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Abstract: Wireless network virtualization is widely used to solve the ossification problem of networks,
such as 5G and the Internet of Things. The most crucial method of wireless network virtualization is
virtual network embedding, which allows virtual networks to share the substrate network resources.
However, in wireless networks, link interference is an inherent problem while mapping virtual
networks because of the characteristics of wireless channels. To distribute resources efficiently and
address the problem of interference, a dynamic embedding algorithm with deep reinforcement
learning is proposed. During the training stage, we take resource use and interference from substrate
networks as observations to train the agent, and then the agent generates a resource allocation strategy.
Aiming at realizing load balance, we reshape the reward function considering the execution ratio
and residual ratio of substrate network resources as well as the cost consumed by current virtual
network request. Numerical tests show that our embedding approach increases the acceptance ratio
and maintains better robustness. Moreover, the results also illustrate that our algorithm maintains a
high acceptance ratio while producing less interference and lower cost.

Keywords: virtual network embedding; wireless network virtualization; resource allocation; deep

reinforcement learning; interference

1. Introduction

Wireless networks have received a lot of interest with the development of 5G net-
works [1,2] and vehicular networks [3]. They provide customers with highly qualified
services with low latency through data transmission between base stations and users. How-
ever, as the number of wireless network users and the individual requirements increase,
the traditional resources management scheme cannot satisfy the updated demand. To
deal with the problem of resources allocation, Wireless Network Virtualization (WNV)
has become a hot topic [4-7]. WNV overcomes the rigidity of the Internet [8] by enabling
many virtual networks (VNs) to use the resources of a shared substrate network (SN), often
known as physical network. It can relieve the update and maintenance pressure of internet
by the core concept of sharing. As a result, it is critical to find out how to properly allocate
substrate network resources with its finite nature.

In the process of wireless network virtualization, it is decoupled into Infrastructure
Providers (InPs) and Service Providers (SPs) [9]. SPs rent resources from InPs to provide
subscribers with tailored services, while InPs are in charge of deploying resources and
managing the allocation policy of the substrate network. This specific technique of WNV
is named virtual network embedding (VNE) [10]. The goal of VNE is to incorporate as
many VNs as possible with limited resources of the substrate network. As a NP-hard
problem [11], the price is hard to bear for finding the optimal resources allocation strategy
with exact algorithms. The heuristic algorithm [12] used to be the mainstream approach
to solve the issue with affordable computation complexity [13,14]. However, along with
the emergence of Machine Learning (ML) techniques, such as graph neural networks

Electronics 2022, 11, 2243. https://doi.org/10.3390/ electronics11142243

https://www.mdpi.com/journal/electronics


https://doi.org/10.3390/electronics11142243
https://doi.org/10.3390/electronics11142243
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8608-3403
https://orcid.org/0000-0001-8104-2533
https://doi.org/10.3390/electronics11142243
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11142243?type=check_update&version=1

Electronics 2022, 11, 2243

20f16

(GNN) [15,16] and deep reinforcement learning (DRL) [17-21], intelligent algorithms are
rapidly used to satisfy the diverse requirements of next-generation wireless networks [22]
and design communications system [23,24]. ML approaches can not only simulate wireless
communication process with inference [25,26] but also assess resource distribution strategy
from a deep perspective due to the nature of extracting information [27]. Especially for
reinforcement learning algorithms, the parallel framework [16] could speed up the process
of embedding and the capability to deal with continuous problems [19] corresponds to the
system model of wireless virtual network embedding.

The characteristic of WNYV is that resources are complementary and interchange-
able [28], which implies that abundant resources can partially compensate for deficient
resources. The replacement attribute provides more efficient resource management and
promotes resource usage. During the stage of wireless virtual network embedding, the
substrate node resource and link resource could adjust each other to satisfy the transmission
rate requirement of VNRs. However, this work used to be performed manually in previous
literature [28] and the adjustment strategy may produce quite different embedding results.
Therefore, our previous work [29] handles the problem by designing a hierarchical scheme
before executing the embedding process. However, the several levels cannot reflect the
deep nature of complementary in wireless virtual network embedding.

