remarks and proposes future directions.

2. Background
2.1. CUDA

CUDA (Compute Unified Device Architecture) is a parallel computing API developed
by NVIDIA, which allows developers to use GPUs for general purpose processing and
provides support for languages such as C, C++ and Fortran. CUDA allows developers
to write programs targeted for GPU, using functions that resemble C code. However,
there are important differences that must be addressed. For instance, a function (kernel)
that is compiled for GPUs is executed in one or a set of streaming multiprocessors (SM),
depending on the number of CUDA threads necessary for the computation. One of the key
features of the hardware is that cores inside a SM follow the Single Instruction Multiple
Data (SIMD) principle, where groups of threads execute the same instruction concurrently,
but with different data.

Historically, GPUs are not very well-suited to parallelizing the computation of several
independent kernels in the same GPU [15,16] to efficiently exploit the bigger and bigger
GPU capacity. One example which attempted to maximize the use of the GPU resources was
CUDA Dynamic Parallelism. Using Dynamic Parallelism the programmers could invoke
kernels inside the device without the need for switching context back to the CPU. However,
the launching of kernels from other kernels has a large associated computational cost [1].

2.2. OpenACC

OpenACC is a high-level, directive-based programming model which supports C,
C++ and Fortran. It was developed to allow programmers to interact with heterogeneous

Electronics 2022, 11, 1307

30f18

HPC architectures without the effort that requires to fully understand all the low-level
programming details and underlying hardware features [17]. This programming model
allows developers to insert hints into their code that help the compiler to interpret how to
parallelize the code. In this way, the compiler is responsible for the transformation of the
code to make it parallel, which is completely transparent to the programmer.

OpenACC defines a mechanism to offload programs to an accelerator in a hetero-
geneous system [18]. Because OpenACC is a directive-based programming model, the
code can be compiled serially, ignoring the directives and still produce correct results,
allowing a single code to be portable across different platforms [19]. This simple model
allows non-expert programmers to easily develop code that benefits from accelerators [20].
Currently, OpenACC compilers support several platforms such as x86 multicore platforms,
accelerators (GPUs, FPGAs), OpenPOWER processors, KNL and ARM processors. One
example that summarizes the advantages of using OpenACC is the the work of [21], which
evaluates the use of OpenACC, OpenCL and CUDA in terms of performance, productivity,
and portability. This work concludes that OpenACC is a robust programming model for
accelerators while improving programmer productivity.

2.3. CUDA Graph API

The performance of GPU architectures continues to increase each generation. However,
it is important to address that each kernel launch has an associated overhead regarding the
submission of each operation to the GPU. These overheads are becoming more and more
significant and can have a negative impact on performance [22]. Many current applications
need to perform a large number of different operations to solve a given problem. Most
of the times these operations are involved in patterns that require many iterations, so this
kind of overhead can produce a significant performance degradation.

To address this issue, since CUDA 10.0, it is possible to represent the workflow as a
graph. A graph consists of a series of operations such as memory copies and kernel launches,
which are connected by dependencies. This feature allows developers to represent the work
as a graph of nodes and create a static structure that can be launched at any time and be
executed as many times as needed. CUDA Graph API has two main advantages: First, the
overhead of launching GPU operations, such as memory transfers or kernel executions, has
no impact on performance, since the static structure which defines the graph is submitted
only once to the GPU. Second, we have the freedom to create the workflow to be submitted
to the GPU. There may be operations which are completely independent from each other, so
depending on the hardware capabilities, it is possible to overlap the execution of different
nodes of the graph.

3. Use Case I: Conjugate Gradient

The Conjugate Gradient (CG) is a well-known and widely used iterative method
for solving sparse systems of linear equations. These systems arise in many important
settings, such as finite difference and finite element methods, partial differential equations,
structural analysis, circuit analysis, and many more linear algebra related problems [23].
These kinds of problems, due to the particular characteristics of the CG method, can benefit
from using the CUDA Graph API. Some of the most time consuming steps of this method
may efficiently be overlapped, reducing considerably the execution time and the overhead
associated to the launch of multiple kernels. CG is mainly composed of the next major
kernels or operations (note that all operations are performed in double precision):

* The dot product (cublasDdot in Listings 1 and 2) is the sum of the products of the
corresponding components of the vectors of the same size;

e The AXPY vector-scalar product (cublasDaxpy in Listings 1 and 2) is a combination of
scalar multiplication and vector addition. This computes y + ax, where y and x are
vectors and « is a scalar;

® The sparse matrix—vector multiplication (cusparseDcrsmv in Listing 1 and cublasD-
spmv in Listing 2) consists in computing a matrix—vector multiplication where the

Electronics 2022, 11, 1307

40f18

matrix is sparse (the number of zeros in the coefficients of the matrix is grater than the
non-zeros coefficients);

* Other major steps comprise very simple operations such as the division of two
scalars (rl_div_x) or the copy of the components of one vector to another vector
(cudaMemcpy).

Listing 1. NVIDIA reference CG code using CUDA Graph [24]. Note that in the original code the
operations are performed using single precision, but in our analysis we used double precision.

cudaGraph_t graph;
cudaGraphExec_t instance;
cudaStream_t streaml;

cudaStreamBeginCapture (stream1, cudaStreamCaptureModelGlobal);
d_b = rl_div_x<<<..., streaml>>>(d_rl, d_r0);
cublasDscal(d_b, d_p)

cublasDaxpy (cublasHandle, alpha, d_r, d_p);
cusparseDcsrmv (cusparseHandle, A, vecp, vecAx,);
memset(d_dot, 0.0);

d_dot = cublasDdot(d_p, d_Ax);

d_a = rl_div_x<<<..., streaml>>>(d_rl, d_dot);
cublasDaxpy (cublasHandle, d_a, d_p, d_x);

a_minus<<<..., streaml>>>(d_a, d_na); //d_na = d_a - 1
cublasDaxpy (cublasHandle, d_na, d_Ax, d_r);
cudaMemcpyAsync(d_r0, d_rl, DeviceToDevice, streaml);
cudaMemsetAsync(d_rl, 0.0, streaml);

d_rl = cublasDdot(cublasHandle, d_r, d_r);
cudaMemcpyAsync(condition, d_rl, DeviceToHost, streaml);
cudaStreamSynchronize (streaml);

cudaStreamEndCapture (streaml, graph);
cudaGraphlnstantiate (instance , graph);

while (condition > tolerance”2 && k <= max_iter)

{

cudaGraphLaunch(instance, stream);

}

3.1. NVIDIA Conjugate Gradient

Leveraging the CUDA Graph API, we present an optimized version of the CG using as
a base code for this study the reference NVIDIA code for CG [24]. The different major steps
of this code are shown in Listing 1. In this code, each operation is executed sequentially
and each kernel must wait until the previous is finished, to start executing.

