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Abstract: One of the most expensive and fatal natural disasters in the world is forest fires. For this
reason, early discovery of forest fires helps minimize mortality and harm to ecosystems and forest life.
The present research enriches the body of knowledge by evaluating the effectiveness of an efficient
wildfire and smoke detection solution implementing ensembles of multiple convolutional neural
network architectures tackling two different computer vision tasks in a stage format. The proposed
architecture combines the YOLO architecture with two weights with a voting ensemble CNN archi-
tecture. The pipeline works in two stages. If the CNN detects the existence of abnormality in the
frame, then the YOLO architecture localizes the smoke or fire. The addressed tasks are classification
and detection in the presented method. The obtained model’s weights achieve very decent results
during training and testing. The classification model achieves a 0.95 F1-score, 0.99 accuracy, and 0.98e
sensitivity. The model uses a transfer learning strategy for the classification task. The evaluation of the
detector model reveals strong results by achieving a 0.85 mean average precision with 0.5 threshold
(mAP@0.5) score for the smoke detection model and 0.76 mAP for the combined model. The smoke
detection model also achieves a 0.93 F1-score. Overall, the presented deep learning pipeline shows
some important experimental results with potential implementation capabilities despite some issues
encountered during training, such as the lack of good-quality real-world unmanned aerial vehicle
(UAV)-captured fire and smoke images.

Keywords: Fire detection; staged object detection; CNN; deep learning; computer vision

1. Introduction

Forest fires are wild blasts of flames that start and spread in a mass of at least half a
hectare in one piece, destroying at least part of the shrubby and/or tree-covered stages
(high parts). A fire is a phenomenon that is beyond the control of humans, both in duration
and in extent. Knowledge of the origins of fires is the foundation of any effective prevention
policy. Indeed, when the causes of fire are known, it is then easier to eradicate them through
the implementation of concrete actions, and therefore to limit the number of fires [1].

Generally speaking, summer is considered the most anticipated time of year for forest
fires, because the combined effects of drought and low water content of plants are added
to the high frequentation of these areas. However, the danger also exists in fall/winter
and early spring, especially in massive lands or in mid-mountain areas. For ignition and
combustion to occur, three factors must be combined, each in appropriate proportions: fuel,
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which can be any material that can burn; an external source of heat (flame or spark); and
oxygen, necessary to feed the fire. An uncontrolled forest fire may decimate everything
within its path and spread over miles, crossing rivers and roads [2]. Every year, between
60 and 80 thousand wildfires occur and destroy 3 to 10 million miles of land. Forest fires
have different environmental impacts depending on their importance, and their frequency
causes may also be diverse [3].

Fires influence biological diversity in many ways. They are an important source
of carbon emissions and contribute to global warming and changes in biodiversity [4].
Fires modify the volume of biomass and disrupt the hydrological cycle, affecting marine
systems along with coral reefs and others [5]. Smoke from burning forests can dramatically
minimize photosynthetic activity, involving the health of the general population, including
animals [6]. For example, the Amazon has the best biodiversity sanctuary in the world.
It is home to an abundance of species of plants, insects, animals, and countless more
species never documented. Repetitive fires threaten this biodiversity. All this damage has
introduced great challenges in firefighting [7].

Forest fires create more damage and increase the expense of fire suppression if they
are not put out quickly enough [8]. The time spent between fire discovery and warning
the relevant authorities is the most important aspect that could lessen wildfire dangers [9].
Currently, several terrestrial and spatial technologies are used to help official authorities in
identifying wildfires at their early stages and the localization of their area [10]. However,
these technologies have several drawbacks that may restrict their ability to detect fires.
Furthermore, we need to develop new tools for monitoring wildfires and improve our fire
control strategies to reduce the destruction of our forests and their riches. Recent advances
in artificial intelligence and machine learning have increased the success of image-based
modeling and analysis in a variety of applications [11]. In addition, machine learning is
utilized in a variety of computer vision tasks, image classification [12], object detection,
semantic segmentation [13], and a variety of other applications [14].

