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Abstract: Unsupervised image captioning often grapples with challenges such as image–text mis-
matches and modality gaps, resulting in suboptimal captions. This paper introduces a semantic-
enhanced cross-modal fusion model (SCFM) to address these issues. The SCFM integrates three
innovative components: a text semantic enhancement network (TSE-Net) for nuanced semantic
representation; contrast learning for optimizing similarity measures between text and images; and
enhanced visual selection decoding (EVSD) for precise captioning. Unlike existing methods that
struggle with capturing accurate semantic relationships and flexibility across scenarios, the proposed
model provides a robust solution for unbiased and diverse captioning. Through experimental evalua-
tions on the MS COCO and Flickr30k datasets, SCFM demonstrates significant improvements over
the benchmark model, enhancing the CIDEr and BLEU-4 metrics by 3.6% and 3.2%, respectively.
Visualization analysis further reveals the model’s superiority in increasing variability between hidden
features and its potential in cross-domain and stylized image captioning. The findings not only
contribute to the advancement of image captioning techniques but also open avenues for future
research. Further investigations will explore SCFM’s adaptability to other multimodal tasks and
refine it for more intricate image–text relationships.

Keywords: image caption generation; text semantic enhancement; contrastive learning; image-enhanced
decoding

1. Introduction

Image captioning is a crucial research task in the multimodal area where computer
vision and natural language processing intersect. It aims to turn images into natural
language descriptions that provide the basis for computers to achieve an understanding of
images and generate human-readable text. Traditional image captioning methods depend
heavily on supervised learning and require large amounts of paired image and text data for
training [1]. However, acquiring large-scale paired data is laborious and costly, imposing
limitations on the applicability and scalability of such methods.

To overcome this limitation, the attention of researchers has gradually shifted towards
unsupervised image captioning techniques. These techniques aim to learn the correspon-
dence between images and text from unlabeled image data, enabling automated image
description generation. For instance, Iro Laina et al. [2] proposed an unsupervised image
captioning method based on shared multimodal embeddings. They achieved cross-modal
feature representation by combining image and text encoders. Similarly, Yang Feng et al. [3]
presented an unsupervised image description method utilizing generative adversarial net-
works (GAN) to generate diverse image captions. Using adversarial training of generators
and discriminators, they generated more successful and diverse caption results. However,
the approaches mentioned above no longer require manual labeling of image–text pairs

Electronics 2023, 12, 3549. https://doi.org/10.3390/electronics12173549 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12173549
https://doi.org/10.3390/electronics12173549
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6893-9386
https://doi.org/10.3390/electronics12173549
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12173549?type=check_update&version=2


Electronics 2023, 12, 3549 2 of 16

but instead rely on matching image blocks to labels, which can be challenging to control.
Furthermore, since the pseudo-descriptions are trained on a fixed label set, they may not
be applicable to scenarios beyond the predefined label set. To address this issue, Yoad
Tewel et al. [4] put forward a zero-sample image-to-text generation method that utilizes
visual-semantic arithmetic to generate images’ descriptive texts. Yixuan Su et al. [5] in-
troduced a text generation method with visual control, incorporating a visual control
mechanism to generate image-related text descriptions by specifying visual conditions.
This approach enhances the accuracy and semantic consistency of the generated descrip-
tions. Challenges related to the modality gap in multimodal contrastive representation
learning have been recognized in the literature [6]; David Nukrai et al. [7] proposed a
noise-injection-based text training method for image description generation. By employing
a contrast learning strategy for noise injection, they improved the diversity and quality of
the generated descriptions.

Although previous works have explored various approaches and strategies to address
the problem of modality gap and image–text mismatch, they still have several drawbacks.
First, most existing models directly use the image feature vectors and text feature vectors in
a shared space where multimodal representations are learned, yet the differences between
different modalities in this shared space still exist, which inevitably leads to bias in the
inference process. Even though this problem is recognized, they often address it by adding
Gaussian noise without conducting further analysis [7]. Secondly, most existing methods in
the text generation stage rely on the widely used maximum probability decoding strategy
commonly employed in natural language processing. However, this approach often leads to
degradation in the generated results. Specifically, the generated text tends to be generic and
exhibits unreasonable repetitions at various levels, including words, phrases, and sentences.
This problem stems from the decoding strategy and the correspondence between the entire
image and the generated words. Consequently, a significant number of repetitive words
appear among the candidate words, resulting in varying degrees of semantic repetition in
the generated sentences.