When using the CUDA Graph API to convert the baseline code as shown in Listing 1,
we obtain as a result a graph with 14 nodes, which are computed in each iteration. The
only potential gain at this point is reducing the overhead related to kernels launching. As
shown in Figure 1-left, some of these operations feature dependencies from the previous
kernels and must wait until the data is ready to be consumed. Those operations that may
be computed in parallel correspond to memory transfers and kernels. The time associated
to these tasks is very different, which makes it difficult to obtain any benefit from the use of
CUDA Graph.

Electronics 2022, 11, 1307

50f18

r1_div_x

. cudaMemcpy
cublasDscal
cublasDspmy
cublasDaxpy
cublasDdot1 cublasDdot2

cusparseDecrsmv 2
P r1_div_x

, cublasDdot cublasDaxpy1] cublasDaxpy2
r1_div_x
‘ cublasDdot1 cublasDdot2

memset

§

4
cublasDaxpy . . a_minus M div x
y
cublasDaxpy . cudaMemcpy cublasDaxpy2
g
cudaMemset cudaMemcpy
cublasDdot . cublasDdot1
cudaMemecpy

Figure 1. Graph configuration for the NVIDIA CG reference code (left) and optimized ap-
proach (right).

3.2. Optimized Conjugate Gradient Method

We reformulated the algorithm and its corresponding representation using CUDA
Graph to benefit from those operations which can be overlapped and executed in parallel.
In that way, we are configuring the algorithm to obtain the most potential speedup and
kernel overlapping. Listing 2 shows the modifications in the algorithm. These modifications
consist of swapping the order of execution of some of the kernels, mainly AXPY operations
and DOT products [12], exposing a higher parallelism.

Figure 1-right shows how the new structure of the graph looks when using a more
appropriate algorithm. This new configuration has the potential for higher execution
efficiency due to the work being distributed in a way where the most computationally
expensive operations may perform in parallel.

3.3. Performance Analysis

We conduct the performance evaluation by using the following heterogeneous system:
2 x IBM Power9 8335-GTH at 2.4 GHz, 32 GB RAM memory, and an NVIDIA V100 (Volta)
GPU with 16 GB HBM2 and NVLink2 for high-bandwidth communication between CPU
and GPU. This architecture is similar to that used in the current top-2 (Summit at ORNL)
and top-3 (Sierra at LLNL) fastest supercomputers in the TOP500 list. We analyzed the
major steps of the NVIDIA reference code (Listing 1) and determined that about 54% of the
execution time is spent in the computation of the major operations/steps of the algorithm.
Those major operations that may be run in parallel represent most of the execution time,
which provides a potential improvement. In our tests, we have used several configurations
of randomly generated diagonal dominant tri-diagonal matrices of different sizes. This is
a very common setting used for the performance analysis of this kind of operation [25].
We identified that both AXPY and DOT products, as well as the SpMV operation, are
the bottlenecks and the most computationally expensive calculations in the algorithm.
Unlike SpMYV, the operations AXPY and DOT product can be computed in parallel. The
number of iterations that was required until the solution was converged was the same
in both codes regardless the size of the matrices, with just a couple of exceptions where
the optimized code took at most one more iteration to converge. On relatively small

Electronics 2022, 11, 1307

6 of 18

size matrices (matrix size < 1,000,000 x 1,000,000), it took three iterations until solution
convergence was achieved. For matrix sizes larger than one million, it took between
eight and ten iterations to converge. It is important to note that the matrices used in the
experiments are the main diagonal (well-conditioned) matrices. That is why a low number
of iterations was necessary to converge; however, one can expect a higher number of
iterations on another type of matrices. Depending on the problem, especially for those that
require a large number of iterations to converge, the impact of the proposed optimizations
is even more significant. The time to create and instantiate the graph is relatively large,
around 400-500 ps, but this is only performed once, at the beginning of the execution, being
a very small cost compared to the time consumed by the kernels.

Figure 2-left shows the average time in seconds of computing one single iteration
of the algorithm, comparing the NVIDIA reference code against the proposed code that
implements a better kernels distribution and potential overlapping. The blue bar represents
the results obtained by the optimized algorithm using CUDA Graph, the red bar represents
the execution time of the NVIDIA reference code. Finally, in order to see the impact of
using CUDA Graph to potentially overlap the computation of different kernels and reduce
the overhead associated to the launch of these, in the yellow bar we show the execution
time of the optimized algorithm without using CUDA Graph. It is important to mention
that regardless the case, the optimized version using CUDA Graph was always the fastest,
performing an acceleration ranging from 10% to 30% with respect to the optimized version
without CUDA Graph. The use of CUDA Graph is not only an important increase in per-
formance but also an increase in programming productivity. This additional performance
is reached by only adding a few lines of code corresponding to the creation of the graph
and declaration of the nodes.

_
3
g 3
[=]
Q
Q
Q
° 2
£
.—
[
2 1
=
3
ﬂj 0 mo mi| l,
> D o
5“ b“ fi‘
& & F s» S
N P & ® 9
Elements
12
S
S
o
(¢}
[
Q 6
S
o
@
g
wv
131072 262144 524288 1048576 2097152 4194304 8388608 16777216
Elements

Figure 2. Top figure: execution time of the three different CG versions: NVIDIA reference code
(Listing 1) in red color, optimized version using CUDA Graph (Listing 2) in blue color, and optimized
version without using CUDA Graph (in yellow color). Bottom figure: speedup achieved by the
optimized version using CUDA Graph (Listing 2) w.r.t. the NVIDIA version (Listing 1).

Electronics 2022, 11, 1307 7 of 18

Listing 2. Optimized CG code using CUDA Graph.