CNN has grown into the go-to approach for almost any image-or video-related prob-
lem. It outperforms the traditional approaches in terms of efficacy and mostly precision. It
is also used in frame classification, object identification, semantic segmentation, and a range
of other computer vision tasks [15]. CNN has a significant advantage over its predecessors
in that it detects critical traits without the necessity for social interaction [16]. CNN is the
most desirable and common deep learning model [17]. The feature of CNN is that it first
splits the input image into multiple symmetric grids of regions, then classifies each distinct
region into several classes [18]. Recurrent neural networks are neural networks used to pro-
cess sequence data. Unlike traditional deep feedback networks, recurrent neurons in RNNs
can feed back the output signal to the input. As a result, it may recall prior knowledge
and acquire long-term reliance on consecutive inputs. Unfortunately, because of a gradient
explosion or vanishing problem, classic RNN architecture is difficult to train. Several other
works address scars in moderate-resolution imaging spectroradiometer (MODIS) images
taken by satellites by implementing CNN architectures to improve scar detection [19,20].

The major contribution of the presented paper is to provide immersive assistance to the
environment by reducing wildfire damages, which can be achieved through fire remediation
and early anticipation. To deliver the described solution, the presented pipeline uses a
deep-learning-based architecture that first combines three convolutional neural network
architectures, namely, XceptionNet, MobileNetV2, and ResNet-50, as an ensemble. The
listed CNN architectures are recognized with a low number of parameters compared and
high accuracy, to achieve early fire prediction. The second contribution is linked to the
implementation of the fire and smoke detection model by using the YOLO architecture,
which is known to have low latency and higher detection frames per second (FPS). Overall,
the model shows real-time accurate smoke and fire detection results; in addition, the present
study contributes to the site as energy-efficient deep learning computer vision.
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2. Related Work

Forest fires (or wildfires) are uncontrolled flames that naturally occur, causing se-
vere damage to human and natural resources. The sooner the firefighter arrives at the
location of the inferno, the more easily the conflagration may be controlled. The research
addressing fire detection in the literature is increasing exponentially. Several researchers
have developed fire detection applications also indicate the heavy focus on deep learning
implementation within the internet of thing related devices with can massively increase
precision which can lead to better automation [1–10], Table 1 summarizes the research that
will be used to identify gaps and report on stated research motivations.

Table 1. Existing literature on deep-learning-based forest fire detection.

Ref CNN Model Dataset Accuracy
(%)

Early
Detection

False Alarm
Rate

Fire Intensity
Estimation Challenges

[21] YOLOv3 UAV imagery 83 Yes High No Low accuracy

[22] Ssd_mobilenet_v1 UAV imagery 94 No High No It takes more training
time

[23]
Xception

UAV imagery
76

Yes High No Inappropriately
small datasetU-Net 91.99

[24]

VGG-16

UAV imagery

99.74

Yes High No
High execution time
The false alarm rate

is very high

ResNet-50 99.38

Inception v3 99.29

DenseNet 99.65

NASNetMobile 98.94

MobileNetV2 99.47

[25] DeepLabV3+ Aerial imagery 77.1 No High No Low accuracy

[26] Light-YOLOv4 Collected 95.24 No High No Imbalanced data

[27] Abi-LSTM Real forest fire
video 97.8 No High No Overfitting issue

[28] VGG19 DeepFire 95 No High No High execution time

The authors in [21] present a proposal for a forest fire detection system that employs
unmanned aerial vehicles to capture images of the forest, which are then analyzed using
YOLOv3 and a small convolutional neural network. The experimental results indicate
that the system exhibited high accuracy and speed, surpassing expectations and thereby
demonstrating the efficacy and practicality of the UAV platform and deep learning-based
fire detection system. The recognition rate of the algorithm, as determined by testing, was
roughly 83%.

As part of the SFEDA project, Diyana et al. [22] have developed a platform for early
forest fire detection (the Forest Monitoring System for Early Fire Detection and Assessment).
Both fixed-wing and rotary-wing drones are used as unmanned aerial vehicles on this
platform. The proposed platform for early forest fire detection employs two types of
unmanned aerial vehicles equipped with optical, thermal, or both types of cameras. The
fixed-wing drones operate at a medium altitude and survey the monitored region, while
the rotary-wing drones operate at a lower altitude and verify suspected fire locations. Upon
confirmation of a fire, an alarm is sounded to alert ground personnel and fire departments.
The authors achieved a high accuracy rate of 94% through the use of a model based on the
SSD with mobilenetv1 as the backbone and coco dataset weights.