For the above backgrounds, a dynamic wireless virtual network embedding algorithm
based on deep reinforcement learning (DWVNE-DRL) is proposed. The primary goal of
our algorithm is to maximize the number of embedded VNs. Another significant objective
is to enhance the resource use of the substrate network. The significant contributions are
given below.

* A novel dynamic embedding strategy is proposed, which applies the deep reinforce-
ment learning strategy Deep Deterministic Policy Gradient (DDPG) [30]. To deal
with the complementary attribute of resources, an innovative reinforcement learning
environment for WNV is set with continuous state space. During the training stage,
we take resource use and interference from substrate network as observations to train
the agent, and then the agent generates a resource allocation strategy.

*  Anew learning technique is used to effectively manage resources. Different resource
allocation schemes will be implemented based on the current resource usage state
of the substrate network to achieve a higher resource use ratio and embed more
VNs. We reshape the reward function considering the execution ratio and residual
ratio of substrate network resources as well as the cost consumed by current virtual
network request.

¢ A thorough simulation is run to assess the performance of our approach. The analysis
of multiple factors is covered in comparison to traditional wireless virtual network
embedding algorithms.

The remainder of this paper is structured as follows: Section 2 introduces the WVNE
system model and evaluation metrics. The details of our approach, including the rein-
forcement learning environment configuration and embedding procedure, are shown in
Section 3. Section 4 discusses the simulation results. The concluding part of this paper is
Section 5.

2. System Model and Evaluation Metrics

In this section, we first introduce thewireless embedding system model. Then, the
embedding constraints are briefly represented, which will be detailed in process of the
algorithm. Finally, some evaluation metrics are described to analyze the performance of
the algorithm.

2.1. System Model

The wireless embedding system consists of a substrate network and multiple vir-
tual networks. Usually, a substrate network is defined as a weighted undirected graph
GS (Ns, LS,AIS\,, AE), where NS represents a set of substrate nodes and LS represents a
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collection of substrate links. ASN and Af denote node attributes (e.g., power and location)
and link attributes (e.g., bandwidth), respectively. Similarly, a virtual network is defined
as a weighted undirected graph GY (N VLY, RV,RZ), where NV and LY are the set of
virtual nodes and links, respectively. R}, and R} represent the virtual nodes and links
resource requirement for the substrate network. In contrast to wired VNE, a virtual network
requires resource as transmission rate r(I") in wireless VNE process rather than specific
substrate node and link resources, such as computation capability, storage memory, and
link bandwidth. Based on the Shannon theorem, the relation between virtual network
resource requirement and substrate network resource can be formulated by

p(n")s(1")
b(lv>1b (1 Tt Lisers\(v-15) 1(15)> > r(lV) )

where b(1") and p(n") denote the bandwidth and power resources allocated by the
substrate network, respectively. ¢ is the white Gaussian noise, and I(I°) is the adjacent
channel interference suffered from other substrate links except the current link embedded
to the virtual link IV. g(IV) is the channel gain, which can be formulated as

g(zV) = disk<loc (nf),loc(nzs)) 2)

where dis() represents the Euclidean distance between substrate nodes nj and 13, and
loc() is the location coordinates of substrate nodes. k is the gain coefficient based on the
system model.

Therefore, when a virtual network arrives, it will be accepted if the substrate network
can afford the corresponding power and bandwidth resources based on the transmission
rate required by the virtual network, and it will be rejected if there are not enough resources
available. The specific network model is shown in Figure 1 with the virtual network
above the dotted line, where the number represents the link transmission rate requirement
r(lv). The substrate network is shown below the dotted line, where the number above
the substrate node represents the power resource p(n°), and the number in the rectangle
represents the bandwidth resource b(I°).