// Solve Ax=b using Conjugate Gradient method
cudaGraph_t graph;

cudaGraphExec_t instance;

cudaStream_t streaml, stream2;

cudaEvent_t kernelEventl, kernelEvent2;

// Initial setting

cudaMemcpy(r, b, DeviceToDevice);

cudaMemcpy (p, r, DeviceToDevice);

//streaml is the origin stream
cudaStreamBeginCapture (stream1, cudaStreamCaptureModelGlobal);
cudaMemcpyAsync(rOld, r, DeviceToDevice,streaml);
cublasDspmv (cublasHandle, A, p, s);

alphal = cublasDdotl(r, r);

alpha2 = cublasDdot2(p, s);

alpha = r1_div_x<<<..., streaml>>>(alphal, alpha2);
//AXPY Fork

cublasDaxpyl(cublasHandle , alpha, p, x, streaml);
cudaEventRecord (kernelEventl , streaml);
cudaStreamWaitEvent(stream2, kernelEventl);
cublasDaxpy2 (cublasHandle, -alpha, s, r, stream2);
//Join stream2 back to streaml

cudaEventRecord (kernelEvent2 , stream?2);
cudaStreamWaitEvent (streaml, kernelEvent2);

//DOT product Fork

betal = cublasDdotl (cublasHandle, r, r, streaml);
cudaEventRecord (kernelEventl , streaml);
cudaStreamWaitEvent(stream2, kernelEventl);

beta2 = cublasDdot2(cublasHandle, rOld, rOld, stream2);
//Join stream2 back to streaml

cudaEventRecord (kernelEvent2 , stream?2);
cudaStreamWaitEvent(stream1, kernelEvent2);

beta = rl1_div_x<<<..., streaml>>>(betal, beta2);
cudaMemcpyAsync(rAux, r, DeviceToDevice, streaml);
cublasDaxpy2(beta, p, rAux);

cudaMemcpyAsync(p, rAux, DeviceToDevice, stream);
condition = cublasDdot(r, r);
cudaStreamSynchronize (streaml);
cudaStreamEndCapture (streaml, graph);
cudaGraphlnstantiate (instance , graph);

while (condition > tolerance”2 && k <= max_iter)

{

cudaGraphLaunch(instance , streaml);

}

Figure 2-right graphically illustrates the speedup achieved by the optimized version
using CUDA Graph with respect to the NVIDIA reference code. The optimized code is able
to achieve an acceleration higher than 10 x with respect to he NVIDIA reference code in
some cases. The size of the matrices/vectors has an important impact in performance. On
the largest sizes computed, we see a lower speedup (about 2-5x). This is mainly because
of (i) the potential overlapping of kernels (AXPY and DOT product) is more difficult on
larger vectors, since the computations to be done require more computational resources and
(i) the impact of the time consumed by the launch of kernels is less important when running
more time-consuming kernels. However, on the other sizes, a very high benefit is shown
(close to 11 faster). This is possible because of a better distribution of the components of
the algorithms, which allows to expose a higher parallelism and can be better mapped on

Electronics 2022, 11, 1307

8 of 18

GPU resources. Unfortunately, current profiling tools, such as the NVIDIA Visual Profiler
or Nsight, do not provide information on kernel overlapping when using CUDA Graph, so
we are unable to visually show this effect.

4. Use Case II: Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an evolutionary computational technique origi-
nally developed by Kennedy and Eberhart [26]. The algorithm was developed as a sim-
ulation of a simplified social system, with the objective to simulate the behavior of bird
flocks. This algorithm is also considered as an optimizer. This technique shares some
similarities with genetic algorithms. For instance, the system is initialized with a random
population that evaluates different sets of solutions. Every potential solution is considered
as a particle within the search space of the problem. This means that each particle has its
own set of parameters such as velocity, speed, acceleration, position and learning factors.
Each particle keeps track of the values which are associated with the best solution, also
known as fitness. This is an iterative algorithm, where in every iteration, the values (speed,
position, etc.) of all the particles are evaluated and changed. These values are changed
with the target of moving each particle to locations that potentially have a better solution.
PSO is used by many applications; for instance, those problems that involve maximization
or minimization [27,28]. PSO is robust enough to work with functions in a continuous,
discrete or mixed search space, as well as multi-objective problems [29].

In this work we use PSO as a case of study to test the impact of integrating static graphs
on directive-based programming models. Due to the iterative design of the algorithm and
its potential to parallelize several areas of the code, it is an extraordinary test bed for
studying and analyzing the impact of the use of GPU static graphs. It is important to
mention that the target of this work is not to improve the PSO algorithm itself, but to study
the impact of combining the different target programming models (OpenACC and CUDA
Graph) in an application. PSO is a stochastic problem that is used to optimize mathematical
functions within a delimited search space. This technique is widely used for machine
learning, being similar to other annealing and genetic algorithms. For the scope of this
research, we define particles in a 3D space; each particle represents a possible solution of
a target function. Each particle moves within the search space and evaluates a function
until a number of iterations is achieved or the particles converge at the optimum value. In
the context of this study, we analyze the performance of the algorithm and programming
models using different values for the size of the population, the objective function, the
type of optimization (maximum and minimum) and the maximum allowed iterations. To
measure the impact of the different approaches, we developed several versions of PSO.
First, we studied a sequential version of the algorithm, which we use as a baseline. The
code that we tested is shown in Listing 3.

We implemented the original version of the code based on the work of Kennedy et al. [27].
In the first step we initialize all particles by defining their position and velocities within the
boundaries of the search space. Then, each particle evaluates the solution determined by its
position to calculate its fitness. Next, we find the best fitness of the population and store its
value. The following steps are computed in each iteration: (i) calculate the position of the
particle that has the best fitness; (ii) compute the next position; and (iii) update each particle
speed in the x, y and z axes. Afterwards, we calculate the fitness of the particles in their
new position and finally we update the value of the best particle. We repeat these steps as
many iterations as needed, and finally the particle with the best fitness is selected as the
best possible solution of the problem. Given the stochastic nature of the problem, it is not
guaranteed to find the optimum value all the times. However, sometimes an approximation
is enough and it has the advantage of being faster than a brute force search.

Electronics 2022, 11, 1307

90f18

Listing 3. OpenACC PSO code.

void main () {
//Initialization
initParticle (array_population);
calculateFitness (array_population);
updatePopulationBest(array_population);
//Computation
while (i <ITERATIONS) {
//findBestParticle kernel
#pragma acc kernels deviceptr(array_population)
for(int i=0; i<POPULATION; i++)
findBestParticle (array_population[i]);
//updateParticlePosition kernel
#pragma acc kernels deviceptr(array_population)
for(int i=0; i<POPULATION; i++)
updateParticlePosition (array_population[i]);
//calculateFitness kernel
#pragma acc kernels deviceptr(array_population)
for(int i=0; i<POPULATION; i++)
calculateFitness (array_population[i]);
//updateBestPopulation kernel
#pragma acc kernels deviceptr(array_population)
for(int i=0; i<POPULATION; i++)
updateBestPopulation (array_population[i]);

4.1. OpenACC and CUDA Graph Implementations of PSO

The use of GPUs has many advantages in terms of acceleration and performance
compared to the sequential version of the code. However, as mentioned previously, there
are some problems that prevent the algorithm from benefiting from the whole hardware/
architecture capacity. To achieve additional acceleration, we involved the GPU for com-
puting most of the major tasks in the algorithm, as well as avoiding having many small
tasks that are constantly switching context and awaiting for some of them to finish. We use
OpenACC for GPU parallelization (see Listing 3).