Alireza et al. [23] have compiled a dataset featuring fire-related videos and images
captured by drones in Northern Arizona, the dataset, titled FLAME (Fire Luminosity Air-
borne-based Machine learning Evaluation), utilizes normal and thermal cameras, drones
were utilized to acquire aerial video footage and still images captured in four different color
palettes: normal, Fusion, White-Hot, and Green-Hot. An ANN method was developed with
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a 76% classification accuracy for frame-based fire classification. Moreover, the authors, to
precisely determine fire borders, use segmentation methods. The FLAME solution reached
92% precision and recall of about 84%.

According to the authors of ref [24], six distinct convolutional neural network (CNN)
architectures, including VGG16, DenseNet, Inception v3, MobileNet v2, and ResNet 50,
were taken into account when building a wildfire inspection system and estimating its
geolocation. The system uses an inexpensive commercial UAV. The suggested framework is
divided into three major stages. In the first stage of the process, the operator communicates
the region of interest using the tablet’s graphical user interface (GUI). Once the coordinates
of the location are transmitted to the drone, the drone independently navigates to and
inspects the area, collecting additional data. The quadcopter then communicates the
coordinates and video feed of the search area back to the operator’s tablet after calculating
the size and position of the fire using this information. The evaluation of the system’s
accuracy revealed that the VGG-16 model achieved 99.74%, the ResNet-50 model achieved
99.38%, the Inception v3 model achieved 99.29%, the DenseNet model achieved 99.65%,
the NASNetMobile model achieved 98.9%, and the MobileNet v2 model achieved 99.47%.

Panagiotis et al. [25] have also presented a novel early fire detection system that
integrates a UAV with a 360-degree aerial digital camera, allowing for infinite field-of-view
recordings. The optical 360-degree camera is attached to an unmanned aerial vehicle. First,
the photos in isosceles rectangle projection format were transformed to stereo graphic
images. Following that, the authors used two DeepLab V3+ architecture to conduct flame
and smoke segmentation experiment. The identified regions were merged and verified,
considering the environmental appearance of the analyzed image. The authors developed
a 360-degree fire detection dataset comprising 150 equirectangular photos. The proposed
system had an F-score fire detection rate of 94.6%.

Furthermore, Yifan et al. [26] developed Light-YOLOv4, a lightweight detector for
re-al-time detection of flames and smoke. They improved the YOLOv4 approach in three
ways: replacing the YOLOv4 backbone network with a lightweight backbone network,
using bidirectional cross-scale connections, and partitioning the convolution and sepa-
rately computing the channel and spatial region. The Light-YOLOv4 detector had a flame
detection accuracy of 86.43%, a smoke detection accuracy of 84.86%, a mAP@0.5 of 85.64%,
a mAP%0.5 of 70.88%, and an FPS of 71 for flame and smoke detection tasks.

In reference [27], the authors developed an ABi-LSTM for detecting forest fire smoke.
The ABi-LSTM consists of the spatial features Extraction network, the bidirectional LSTM
network, and the temporal attention subnet. The ViBe background subtraction approach
captures spatial features from candidate patches, which are extracted using the spatial
features extraction network. The bidirectional LSTM network uses spatial features to learn
long-term smoke-related information, and an attention network is used to focus on dis-
criminative frames. The ABi-LSTM model achieved 97.8% accuracy, a 4.4% increase over
the image-based deep learning model, using films from the forest fire monitoring system
with a resolution of 1920 × 1080.

Ali Khan et al. [28] proposed DeepFire, a dataset and benchmark for detecting forest
fires using UAVs. If a UAV detects a fire, it will communicate with nearby UAVs and
send data to a remote forest fire disaster control center. The DeepFire dataset includes
1900 colored photos, 950 of which are in the fire and no-fire categories. The authors used the
VGG19 architecture with transfer learning to improve prediction accuracy. The simulation
results show that the proposed approach has an accuracy of 95%, precision of 95.7%, and
recall of 94.2%.