1 1 2 2
@ @ - _;, -——— 0 O Virtual node
——  Virtual link

Substrate node

Substrate link

Figure 1. Embedding process.

2.2. Constraints

During the wireless VNE process, different virtual nodes in the same virtual network
cannot be embedded on the same substrate node, which is shown as
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1, n— n;
i = 0, else
3)

n; € NV,I’lj S NS’ZXU <1
nS
where x;; is a binary number and x;; = 1 if the virtual node 7; is embedded to the substrate
node n;.

According to Formula (1), the resources distributed from the substrate network must
satisfy the required transmission rate. Otherwise, the current VNR is rejected. Therefore,
once a couple of substrate nodes and link are embedded, the maximum rate it can provide
is fixed. The virtual nodes and links can only gain resources less than the maximum power
Pmax (1) and bandwidth bmax (! %) that the substrate network possesses. The restriction is
denoted as follows

ni = nj: p(n;) < Pmax (”j) 4)

VS5 Vel Se Ls,b(lv> < bonax (15) ®)

Besides, the selected substrate node must satisfy the constraint of location and cannot
exceed the embedding range. It can be expressed as

dis(loc(n;),loc(nj)) < @(n;) (6)

where dis() represents the Euclidean distance between virtual node n; and substrate node
n;. The distance must within the coverage radius ¢(n;) of virtual node n;.

2.3. Evaluation Metrics

The evaluation metrics are introduced in this subsection. Three main metrics are
formulated to quantify the performance of the VNE algorithms. Concerning the VNR
acceptance ratio, it is the specific value between the number of successfully embedded
VNRs and the number of total VNRs arrived in the given period. A VNE algorithm is
highly estimated with a high VNR acceptance ratio for adopting more VNRs and providing
more services to users. It can be defined as

nec — Numge(vnr) @
Numyor (vnr)

With respect to the use of power resource and bandwidth resource, it evaluates the
resource allocation strategy of the algorithm. A high use ratio represents the better resource
allocation strategy for distributing resources rationally and effectively. It is formulated as

g = 2,45 — p(n), orb (i) ®)
Aall

The cost reflects the resources that the substrate network consumes to embed VNRs.
In previous work, there is another metric, revenue, which represents the resources that
VNRs acquire from SN. In this work, we focus on the resource consumption of wireless
network after considering interference in the embedding process. It is formulated as (9),
where p(n") and b(1") are the resources distributed to virtual node and virtual link. B(I°)
is the number of substrate links covered by virtual link V.

cost(GV) = Y p(nV)+12 > ()6 (1) )

nT—nS [ps s
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3. Embedding Algorithm

In this section, the proposed DWVNE-DRL algorithm is detailed. At first, the reinforce-
ment learning environment is presented where we set state space and action space based
on the wireless network embedding model and innovate the reward function. Furthermore,
the process of the proposed algorithm is implemented, including the node embedding
process and link embedding process. In the section, we analyze the time complexity of
our algorithm.

3.1. Reinforcement Learning Environment

In a wireless network, there exists a difference in the process of VNE compared with a
wired network. Users intend to request a transmission rate similar to the download and
upload rate in wireless network, different from specific CPU compacity and bandwidth
requirements. Inspired by the Shannon theory, multiple combinations of power and
bandwidth resources are available when a concrete transmission rate is given. Therefore, it
not only considers how to allocate substrate network resources to accept more VNRs, but
also focuses on how to balance the relationship between power and bandwidth resources
for the current arrived VNR.

There are four important parameters in reinforcement learning, which are state space,
action space, rewards and strategy. The state space of an agent is what the agent can see in
the environment, and the agent then picks the next action from the action space. From the
perspective of the agent, action selection is dictated by the strategy of receiving rewards
from the environment, which indicates whether the present strategy is good or poor. After
the strategy adjusted, the agent follows the updated strategy to obtain new action. During
the iteration, the strategy is promoted to generate better actions.

