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Abstract: The aim of webly supervised fine-grained image recognition (FGIR) is to distinguish
sub-ordinate categories based on data retrieved from the Internet, which can significantly mitigate
the dependence of deep learning on manually annotated labels. Most current fine-grained image
recognition algorithms use a large-scale data-driven deep learning paradigm, which relies heavily
on manually annotated labels. However, there is a large amount of weakly labeled free data on the
Internet. To utilize fine-grained web data effectively, this paper proposes a Graph Representation
and Metric Learning (GRML) framework to learn discriminative and effective holistic–local features
by graph representation for web fine-grained images and to handle noisy labels simultaneously,
thus effectively using webly supervised data for training. Specifically, we first design an attention-
focused module to locate the most discriminative region with different spatial aspects and sizes.
Next, a structured instance graph is constructed to correlate holistic and local features to model the
holistic–local information interaction, while a graph prototype that contains both holistic and local
information for each category is introduced to learn category-level graph representation to assist in
processing the noisy labels. Finally, a graph matching module is further employed to explore the
holistic–local information interaction through intra-graph node information propagation as well as to
evaluate the similarity score between each instance graph and its corresponding category-level graph
prototype through inter-graph node information propagation. Extensive experiments were conducted
on three webly supervised FGIR benchmark datasets, Web-Bird, Web-Aircraft and Web-Car, with
classification accuracy of 76.62%, 85.79% and 82.99%, respectively. In comparison with Peer-learning,
the classification accuracies of the three datasets separately improved 2.47%, 4.72% and 1.59%.

Keywords: webly supervised learning; fine-grained image recognition; graph representation learning;
graph metric learning; noisy data

1. Introduction

Aiming at distinguishing sub-ordinate categories, FGIR has attracted increasing atten-
tion because it benefits various applications ranging from daily life to intelligent industry.
Most algorithms currently use a deep learning paradigm driven by high-quality data to
distinguish subclasses, which relies heavily on large-scale, manually labeled data. There-
fore, it may not be possible to apply them to realistic applications. Alternatively, there is a
large amount of weakly labeled data on the Internet that can be used to train models to
alleviate the reliance of current fine-grained recognition algorithms on human annotation.
To this end, much work has been devoted to solving fine-grained image recognition in
webly supervised scenarios [1,2]. However, the inclusion of a certain percentage of noisy
labels in the web-retrieved data can adversely affect the training of the model. In addition,
the inherent small inter-class variance and large intra-class variance in fine-grained images
further increase the recognition difficulty [1].
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To address the existing challenges, it is necessary to learn effective feature representa-
tions from noisy data that can characterize fine-grained images, following two important
aspects: samples from different subclasses are always similar in the whole and the differ-
ences between them are usually located in specific local regions. Therefore, it is crucial to
accurately locate discriminative local regions. On the other hand, noisy labels can seriously
impair model training. Thus, it is critical to correct incorrectly annotated samples and
exclude out-of-distribution (OOD) samples. To help discover noisy labels, current webly
supervised learning works rely on label or feature consistency to discover noisy labels
[2]. Recent algorithms also adapt these strategies to address the webly supervised FGIR
task and achieve positvie progress [1]. However, all these works merely utilize holistic
features while ignoring local information that is crucial for the FGIR scenarios, limiting
their performance in real-world applications.

In this paper, a graph representation and metric learning framework is proposed
to learn instance-level and category-level graph representations to capture the holistic–
local information of each instance and category and their interactions, while evaluating
their similarity to help correct for noisy labels and discover OOD samples. The proposed
framework first exploits an attention module to automatically extract discriminative local
regions from the image and uses the holistic features with these local regions to initialize
the nodes of the instance graph. Second, introducing graph prototypes with the same
structure as the instance graph for each category, which are updated by moving average
using the instance graph according to the category of the samples. Finally, the graph
matching module is used to explore the interaction between holistic and local features
through the propagation of graph node information on the one hand and to measure the
similarity between the instance graph and the corresponding category graph prototype to
effectively help correct the noisy labels and remove OOD samples on the other hand.

