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Abstract: With the rapid development of artificial intelligence technology, the deep learning method
has been introduced for vehicle trajectory prediction in the internet of vehicles, since it provides
relative accurate prediction results, which is one of the critical links to guarantee security in the
distributed mixed-driving scenario. In order to further enhance prediction accuracy by making full
utilization of complex traffic scenes, an improved multimodal trajectory prediction method based
on deep inverse reinforcement learning is proposed. Firstly, a fused dilated convolution module
for better extracting raster features is introduced into the existing multimodal trajectory prediction
network backbone. Then, a reward update policy with inferred goals is improved by learning the
state rewards of goals and paths separately instead of original complex rewards, which can reduce the
requirement for predefined goal states. Furthermore, a correction factor is introduced in the existing
trajectory generator module, which can better generate diverse trajectories by penalizing trajectories
with little difference. Abundant experiments on the current popular public dataset indicate that the
prediction results of our proposed method are a better fit with the basic structure of the given traffic
scenario in a long-term prediction range, which verifies the effectiveness of our proposed method.

Keywords: multimodal trajectory prediction; rasterization; dilated convolution; maximum entropy
inverse reinforcement learning (MaxEnt RL)

1. Introduction

Autonomous driving is an advanced stage of the vigorous development of intelligent
assisted driving. As one of the popular applications of artificial intelligence, its related
technologies currently have become the focus and hotspot in the field of intelligent trans-
portation systems [1,2]. Due to the imbalanced region development and differences of
user acceptance, the “autonomous + manual” mixed-driving scenario will most likely exist
in the smart roads of developed cities for a long time in the future [3], which has also
aroused more scholars’” attention to the safety of mixed-driving scenarios [4]. As a key
component of the safety planning and navigation of self-driving vehicles (SDV), accurate
vehicle trajectory prediction is especially important to ensure driving safety in the internet
of vehicles. Vehicle trajectory prediction refers to that SDV perceives the distributed sur-
rounding traffic environment information through various sensing devices, and it predicts
its future trajectory according to the sensed information, such as scene structure, traffic
participant movements, and interaction among traffic participants [5]. Affected by many
factors such as the variability of the scene structure, the diversity of traffic participants and
the complexity of traffic participants interaction, the predicted trajectory is most likely mul-
timodal, and it is always with multiple reasonable trajectories. It is really a challenging task
to accurately perform multimodal trajectory prediction, which fully reveals the reasonable
future behavior space for the target SDV in the mixed-driving scenario [6,7]. The existing
trajectory prediction methods can be roughly divided into the following four categories:
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The first category of the trajectory prediction methods is based on probability statistics.
It assumes a certain correlation between the historical trajectory data and predicted trajec-
tory data, and it constructs a mathematical model to predict the future trajectory through
parameter estimation and curve fitting, including the Kalman filter-based trajectory pre-
diction methods [8-11], the hidden Markov trajectory prediction method combined with
wavelet analysis [12], the Gaussian mixture model-based trajectory prediction method [13],
the Bayesian network model-based trajectory prediction method [14] and more. Although
these above methods have achieved the desired prediction results, they are excessively
dependent on the quality of the original data and have problems such as poor robustness
and low accuracy.

The second category of the trajectory prediction methods is based on traditional
neural network, which always utilizes a neural network model to learn data features of
the historical trajectories and then make predictions [15-17]. Due to BP problems such as
slow convergence and local minimization trap, this category of methods is more suitable
for those simple prediction tasks with a relatively small data size. Moreover, in order to
ensure the prediction accuracy, the training data should have strong correlation, and the
appropriate structure of neural network should be selected carefully for overcoming the
over-fitting or non-convergence.