To address the aforementioned challenges, this study proposes a novel semantic-
enhanced cross-modal fusion model. The model leverages a text semantic enhancement
network to extract text-enhanced semantic representations, effectively capturing the se-
mantic associations between texts, strengthening the semantic features, and attenuating
the modal features. This process provides robust support for subsequent feature fusion.
Furthermore, contrast learning is utilized to optimize similarity measures and feature
representation consistency between texts. Meanwhile, an image enhancement decoding
strategy is introduced to generate accurate and diverse description results. In contrast
to the traditional maximum probability decoding strategy, this approach structures the
decoding process and leverages the rich information present in the image. It employs a
top-k sampling technique to generate a set of diverse candidate sentences, guaranteeing
the diversity of the generated captions. Subsequently, a defined metric, such as cosine
similarity or a learned distance function, is employed to calculate the similarity between the
candidate sentences and the image. The sentence with the highest similarity to the image is
selected as the final output, ensuring the accuracy and visual relevance of the description.

The central aim of this research is to propose and validate a novel semantic-enhanced
cross-modal fusion model that addresses specific challenges in existing models. These
challenges include bias in the inference process due to differences between modalities and
degradation in the quality of generated results. Our approach leverages text semantic
enhancement and a unique image enhancement decoding strategy to improve the accuracy,
diversity, and quality of the generated image descriptions.

To validate the effectiveness of our proposed model and strategy, extensive experi-
ments are conducted on four widely recognized datasets: MS COCO and Flickr30k for stan-
dard image captioning and cross-domain image captioning experiments, and FlickrStyle10K
and SentiCap for stylized image captioning experiments. The experimental results demon-
strate that our model and strategy significantly enhance the performance of the image
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description task. Specifically, our approach improves the description accuracy, diversity,
and quality of the generated results compared to traditional methods. The main contribu-
tions of this paper can be summarized as follows:

(1) In this paper, we introduce a text semantic enhancement network designed to
extract enhanced semantic representations of text. This network is capable of effectively
capturing the semantic associations between texts, thereby providing robust support for
subsequent feature fusion. To optimize the similarity measure and ensure consistency
in feature representation between different texts, we employ contrastive learning. This
technique emphasizes the semantic properties of texts by maximizing text differences,
reducing the correlation between texts, and attenuating the modal properties of texts. As a
result, the proposed network significantly enhances the model’s ability to comprehend and
articulate the semantics of textual content.

(2) This paper introduces an enhanced decoding strategy to generate precise and
diverse caption results by structuring the decoding process and incorporating attention
mechanisms and language models. By adopting this strategy, the flexibility and diversity
of the generated captions are significantly enhanced, resulting in improved quality and
appeal of the generated results.

(3) Comprehensive experiments were conducted on two widely recognized image
captioning datasets to evaluate the proposed approach. Comparative analysis against
traditional methods demonstrates significant enhancements achieved by our approach
in the image captioning task, notably in terms of description accuracy, diversity, and the
overall quality of the generated results.

2. Related Work
2.1. Image Captioning

Image captioning is a crucial task in multimodal learning, with the goal of generating
accurate and grammatically correct natural language descriptions for images. The general
approach for image captioning is the encoder–decoder architecture, where a convolutional
neural network (CNN) serves as the encoder to extract image features, and a recurrent
neural network (RNN) functions as the decoder to generate image descriptions [8,9]. To
enhance the effectiveness of image captioning, various models and methods have been
proposed. For instance, Zhou et al. [10] introduced the deep modular co-attention network,
which utilizes a cascade of modular co-attention layers to model the relationship between
language and vision. Huang et al. [11] proposed the attention over attention (AoA)
network, which filters out irrelevant or misleading attention results in the decoder, retaining
only useful attention results. Pan et al. [12] addressed existing models’ limitations by
introducing the X-LAN attention module, enabling the capture of higher-order or infinite-
order interactions between modalities through bilinear pooling. These methods have shown
promising performance on supervised training with large-scale annotated image–text pairs
and have achieved good results on various evaluation benchmarks. However, collecting
such annotated datasets is challenging. Therefore, some researchers have explored weakly
supervised approaches for model training. For example, Feng et al. [3] proposed a method
that solely relies on individual image data and a sentence corpus, eliminating the need
for manual annotation of image–text pairs of datasets. Laina et al. [2] connected image
information and text information through shared multimodal encoding, leveraging image–
label datasets instead of paired image–text datasets. Pseudo-descriptions are generated
using object labels and visual content retrieval modules and used as new labels for training.
While these approaches partially overcome dataset limitations, they still face issues such as
a lack of one-to-one correspondence between generated pseudo-descriptions and images,
resulting in descriptions that may contain objects not present in the images.