2. Related Work
2.1. Fine-Grained Image Recognition

The task of fine-grained image recognition is to distinguish sub-ordinate categories.
This is challenging, mainly because inter-class differences between fine-grained classes
tend to be subtle and localized, while intra-class differences may appear large due to
differences in gesture and color [1]. Therefore, a key to fine-grained recognition is to
discover and represent discriminative local regions. In recent years, a large number of
research works have proposed to use important local regions of images to improve the
recognition ability of fine-grained images. Roughly speaking, these works can be divided
into two groups. The first group is to use artificially additionally annotated bounding boxes
and components to localize discriminative regions in fine-grained images, such as using
artificial localization of local appearance features likes face and eyes and combine them with
global features for breed classification of dogs [3]. Experimental results show that precise
positioning can provide more effective fine-grained features, which can greatly improve
classification performance. The second group uses an unsupervised way to automatically
locate discriminative regions in fine-grained images. For example, a reinforcement learning-
based fully convolutional attention local network is proposed to adaptively focus on
discriminative regions in images and the greedy reward strategy for image-level labels is
used to train the framework to obtain better recognition result [4]. These algorithms rely
on deep neural networks that require large-scale manual annotation data. However, the
cost of collecting such data is very high, especially for fine-grained images, which require
specialized knowledge to accurately label. In contrast, there are many weakly labeled
images on the Internet, which can be used to optimize fine-grained recognition models
without manual annotation.

2.2. Webly Supervised Learning

The aim of webly supervised learning is to capture effective feature representation
from free web data. However, it is a challenge due to label noise and data bias [1]. In



Electronics 2022, 11, 4127 2 of 11

recent years, learning from networked data has become increasingly popular and many
works have been dedicated to solving this problem. Ref. [5] introduces a deep denoising
network that combines bag-level MIL and attention-based instance-level MIL to filter out
noise in web-supervised datasets, but such method cannot be trained end-to-end, which
limits the application in practical scenarios. Ref. [6] utilizes a combination of multiple
instance learning (MIL) and memory modules to solve label noise and background noise in
noisy data. Ref. [2] employs momentum prototypes and contrast loss for label correction
and Ref. [6] proposes to learn category-level feature-consistent representations through
image-level feature contrast loss to help correct nosiy labels. However, few of these works
have been specifically designed for fine-grained image recognition of scientific importance
and application. To the best of our knowledge, the only existing work [1] proposes to
cross update two parallel networks using “easy” and “hard” examples, thus alleviating the
cumulative error during training the fine-grained recognition models with webly learning.
Different from these works, we propose a graph representation and metric learning (GRML)
framework to capture category-level holistic–local features by learning corresponding
graph prototypes for each class, while using the learned category-level graph prototype
features to help correct noisy labels and outlier samples, so as to achieve end-to-end
processing of noisy data and training of classification model.

3. Methodology

In this section, we introduce the graph representation and metric learning (GRML)
framework, which models the holistic–local information for each instance by learning the
graph representation and builds graph prototype for each category to model the holistic–
local information, as well as helping to correct noise labels and exclude OOD samples by
measuring similarities between graph representation and graph prototypes. As shown in
Figure 1, For a given sample input {xi, yi}, where xi is the input image data and yi is the
image label. First, we obtain the holistic features using the feature extractor (CNN), then
we extract the discriminative local regions from the image using the attention module and
the holistic features associated with these local regions are used to initialize the instance
graph nodes. At the same time, a graph prototype is introduced for each category and
updated by moving average. Finally, the graph matching module is used to mine the
holistic–local feature interaction through the propagation of graph node information and
measuring the similarity between the instance graph and the corresponding category graph
prototype, then evaluate their similarities to effectively help correct the noisy labels and
exclude OOD samples.
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Figure 1. An overall illustration of the proposed GRML framework. It consists of two crucial modules,
i.e., attention-focused and graph matching modules. The attention-focused module first locates local
regions with different sizes and aspects that cover the most discriminative contents. Meanwhile,
the graph matching module is used to explore information interactions to learn instance-level and
category-level graph representation, as well as their matching to correct the noisy labels and exclude
OOD samples.
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3.1. Attention Module