The third category of trajectory prediction methods is based on deep learning, which
evolved from the trajectory prediction methods based on neural network and can learn
more accurate data features of historical trajectories better, including unimodal predic-
tion [18-20] and multimodal prediction [21-31]. Unimodal prediction only outputs one
most likely trajectory, but it does not explore most of the other possible trajectory space,
which may usually lead to the unreliable prediction result. Multimodal prediction can fully
represent the possible behavior space of the target SDV, which is more suitable for making
trajectory prediction in a complex mixed-driving scenario. Several multimodal prediction
methods mainly utilize generative adversarial networks (GANSs) [21] or variational autoen-
coders (VAEs) [22,23] to generate multiple hypotheses from potential random variables
by sampling; however, they treat all predictions with equal probability and do not assign
a reasonable probability to each prediction. There is no doubt that some trajectories are
easier to occur than other trajectories. For example, the off-road event always happens
with the extremely lowest probability. To address the above critical problem, a multimodal
trajectory prediction (MTP) [24] is presented to predict multiple possible trajectories of
SDV along with different estimated probabilities. Since MTP can easily suffer from “mode
collapse” with a single mode output, MultiPath [25] is proposed to represent the pattern
using the fixed anchor obtained from the training set, and the residuals associated with
the anchor come out of its regression head. As with MTP, MultiPath uses a CNN with
the identical input; however, it only requires a forward inference to obtain multimodal
future distributions. By contrast, CoverNet [26] has the advantage of framing the trajectory
prediction problem as a classification of a set of different trajectories rather than regression,
which achieve performance improvements on MultiPath. The third category of trajectory
prediction methods can obtain better prediction results with higher precision as well as
adapt to more complex tasks with large amounts of data. However, there are still some
problems such as slow training speed, large memory consumption, difficult selection of
model parameters, poor interpretability, etc.

The fourth category of trajectory prediction methods is based on a hybrid model,
which can further improve the accuracy of output by integrating advantages of different
existing prediction methods. Multi-head attention with joint agent-map representation
(MHA-JAM) [27] is proposed to address the multimodal nature of the future trajectory by
applying multiple attention, considering the joint representation of static scenes and sur-
rounding traffic participants; each attention head can generate a different future trajectory.
Different from the previous rasterization method, the cxx [28] suggests integrating a lane
representation and lane attention module into a widely used encoder—decoder framework,
which can sample the coordinates of each surrounding lane in real time for the neural
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network to extract lane information and act as dynamic intent to produce diverse predic-
tions without modal crashes. A graph-structured model called Trajectron [29] is presented,
which can predict a number of potential future trajectories of many traffic participants
synchronously in a highly dynamic and multi-mode scene. However, it only reasons about
relatively simple vehicle models and past trajectory data without adding the available
environmental information. Therefore, a modular, graph-structured recurrent model called
Trajectron++ [30] is improved to produce dynamically feasible trajectory forecasts from
heterogeneous input data, which are incorporated by distinct semantic types of multiple
interacting participants. Socially Consistent and Understandable graph attention network
(SCOUT) [31] is a flexible and versatile high-level representation of the scene, which is
used to simulate interactions and predict the social congruent trajectories of vehicles and
vulnerable road users in mixed traffic conditions. The deep inverse reinforcement learning
is used for trajectory prediction [32], which uses a neural network to integrate motion and
environment to update the reward function.

The above-mentioned methods have achieved better performance, and especially
some methods based on hybrid models with deep learning have made great progress.
However, the traffic scenes’ context always contains rich feature information including a
series of past states from a single SDV to its all surrounding vehicles, and high-definition
map information, but the existing methods still have the weaknesses of inadequate feature
extraction and loss of contextual feature information as well as failure to fully and effectively
utilize the feature information of the traffic scene. Therefore, there is still the possibility
to further improve the accuracy and robust for trajectory prediction. In this paper, an
improved multimodal trajectory prediction method based on deep inverse reinforcement
learning has been proposed, and the main contributions are as follows:

(1) Itisvery necessary to accurately extract map features and historical sequence infor-
mation, since it always directly affects the downstream feature analysis and trajectory
prediction. In this paper, a fused dilated convolution module is introduced into the
existing multimodal trajectory prediction network, which can make a streamlined
improvement by expanding the perceptual field without ignoring local information
of the traffic scene and retaining the same or even higher generalizability compared
with the original network.

(2) Since the inverse reinforcement learning policy extracts the reward function from
expert presentation data, which can effectively solve the problem of the complexity
and difficulty of setting the reward function manually, in this paper, an improved
MaxEnt RL policy with inferred goals is applied into the existing multimodal trajectory
prediction network, which can alleviate the need for a predefined goal state and induce
distribution on possible goals.