In the literature [16,31], virtual networks acquire specific node and link resources,
and the strategies based on the RL algorithm aim at selecting substrate nodes and links
with abundant resources to embed VNRs. However, it is different in wireless network,
where the requirement is transmission rate and the substrate network resources allocation
strategy is indeterminate. To find a better resources allocation strategy from the global
view, a dynamic VNE model is proposed based on deep reinforcement learning algorithm.

3.1.1. State Space

From the wireless network environment, an agent can obtain lots of parameters while
not all of them are vital to the agent, so it is necessary to simplify observation values.
In our wireless VNE model, the goal of the agent is to find the appropriate power and
bandwidth satisfying the transmission rate raised from the arrived VNR. Because of the
continuous property, we select several parameters for agent to learn. There are two classes
of state values, the substrate network and virtual network. In terms of the substrate
network, the reminder and use ratio of physical resources are necessary for the agent to
make decisions. The two state values are different from each other while inputing to the
agent. Furthermore, the link interference, the most unique feature in wireless network, is
incorporated on the basis of Formula (1). For the virtual network, the required transmission
rate is considered for determining the scale of resources to be allocated. Certainly, there
are also other important attributes such as network topology that indicates the location in
space, but they are less useful for the agent to learn a better resources allocation strategy
from the environment than the selected state values. It is important that in our proposed
model only the few nodes and link connecting them are focused on, which means they are
waiting to be embedded currently. It would be a large computation task for the agent if the
whole network parameters were considered. Therefore, for the sake of simplification, the
state space is formulated as

state_space = ( Uti_ratio T, Rem_res T, Infe, Rate ) (10)
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where Uti_ratio T represents the use ratio of physical resources, including two selected
substrate nodes and one link. Rem_res ! is the spare physical resources of selected nodes
and link. Infe and Rate are link interference of substrate network and transmission rate
of current VNR, respectively. The dimension of state space is 8 from Formula (10).

3.1.2. Action Space

Unlike other RL algorithms, the action in our proposed model is not a decision
that selects a substrate node but instead seeks the moderate balance between power and
bandwidth as transmission rate is given. Due to the stochastic total and unpredictable
use ratio of resources in different substrate nodes and links, especially the continuous
characteristic of resources, it is hard to take the concrete value of resources as action
considering various nodes and links. Therefore, the occupation ratio of resources to be
allocated is qualified as action for the agent to adopt. The internal relevance between state
space and action is expected to be recognized by the agent so that resources are allocated
effectively and rationally. Based on Formula (1), both power and bandwidth contribute to
the transmission rate. It would become hard to converge for the agent if the two decisions
were made together, because the number of successful allocation schemes is countless.
Therefore, only the power allocation ratio is selected as the action, and bandwidth resource
to be occupied is calculated with the Shannon formula. Action space is defined as

action_space = p_ratio (11)

where p_ratio is the allocation ratio of power resource. The agent aims at providing the
current pair of node and link distribution strategy. Furthermore, for simulation, the specific
value is set to (0, 1) with step of 0.001.

3.1.3. Shape of Rewards

The learning capacity of the agent is up to how the reward is being shaped. The agent
is told how good the current strategy is by assigning various rewards. In the proposed
wireless VNE model, the rewards function is shaped as follows.

As mentioned in last subsection, the action space is defined as the occupation ratio
for the next-step resources’ allocation. In our proposed wireless VNE model, one of the
most important goals is to balance the power and bandwidth resources to be allocated.
Therefore, the agent is expected to distribute more power and less bandwidth when the
embedded node has adequate power resources but insufficient bandwidth resources, and
vice versa. For instance, if the agent made a decision following a bad strategy, it would
happen to the substrate network such that there were sufficient power resources with little
or no bandwidth resources and then it would not be able to accept subsequent arrived
VNRs. Furthermore, this part of the reward is defined as

ro = exp(—|[sp X ap — Spyy X Apg|) (12)

where s, is the use ratio of the current substrate node, and sy, is the use ratio of the
substrate link bandwidth resource between selected nodes. 4, is the ratio of power to be
allocated, so the same as ay,, is the ratio of bandwidth to be distributed. The content of
the absolute value s, X a, — sp, X 4y, indicates the resources executed condition. A good
action should be adopted based on the current resources” use, so it will be rewarded a
relatively large value that allocate power resources more when bandwidth resources of
selected link is lack.