As mentioned above, discriminative local regions play a key role in fine-grained image
recognition. Inspired by [7], areas with larger response values in the feature map are more
likely to be discriminant parts. We propose to utilize an attention module to automatically
locate and extract the discriminative region features of images. To be more specific, we
pass the holistic image features fg obtained from the feature extractor (CNN) through a
convolutional layer with a convolutional kernel size of 3 ∗ 3 and all parameters of 1/9 to
compute a mean filtered feature map f ′g and then calculate the mean value of each position
(w, h) based on the number of channels in the feature map f ′g to obtain the feature map
f avg
g . Finally, we search for the maximum response value area in the feature map f avg

g and
locate its coordinates as (i, j); the specific formula is as follows:

f avg
g =

∑C
n=1 f

′
g(:, :, n)
C

(1)

(i, j) = argmax
w,h

f avg
g (2)

Here , W, H and C are the width, height and channel number of the feature map f ′g
and argmax

w,h
represents the row and column corresponding to the search for the maximum

value. Then, based on the obtained coordinate positions (i, j), multiple local regions with
varying area sizes and aspect ratios are intercepted in the feature map fg which is centered
on it. In this experiment, three different area sizes S1, S2, S3 and three different aspect ratios
A1, A2, A3 are set. Finally, a set of regions R will be generated to fully capture information
about discriminating subtle locations in the image.

R = {r1, r2, r3, r4, r5, r6, r7, r8, r9} (3)

To facilitate the construction of subsequent graphs and data processing, the R local
regions of different sizes are transformed into the same dimension W ∗ H ∗ C by bilinear
interpolation. Then, using adaptive global average pooling to reduce the dimension of
holistic features and local features to the C-dimension feature vector as the node embed-
dings VXi =

{
f1, f2, f3, f4, f5, f6, f7, f8, f9, fg

}
. In addition, we use an edge embedding layer

to explore the relationship between two adjacent nodes as the edge embeddings exi ,m,n,
where m and n represent the indexes of two adjacent nodes. Finally, an instance graph
Gxi = {Vxi , Exi} is constructed, where Exi = {exi ,m,n}M−1

m,n=0 denotes the edge embeddings
of any two adjacent nodes in the graph. The specific formula is as follows:

exi ,m,n = fedge(vxi ,m||m̂||vxi ,n||n̂) (4)

Here, ·||· represents the connection operation of two vectors, fedge() is the edge em-
bedding layer, m̂ and n̂, respectively, which represents the one-hot vector with subscript m
and n being 1. The introduction of m̂ and n̂ aims to construct the spatial structure between
global-local features.

3.2. Graph Prototype

To correct the noise labels and exclude OOD samples so as to alleviate the impact of
noise data on network training, a category-level graph prototype is introduced for each
class. For each category K, a graph prototype Gk = {Vk, Ek} is constructed with the same
structure as the instance graph and is initialized to 0. To better learn the feature consistency
of each category, the graph prototype is updated by moving the average in the subsequent
training process. The specific update method is as follows:

Vk ← mVk + (1−m)Vxi ∀i ∈ {i|yi = k} (5)
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Ek ← mEk + (1−m)Exi ∀i ∈ {i|yi = k} (6)

Here, m is the weight coefficient, which is set to 0.999 in the experiment.

3.3. Graph Matching Module

For input samples of the same category, their features have common characteristics.
Inspired by [8], a graph matching module is introduced in this paper to propagate infor-
mation on instance graph nodes and measure the graph-level similarity between instance
graphs and their corresponding category graph prototypes. As shown in Figure 2, the
graph matching module consists of a graph propagation layer fθp(), a graph interaction
layer fθi (), a graph update layer fθu() and a graph aggregation layer fθa(), where θp, θi,
θu and θa, respectively, represents the parameters of each layer of the network. Through
the graph matching module, the intra-graph and inter-graph information of each instance
sample and its corresponding class graph prototype can be fully utilized and the similarity
between them can be measured, so as to learn a more category-discriminative graph-level
feature representation.
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Figure 2. An overall illustration of the graph matching module. The graph matching module is used
to propagate information to the nodes of the instance graph and measure the graph-level similarity
of the instance graph to the corresponding category diagram prototype.