(3) Itis very crucial to design a reasonable and effective sampling function that not
only affects the optimization process of the neural network but also determines the
effective utilization of feature information extracted from the dataset. In this paper, a
proposed correction factor is added into the existing multimodal trajectory prediction
network, which can encourage the generation of diverse trajectories by penalizing
pairwise distances with small differences, and this is more in line with the multimodal
characteristics of future trajectories.

In conclusion, our proposed improved method can more accurately predict the future
behavioral intention and trajectory distribution of surrounding vehicles by considering the
multimodal characteristics of vehicle behavior and trajectory and generating multimodal
trajectory predictions that conform to the scene structure. Especially, the premise of this
paper’s research is that high-definition semantic map information as well as surrounding
vehicle motion information are available. The trajectory prediction is performed within
a scene information focusing on a range of about 50 m. In some complex mixed traffic
scenarios where road testing facilities are not perfect or in-vehicle devices are scarce, the
method may ignore some scene element information and make unreliable predictions.
This paper is organized as follows: the background of trajectory prediction methods and
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our contributions are presented in Section 1; the preliminary work associated with the
multimodal trajectory prediction method is described in Section 2; Section 3 gives a detailed
description of our proposed method; Section 4 verifies the effectiveness of the proposed
method by abundant experiment analyses; and our conclusion and the future work are
presented in Section 5.

2. Preliminaries

In this section, several related works associated with the multimodal trajectory predic-
tion are briefly reviewed as follows.

2.1. Rasterization for the Traffic Scene

Rasterization for the traffic scene can rasterize high-definition maps and surroundings
as well as the estimated state of each traffic participant in the SDV’s vicinity, thus providing
complete context and the information necessary for the next two-stage backbone. The
rasterization for the traffic scene depicted in Figure 1 was first proposed by [33] and then
widely used in trajectory prediction as the input of the training networks [24-27]. The input
dynamic context relates to the state estimates include the following historical sequence
information that describes each of the traffic participants: position, velocity, acceleration,
heading, heading change rate, etc. The input static context relates to the mapping data of
an area from the high-definition map where the SDV is operating, comprising road and
crosswalk polygons, as well as lane directions and boundaries. Moreover, raster images
with motion information are often used for visualization.

Acceleration

Heading

!
|
|
|
|
|
: Velocity
|
|
|
|
|
|
|
|

Heading change rate

Input dynamic context Input static context Rasterization
Figure 1. Rasterization for the traffic scene.

2.2. Reward Initialization Based on Two-Stage Backbone

In order to effectively integrate dynamic and static context, the two-stage backbone
is usually utilized to approximate the potential reward function [24,26,32]. It can learn
a mapping from local features of the traffic rasterized scene for rewarding on a 2D grid.
Taking advantage of the equivariance of convolutional layers, the reward model can be
transferred to new scenes, which are configured with different scene elements.

Reward initialization based on a two-stage backbone is shown in Figure 2, where the
static context is the input to the first stage, and the generated feature maps are concatenated
with the motion features extracted from dynamic context. The proximate reward is the
output of the second stage. The first stage of the CNN usually consists of an ImageNet
pretraining block of ResNet-34 [34] as a extractor utilized to extract scene features, and it
manipulates the aerial view I of the static environment around the SDV:

(bI = CNNﬁrst(I) (1)



Electronics 2022, 11, 4097

50f16

Reward

Velocity M
" Xyl
Acceleration
Heading
Heading change rate
7

Dynamic context  Motion features

Figure 2. Reward initialization based on two-stage backbone.

The scene feature ¢y have the same dimensions as the 2-D grid, matching to state
space S. Additionally, the rewards are not only depended on the static context about scene
features, but also on the dynamic context about motion features of SDV. The motion features
¢\ can be obtained by combining the scene features, SDV’s motion information and grid
cells position [32]:

o = [lol, ] @

where |v| means the speed of SDV. x and y are the position of each grid cell in the SDV
reference, with the point of origin at the SDV’s current position and the positive direction
of the x-axis denoting the SDV’s current motion direction.

The second stage of the CNN usually uses a full convolutional block, which can map
the scene features and motion features to reward:

r= CNNsecond(d)I/ d)M) (3)

Although the two-stage backbone has achieved better results in recent studies, simple
convolutional pooling adopted in CNNj;,; may have the weakness of incomplete feature
extraction, tending to reduce feature extraction accuracy of the local information and
then ignore the effect of edge information on interactions between the target SDV and its
surrounding vehicles, which may further lead to subsequent unreliable predictions.