The modifications of the code from the CPU to the GPU architecture are minimum.
However, there are important considerations that significantly impact the behavior of the
code. The main difference is in the distribution of the work. Another significant factor is
the use of Unified Memory. Managing memory between CPU and GPU is an important
challenge. There are significant limitations, particularly concerning memory bandwidth,
latency and GPU utilization [30]. To mitigate this issue, since CUDA 6.0 it has been possible
to use Unified Memory access. This provides a mechanism to simplify the GPU memory
communication with the host while providing high bandwidth for data transfers at run-
time. We also use Unified Memory for more readable code and coding productivity [31].
Doing this, the GPU and CPU memory communications can be kept hidden from the
developer, so the programmer does not have to deal with the issues that arise from moving
data, further enhancing coding productivity.

The OpenACC version can be efficiently integrated with CUDA Graph to minimize
the overhead of creating and launching multiple kernels in every iteration. Although this
overhead is measured at the scale of microseconds, this can degrade the performance
considerably on long runs. Using CUDA Graph we can create a high-level representation
of the workflow; in other words, we determine the topology of the graph by determining
the order of the tasks that need to be executed in every iteration. We still use the OpenACC
kernels as a node of the graph. The code presented in Listing 4 shows the changes that
were made in order to combine both models—OpenACC and CUDA Graph.

Electronics 2022, 11, 1307

10 0of 18

Listing 4. OpenACC and CUDA Graph PSO code.

int main (int argc, char =argv[])
{
cudaGraph_t graph;
cudaGraphExec_t instance;
cudaStream_t streaml, stream2;
cudaEvent_t eventl, event2;
// Initialization
initParticle (array_population);
calculateFitness (array_population);
updatePopulationBest(array_population);
// Graph definition
cudaStreamCreate(&streaml);
cudaStreamCreate(&stream?2);
void* stream = acc_get_cuda_stream(acc_async_sync);
acc_set_cuda_stream (0, streaml);
cudaStreamBeginCapture (streaml, cudaStreamCaptureModeGlobal);
// OpenACC Kernels
findBestParticle (array_population, streaml);
// Fork
cudaEventRecord (eventl , streaml);
updateParticlePosition (array_population, streaml);
calculateFitness (array_population, stream2);
// Join
cudaEventRecord (event2, stream2);
cudaStreamWaitEvent(streaml, event2);
updateBestPopulation(array_population, streaml);
cudaStreamEndCapture (streaml , &graph);
cudaGraphExec_t graphExec;
cudaGraphlnstantiate(&graphExec, graph, NULL, NULL, 0);
// Computation
for (int i = 0; i < ITERATIONS; i++)
{
cudaGraphLaunch (graphExec, streaml);
}
}

CUDA Graph allows us to store the set of kernels to be computed (workflow) before being
launched. In that way, it is possible to know the amount of work that needs to be submitted to the
GPU in advance. To achieve that, we use the OpenACC acc_get_cuda_stream(acc_async_sync)
and acc_set_cuda_stream(0,stream1) instructions. In that way we ensure that CUDA Graph
recognizes the streams used by OpenACC. Finally, this stream must also be known by
the OpenACC async clause. Using OpenACC and CUDA Graph, the stream creations
are more efficient and execution is faster. This is due to the way that CUDA Graph
launches the kernels to the GPU. All the kernels are treated as a whole instead of processing
each of them individually. This considerably reduces the overhead when submitting
multiple kernels to the GPU. All this allows us to achieve an important acceleration of
up to 3x with respect to the pure OpenACC implementation, at the expense of losing
the coding productivity and high level of expressiveness of a pure OpenACC approach
in this portion of the code. Finally, we also exploit the potential overlapping of those
parts of the application which are independent and can be executed in parallel. These
are the functions updateParticlePosition and calculateFitness. To do that—as we did in
the Conjugate Gradient method (see Listing 2)—we need to use cudaEventRecord and
cudaStreamWaitEvent.

Electronics 2022, 11, 1307

110f18

4.2. Performance Analysis

Table 1 shows the details of the seven functions used in our analysis. These are
considered as standard benchmarks for PSO. For the sake of simplicity, these formulas
are represented for 1D space; however, all the functions used in our experiments were
implemented for a 3D space.

Table 1. Description of the employed functions for testing PSO.

Function Formula
Sphere flx) =X xf
De Jong flx) =X ginx;
Griewank flx) = ﬁ Yiso x - [T COS(%) +1
Rastrigin fx)=XL, [x2 — 10cos (27 * x;) 4 10]
Rosenbrock f(x) = 28 o[100(x; 1 — x)% + (x; — 1)

(sin x?-&-xizﬂ)—O.S

Schaffer fl) =rig 05+ (1+0.001(x?+x?+1))2]
Schaffer 2 fx) = (T 7)) [1 + (50(Xi o x*)*1)?]

For the experiments, we use all the functions described in Table 1 on a simulated pop-
ulation of 1000 particles. We execute all the simulations during 10,000 iterations. Figure 3
illustrates the wall time (us) of our test bed. As expected, the sequential version is the
slowest. We see a much higher performance by using the native OpenACC implementation.
However, the hardware is used in a more efficient way with the combination of both
programming models, OpenACC and CUDA Graph. This approach is able to achieve an
important reduction in the execution time (even more than one order of magnitude in some
cases). On average, the speedup is ranged from 2x to 4 x.

It is important to highlight that our approach based on GPU static graphs (OpenACC
and CUDA Graph) is very close to the optimized CUDA performance. The maximum
performance difference between the optimized CUDA implementation and the OpenACC
and the CUDA Graph counterpart is about 10%. As shown (Figure 3), the use of GPU static
graphs (CUDA Graph) is specially well suited for iterative problems with fine-grained
kernels, which have to be computed every iteration.

B Sequential [l OpenACC OpenACC+CUDA Graph [l CUDA
8000000
6000000
@
=
@@
E
= 4000000
c
=
=]
(&
@
ai
2000000
0
De Jong Square Griewank Rastrigin Rosenbrock Schaffer Schaffer 2

Tested Function

Figure 3. Execution time (us) comparison between sequential, OpenACC, OpenACC and CUDA
Graph and CUDA implementations of the PSO algorithm.