To address these challenges, recent works have emerged that completely forego the
use of existing datasets containing both images and texts for model training. For instance,
Tewel et al. [4] proposed ZeroCap, a zero-shot learning method for image captioning
that employs CLIP [13] for image feature extraction and GPT2 [14] for caption generation.
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However, due to the absence of domain-specific training, this method performs poorly on
evaluation benchmarks. Nukrai et al. [7] introduced a training approach where textual
data are utilized to adapt the language model to a target style, and image substitution is
employed during the inference phase to obtain the desired output. While this approach
enables style adaptation and improves performance, it under-utilizes image information,
leading to descriptions that may not accurately describe the images.

Despite the advancements in image captioning, current methods still struggle with
challenges such as the one-to-one correspondence between generated descriptions and
images, lack of domain-specific training, and under-utilization of image information,
leading to mismatched descriptions and images.

In contrast to the aforementioned methods, our work incorporates image information
twice during inference. Initially, we input the image information into the language model,
allowing the model to generate multiple candidate sentences through random decoding.
Subsequently, we calculate the similarity between the candidate sentences and the image,
selecting the sentence that exhibits the highest similarity to the image as the final description.
This approach maximizes the utilization of image information and resolves the issue of
mismatched descriptions and images encountered in previous methods.

2.2. Contrastive Models

In recent years, several visual-language contrastive models have emerged, includ-
ing CLIP [13], ALIGN [15], UniCL [16], and OpenCLIP [17]. These models have shown
promising performance in zero-shot image classification and feature extraction for down-
stream tasks. For example, Clip2Video [18] utilizes contrastive learning for video–text
retrieval tasks, while the object detection model introduced by Gu et al. [19] employs
contrastive learning to detect objects with an open vocabulary. Khandelwal et al. [20]
applied CLIP and contrastive learning to acquire visual and language knowledge for robot
navigation tasks. Clip4Clip [21] utilizes contrastive learning for video clip retrieval and
description, and Portillo-Quintero et al. [22] presented a video retrieval method based on
CLIP. Shen et al. [23] have also explored the performance improvements achieved by CLIP
contrastive learning in various visual-language tasks. However, it remains challenging to
apply these models to complex tasks such as image captioning.

To address this challenge, we propose a method that combines unsupervised con-
trastive learning with a semantic-enhanced cross-modal fusion model to significantly
improve the zero-shot performance of contrastive models in image captioning. CLIP con-
sists of separate encoders for visual and textual information and leverages unsupervised
contrastive loss trained on a large-scale image–text dataset. This training enables CLIP
to establish a shared semantic space for visual and textual information. In our work, we
utilize CLIP for image captioning, style image captioning, and story generation tasks,
demonstrating the effectiveness and scalability of the semantically enhanced cross-modal
fusion model.

2.3. Text Generation

Text generation is a significant task in natural language processing, attracting substan-
tial research attention in recent years. Traditional methods for text generation often rely on
language-model-based decoding approaches, which can be categorized into deterministic
and stochastic methods. Deterministic methods, such as greedy search and beam search,
select the most probable text based on the model’s output probability. However, these meth-
ods often suffer from issues such as monotonicity [24] and degradation [25,26], which limit
the diversity and creativity of the generated text. To address these limitations, stochastic
methods have been introduced, including sampling-based techniques such as top-k sam-
pling. These methods select multiple candidate texts with higher probabilities and perform
random sampling within the set, thereby enhancing the diversity of the generated text.