2.3. Reward Updating Based on MaxEnt RL Policy

Reward updating based on the MaxEnt RL policy is shown in Figure 3, which can
deduce and update the reward learned by a two-stage backbone and display different
plausible paths generated on the 2D grid.

The MaxEnt RL policy consists of two main algorithms [32]. One algorithm is the
approximate value iteration, which solves the current reward function and targets the state
received from the upper MaxEnt RL policy. The other algorithm is policy propagation,
which involves repeatedly calculating the state visitation frequencies (SVF) at each step of
the policy generation process. For the convergent reward model r, it can be sampled from it
to give predictions from the initial state to the target path on the 2D grid. Since the policy is
stochastic, there are multiple trajectories to reach the goal state.

Given the state sequences s(/), which sampled from the MaxEnt RL policy and repre-
sents the ith sample plans:

s) = [sgi), sg), eeey sg\i,)} 4)

The sampled plans trained to reach different plausible goal states S, and the state space
S is given by the following:

S = [s(i),s(i),. . .,s(i)} 5)
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Gradiant backpropagation
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Calculated SVF

Gradient calculation <€

Approximate value iteration
with inferred goals

A\ 4

MaxEnt RL policy

Policy sample

Figure 3. Reward updating based on MaxEnt RL policy.

The generation of existing MaxEnt RL policy relies on a predefined goal state, but
these goals are often required to be inferred and are unknown in most occasions.

2.4. Trajectory Generation Based on Attention Mechanism

The structure of the trajectory generator based on an attention mechanism is a soft
attention-guided recurrent neural network encoder—decoder [35]. There are four sub-
components, including a motion encoder, plan encoder, attention-based decoder and
sampling and clustering, as shown in Figure 4.

Step3:

Step4:

Attention decoding

\

» Sampling and Clustering r------------

A

Stepl:

FrrEr e
| o e
i SSEES
b
[Effassa - mmce
[EEagEEEs - EECE |
[LiagcESR ERE-E mE=anh
B
Reward
s® =[s11,s;,...,s;]
#(S")
S@ =[s7,57,...,5°]
Step2:
5] 2
#(S) » Plan coding
S™ =[sf 5y 58, ]
B
K Dynamic
oS context

» Motion coding

Predicted trajectory

Figure 4. Attention-based trajectory generator.
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For the first step, the motion encoder can utilize a gate recurrent unit (GRU) encoder
to encode the track history x, which is a snippet of the SDV’s nearest track history with
time Tj,.

x=[x_q,...,%t,..., X1, %) (6)

where x represents the dynamics of the SDV’s motion, x; maps the original position, velocity,
acceleration and yaw-rate of SDV, t denotes the forecast time, and the prediction moment
t=0.

For the second step, the plan encoder can utilize a bidirectional GRU (Bi-GRU) encoder
to aggregate status codes on the whole plan, which contains part of the scene feature,
surrounding SDV states and the sampling state sequences. The outputs ¢; of CNNg
from two-stage backbone is used as the state encodings. For surrounding SDV state, their
grid positions are populated with each of the SDV’s motion information. For each state

(i)

sy in a sampling plan s(/), context of the scene, SDV states and position coordinates at

(i)

mesh elements are embedded to s;,”, the outputs are concatenated to obtain state encoding
s = [57(11):|

For the third step, the output trajectories (/) are generated by a GRU decoder based on
the soft atteneion mechanism. The decoder can focus on a specific states of the sampled plan
s{)) when generating trajectories by plan. Therefore, the decoder can focus only the earlier
states of the sampling plan as it generates a slow moving SDV’s future trajectory. It can
also focus on the later states as well as generate a future trajectory with a fast moving SDV.

After a series of operations of motion encoding, plan encoding and attention-based
decoding, the sampled trajectories conditioned on the sampled plans are generated at
the fourth step. However, since sampling by itself is inefficient, it may generate several
identical or very similar sampled state sequences or trajectories. In order to obtain a concise
trajectory distribution, the K-means algorithm is usually used to further cluster the sampled
trajectories. The existing clustering algorithm [24,36] often iterates from randomly selecting
k centroids repeatedly until convergence, and the results may have a great randomness.
Each calculation will always lead to a different result because the initial randomly selected
central masses are different. Moreover, when the amount of data is too large, there is the
problem of relatively low time efficiency.