Electronics 2022, 11, 1307 12 of 18

From this point on, we focus on the comparison between the OpenACC implementa-
tion and the use of GPU static graphs (CUDA Graph) as part of the OpenACC specification.
The behavior illustrated in Figure 3 remains true in these new results, i.e., the sequential
version continues being the slowest approach and the use of OpenACC and CUDA Graph
is not farther away than 10% from the performance achieved by the optimized CUDA code.
We make use of the Schaffer 2 function (Table 1) to test how the use of different settings
can affect the behavior of our proposed model (GPU static graph). We decided to use this
function because it is the most computationally expensive. First, we analyze the impact of
increasing the size of the population (number of particles). In the PSO algorithm, the larger
the population, the larger the kernels (more threads are necessary). Figure 4 illustrates
the impact of increasing the number of particles on execution time. In these tests, the
number of iterations is 100. The use of OpenACC and CUDA Graph is able to achieve an
acceleration of up to 3.5x. However, the larger the population, the lower the acceleration.
This is expected because the chance to execute more than one kernel in parallel in the
GPU is reduced by increasing the number of particles. When running larger kernels, the
acceleration reached is up to 1.3 x.

W OpenACC+CUDA ® OpenACC W OpenACC+CUDA M OpenACC B OpenACC+CUDA B OpenACC

3000 35000 2500000

2500 30000
2000000
25000
2000
1500000
1500 :
5 15000 ;
1000000
10000
I II I 500000 I
o I I I I I I o lI I o wmem II

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576
Population Population Population

~
S
8
S
3

Execution time (Us)
-
15
38
3
Execution time (Us)
Execution time (Us)

g

Figure 4. Execution time (us) increasing the size of the population and keeping the number of
iterations (100) constant.

Next, we analyze the impact on the performance of increasing the number of iterations.
In PSO, the larger the number of iterations, the more kernels need to be executed to finish
the simulation. In the experiments, we use a population equal to 1024 particles. The
speedup reached in the previous experiments when using this size of population is 1.7 x.
Figure 5 illustrates the execution time for different test cases using a different number of
iterations while keeping the size of the population constant. The use of CUDA Graph and
OpenACC is able to keep the speedup in the range 1.4-1.7x for a population size of 1024.
A similar trend is reached when using different population sizes.

As we have seen along this section, it is possible to obtain an important acceleration
by combining OpenACC with CUDA Graph, at the expense of some losing of coding
productivity, which is against the motivation behind the OpenACC Standard. To mitigate
this limitation, in the next section we present a proposal to integrate the concept of static
graph into the OpenACC syntax.

Electronics 2022, 11, 1307

13 0f 18

25000

20000

15000

10000

Execution time (Us)

5000

1

2

W OpenACC+CUDA m OpenACC W OpenACC+CUDA m OpenACC

4

8

16 32

Iterations

M OpenACC+CUDA M OpenACC

800000 50000000

700000 45000000

40000000
600000

Execution time (Us)
Execution time (Us)

35000000
500000 30000000
400000 25000000
300000 20000000
15000000
200000
10000000
I I - I I - I I
0,,,,,.....-l' DIII 0III

64 128 25 512 1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

Iterations Iterations

Figure 5. Execution time (ps) increasing the number of iterations and keeping constant the size of the
population (1024 particles).

5. Directive-Based GPU Static Graph API Proposal

In the previous sections, we were able to prove the efficiency of using GPU static
graphs (CUDA Graph) with CUDA and OpenACC. Although the performance was satisfac-
tory, the integration of CUDA Graph with OpenACC is not easy, harnessing programming
productivity. It is important to highlight that the time to develop parallel solutions is valu-
able factor to be considered along with portability. That is why it is so important to provide
an efficient way to easily implement GPU codes while hiding low-level hardware /software
details, which are usually very time-consuming. The CUDA programming framework
requires developers to be familiar with the underlying architecture to obtain high efficiency
on NVIDIA GPUs [32]. The implementation of CUDA codes is highly time-consuming, in
particular when legacy codes need to be completely ported to CUDA. CUDA codes are
also hard to maintain and port [33]. To deal with these constraints, OpenACC provides a
simple directive-based model that aims to achieve a similar performance to using CUDA.
Another important advantage of using OpenACC is that OpenACC codes are designed to
be platform agnostic.

In this section, we propose a new approach for developers to use static graphs within
OpenACC. Our motivation is to provide a simple and easy to use directive which can
annotate and define a workflow as a static graph. We introduce a new pragma clause into
the OpenACC programming model which can abstract developers from all the CUDA
Graph related programming. Listing 5 shows an example of the code we propose using
static_graph pragma for the PSO implementation.

The static_graph clause is interpreted by the compiler to create a static graph which
treats every OpenACC kernel as a CUDA Graph node. The topology of the workflow is
recorded using CUDA Graph and an instance of this can be run for as many iterations
as necessary (accGraph_t). This poses an important reduction in the number of lines of
code and a substantial increase in terms of programming productivity, in comparison with
the original CUDA Graph and OpenACC code (see Listing 4). We use Unified Memory
to further simplify the code, and avoid complex transfers of data between device and
host. To exploit the potential overlapping among those parts of the application that can
be executed in parallel, we need to use OpenACC Queues and the async clause, hence
preventing the explicit handling of any CUDA constructs such as CUDA Streams. Figure 6
graphically illustrates a possible mapping of the OpenACC static graph API on the CUDA
programming model.

Electronics 2022, 11, 1307 14 of 18

Listing 5. OpenACC staticgraph model with kernels overlapping.

int main (int argc, char =argv[]) {
accGraph_t graph;

#pragma acc static_graph(graph) deviceptr(array_population)
{
// Enqueue
#pragma acc kernels deviceptr(array_population) async(1)
{
findBestParticle (array_population);
}
// Fork & enqueue
#pragma acc kernels deviceptr(array_population) async(1)
{
updateParticlePosition (array_population);
}
#pragma acc kernels deviceptr(array_population) async(2)
{
fitnessBestParticle (array_population);
}
// Join & enqueue
#pragma acc kernels deviceptr(array_population) async(1)
{
updateBestPopulation(array_population);
}
} // End pragma acc static_graph
for (int i = 0; i < ITERATIONS; i++)
#pragma acc launch_static_graph(graph) deviceptr (array_population)

OpenACC Static Graph API

kernel async (id)
accGraph_t graph rem; asyne (i) launch_static_graph (graph);
'L

cudaGraph_t graph; if (id 1= 1) { cudaGraphLaunch(exec,

cudaGraphExec_t exec; cudaEventRecord(event_pool[1], Stream_pool[1]);
stream_pool[1]);

static graph (graph) fork_open = true;

(.3 fork_wide++;

cudaStreamBeginCapture (stream_pool[1], -
cudaStreamCaptureModeGlobal); else if (id == 1) {

if (fork_open) {
cudaStreamEndCapture (stream_pool[1], for (inti= fork_wide; i <= 1;i-){
&graph); cudaEventRecord (event_pool[i],
stream_pool[i]);
cudaStreamWaitEvent(stream_pool[1],

event_pool[i]);
CUDA Streams Pool }
for_open = false;
}
-
}

Figure 6. OpenACC static graph API mapping on the CUDA programming model.