Owing to the limited resources of wireless network, the strategy with low cost will be
regarded as a good strategy. The function of cost, as Formula (13), contributes to a part of
reward by adding unit cost to reflect expenses of current action. The cost can be adjusted

as follows 1
= 1
P br(1°) (19

fe = X p(nv) + B x b(lv>,zx = TS



Electronics 2022, 11, 2243

7 of 16

where a and B are unit cost of power and bandwidth resource, respectively. pr. (ns)
represents the left power resource of substrate node n°, and by (I°) indicates the left
bandwidth resource.

Due to the state space including a couple of substrate nodes and one link, some nodes
may act as relay nodes and resources could be occupied more. In the final formation of the
reward, the two connections between node and link are expressed as

(To1 +702)
Te

reward = (14)
where 7,1 and o are partial reward of resource use ratio on physical node n; and 13
with their link, respectively. The correlation between reward and r, is positive while 7, is
negative to final reward.

3.1.4. Learning Strategy

Wireless VNE is a continuous decision problem since the values of power and band-
width resources vary continuously for different strategy. Compared with the Q-learning
strategy, the policy gradient method aims at obtaining better action directly with adjusting
the parameters of strategy and is more suitable for our model. It is hard that create a g-table
to update g-values and find a better action.

By applying traditional policy gradient algorithm, an agent with strategy 7 will
undergo a continuous status sequence T = (so,ao, 10,581,41,11, - - - ,S¢t,at, n) , in which
the strategy 7 is evaluated by J(0) (shown in Formula (15)). 7ty represents the strategy
7 defined by the parameter 6. ](6) is formulated as the same as expectation and can be
simplified as Formula (16). To measure the quality of an action a in the state s, the action-
value function Q(s, a) is introduced. There is no best strategy in reinforcement learning
algorithm because of the unsupervised property and fluctuate environment states, but a
better solution is selected based on the update of rewards when obtaining the gradient of
J () in policy gradient algorithm.

](Q)ZE[70+71+...+Vt|7T9] (15)

J6) = Ev—r, [; ] = 5 Z L (s 0) 16)

In our proposed algorithm, the Deep Deterministic Policy Gradient strategy [30],
developed from policy gradient, is adopted to optimize the resources allocation strategy. To
update 6 in J(0) more precisely, it introduces a neuro network to acquire strategy gradient.
Based on Actor-Critic mode, DDPG applies two major networks in which exists four
subnetworks. One of the major networks, called main network, is in charge of principal
training task and updating strategy parameter 6 in the normal iteration process. Another
major network is target network, which shares the same network topology and parameters
with main network but delays updating parameter 6. The delay offers the agent a global
view to generate relatively better actions. The learning strategy is shown in Figure 2.

In each major network, there are two subnetworks, the actor network and critic
network. According to the observation values, actor network outputs the current-better
actions, and then the observation values and corresponding action values will be delivered
to the critic network. The critic network evaluates the produced actions and adjusts the
network parameters following the principle that rises in the maximum direction along the
gradient of J(0).

Take the main network for example. J(6) turns into J(6*) in actor network u as
Formula (17), where 7 is the decay factor decreasing the impact of long-term actions on the
present. Learning from the actor network y , the critic network c calculates the action-value
function Q(s,a|6) on the basis of the critic network parameter 6°. The gradient of J(6#) in



Electronics 2022, 11, 2243

8 of 16

the main network is formulated as Formula (18), where 77(s|6") is the strategy based on the
input observation value s and the actor network parameter 6# .