3. Proposed Method

To address the above problems, an improved multimodal trajectory prediction method
based on deep inverse reinforcement learning is proposed by introducing a fused dilated
convolution module into the convolutional reward policy component, improving the
reward update module by learning the state rewards of goals and paths separately as well
as adding correction factors for the function of the clustering algorithm in the sampling and
clustering module of the attention-based trajectory generator. Our proposed method can
expand the perceptual field without losing local information and further generate multiple
predictions which are closer to the real trajectory.

3.1. Architecture

The architecture of our proposed multimodal trajectory prediction method based on
deep inverse reinforcement learning is given in Figure 5. There are four components, in-
cluding the rasterization for the traffic scene, the reward initialization based on a two-stage
backbone, the reward updating based on MaxEnt RL policy and the trajectory generation
based on an attention mechanism.

The rasterization for the traffic scene is illustrated in Figure 5a, which consists of the
scene dataset as the input of the overall model framework, the rasterization module and the
status input module. The rasterization module extracts the static scene layout information
of the dataset as raster images, and the state input module extracts the motion features of
the dynamic scene in the form of vectors, both of which are used as inputs for the next part.
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Figure 5. Architecture of the improved multimodal trajectory prediction method. (a) Rasterization
for the traffic scene; (b) Reward initialization based on a two-stage backbone; (c) Reward updating
based on the MaxEnt RL policy; (d) Trajectory generation based on the attention mechanism.

Figure 5b shows the reward initialization based on a two-stage backbone, in which the
first stage uses the improved fused dilated convolution module to extract context features
from raster images and concatenates with state information as input to the second stage.
The second stage uses a path reward module and a goal reward module instead of a single
reward module.

The reward updating based on the MaxEnt RL policy given in Figure 5c first learns
the reward for the path and goal states conditioned on the historical trajectory of the
surrounding vehicles as well as a policy unconstrained by the predefined goal state. Then,
paths to different reasonable goals are generated in a 2D grid according to the policy
sampling. We use each state sequence sampled from the policy as a plan and input it to the
next section.

The trajectory generation based on an attention mechanism is shown in Figure 5d,
which adopts a recurrent neural network encoding-decoding method to first encode the
motion features and scene information, and the continuous-valued trajectory conditioned on
the sampling plan is output by the trajectory generator improved by adding correction factors.

3.2. Improved Fused Dilated Convolution Module

Since using raster images as the input to the neural network requires a relatively
large perceptual field to aggregate contextual information, the ordinary convolution block
reduces the accuracy of local information and ignores the effect of edge information on
the interaction of the SDV with surrounding vehicles, which may lead to unreliable pre-
dictions. To overcome the incomplete information extraction of raster images by CNNf.
in Section 2.2, an improved dilated convolution block is introduced into the original fully
convolutional reward policy module, and we replace the existing CNNj; block. Dilated
convolution [37] is a special convolution structure that can achieve an expanded field of
perception by adding the number of voids between the elements of the convolution kernel.
As in Figure 6, a 5 x 5 image is convolved twice with 3 x 3 ordinary convolution, and a
1 x 1 feature map is obtained after convolution. As in Figure 7, a 3 x 3 dilated convolution
with the expansion factor of 2 convolves the original 5 x 5 image once a 1 x 1 feature map
is also obtained. It can be seen that the dilated convolution achieves a large perceptual field
using a small number of parameters.

33 convolution 3x3 convolution

First result Second result

Original image

Figure 6. Process of 3 x 3 ordinary convolution twice.
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3x3 dilated convolution

RN

Dilated

convolution

Original image result

Figure 7. Process of 3 x 3 dilated convolution with the expansion factor of 2.