In image captioning, the key challenge in text generation is effectively leveraging
the abundant information from images to generate accurate and diverse descriptions.
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Traditional approaches employ multimodal representation learning methods that aim to
map image and text features into a shared semantic space, facilitating fusion and association
between the modalities. However, these methods often encounter issues related to modality
discrepancy and information inconsistency, leading to generated text that is not fully
aligned with the images. To overcome these challenges, this paper proposes a novel
semantic-enhanced cross-modal fusion model for image captioning.

In summary, despite substantial progress in image captioning, contrastive models,
and text generation, existing methods face several challenges such as modality discrep-
ancy, information inconsistency, a lack of one-to-one correspondence between descriptions
and images, and difficulties in handling complex tasks such as zero-shot image caption-
ing. These issues often lead to mismatched descriptions and images, lack of diversity in
generated text, and poor performance on evaluation benchmarks. In contrast to these
methods, our work aims to address the following tasks: (1) Maximize the utilization of
image information to ensure that generated descriptions accurately correspond to the
images. (2) Enhance the zero-shot performance of contrastive models in image captioning
by combining unsupervised contrastive learning with a semantic-enhanced cross-modal
fusion model. (3) Implement a novel semantic-enhanced cross-modal fusion model to
overcome the challenges of modality discrepancy and information inconsistency, ensuring
that generated text is fully aligned with the images.

Our proposed method is designed to resolve the aforementioned limitations by intro-
ducing novel techniques such as leveraging image information twice during inference and
utilizing CLIP for various tasks. In achieving this, our work offers a significant advance-
ment in the field of image captioning.

3. Method

In the pursuit of mitigating the challenges of the modality gap and the image–text
mismatch problem, this paper puts forward a groundbreaking semantic-enhanced cross-
modal fusion model (SCFM). This model is meticulously designed to address the inherent
complexities in bridging the visual and textual modalities, offering a unique approach that
distinguishes it from existing methods. The SCFM is built upon three carefully interwoven
components that work in harmony to enhance the entire process of image captioning. As
illustrated in Figure 1, these components are (1) a text semantic enhancement network: this
part of the SCFM focuses on extracting and enhancing the semantic features within the text.
It employs a combination of encoding techniques, enhancement strategies, and advanced
network architectures to capture and emphasize the intricate semantic relationships within
the text content. The enhancement of these features is pivotal in forming an initial semantic
representation that resonates with the visual content. (2) Contrast learning: this component
plays a central role in optimizing the consistency between texts by focusing on similarity
measures. By employing a contrastive learning approach, it works in conjunction with
the text semantic enhancement network to fine-tune the semantic representations. This
joint operation enables a more precise alignment between visual and textual modalities,
making this part essential for bridging the modality gap. (3) Image enhancement decoding
strategy: tailoring the final stage of the model, this strategy emphasizes the generation of
accurate and diverse captions. It not only adopts cutting-edge sampling techniques but also
employs well-defined metrics to calculate the compatibility between textual descriptions
and visual content. The intelligent integration with the preceding components ensures that
the generated captions are not only relevant but also rich in diversity and accuracy.
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Figure 1. Overview of the structure of SCFM. The upper section illustrates the training part, showcas-
ing the integration of a semantic-enhancement network and contrastive learning process. The lower
section depicts the inference part, where our model employs a visual-enhancement decoding strategy.

The collaboration and interrelation of these three components form the crux of the
SCFM, providing a seamless, integrative solution to the complex challenges of cross-
modal learning. By delving into the architecture and methodology of each component,
the following subsections will provide a clearer and more in-depth understanding of our
innovative approach.