J(6") = Egn [71 +772+7273+~--} (17)
VJ(6") = E, [GQ(SB/HHIGC) aﬂéglf’*)} (18)

State Values

jo——=

SN, (" utilization of resources
N/

Critic Network ¢~ 8°

Batch
Train

{} Parameters ﬁ Main Network

Adjustment Target Network

Figure 2. The learning strategy in agent.

As for the target network, it delays updating until a batch of state and action values
input. The calculation of VJ(6") is similar to the main network, but modified slightly for
the batch processing property. It is detailed as follows:

V() ~ 5 L VeQls,a | 6) Toupu(s | ) (19)

s=s;a=p(s;) .

where N is the size of the calculated batch and s; is the ith observation value. The actor
network is built with two full connection layers. The size of first layers is (8, 30) and the
activate function is set to ReLU. The output layer only yields one action so the activate
function is Sigmoid. In terms of critic network, it has a similar structure to an actor network.
The first layer inputs nine values including eight state values and one action values, and
then outputs 60 values to next layer. The final output is also one value, named after the
g-value, which is used to evaluate whether the current action is good. The structure and
parameter of target network is the same as main network but update parameters slower.

3.2. Process of the Algorithm

Typically, there are two stages in the process of virtual network embedding, called node
embedding and link embedding. The details of process are illustrated in this subsection.

3.2.1. Node Embedding Process

In the process of wired virtual network mapping, the requirements of virtual nodes
for resources are relatively fixed, such as computing resources, memory, etc. In the wireless
virtual network mapping, because the request for the virtual network is the transmission
rate, the physical network considers the power resources of the physical nodes and the
bandwidth resources of the connected physical links when allocating resources. Current
research on wireless virtual network mapping uses an extended node resource approach,
where the node power resources and all link bandwidth resources connected to the node
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are combined and ranked, in order to find nodes that meet both power and bandwidth
requirements and improve the mapping success rate. This ordering takes into account all
the link resources connected to the node, but does not take into account the actual mapping
capacity of the link. To measure the average capacity, the node degree is introduced into a
novel ranking method as

rank(n5> = p(n5> + Zi;i‘;((:;} (20)

where Deg(n°) is the degree of node n° and b (l”s) is the bandwidth resources of links

connected to node n°.

Based on the ranking method, the substrate node with largest rank value will be
chosen when a new VNR arrives. The greedy algorithm also decreases the searching
space and time to embed VNR more effectively. The node embedding process is shown in
Algorithm 1.

Algorithm 1 Node embedding.
1: while VNR arrives do

2:  Descend order substrate nodes based on Formula (20)

3:  Select nodes that satisfy Formula (6)

4:  Descend order virtual links based on the required transmission rate

5. Select substrate nodes with high rank values for the top links until all virtual nodes
are allocated

6: end while

3.2.2. Link Embedding Process

In wireless VNE model, link interference is an unavoidable factor for bandwidth
resources distribution. The actual interference mainly comes from electromagnetic wave,
limited spectrum resources, natural noise and aggressor source. For the sake of simplifica-
tion, only link interfering and natural noise are considered in our proposed model. The
link interference is formulated as follows:

di+1
4 (1) =755 1

where d; denotes the number of other substrate links that might influence current link /°
and <y represents the weight how the link interfering occupies in whole interferences.

Due to the internal connection between power resources and bandwidth resources,
the link embedding process is closely related to the node embedding process. The shortest
path algorithm is adopted to find the optimal path with the least interference. In a wireless
environment, the interference becomes higher if there are many signals on transmission
in channel. To provide users with high-quality services, the substrate paths with less
interference will be embedded in the link embedding process after substrate nodes are
selected. Once the physical nodes and links are selected, the agent will generate action on
the basis of the current strategy to allocate resources. The link embedding process is shown
in Algorithm 2.
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Algorithm 2 Link embedding.