For the better deployment of deep neural networks to self-driving cars, it is necessary
to reduce the number of model parameters and decrease the complexity of the network.
Inspired by the design ideas of lightweight neural networks such as MobileNet [38] and
SqueezeNet [39], 1 x 1 pointwise convolution has the property of equalizing the receptive
field, and it is commonly used for the operation of neural network dimensional variation,
with the characteristics of less parameters and less computation. We combine the dilated
convolution with 1 x 1 pointwise convolution to generate an improved dilated convolution
lightweight module. It is worth noting that too much use of dilated convolution to lighten
the neural network may bring a large loss and lose some feature information. Therefore,
an improved fused dilated convolution structure can be obtained by fusing the proposed
dilated convolution block with the original residual convolution block, as shown in Figure 8.
It may obtain the lightweight effect without increasing the loss of accuracy as well as
achieving better trade-off between speed and accuracy.

64-d

64-d 64-d

A4
3x3,128 1x1,16
(Conv) (pointwise Conv)

BN BN
l Relu chlu
3%3,128 3x3,128
(Conv) (dilated Conv)

128-d

Figure 8. Improved fused dilated convolution module.

3.3. Improved MaxEnt RL Policy Module with Inferred Goals

We would like to relax the requirement of pre-defined goals in the MaxEnt RL in
order to make the policy generalizable to various scenarios. The MaxEnt RL policy should
explore potential goal states instead of terminating at the pre-defined goals. Therefore, we
propose sample paths that end at different goals in the scenario by learning path and goal
state rewards.

We divide the second stage full convolution module in Section 2.2 into two parts, learn-
ing the goal reward and the path reward, respectively. Specifically, the goal reward module
and the path reward module have the same architecture consisting of three 1 x 1 convolu-
tional layers. As shown in Figure 9, there are two layers with depth 32 and the one layer
with depth 1 to output a single corresponding reward. Then, the log-sigmoid activation is
utilized for the output, limiting the reward values between —oo and 0.
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| 64-d

A 4 A 4
1x1,32 1x1,32
(Conv) (Conv)

l Relu l Relu
1x1,32 1x1,32
(Conv) (Conv)

l Relu l Relu
1x1,1 1x1,1
(Conv) (Conv)

Q) Q) Siemo;
‘\i/‘ \S/‘ Sigmoid
Path reward Goal reward

Figure 9. Path and goal reward module.

Due to the large amount of model data, the execution time may be very high. With the
emergence of parallel and distributed simulation ways, it uses the considerable memory
and high processing power of multiple execution units to effectively handle large-scale
simulation [40]. Inspired by this, we use the stochastic parallel gradient descent algorithm
to calculate the back propagation gradient by computing the state visitation frequency. The
core idea of the parallel gradient descent algorithm is to use multiple processors to compute
the gradient using their own data separately, select the negative gradient direction of the
objective function as the search direction for each iteration step, and finally implement
parallel computation of gradient descent by aggregation or other means to accelerate the
model training process.

3.4. Improved Attention-Based Trajectory Generator with Correction Factor

Most of the existing methods [24,36] often utilize the ordinary Euclidean distance
formula to accomplish a clustering task, but it cannot work well to address the problem
described in Section 2.4. To alleviate the redundancy for the sampling process and avoid
being prone to produce similar or duplicate trajectories, we apply the diversity sampling
technique Dlow [41] to our trajectory sampling, which can improve the diversity of tra-
jectory sampling and avoid similar samples due to random sampling. Our proposed loss
function with the addition of correction factors is given in the following equation:

T
~(k
Loss = min = " -l
N T ?
K(K—1)k1:l K Zky 0y

where y©T is the ground true future trajectory of the target SDV and oy, is a scaling factor.
The first term is the minimum mean displacement error to let the sampled trajectories 7(¥)
be close to trajectories y°T. We add a second term to penalize trajectories with semblable
trajectories to encourage the generation of diverse sampling trajectories The prediction
trajectory with smaller similarity takes a larger proportion in the whole loss function; we
obtained diversity trajectory by training the smaller loss function.

To speed up the convergence of the trajectory generator, we pretrain the module
with minimizing the average displacement error between the ground real and forecast
trajectories. Specifically, we train the trajectory generator using Adam [42] with a learning
rate of 0.0001.
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4. Experimental Analysis

The experimental hardware configuration and other environment settings are shown
in Table 1.

Table 1. Experimental hardware and environment settings.