3.3.1. Graph Propagation Layer

To make full use of intra-graph information for each graph [9,10], we compute an intra-
graph node representation for each node within the graph by propagating all its neighbor
node embeddings along the edge embedding to explore information interaction within
each graph. Specifically, take Gxi = {Vxi , Exi} as an example; for each node m ∈ [0, M− 1],
we first concatenate its node features vxi ,m with the adjacent node vxi ,n and their edge
embedding exi ,m,n together, then the nodes information propagates in the graph through
a graph propagation layer fθ(). Finally, all neighborhood information are aggregated as
vintra

xi ,m in the graph by an average manner; the specific formula is as follows:

vintra
xi ,m =

1
M ∑

n∈[0,M−1]
fθp(vxi ,m||vxi ,n||exi ,m,n) (7)

For each category of graph prototypes, the same method is used to obtain the node
representation vintra

k,m after the propagation of node information in the graph. After the
instance graph passes through the graph propagation layer to complete the interaction
between the holistic and local features, one of the branches concatenates the features of
nodes from the instance graph and uses a fully connected layer to obtain the instance-level
feature representation and feed them into the classifier for classification prediction.

3.3.2. Graph Interaction Layer

To make full use of the cross-graph information, we introduce a graph interaction layer
to measure how well a node in one graph (e.g., Gxi ) matches one or more nodes in another
graph (e.g., Gk) and then calculate a cross-graph node representation vcross

xi ,m for each node
vintra

xi ,m . Specifically, we first consider graphs Gxi and Gk as inputs to the graph interaction
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layer. Then, the similarity score of nodes across graphs is calculated by computing the
inner product of their node features vintra

xi ,m and vintra
k,n , where m, n ∈ [0, M− 1]. Finally, the

similarity score is regarded as a weight assignment, resulting in a new cross-graph node
express vcross

xi ,m and vcross
k,m . The specific formula is as follows:

vcross
xi ,m = ∑

n
vintra

k,n
exp(vintra

xi ,m · v
intra
k,n )

∑
n

exp(vintra
xi ,m · v

intra
k,n )

(8)

vcross
k,n = ∑

m
vintra

xi ,m
exp(vintra

xi ,m · v
intra
k,n )

∑
n

exp(vintra
xi ,m · v

intra
k,n )

(9)

3.3.3. Graph Update Layer

Following the graph propagation layer and graph interaction layer, the node feature
vintra

xi ,m after information exchange in the graph and the node feature vcross
xi ,m through informa-

tion propagation between graphs can be obtained. Then, a graph update layer fθu() is used
to fuse the information after intra-graph propagation and inter-graph propagation. Specifi-
cally, we concatenate information from the graph propagation and graph interaction layers
and pass it through the graph update layer to obtain the graph node feature representation
after the fusion of graphs Gxi and Gk. The formula is as follows:

vupdate
xi ,m = fθu(vintra

xi ,m ||v
cross
xi ,m ) (10)

vupdate
k,n = fθu(vintra

k,n ||v
cross
k,n ) (11)

3.3.4. Graph Aggregation Layer

To measure the similarity at the graph level, the nodes of graph Gxi and graph Gk are
aggregated, respectively, after the graph update layer; specifically, we concatenate all the
node information in the graph and pass it through the graph aggregation layer to obtain the
aggregated information, and the aggregated feature vectors are encoded as feature vector
representations fxi and fk; the specific formula is as follows:

fxi = fθa(v
update
xi ,0

||vupdate
xi ,0

· · · vupdate
xi ,m ) (12)

fk = fθa(v
update
k,0 ||vupdate

k,0 · · · vupdate
k,m ) (13)

3.3.5. Similarity Measure

Finally, the cosine similarity between the two feature vectors fxi and fk is calculated
with the following formula to measure the similarity score between the graph Gxi and the
graph Gk:

Sk = cosine( fxi , fk) =
fxi · fk

|| fxi || · || fk||
(14)