In this work, we address two challenging tasks in computer vision by providing a
solution to each of the problems, mainly image classification and object detection. The usage
of CNN architecture allows us to achieve decent results in the classification task compared
to the literature. As illustrated in the coming section, the usage of the YOLOv5 architecture
elevates the detection performance and optimizes inference time. It knows the urge for the
large dataset in the training phase of the deep learning approach to obtain good reliable



Electronics 2023, 12, 228 5 of 15

results; however, dataset creation, which includes data collection, data cleaning, and sanity
check, is a very difficult and tedious operation due to the lack of raw data materials, which
by itself could be a very challenging drawback and time-limiting issue.

This work is structured as follows: an introduction to related studies is provided
in Section 2. The utilized models are presented in Section 3. Experimental results are
presented in Section 4. Outcomes are discussed in Section 5. Finally, conclusions from
this investigation, presented in video format for both classification and detection tasks, are
presented in Section 6.

3. Materials and Methods

This study presents three applications based on the FLAME dataset that utilize deep
learning solutions to address challenges related to fire detection. The first application
in-volves the classification of fire versus non-fire using a deep neural network (DNN)
ap-proach. The second application involves the detection of fire and smoke, which can be
used for real-time monitoring and data labeling. The third application involves fire seg-
mentation, which can be used to identify fire zones in video frames marked as containing
fire in the first application.

3.1. Classification Task

This section describes the following process of building our classifier, discusses the
performance of the classifier based on some evaluation procedures, and compares it to
existing methodologies. Through this part, it is important to dictate the limits of the
procedure and the challenges we experienced throughout the development.

3.1.1. Dataset

Unfortunately, until now, no open-sourced dataset has addressed forest fire as the first
object. Deep learning approaches are considered data-driven approaches; hence, the word
outlier in the database can deal with huge performance issues, from lowering performance
to having type 1 errors. As we pointed out before, the data cleaning and processing stage
is a critical step. In addition, DL approaches need a significantly large amount of data
samples that are not easy to collect. Luckily, some research provides usable data collection.
For the first task, we considered the FLAME dataset by Alireza et al. [23]. This dataset
contains many palettes, including a normal-spectrum palette and thermal images (fusion,
white-hot, and green) palettes. The provided FLAME dataset is captured from special
cameras mounted under a UAV base, which means that the provided dataset is limited
specifically to forest fire, so we could limit the performance. The generated dataset from
the video of 29 FPS is 39,375, including 25,018 frames for the “fire” class and 14,357 for the
“no-fire” class. The data was divided into a 70% training and 20% testing portion, with
additional testing conducted in two stages. All samples are shuffled before being fed into
the DL model. In order to overcome the problem of bias in the unequal number of samples
in the “fire” and “non-fire” classes, augmentation techniques including horizontal flipping
and random rotation were utilized to create fresh samples.

3.1.2. Method

In this study, the camera-captured frames were categorized using supervised machine
learning techniques. This method involved training the model on labeled data to enable
it to accurately identify different objects. For mixed photos that contain both fire and
non-fire components, the frame was labeled as a fire frame and no fire was detected within
the frame. CNN is one of the most advanced neural perceptron techniques for image
classification. The study employs a binary classification model using binary cross-entropy
(BCN) loss and some state-of-the-art CNNs, such as Google’s Xception network [29], which
is a deep convolutional neural network; MobileNetV2, proposed by Sandler et al. [30];
RestNet-50 [31]; and DenseNet121 [32]. Figure 1 illustrates the overall classifier architecture.
We used these CNN as feature extractors, then stacked a global average pooling layer
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(better to have a flatten layer or GAPGAP layer that stacks the prediction weights in smaller
vectors). In addition, we added a dropout layer with 0.2 dropout rates as an overfitting
prevention mechanism.
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Figure 1. Classifier architecture: the classifier is divided into 3 stages/departments. The first stage is
the data processing part, the second department is the neural net architecture, and the final one is the
predictor part.

During the training phase, 25 epochs were sufficient, and the Adam optimizer’s
learning rate was fixed at 0.001. A batch size of 32 was used to fit the model. To evaluate
the accuracy and loss of the model, the test dataset contained 8617 frames, including
5137 fire-labeled frames and 3480 non-fire-labeled frames, which were fed into the pre-
trained networks. To better interpret the experimental results, medical classification metrics
were used to address the importance and impact of detecting fires in forests. These metrics
included accuracy, sensitivity, specificity, and negative predictive values (NPV). These
metrics are summarized in Table 2.