1: for link in virtual links do

2:  Calculate link interference of substrate links based on Formula (21)

3. Find available path between substrate nodes from Algorithm 1

4:  Input action from DDPG and conduct resources distribution strategy
5. if satisfy resources constraints do

6: embedded = True

7. else

8: embedded = False

9: endif

10: end for

For one node embedding process, the time complexity mainly lies in the node resources
ranking which is O(|N®|). As for link embedding in one couple of nodes, the procedure of
calculating interference and searching available paths contributes to the complexity, which
can be defined as O(|L°| + |N®|Ib|N5|). Therefore, the time complexity for one complete
embedding process is O(|N®| + |[NV||L%| + |[NV||N®|Ib| N®|).

4. Performance Evaluation and Analysis

In this section, we first describe the environment and network settings, and then
illustrate the training process of RL model. Compared with the state-of-the-art VNE
algorithms, we analyze the different performances based on Section 2.3.

4.1. Evaluation Settings

In the range of 20 km x 20 km, the topology of the substrate network is generated
using the Waxman random graph [32] set at « = 0.5 and B = 0.2. The specific settings
are shown in Table 1. For each VNR, the probability of links connecting adjacent nodes
is set to be 0.5 and the lifetime is 500 time units. VNRs arrives as a Poisson process with
an average rate of 4 per 100 time units. The gain coefficient k is set to 4 and environment
Gauss white noise is 108. The testing phase lasts 5000 time units for each simulation. The
whole project is implemented on a tensorflow with an Intel R Core(TM) i7-7700 CPU @2.8
GHz and 8.00 GRAM Machine.

Table 1. Parameter settings.

Parameter Value
Nodes number of SN 50
Power capacity [50, 100], uniform distribution
Bandwidth capacity [25, 50], uniform distribution
Nodes number of each VNR [3, 5], uniform distribution
Transmission rate of each virtual link [3, 8], uniform distribution
Learning rate of actor network 0.00025
Learning rate of critic network 0.0025

4.2. Main Evaluation Tests

To validate the performance of our algorithm, it is compared with two WVNE algo-
rithms shown in Table 2. The two algorithms are both focused on the complementary
feature of resources and intend to realize load balancing. They find the optimal resource
allocation schemes by minimizing cost but are slightly different from each other in specific
process of calculation.
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Table 2. Compared algorithm.

Algorithm Description

Greedy strategy for node embedding and shortest path with path
splitted for link embedding
Hierarchical rank strategy and adjusted objective function for
different level VNRs

WVNE-JBP [28]

WVNE-JHR [29]

Figure 3 shows the acceptance ratio of different algorithms. It can be found that the
acceptance ratio decays as the simulation proceeds for all algorithms. According to the
limited resources, the substrate network cannot embed all arrived VNRs. Furthermore, it
needs more resources to embed as the wireless environment is gradually full of transmission
signals that increase link interference. At the last of simulations, the acceptance ratio of our
algorithm is 80% relative to the others while the WVNE-JHR and WVNE-]JBP end at 66%
and 45%, respectively. The reason for this is that our algorithm selects resource distribution
strategy by observing the environment states, which include current resource states of
substrate network and environment interference. However, another two algorithms do
not take interference into consideration when calculate the optimal resource values to give
virtual networks.

1
0.9
0.8
0.7
0.6
0.5
(O s e e e e A e e

Acceptance ratio

0.3

—6— DWVNE-DRL
0.2 —%— WVNE-JBP |
WVNE-JHR

o ="""""“"“"="—"“"'"="=—"=> === = —"= -7

1 | | 1 1 | | 1 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time unit

Figure 3. Comparison of acceptance ratio.