Electronics 2022, 11, 1307

150f18

These modifications proposed for the OpenACC specification provide developers with
a robust and strong mechanism to easily translate iterative algorithms into static graphs.
These graphs can be recorded prior to execution, which allows the runtime to be aware of
the dependencies and the order of the execution. Once the topology is defined, then all
the GPU work is handled as one single GPU launch by the driver, avoiding the overhead
associated to deal with each of the kernels separately. As shown in previous sections,
this yields significant benefits both in terms of performance and coding productivity (see
Table 2).

Table 2. Overall performance benefit using Static Graphs.

Application

Conjugate Gradient
NVIDIA Ref./CUDA + Static Graph CUDA /CUDA + Static Graph
2x-11x ~1.3x
Particle Swarm Optimization
OpenACC/OpenACC + Static Graph CUDA /OpenACC + Static Graph
1.3x—4x 0.9x-0.95x

6. Related Work

Although GPU capacity has increased significantly, the scalability of algorithms and
applications still faces important challenges [1]. One important problem regarding scalabil-
ity is the hardware resource assignment. Some applications are limited to execute a single
kernel in the GPU without benefiting from the whole capability of the device [15,16,34].
The work of Pallipuram et al. [35] compares different programming models using several
optimizations to evaluate performance of neural networks using different HPC and GPU
architectures. The work of Memeti et al. [36] presents a detailed study of productivity,
performance and energy consumption for different parallel programming models such as
OpenMP, OpenCL, CUDA and OpenACC. It concludes that programming with OpenCL or
CUDA requires more work and effort than programming with OpenACC. Also, the use
of a fewer number of code lines often translates in less energy consumption. The work of
Ashraf et al. [37] explores the combination of homogeneous and heterogeneous frameworks
into energy efficient GPU devices for exascale computing systems. This is by comparing
quantified metrics of CUDA subroutines against KAUST linear algebra subprograms. Other
interesting examples of related works are the task-based programming models using GPUs,
such as StarPU [38] and OmpSs [39]. Both programming models propose a task-based API
which allows tasks to be executed on GPUs and tune scheduling algorithms. The work of
Kato et al. [40] proposes a GPU scheduler to provide prioritization and isolation capabilities
for GPU applications in real-time and multi-tasking environments. In contrast, the focus
of our work is twofold: (i) analyze the potential of using CUDA Graph for an enhanced
programming productivity, performance and scalability of applications; and (ii) propose a
new specification for a better integration of OpenACC with CUDA Graph.

7. Conclusions and Future Work

In this work, we present how CUDA Graph can be efficiently and successfully used
on GPUs in such a way that applications are no longer limited to executing a single
kernel at a time. The benefit has been proven by the analysis performed on the well-
known Conjugate Gradient method, where we show the advantages of using CUDA
and static graphs for this kind of problem. Additionally, by introducing simple code
modifications (in contrast to other works implementing heavy optimizations) we are able
to achieve an acceleration of up to 11x w.r.t. the NVIDIA reference code thanks to a
more efficient implementation, which reduces the overhead in the kernels launching and
increments the potential overlapping of the kernels. We have also evaluated the use of
static graphs and the OpenACC programming model, using the PSO algorithm as a test
case. Several advantages arise from the use of OpenACC and CUDA Graph: (i) we provide

Electronics 2022, 11, 1307 16 of 18

a mechanism to easily benefit from task-based programming using the GPU, without
compromising performance; (ii) in most cases we are close to peak performance while
comparing the results with a pure and optimized CUDA code; and (iii) by using OpenACC
we allow programmers to write and offload parallel code into the GPU in an easy and
transparent way. Multiple applications can benefit from using Static Graphs, not only in
term of programability, but also providing a better performance. For instance, memory
bound applications and/or iterative applications, such as those leveraged in this work,
but also others, such as CFD simulations, image processing, Al or Linear Algebra kernels,
are just some of the applications that can achieve a better performance by reducing the
CPU-GPU communication overhead and achieving higher GPU occupancy. Finally, we
propose a new pragma-based clause to integrate the use of static graphs as part of the
OpenACC specification, which provides a simpler and more transparent way to implement
static graphs. As shown in this paper, the potential in terms of coding productivity and
performance offered by static graph offloading to accelerators is substantial and can be
extended to directive-based programming models. Hence, we aim at influencing the
adoption of this feature by further production applications and its incorporation in future
releases of the OpenACC Specifications.

Author Contributions: L.T. contributed to conceptualization, methodology, software, validation,
formal analysis, investigation, data curation, writing—original draft preparation and writing—review
and editing. P.V.-L. contributed to conceptualization, methodology, validation, formal analysis,
investigation, resources, data curation, writing—original draft preparation and writing—review
and editing.].S.V. contributed to investigation, writing—review and editing and supervision. A.J.P.
contributed to conceptualization, methodology, investigation, resources, data curation, writing—
review and editing, supervision, project administration and funding acquisition. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by EPEEC project from the European Union’s Horizon 2020
Research and Innovation program under grant agreement No. 801051. This manuscript has been
authored by UT-Battelle, LLC, under contract DE-AC05-000R22725 with the US Department of
Energy (DOE). The US government retains and the publisher, by accepting the article for publication,
acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally sponsored
research in accordance with the DOE Public Access Plan (http:/ /energy.gov/downloads/doe-public-
access-plan, accessed on 13 April 2022).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Toledo, L.; Pefia, A.J.; Catalédn, S.; Valero-Lara, P. Tasking in Accelerators: Performance Evaluation. In Proceedings of the 20th
International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT), Gold Coast, Australia,
5-7 December 2019; pp. 127-132.

van der Pas, R,; Stotzer, E.; Terboven, C. Using OpenMP—The Next Step: Affinity, Accelerators, Tasking, and SIMD, 1st ed.; The MIT
Press: Cambridge, MA, USA, 2017.