Table 2. Model evaluation performance using classification metrics, namely, accuracy, sensitivity,
specificity, and NPVs.

Metrics Xception Baseline MobileNetV2 Baseline ResNet-50 Baseline

Accuracy 0.99 0.993 0.99
Sensitivity 0.992 0.996 0.996
Specificity 0.981 0.981 0.983

NPV 0.976 0.994 0.987

Overall, the evaluation metrics show very close results between the models, but we
could say that MobileNetV2 is more balanced (with 3 metrics above 0.99) and more energy
efficient due to the use of the inverted residual block (also called bottleneck architecture)
that contains the depthwise/pointwise convolutional layers that help to obtain a smaller
number of parameters and good results.
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We could say that our proposed approach did achieve a good result in classifying
the existence of fire from the input stream. Image classification is a foundational task
in computer vision. However, to achieve fire and smoke real-time detection is more
challenging which we will discuss in the next section.

3.2. Two-Stage Fire and Smoke Detection

For several reasons, object detection is the most relevant and difficult-to-achieve task
in computer vision. As such, the dataset paradigm in deep learning models, as discussed
in the previous section, is a data-dependent approach, which means to obtain a state-of-
the-art result in object detection, we need to address some data dependencies: first and
foremost, the data amount. In this section, we will address the object detection task due
to the limitations of a dataset (availability and quality-wise). First, we will discuss the
implemented dataset, then we will present our approach.

3.2.1. Dataset

Deep learning models cannot converge to minimal loss with a small dataset; second,
in terms of data quality, we need to obtain clean data and, third, which is dedicated to the
object detection task, data annotation. It is very difficult but cost-effective to perform data
labeling. These tasks can differ in intensity degree (not for most medical image annotations).
Furthermore, the severity level of these tasks may differ (this is not the case for medical
image annotations).

There is unfortunately no public dataset that addresses the forest fire detection task;
hence, we performed some web scraping to collect the dataset. In addition, we used some
shared small datasets provided by the FLIR dataset presented in the previous section, the
same as the smoke detection. On the other hand, some datasets were provided by [33,34],
and the used dataset is presented in Figure 2.
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Figure 2. Dataset associated with the detection task: (a) number of samples in the dataset from the
binary label (fire or smoke); (b) number of annotations in the images detected by the algorithm.

The allocated dataset for the classification task contains 7355 images with fire (non-
forest fire) low-quality (non-fire local label). We started by cleaning the data, since the
biggest class distribution was random fire images, so we annotated 200 wildfire images
from the dataset of the first task. Then, we added 737 smoke images with good quality and
good labeling, and the final dataset was 937 annotated images; however, the imbalance in
the data distribution caused a massive drawback in the performance model. This problem
presented is addressed in the following section.
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3.2.2. Method

In this subsection, we will discuss our approach to achieving object detection tasks,
including the data imbalance discussed in the previous subsection. Many methods, includ-
ing data upsampling, are available to deal with data leakage and imbalance, but in our task
object detection, the most amount of labeled data is available. Our approach addresses
this issue by conducting two-stage object detection. There are many methods focused on
two-stage object detection, such as Faster R-CNN [35], RetinaNet [36], etc.; however, these
approaches are rather slower compared to one-stage object detection algorithms; hence, we
implemented separate two-stage object detection algorithms. We chose YOLO for the 5th
version with different architectures, and then we combined the object detection pipeline
with the classifier. Figure 3 illustrates more.
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classification block, detection block, and lastly, the result block.

The method accepts image/video input, then passes it to the classification, which
executes a binary classification operation, and at the same time, the object detection module,
which is a two-stage YOLO detector. If the input stream contains smoke, it is passed to fire
detection. The collected results from the two blocks are then combined to give the final
decision. Our proposed two-stage detector uses two YOLOv5 architectures: YOLOv5s for
smoke detection and the standard architecture for the detection.

3.2.3. Dataset Label

In this study, the Squeeze-and-Excitation (SE) mechanism was primarily employed
with YOLOv5s conv layers. The SE channel attention mechanism focuses solely on internal
channel information, disregarding the importance of location information in understanding
the spatial composition of an item in the image, even though the spatial composition of the
item in the visual is critical. This work employs SE to draw the network’s attention to “what
is” in a certain data input. Based on the SE attention mechanism, this study combined the
average and maximum pooling characteristics. This study combined global pooling [37]
and maximal pooling [38] techniques to collect feature mapping spatial information and
facilitate efficient target region identification.