After repeating the above operation C times, where C is the number of categories,
the similarity S = {s1, s2, s3, ..., sc} between the input sample xi and all category graph
prototypes can be obtained. If the category of the graph prototype Gk is the same as the
category of the instance graph Gxi , the similarity score Sk will be close to 1; otherwise, it
will be close to 0. So it can be expressed as a graph matching task and a graph matching
loss function is introduced for training as follows:

Li
pro =

K

∑
k=1

lins,k
pro (15)
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lins,k
pro =

{
1− Sk, yi = k

1 + Sk, otherwise
(16)

3.4. Noise Correction

This paper adopts a simple and effective method to correct noisy labels and remove
OOD samples during training. For each instance sample, a pseudo-label is obtained by
combining the classifier output probability distribution pi with di, where di is the class
probability distribution after the similarity score S is normalized by Softmax. The formula
is as follows:

qi = αpi + (1− α)di (17)

dk
i =

exp(sk/τ)

∑K
k=1 exp(sk/τ)

(18)

Here, τ is a temperature coefficient and the noise label correction and OOD samples
are removed according to the following rules: (1). If the maximum score of qi is higher
than the set threshold T, the category with the highest score is used as the pseudo-label; (2).
If the score of the original label C is higher than the average probability of the class, the
original label is retained; (3). In the rest of the cases, it is marked as an outlier sample. It is
expressed in detail as follows:

y
′
k =


argmaxk qk

i , if maxk qk
i > T,

yi, else if qyi
i > 1/k,

OOD, otherwise.
(19)

3.5. Optimization

In addition to the graph matching loss function, this paper also uses a categorical
cross-entropy loss:

Li
cls = −

k

∑
j=1

yi · log(pij) (20)

where p is the predicted score of the classifier and y is the sample label or generated
pseudo-label. The classification loss and graph matching loss of this framework are trained
in an end-to-end fashion to achieve more accurate classification result using holistic–local
features and graph prototypes. The final optimization objective loss function is defined
as follows:

Li = Li
cls + λpro · Li

pro (21)

Here, Li
cls is the Categorical cross-entropy loss, Li

pro is the graph matching loss, and
λpro is the Weight coefficient of the Categorical cross-entropy loss.

3.6. Implementation Details
3.6.1. Network Architecture

Referring to [11], we also use the ResNet50-variant [12] as our backbone CNN, which
consists of four block layers to extract features. Given an input image of size 448 × 448, we
can obtain a feature map of 14 × 14 × 2048 from the fourth layer. For holistic features, we
transform it into a feature vector of 2048 dimensions by adding an average pooling layer.
For local features, we first use attention-focus to obtain nine regions around a discriminative
area on a feature map, then adopt bilinear pooling to transform them into a fixed size 14 ×
14 × 2048. Finally, an average pooling layer is used to transform them into feature vectors
of 2048 dimensions. The fully connected layer with a single output channel of 512 is used
as the edge feature embedding layer fedge(). For the graph matching module, two fully
connected layers are used as the graph propagation layer fθp() and the output channels
are 1024 and 2048, respectively. Then, a fully connected layer with a single output channel
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number of 2048 is used as the graph update layer fθu(). Finally a fully connected layer with
a single output channel number of 2048 is used as the graph aggregation layer fθa().

3.6.2. Training Details

The experiment is programmed using the PyTorch deep learning framework in python
3.6 under the Linux system. In terms of hardware, the CPU is the Intel Core i7-7800X and
the GPU is the GTX 1080 Ti. We train the GRML framework in two stages. We initialize the
parameters of the backbone with pre-trained parameters from the ImageNet dataset and
the parameters of other layers are initialized randomly. In the first stage, we train the entire
framework using the original labels. During training, we perform optimization using the
stochastic gradient descent (SGD) algorithm with a batch size of 16, a momentum of 0.9 and
a weight decay of 0.0001. We use the cosine annealing learning rate and the initial learning
rate is set to 0.001. It is trained with 20 epochs. In the second stage, we will correct the noisy
labels and remove the OOD samples, while the removed OOD samples will not participate
in the final loss calculation. The temperature parameter τ is set to 0.1. The epoch is set to
80 in the second stage while other hyperparameters are the same as the first stage.