3.1. Text Semantic Enhancement Network

The text semantic enhancement network aims to extract enhanced semantic repre-
sentations of text by capturing semantic associations, enhancing semantic features, and
attenuating modal features. It consists of two main components: a text encoder and a
semantic enhancement module. The text encoder maps the input text sequence into a
semantic space, generating an initial semantic representation. To enhance the sentences,
text enhancement techniques such as rule enhancement and semantic enhancements are
applied. The CLIP network model is utilized for encoding the enhanced text sequence into
a fixed-length vector representation. The semantic enhancement module incorporates key
components including a multilayer perceptron (MLP), a residual network, atrous convolu-
tion, and a pooling layer. The MLP consists of multiple fully connected layers, enabling the
extraction of higher-order features and semantic information. The introduction of residual
connectivity helps to alleviate the issues of gradient disappearance and enhances the expres-
siveness of feature representation, thereby improving the quality of semantic representation.
Atrous convolution, also known as dilated convolution, is employed to expand the effective
receptive field of the convolutional kernel by introducing holes (dilation) in the kernel. This
allows the network to capture a broader range of contextual information, enhancing its
ability to understand and represent the semantics of text. Furthermore, a pooling layer is
employed to reduce the spatial dimensionality of the feature map, facilitating more efficient
processing. Through the combination of the multilayer perceptron, residual network, atrous
convolution, and pooling layer, the semantic enhancement module effectively extracts and
merges features to generate a more comprehensive and semantically rich representation of
the input text.

3.2. Contrast Learning to Optimize Feature Representations

To enhance the similarity measurement and promote feature consistency between
texts, we adopt a contrastive learning approach in our model. Contrastive learning aims to
optimize feature representations by maximizing the similarity between positive sample
pairs and minimizing the similarity between negative sample pairs. For each text sam-
ple,As illustrated in Figure 2, we randomly select a positive sample that belongs to the
same category as the input text. Additionally, we choose multiple negative samples that
differ from the input text in terms of category. The similarity between the input text and the
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positive samples, as well as the similarity between the input text and the negative samples,
is computed using cosine similarity. By maximizing the similarity of positive sample pairs,
we encourage the semantic features to be more consistent. Conversely, minimizing the
similarity of negative sample pairs reduces their semantic correlation. The loss function
employed in our approach is designed to reinforce these objectives during training. The spe-
cific formulation of the loss function depends on the chosen contrastive learning framework
and network architecture. It typically incorporates margin-based or contrastive loss terms,
aiming to increase the similarity of positive pairs and decrease the similarity of negative
pairs. By optimizing the contrastive loss, our model effectively learns discriminative and
consistent semantic representations. This enables the model to bridge the modality gap,
mitigate the image–text mismatch, and improve its capability to comprehend and express
the semantics of text.

la
i = − log

exp(s(ya
i , yb

i )/α)

∑N
j=1[exp(s(ya

i , ya
j )/α) + exp(s(ya

i , yb
j )/α)]

(1)

where i, j ∈ [1, N], a, b ∈ {1, 2, 3}. α is the temperature parameter. s is the similarity
function; it is defined as follows:

s(u, v) =
uTv

‖ u ‖ · ‖ v ‖ (2)

The total comparison loss is defined as follows:

LCL =
1

3N

N

∑
i=1

(la
i + lb

i + lc
i ) (3)

where la
i is the contrast loss after rule enhancement for the i-th sample, lb

i lc
i is the contrast

loss after semantic enhancement for the i-th sample, and N is the total number of samples.
Through the optimization process driven by contrastive learning, our model achieves

a more consistent representation between texts. This enhanced representation enables
the model to better understand and capture the relationships between texts, leading to
improved accuracy and diversity in the generated caption results.

Figure 2. Overview of the contrastive learning approach to optimize feature representations. This ap-
proach maximizes the similarity between positive text pairs and minimizes it between negative pairs.

3.3. Enhanced Visual Selection Decoding

To generate accurate and diverse caption results, we propose an image enhancement
decoding strategy. Departing from the traditional maximum probability decoding approach,
we adopt a structured decoding process that leverages the rich information present in the
images. Our strategy incorporates the use of the top-k sampling technique to generate a set
of diverse candidate sentences. This step ensures the production of varied captions and
avoids the generation of singular or repetitive results.
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Next, we employ a defined metric to calculate the similarity between the candidate
sentences and the image. By measuring the compatibility between textual descriptions and
visual content, we select the sentence that exhibits the highest similarity to the image as
the final output. This selection process guarantees the accuracy and visual relevance of the
generated captions. For the input image I, the vector of image information in the shared
semantic space is yI , Then, the set of generated candidate sentences is Q:

Q(n) ={Q1, Q2, ..., Qn}

=

{
pθ

( (1)
y1 +ε

)
, pθ

( (2)
y1 +ε

)
, . . . , pθ

( (n)
y1 +ε

)} (4)

where yi refers to the mapping vector of the input image I in the shared space. ε is the
value of Gaussian noise, pθ is the decoding strategy, and the obtained Q1, Q2, . . . , Qn are
the top n sentences from the top-k sampling.