Parameter Name Parameter Content
Computer model Lenovo 30BBASMOCW desktop computer
Operating system Windows 10 Professional 64-bit
CPU Intel Xeon Gold5118 @ 2.30 GHz (X2)
GPU Nvidia Quadro RTX 5000 (16 GB)
Python 3.8.8
Pytorch 1.10.0
CUDA 10.2
cuDNN 7.0

4.1. Dataset

In order to verify the effectiveness of our improved method, the relevant metrics
are evaluated on the public dataset. Table 2 shows the common datasets for trajectory
prediction, and we finally select the current mainstream public dataset nuScenes [43]
released in 2019. The nuScenes dataset contains 1000 complex urban traffic scenes captured
by in-vehicle cameras and LiDAR sensors passing through Boston and Singapore, which
are given in Figure 10. Each scene was recorded in approximately 20 s, has 40 keyframes
annotated at 2 Hz, and contains up to 23 semantic objects as well as 11 instances. In this
paper, the official split benchmark of the nuScenes prediction challenge is used to train
and evaluate our proposed method, with 32,186 prediction instances in the training set,
8560 instances in the validation set, and 9041 instances in the test set.

Table 2. Trajectory prediction related datasets.

Dataset Release Time Data Scale Perspective Scenes Remark

It used to be the most popular dataset in

4 scenes, 9206 vehicles, this field, but the research found that

5071 km driving

NGSIM 2006.12 . top view highway, city road there are problems such as insulfficient
d1s::1cr1(;:re(iiil74t}i1rrt1(e)tal precision and coordinate drift, and it is
& rarely used at present.
3 video clips A classic pedestrian dataset, suitable for
ETH 2008.6 1804 imag}e)s’ vehicle view city road computer vision tasks and social

behavior modeling.

Video taken by drones across the
Stanford campus, including pedestrians,
vehicles, bicycles and other
traffic participants.

8 scenes, 19,000 targets,
Stanford Drone 2016.8 185,000 tagged target top view campus
interaction messages

6 scenes, A large dataset of natural vehicle
110,000 vehicles, 45,000 trajectories on German highways,
HighD 2018.10 km driving distance, top view highway suitable for driver model
447 h total parameterization, autonomous driving,
recording time and traffic pattern analysis.

1000 scenes, 1.4 million The first publicly available full-sensor
camera images, . . . dataset, large enough for research on

nuScenes 20193 390,000 LiDAR scans, vehicle view city road sensor suites. It is widely used in
1.4 million radar scans various fields of autonomous driving.

4.2. Metrics

Similar to previous multimodal trajectory prediction methods [24-33], we evaluate
our method by using a series of common evaluation metrics from the nuScenes Official
Challenge: E,ye means the minimum average displacement error, Eg,, represents the
minimum final displacement error, Rpss is the miss rate, and R, is the off-road rate.
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Figure 10. High-definition semantic maps of the nuScenes dataset. (a) Singapore Queenstown;
(b) Boston Seaport; (c) Singapore One North; (d) Singapore Holland Village.

Eave and Egp,) for a sample of K trajectory predictions for the target SDV are respec-

tively given by: .
1 . o (k
Eave = pminf1 ) 19 = yE7, ®)
t=1
E.. — inK 1K) _ GT 9
final (K) mmk:l”]/t Yt H2 )

where E,ye is defined as the Euclidean distance (i.e., 2-Norm) between the true and pre-
dicted trajectories.

For a given undetected distance 4 and the predictd K most likely fulture trajectories,
the missing detection determination formula is presented in Equation (10):

. T, . (k
U minfy (max 2 yeT = 9)) = d

0 otherwise

Rmiss(K,d) = (10)

Furthermore, R is used to measure the proportion of predicted tracks falling outside
the drivable area of the map [44].

4.3. Experimental Comparison and Analysis

We compare our proposed method with several baseline methods that represent the
latest techniques in multimodal trajectory prediction. As shown in Table 3, we list the
results considering each method to generate the K most probable trajectories.

Specifically, we evaluated E,yex) and Eginaik) at K = {5,10}, Riniss(k,a) at K =1{5,10} d = 2,
and R, We compared the proposed model with other existing methods, and according to
the different assessment methods, there may be large differences in the ranking method.
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Table 3. Comparative analysis on nuScenes dataset over a prediction horizon of 6-s.