Toledo, L.; Valero-Lara, P; Vetter, J.; Pefia, A.]. Static Graphs for Coding Productivity in OpenACC. In Proceedings of the 28th IEEE
International Conference on High Performance Computing, Data, and Analytics, HiPC 2021, Bengaluru, India, 17-20 December
2021; pp. 364-369. [CrossRef]

Valero-Lara, P; Igual, F.D.; Prieto-Matias, M.; Pinelli, A.; Favier, J. Accelerating fluid-solid simulations (Lattice-Boltzmann &
Immersed-Boundary) on heterogeneous architectures. J. Comput. Sci. 2015, 10, 249-261. [CrossRef]

Valero-Lara, P; Pinelli, A.; Prieto-Matias, M. Accelerating Solid-fluid Interaction using Lattice-boltzmann and Immersed Boundary
Coupled Simulations on Heterogeneous Platforms. In Proceedings of the International Conference on Computational Science,
ICCS 2014, Cairns, QLD, Australia, 10-12 June 2014; Abramson, D., Lees, M., Krzhizhanovskaya, V.V,, Dongarra,] J., Sloot, PM.A,
Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 29, pp. 50-61. [CrossRef]

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
http://doi.org/10.1109/HiPC53243.2021.00050
http://dx.doi.org/10.1016/j.jocs.2015.07.002
http://dx.doi.org/10.1016/j.procs.2014.05.005

Electronics 2022, 11, 1307 17 of 18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

Valero-Lara, P.; Jansson, J. Heterogeneous CPU+GPU approaches for mesh refinement over Lattice-Boltzmann simulations.
Concurr. Comput. Pract. Exp. 2017, 29, €3919. [CrossRef]

Valero-Lara, P.; Jansson, J. Multi-domain Grid Refinement for Lattice-Boltzmann Simulations on Heterogeneous Platforms.
In Proceedings of the 18th IEEE International Conference on Computational Science and Engineering (CSE 2015), Porto, Portugal,
21-23 October 2015; Plessl, C., Baz, D.E., Cong, G., Cardoso,] M.P, Veiga, L., Rauber, T., Eds.; IEEE Computer Society: Montpellier,
France, 2015; pp. 1-8. [CrossRef]

Valero-Lara, P. Multi-GPU acceleration of DARTEL (early detection of Alzheimer). In Proceedings of the 2014 IEEE International
Conference on Cluster Computing (CLUSTER 2014), Madrid, Spain, 22-26 September 2014; IEEE Computer Society: Montpellier,
France, 2014; pp. 346-354. [CrossRef]

Valero-Lara, P. A GPU approach for accelerating 3D deformable registration (DARTEL) on brain biomedical images. In Proceed-
ings of the 20th European MPI Users’s Group Meeting, EuroMPI'13, Madrid, Spain, 15-18 September 2013; Dongarra, J.]J., Blas,
J.G., Carretero, J., Eds.; ACM: New York, NY, USA, 2013; pp. 187-192. [CrossRef]

Jorda, M.; Valero-Lara, P.; Pefia, A.]. cuConv: CUDA implementation of convolution for CNN inference. Clust. Comput. 2022,
25,1459-1473. [CrossRef]

Catalén, S.; Usui, T.; Toledo, L.; Martorell, X.; Labarta, J.; Valero-Lara, P. Towards an Auto-Tuned and Task-Based SpMV (LASs
Library). In Proceedings of the OpenMP: Portable Multi-Level Parallelism on Modern Systems—16th International Workshop on
OpenMP (IWOMP 2020), Austin, TX, USA, 22-24 September 2020; Milfeld, K., de Supinski, B.R., Koesterke, L., Klinkenberg, J.,
Eds.; Springer: Berlin, Germany, 2020; Volume 12295, pp. 115-129. [CrossRef]

Catalan, S.; Martorell, X.; Labarta, J.; Usui, T.; Diaz, L.A.T.; Valero-Lara, P. Accelerating Conjugate Gradient using OmpSs.
In Proceedings of the 20th International Conference on Parallel and Distributed Computing, Applications and Technologies
(PDCAT), Gold Coast, Australia, 5-7 December 2019; pp. 121-126.

Valero-Lara, P; Pinelli, A.; Prieto-Matias, M. Fast finite difference Poisson solvers on heterogeneous architectures. Comput. Phys.
Commun. 2014, 185, 1265-1272. [CrossRef]

Valero-Lara, P.; Andrade, D.; Sirvent, R.; Labarta, J.; Fraguela, B.B.; Doallo, R. A Fast Solver for Large Tridiagonal Systems on
Multi-Core Processors (Lass Library). IEEE Access 2019, 7, 23365-23378. [CrossRef]

Valero-Lara, P.; Pelayo, FL. Full-overlapped concurrent kernels. In Proceedings of the 28th International Conference on
Architecture of Computing Systems (ARCS), Porto, Portugal, 24-27 March 2015; pp. 1-8.

Valero-Lara, P.; Nookala, P; Pelayo, F.L.; Jansson,]J.; Dimitropoulos, S.; Raicu, I. Many-task computing on many-core architectures.
Scalable Comput. Pract. Exp. 2016, 17, 32-46. [CrossRef]

Chandrasekaran, S.; Juckeland, G. OpenACC for Programmers: Concepts and Strategies, 1st ed.; Addison-Wesley Professional:
Boston, MA, USA, 2017.

Bonati, C.; Calore, E.; Coscetti, S.; D’elia, M.; Mesiti, M.; Negro, F,; Schifano, S.F.; Tripiccione, R. Development of scientific software
for HPC architectures using OpenACC: The case of LQCD. In Proceedings of the IEEE/ACM 1st International Workshop on
Software Engineering for High Performance Computing in Science, Florence, Italy, 18 May 2015; pp. 9-15.

Dietrich, R.; Juckeland, G.; Wolfe, M. OpenACC programs examined: A performance analysis approach. In Proceedings of the
44th International Conference on Parallel Processing (ICPP), Beijing, China, 1-4 September 2015; pp. 310-3109.

Chen, C;; Yang, C.; Tang, T.; Wu, Q.; Zhang, P. OpenACC to Intel Offload: Automatic translation and optimization. In Computer
Engineering and Technology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 111-120.