The YOLOv5s approach is improved in terms of real-time detection performance
owing to its convolutional network architecture, small neural core size, and regression
boundary box algorithm design. To further improve accuracy without increasing network
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depth, the presented updated method replaces all existing network connections. Residual
fusion is employed to retain information when screening transmission characteristics,
resulting in more precise localization and classification.

3.2.4. Smoke Detector Architecture

When selecting a target detection method, the YOLO [39] network was used for
target recognition and detection. Compared to other target detection algorithms, the
YOLO method was found to be faster at recognizing targets and more consistent with
the experiment’s extraction procedure of Regions of Interest. The YOLOv5s architecture
follows the same overall pattern of YOLOv3 and YOLOv4, consisting of four components:
Input, Backbone, Neck, and Output, as shown in Figure 4.
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Adaptive scaling images are used as inputs to automatically select the most appropri-
ate anchor frame value for the dataset using the mosaic [40] data augmentation technique.

The Focus structure is combined with the CSP Net Cross Stage Partial Network [41],
a cross-stage local fusion network, to form the Backbone. This Focus structure consists
of four slice operations and one convolution operation involving 32 convolution cores,
transforming the original 640 × 640 × 3 images into a feature map of 320 × 320 × 32. CSP
Net implements the idea of a dense cross-layer jump-layer connection from DenseNet [32],
performing local cross-layer fusion to create richer feature graphs by combining information
from multiple layers.

The Yolov5 utilizes a feature pyramid network (PANet) [42] as its neck to increase
information flow. PANet utilizes a unique FPN architecture with an enhanced bottom-up
route to boost low-level feature propagation. Additionally, Adaptive feature pooling allows
important information from each level of features to be efficiently transmitted to the next
subnetwork, connecting all feature levels and the feature grid. PANet also maximizes the
use of reliable localization signals in lower layers, improving object positioning accuracy.
Lastly, Yolo layer, the core of Yolov5, generates feature maps with three different sizes (18,
36, 72) that enable multiscale (36) prediction, which allows the model to process small,
medium, and large objects.
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Instead of YOLOv3, GIOU Loss is utilized as the output layer. GIOU Loss is an
improved version of IOU Loss and is used as a loss function to increase the scale of the
intersection and address the issue that IOU Loss cannot maximize the disjoint of the
two boxes.

3.2.5. Fire Detector Architecture

The fire detector is a second solution stage in the detection module that is triggered if
smoke is detected. The fire detection block uses the YOLOv5l version, which has the same
properties, illustrated in Figure 5.
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Figure 5. Yolov5L’s network architecture consists of three components: the backbone (CSPDarknet),
the neck (PANet), and the head (Yolo Layer). The data is first passed through CSP Darknet for
feature ex-traction, then through PANet for feature fusion, and finally through the Yolo Layer for the
detection results.

3.3. Model Evaluation

The constructed model’s performance is evaluated using the following metrics: accu-
racy, precision, recall, and F1-score. Each metric is defined as follows:

v Accuracy: Is the proportion of correctly labeled samples out of the total number of
samples. Accuracy is determined as:

Accuracy =
TP + TN

TP + FP + TN + FN

v Precision: The accuracy measure is the ratio of accurately predicted positive results (TP)
to the total number of positive results (TP + FP) expected by the model. A substantial
number of FPs leads to decreased accuracy [30]. The precise range is computed as
follows and is between 0 and 1:

Precision =
TP

TP + FP

v Recall: Is the proportion of true positives to the sum of true positives and false
negatives. The recall is calculated using the following equation:

Recall =
TP

TP + FN
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v F1-score: Is the harmonic mean of Precision and Recall. The definition is as follows:
the definition is as follows:

F1 score = 2 × Recall × Precision
Recall + Precision

where TP refers to true positive, FP refers to false positive, TN refers to true negative, and
FN refers to false negative.