Figures 4 and 5 display the resource use ratio of different algorithms. In Figure 4, the
power use of our algorithm is far less than the other two algorithms while in Figure 5 all
of the algorithms maintain similar bandwidth use. Combined with acceptance ratio, it is
concluded that the proposed algorithm consumes fewer resources but acquires a higher
acceptance ratio. The inharmonious situation results from the fact that our algorithm
tends to provide resources with low interference. The more power substrate nodes occupy,
the higher interference occurs in link embedding process. Furthermore, it contributes to
cover more bandwidth to satisfy the transmission rate requirement. In node embedding
process, our algorithm allocates relatively little power causing less interference. Therefore,
in terms of link embedding process, more bandwidth resources are needed to compensate
power for overcoming link interferences. Another two algorithms find the optimal solution
through minimizing cost, only focusing on current remainder of resources, so the high use
of power leads to much interference and more bandwidth requirement. However, the high
consumption does not achieve the expected results but actually impedes them.
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Figure 5. Comparison of bandwidth use.

The cost of different algorithms is depicted in Figure 6. From the above analysis,
it is known that our algorithm uses fewer resources to embed VNRs so that the cost
consumption is also relatively lower than the other algorithms. Due to three algorithms
sharing the same simulation network, the cost differs not as much as in other evaluation
metrics, such as use. The relationship between the requirements of the VNRs and the
supply from substrate network is nearly the same.

Table 3 shows the average embedding time while successfully embedding VNRs.
Derived from Table 3, we could learn that the proposed algorithm has a low time complexity
compared with other algorithms. The reason for this is that we simplify the calculation of
objective function and the process of finding the optimal resource distribution scheme is
made by the neuro network which is trained before. Therefore, the proposed algorithm can
embed VNRs in a limited time.

Table 3. Embedding execution time.

Algorithm Time Consumption
DWVNE-DRL 327s
WVNE-]BP 3.64s

WVNE-JHR 3.73s
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Figure 6. Comparison of costs.

4.3. Arrival Rate Tests

To assess the accommodated performance of algorithms in a busy time, we set different
arrival rate of VNRs from four arrivals per 100 time units to 20 arrivals per 100 time units
with step by 2. A comparison of the acceptance ratios is illustrated in Figure 7. As the arrival
rate raises, the acceptance ratio of all algorithms declines and the falling range is quite large
for about 60%. The contributing cause is that the substrate network cannot accommodate
so much and frequent VNRSs for its finite resources. Nevertheless, our algorithm also has a
better performance than others.
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T
\
\
\
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0.7 : |
|
|
I
|
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| | I I I I I
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Figure 7. Comparison of acceptance ratio on different arrival rate.

Figures 8 and 9 demonstrate the resource use on different arrival rates. On the whole,
the use rises as the number of VNRs increases; however, it fluctuates in specific arrival
rate. In terms of power use, WVNE-JBP and WVNE-JHR always keep a higher value than
the proposed algorithm. However, for bandwidth use, they share a similar trend and
fluctuation. The reason for this is that the resource allocation principle does not change
and the relationship between power usage and interference keeps the same. After adding
interference into consideration, our algorithm achieves a higher acceptance ratio while
economizing power and producing less interference.
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Figure 9. Comparison of bandwidth use on different arrival rate.

5. Conclusions

A wireless virtual network embedding algorithm based on DDPG is proposed in
this paper to cope with load balance and create good action. Unlike previous algorithms,
our method focuses on solving a continuous problem and assigning precise resource
values. To make resource distribution more reasonable, we develop a new reward function.
According to the simulation results, the suggested method surpasses traditional algorithms
by 14% in terms of acceptance ratio. While keeping a low cost consumption, our algorithm
uses fewer power resources, contributing to lower interference, but embeds more VNRs
successfully. As for robustness, with the arrival rate increasing, the proposed DWVNE-
DRL always outperforms the compared algorithms though the performance goes down
gradually. Additional aspects will be added to our model in the future, such as: (1) substrate
node mobility in a wireless network; (2) unexpected stoppage in previously embedded
VNRs. Other characteristics of the wireless network will also be considered when training
the agent.
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