4. Experiments
4.1. Datasets

We conduct experiments on the benchmark dataset WebFG-496 [1] as the noisy source
data which consist of three sub-datasets: Web-Bird, Web-Aircraft and Web-Car. The cate-
gories of these three webly supervised fine-grained benchmark sub-datasets correspond
to CUB200-2011 [13], FGVC-Aircraft [14] and Stanford Cars [15]. The training sets of
WebFG-496 were obtained from the web retrieval of the corresponding categories, while
the validation sets in CUB200-2011, FGVC-Aircraft and Stanford Cars were used as the
validation data. The details of the dataset can be seen in Table 1.

Table 1. This is the number of categories, the number of images and the estimation accuracy(%) of
training images for each subdataset, where the estimation accuracy is estimated using a subset of
random sampling.

Dataset Sub-Dataset Classes Training
Image

Dataset
Accuracy

Verifying
Image

WebFG-496
Web-Bird 200 18388 65 5794

Web-Aircraft 100 13503 73 3334
Web-Car 196 21448 67 8041

4.2. Comparisons With the Existing Algorithms

The proposed GRML framework is compared with the existing representive models
on three datasets. To conduct a comprehensive comparison, the comparison objects are
divided into three categories. The first category is the basic models such as VGG-16 [12],
ResNet-50 [16], GoogLeNet [17] and other models. This type of model does not process
noisy data during training but treats them as a correct sample, which may mislead the
training of the model. For example, the average accuracy of the best performing VGG-19 is
only 68.63%. The second category is designed for web supervision scenarios represented
by Decoupling [18], Co-teaching [19], Hanand PENCIL [20], which mainly deal with noisy
data through network consensus among multiple networks. Compared with the basic
model, this kind of model has an obvious improvement in classification performance.
However, such models do not consider removing outlier samples that have the greatest
impact on model training in noisy data. The third category is designed for web supervision
fine-grained recognition scenarios represented by Peer-learning [1]. It mainly extracts
overall features and processes noisy data through simple label consistency. Similarily, this
model does not deal with outlier samples. Different from the above three types of models,
the GRML framework proposed in this paper introduces graph prototypes and considers
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the interaction of holistic–local information so as to more effectively correct noisy labels
and remove outlier samples.

The comparison results are shown in Table 2. Compared with the existing methods,
the GRML framework proposed in this paper has achieved superior performance on all
datasets. The first is to compare with the basic model. The performance of the method in this
paper on the three datasets is far better than that of various basic models. Considering that
the backbone network of the framework proposed in this paper is ResNet-50. Compared
with the separate ResNet-50 model, the method in this paper has greatly improved on the
three datasets and the average accuracy rate has increased by 20.14%. For a fair comparison,
we uniformly use ResNet-50 as the backbone network. From the experimental data, it can
be seen that the method in this paper achieves a superior average accuracy of 81.77%, while
the accuracy rates on Web-Bird, Web-Aircraft and Web-Car are 76.62%, 85.79% and 82.99%,
respectively. Compared with the current more advanced method Peer-learning, it is 2.23%,
4.2% and 1.94% higher. Further, we use other models such as B-CNN as the backbone
network, from the comparison results, it can be known that the GRML framework can
be adapted to different backbone networks to obtain a relatively obvious performance
improvement in web-supervised fine-grained recognition scenarios.

Table 2. Comparison of recognition accuracy(%) of different models on three datasets.

Method Backbone Web-Bird Web-Aircraft Web-Car Average

ResNet-50 - 64.43 60.79 60.64 61.95
ResNet-101 - 66.74 63.46 65.51 65.24

VGG-16 - 66.34 68.38 61.62 65.45
VGG-19 - 67.69 70.99 67.21 68.63

GoogLeNet - 66.01 66.02 65.87 65.97
B-CNN - 66.56 64.33 67.42 66.10

Decoupling B-CNN 70.56 75.97 75.00 73.84
Co-teaching B-CNN 73.85 72.76 73.10 73.24