4. Experimental Results

In this part, we will go through the experimental findings that were used to illustrate
the performance of the suggested technique, as well as the detection results. As illustrated
in Table 3, we present the performance of both YOLOv5s (smoke detection) and YOLOv5l
(fire detection).

Table 3. Fire and smoke detection experimental results.

Models Precision Recall mAP@0.5

Model 1: Smoke Detector 0.273 0.4 0.45
Model 1: Fire Detector 0.707 0.67 0.65

Model 2: Smoke Detector 0.801 0.99 0.85
Combined Models 0.8 0.87 0.76

Originally, the first model did not give good results for both fire and smoke due to the
heavily unbalanced collected dataset. The results were good with regard to fire detection,
but not with smoke. We applied a separate detector on the smoke dataset, which achieved
very good results, with mean average precision of 0.85; hence, the final model is a prediction
combination between the two models.

There are several problems we did face during the build of the presented model,
referring to the previous section, data quality and computational power have been the
biggest factor during the training, but still, we did manage to build high precision and
recall model that can not only prediction the possibility initial wildfire sparkles but also to
localize the smoke in a certain frame.

The limited result provided by model 1 is explained in the following results, starting
with the dataset, the model is somehow biased to detect fire due to the quality of the user
data, splitting the dataset into different meanings using the second detection, the smoke
result improved a lot compared to the first model, the model’s aggregation achieved better
results than using the one model two objects. The smoke detection is the best-achieved
task with 0.85 mAP, which is a good indicator as generally speaking, we intend to find
smoke first.

5. Discussion

We can see that the two detectors achieved acceptable results in terms of both fire
detection and smoke detection. Due to the disparity in the quality of the dataset, the smoke
detector achieved the most favorable results compared to the fire detector, detailed in
Figures 6 and 7. Overall, the model achieves better performance compared to the literature
in Table 4.

We can see some issues with the detection due to limited data. The model detects the
smoke in the image, but also, one of the limitations of the YOLO architecture is the small
region detection. The precision curve toward smoke detection presented in Figure 8, when
combined prediction-wise with the first model, could not only obtain better localization of
the fire and smoke, but also showed very acceptable results.
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Figure 7. Model 1 and 2 precision evaluation: (a) first model, which is good at detecting fire;
(b) smoke detection. According to the smoke and fire detector precision curve, the model jumps from
0.2 in the first model to 0.8.

Table 4. Comparison of the combined detection architecture with the literature review. Best results
are in bold.

Models F1 Score mAP@0.5

DeepLabV3+ [25] 0.94 -

Light-YOLOv4 [26] - 0.856

YOLOV3 [21] 0.81 0.79

Model 2 Smoke Detector 0.93 0.858

From the start, our goal was to build a good functional and usable model, and also,
we think that detecting smoke is more important than fire due to the possibility to prevent
fire from escalating. We can see better detection results with the two-stage detection with
more coverage of the smoke.

Two-stage detection combined with the classifier ensemble has a promising result due
to the fast response of the YOLOv5 model. In addition, we intend to implement a highly
energy-efficient neural network for faster prediction, which can be extremely useful with
edge devices.
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In general, the model achieved the requested objective by detecting smoke in real
time. However, due to data limitation factors and the YOLOv5s architecture, the model
has some limitations, namely, the problem with big smoke/fire locations due to the limited
data in both fire and smoke, noting that considering using artificial data cannot help in
this situation.

Based on the obtained results, the model had potential applicability, and compared to
the literature, it is possible to improve the model. It is much clearer that the limiting factor
is the data quality and quantity.

6. Conclusions

Effective implementation of convolutional neural networks can significantly improve
object detection performance. However, forest fires are dynamic events with no fixed shape
that an individual object detector cannot handle. In addition, object detectors can be easily
fooled by fire-like objects and produce false positives due to their limited field of view. This
study presents a novel ensemble learning approach for real-time forest fire detection to
address these challenges. The approach incorporates two strong object detectors (Yolov5s
and Yolov5l) with varying levels of ability to make the overall model more robust in various
forest fire situations.

Our model, which utilizes an ensemble classifier to guide the detection process
and minimize false positives, has been found to outperform other common object classi-
fiers in terms of precision, recall, frame accuracy, and F1 score according to experimen-
tal results. These improvements enable the model to effectively perform in real-world
forestry applications.
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