Method Eave(s) Eave(10) Efinal(s) Efinal10) Rmiss(5,2) Riniss(10,2) Rt
Physics oracle [26] 3.69 3.69 9.06 9.06 0.91 091 0.12
CoverNet [26] 2.62 1.92 - - 0.76 0.64 0.13
MTP [24] 2.44 1.57 4.83 3.54 0.70 0.55 0.11
M-SCOUT [31] 1.92 1.92 - - 0.78 0.78 0.10
Trajectron++ [30] 1.88 1.51 - - 0.70 0.57 0.25
Multipath [25] 1.78 1.55 3.62 2.93 0.75 0.74 0.36
MHA-JAM [27] 1.81 1.24 3.72 2.21 0.59 0.45 0.07
oxx [28] 1.63 1.29 - - 0.69 0.60 0.08
Ours 1.49 1.13 3.06 2.06 0.64 0.45 0.03

Compared with the previous physical oracle model, the classical MTP method has
been significantly improved in various indicators. With the popularity of vehicle trajectory
prediction research, more and more scholars participate in it. Our proposed method
performs better than other methods in six of the seven reported metrics. MHA-JAM
achieves the best performance result in the metric of Rpjgs(5,2), Which shows the effectiveness
of the multi-head attention with joint agent-map representation method. The metric
Runiss(10,2) has the similar effect as the MHA-JAM method, which illustrates that our method
can generate diverse trajectories. The lower Ry,;ss indicates that our predicted trajectory
is unlikely to diverge from the true trajectory within the d = 2 m threshold range. The
metrics of Efina)(5) and Eginal(10) are also reported, respectively, which reveal that our method
is superior to other baseline methods by indicating a better prediction of the goal path
of the predicted trajectory. In addition, our method possesses a significantly lower value
of R, which affects predictions outside the drivable area. Therefore, our method can
generate better trajectory predictions that are more consistent with the basic structure of
the traffic scenario.

Several visualization examples of our proposed method from the nuScenes dataset are
shown in Figure 11, in which Figure 11a is the raster image input. In order to distinguish the
lane direction, lanes are given polygons of different colors, with red rectangles representing
the target vehicle and yellow rectangles representing the surrounding vehicles. Since
we are interested in the vehicle’s historical trajectory, the boundary frames captured in
continuous time steps are rasterized at the map vector layer. Each historical character
polygon is rasterized using the same color as the current polygon, but the brightness
level is reduced to create a render effect. Figure 11b,c are path state visitation frequencies
images and target state visitation frequencies images under the maximum entropy policy,
respectively. The higher the brightness, the greater the visitation frequency. The aggregated
trajectories finally generated by the trajectory generator are shown in Figure 11d, with the
red trajectory representing prediction trajectories and the black trajectory representing the
real future trajectory. The prediction does not reflect the collision. Singapore, where the
dataset is collected, drives on the left, while Boston, another collection place, drives on the
right as in China. Therefore, we infer that the first scene in the visual vehicle trajectory
prediction is collected by Boston, and the other four scenes are collected by Singapore. It can
be found that for different scenario configurations, the MaxEnt policy explores plausible
paths and goal states in a 2D grid. The predicted trajectories closely correspond to the
state of policy exploration and can generate a set of predictions compatible with various
scenario configurations.
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——True future —s—Predictions

(d)

Figure 11. Visualization examples from nuScenes. (a) Raster image input; (b) Path SVF images;
(c) Goal SVF images; (d) Predicted trajectories.

5. Conclusions

In this paper, we propose an improved multimodal trajectory prediction method based
on deep inverse reinforcement learning. The validation results on the publicly available
nuScenes dataset show that our method can fully consider the scene contextual features
and generate a variety of trajectory predictions that can match the basic structure of the
scene better. Compared with the existing baseline methods, our method can obtain good
results for several metrics. In particular, the R metric is significantly better than other
methods, which emphasizes that the predicted future trajectories more conform to the
scene structure.

Although our method utilizes scene rasterization as the input scene information of the
neural network for feature extraction and achieves better results in trajectory prediction,
scene rasterization may suffer from inefficient coding, long training time, and a loss of
connection information due to occlusion. Exploring the use of graph neural networks to
represent traffic scene information with fewer parameters to achieve advanced performance
will be part of our future work.
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