Herdman, J.A.; Gaudin, W.P.; McIntosh-Smith, S.; Boulton, M.; Beckingsale, D.A.; Mallinson, A.C.; Jarvis, S.A. Accelerating
hydrocodes with OpenACC, OpenCL and CUDA. In Proceedings of the SC Companion: High Performance Computing,
Networking Storage and Analysis, Salt Lake City, UT, USA, 10-16 November 2012.

Alan, G. Getting Started with CUDA Graphs. 2019. Available online: https://developer.nvidia.com/blog/cuda-graphs/
(accessed on 13 April 2022).

Shewchuk, J.R. An Introduction to the Conjugate Gradient Method without the Agonizing Pain; Technical Report; Carnegie Mellon
University: Pittsburgh, PA, USA, 1994.

Corp., N. NVIDIA CUDA-Samples. 2022. Available online: https://github.com/NVIDIA /cuda-samples/tree /master/Samples/
4_CUDA_Libraries/conjugateGradientCudaGraphs (accessed on 13 April 2022).

Ruiz, D.; Spiga, F.; Casas, M.; Garcia-Gasulla, M.; Mantovani, F. Open-source shared memory implementation of the HPCG
benchmark: Analysis, improvements and evaluation on Cavium ThunderX2. In Proceedings of the 17th International Conference
on High Performance Computing & Simulation (HPCS), Dublin, Ireland, 15-19 July 2019; pp. 225-232.

Eberhart; Shi, Y. Particle Swarm Optimization: Developments, applications and resources. In Proceedings of the 2001 Congress
on Evolutionary Computation (IEEE Cat. No. 01TH8546), Seoul, Korea, 27-30 May 2001; pp. 81-86.

Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the International Conference on Neural Networks
(ICNN), Perth, WA, Australia, 27 November-1 December 1995; Volume 4, pp. 1942-1948.

Poli, R.; Kennedy, J.; Blackwell, T. Particle Swarm Optimization. Swarm Intell. 2007, 1, 33-57. [CrossRef]

Benchmark Set. In Particle Swarm Optimization; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2010; Chapter 4, pp. 51-58.
Available online: https:/ /onlinelibrary.wiley.com/doi/pdf/10.1002/9780470612163.ch4 (accessed on 13 April 2022).
Landaverde, R.; Zhang, T.; Coskun, A.K.; Herbordt, M. An investigation of Unified Memory access performance in CUDA.
In Proceedings of the IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 9-11 September 2014.

http://dx.doi.org/10.1002/cpe.3919
http://dx.doi.org/10.1109/CSE.2015.9
http://dx.doi.org/10.1109/CLUSTER.2014.6968783
http://dx.doi.org/10.1145/2488551.2488592
http://dx.doi.org/10.1007/s10586-021-03494-y
http://dx.doi.org/10.1007/978-3-030-58144-2_8
http://dx.doi.org/10.1016/j.cpc.2013.12.026
http://dx.doi.org/10.1109/ACCESS.2019.2900122
http://dx.doi.org/10.12694/scpe.v17i1.1148
https://developer.nvidia.com/blog/cuda-graphs/
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/4_CUDA_Libraries/conjugateGradientCudaGraphs
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/4_CUDA_Libraries/conjugateGradientCudaGraphs
http://dx.doi.org/10.1007/s11721-007-0002-0
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470612163.ch4

Electronics 2022, 11, 1307 18 of 18

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Jarzabek, U.; Czarnul, P. Performance Evaluation of Unified Memory and Dynamic Parallelism for selected parallel CUDA
applications. J. Supercomput. 2017, 73, 5378-5401. [CrossRef]

Li, X. Comparing programmer productivity in OpenACC and CUDA: An empirical investigation. Int.]. Comput. Sci. Eng. Appl.
(IJCSEA) 2016, 6, 1-15. [CrossRef]

Calore, E.; Gabbana, A.; Kraus, J.; Schifano, S.E; Tripiccione, R. Performance and portability of accelerated Lattice Boltzmann
applications with OpenACC. arXiv 2017, arXiv:1703.00186.

Valero-Lara, P; Pelayo, F.L. Analysis in performance and new model for multiple kernels executions on many-core architectures.
In Proceedings of the IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing (ICCI*CC), New
York, NY, USA, 16-18 July 2013; pp. 189-194.

Pallipuram, V.; Bhuiyan, M.; Smith, M. A comparative study of GPU programming models and architectures using neural
networks. J. Supercomput.-T]S 2011, 61, 673-718. [CrossRef]

Memeti, S.; Li, L.; Pllana, S.; Kotodziej, J.; Kessler, C. Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming
productivity, performance, and energy consumption. In Proceedings of the Workshop on Adaptive Resource Management and
Scheduling for Cloud Computing, New York, NY, USA, 28 July 2017.

Ashraf, M.U.; Alburaei Eassa, F.; Ahmad Albeshri, A.; Algarni, A. Performance and power efficient massive parallel computational
model for HPC heterogeneous exascale systems. IEEE Access 2018, 6, 23095-23107. [CrossRef]

Augonnet, C.; Thibault, S.; Namyst, R.; Wacrenier, P.A. StarPU: A unified platform for task scheduling on heterogeneous multicore
architectures. Concurr. Comput. Pract. Exper. 2011, 23, 187-198. [CrossRef]

Duran, A.; Ayguadé, E.; Badia, RM.; Labarta, J.; Martinell, L.; Martorell, X.; Planas, J. OmpSs: A proposal for programming
heterogeneous multi-core architectures. Parallel Process. Lett. 2011, 21, 173-193. [CrossRef]

Kato, S.; Lakshmanan, K.; Rajkumar, R.; Ishikawa, Y. TimeGraph: GPU scheduling for real-time multi-tasking environments.
In Proceedings of the USENIX Annual Technical Conference (ATC), Portland, OR, USA, 15-17 June 2011.

http://dx.doi.org/10.1007/s11227-017-2091-x
http://dx.doi.org/10.5121/ijcsea.2016.6501
http://dx.doi.org/10.1007/s11227-011-0631-3
http://dx.doi.org/10.1109/ACCESS.2018.2823299
http://dx.doi.org/10.1002/cpe.1631
http://dx.doi.org/10.1142/S0129626411000151

	Introduction
	Background
	CUDA
	OpenACC
	CUDA Graph API

	Use Case I: Conjugate Gradient
	NVIDIA Conjugate Gradient
	Optimized Conjugate Gradient Method
	Performance Analysis

	Use Case II: Particle Swarm Optimization
	OpenACC and CUDA Graph Implementations of PSO
	Performance Analysis

	Directive-Based GPU Static Graph API Proposal
	Related Work
	Conclusions and Future Work
	References