Peer-learning B-CNN 76.48 74.38 78.52 76.46
Ours B-CNN 76.43 82.72 80.81 79.98

Peer-learning ResNet-50 74.15 81.07 81.40 78.87
Ours ResNet-50 76.62 85.79 82.99 81.77

4.3. Ablative Study

The core module of the GRML framework is the graph matching module. To analyze
the impact of this module on the overall performance, two experiments are designed in three
datasets, respectively. The first experiment (Ours w/o GPL) removes the graph propagation
layer that mines the information interaction between nodes in the graph, which directly
uses holistic and local features without propagation of intra-graph node information. The
second group of experiments (Ours w/o GIL) removes the graph interaction layer for
mining the similarity of information between graphs and it does not propagate information
between graphs. The experimental results are shown in Table 3. After removing the graph
propagation layer, the model will not explore the interaction between the holistic and
local information and its performance on the three datasets is reduced by 2.17%, 3.38%
and 2.75%, respectively. It is proven that making full use of the information interaction
between holistic and local features can lead to significant performance improvement. At
the same time, it can be noticed that even if the graph propagation layer is removed, its
performance is still much better than using the ResNet-50 network alone, thus illustrating
the importance of local features in fine-grained classification. After removing the graph
interaction layer in the second experiment, the performance on the three datasets decreased
by 1.4%, 1.65% and 1.05%, respectively. Since the purpose of the metric learning mechanism
is to make the feature expressions of the same category close to each other, while different
categories are far from each other, Therefore, when measuring the graph-level similarity, if
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the information between graphs is not propagated, the result of the measurement will be
unreliable, thus misleading the model training.

Table 3. Accuracies(%) of our GRML, our GRML that removes the graph interaction layer (Ours
w/o intra-GPL) and our GRML that removes the graph interaction layer (Ours w/o GIL) on the
three datasets.

Method Web-Bird Web-Aircraft Web-Car

Ours w/o GPL 74.45 82.41 80.24
Ours w/o GIL 75.22 84.14 81.04

Ours 76.62 85.79 82.99

4.4. Noisy Data Processing And Visualization

In webly supervised learning, there is a lot of noise in the data set. The noise data can
be divided into two categories, one is the noise label sample and the other is the outlier
sample. These noise data will mislead the training of the model, so it is necessary to process
these noisy data. To validate the effectiveness of the noise data processing method in this
paper, we used the original web label for ablation experiments while the network structure
remained unchanged. As shown in Table 4, the recognition accuracy on the three datasets
was reduced by 3.56%, 5.90% and 7.33%, respectively. To further verify the effectiveness
of noise processing, we randomly select some OOD samples and Non-OOD samples in
each of the three datasets as shown in Figure 3. Compared with MoPro, the proposed
GRML framework has similar performance in OOD sample rejection, while the GRML
framework is superior in the prediction accuracy of Non-OOD samples. This illustrates
how the proposed GRML framework can focus more on discriminative local features, so as
to correct the noise labels and remove outlier samples according to the knowledge learned
by the model, so as to alleviate the influence of noise data on model training.
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Figure 3. Example of prediction with GRML and MoPro for randomly selected Non-OOD, OOD and
noisy label samples in each of the three datasets. Where “Real” represents whether the sample is
actually OOD or not, “GRML” and “MoPro” indicate predicted or label corrected results.

Table 4. Noiselabel processing performance analysis.

Method Web-Bird Web-Aircraft Web-Car

Ours w/o correction 73.65 82.41 78.23
Ours 76.62 85.79 82.99
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4.5. Conclusions

In this work, we develop a novel graph representation and metric learning (GRML)
framework that integrates graph propagation networks with prototype learning mecha-
nisms that learn more discriminative holistic–local features to help correct the noisy labels
and exclude OOD samples to facilitate webly supervised FIGR. Specifically, it consists of an
attention-focused module that learns to locate local regions with the most discriminative
content and a graph matching module to explore information interaction to learn instance-
level and category-level graph representation, as well as their matching to correct the noisy
labels and exclude OOD samples. We conduct extensive experiments on several online
benchmarks to demonstrate the effectiveness of the proposed GRML framework.
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