The sentences in the candidate sentence set are mapped to the low-dimensional shared
semantic space, and the sentence with the highest similarity to the image is searched. The
definition of similarity is shown in (3). The final result, Qbest, is defined as:

Qbest = arg max
q∈Q(n)

s(yI , q) (5)

where yI is the mapping vector of image I, and q is the candidate sentence.
Through the utilization of our image enhancement decoding strategy, we aim to

enhance the quality and diversity of the generated captions. By considering the inherent
information within the images and selecting the most appropriate textual descriptions, our
approach ensures the production of accurate and diverse results that effectively convey the
content of the images.

4. Experiment and Analysis

To thoroughly validate the effectiveness of the proposed SCFM method, extensive ex-
periments were conducted in this paper on two publicly available datasets, MS COCO [27]
and Flickr30k [28]. The experimental results were analyzed from both quantitative and
qualitative perspectives, and a comparative experiment was conducted between SCFM and
current state-of-the-art image captioning algorithms. This section begins by introducing
the evaluation benchmarks, experimental details, and evaluation metrics. Subsequently, a
detailed presentation and analysis of the experimental results are provided.

4.1. Experimental Setup
4.1.1. Evaluation Benchmark

We conduct experiments on four widely used benchmarks. MS COCO [27], Flickr30k [28],
FlickrStyle10K [29] and SentiCap [30]. MS COCO, comprising over 120,000 images from
diverse everyday scenes, served as a comprehensive benchmark to assess our method’s
accuracy and diversity. Each image in MS COCO is annotated with at least five captions.
Flickr30k, focusing on human–object interactions, includes around 30,000 images, each
provided with five different captions, allowing us to evaluate the model’s understanding
of human activities. The FlickrStyle10K dataset, containing 10,000 artistically stylized
images, was selected to test our method’s adaptability to unique visual expressions. Finally,
SentiCap, consisting of sentiment-annotated images, allowed us to assess how well our
approach generates captions aligned with emotional content. The combined use of these
datasets, with their varying content, format, and thematic focus, ensures a robust and
multifaceted evaluation of the SCFM method.

4.1.2. Implementation Details

The experiments were conducted using the PyCharm software, version 2021 (JetBrains,
Prague, Czech Republic), as the primary development environment. The implementation
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was executed on a system equipped with an NVIDIA 3080Ti graphics card (NVIDIA Cor-
poration, Santa Clara, CA, USA). These tools were selected due to their robust performance
and wide acceptance within the research community, ensuring consistency and reliability
throughout our experimental process. We utilized a frozen pre-trained Vit-B/32 CLIP
model as the image encoder, paired with the GPT2 language model as the text decoder.
To optimize the model parameters, the Adam optimizer was applied with a learning rate
of 2e-5. This combination of architecture and optimization is in alignment with state-of-
the-art practices in the field and proved effective for our specific experimentation. Our
experimentation evaluated the training time and inference speed on two widely used
datasets, MS COCO and Flickr30k, using the aforementioned 3080Ti GPU. The training and
inference time are subject to variation based on the specific hyperparameter configurations
employed. In the context of the parameters delineated within this manuscript, training
on the MS COCO dataset required 1 h per epoch, with a total of 10 epochs sufficient for
convergence. Training on the Flickr30k dataset was notably quicker, necessitating only
14 min per epoch for a similar total of 10 epochs. In terms of inference, the time required
to process 1000 images was recorded at 33 min. These metrics underscore the model’s
efficiency and suitability for practical applications.

4.1.3. Evaluation Metrics

Following the common practice in the literature, we perform evaluation using BLEU-
1 (B@1), BLEU-4 (B@4) [31], METEOR (M) [32], ROUGE-L (R-L) [33], CIDEr [34], and
SPICE [35]. BLEU-1 (B@1) and BLEU-4 (B@4) measure the precision of 1 gram and up to
4 grams, respectively, and are typically expressed as percentages ranging from 0 to 100%.
METEOR, ranging from 0 to 1, provides a balanced assessment of precision and recall,
taking into account synonymy, stemming, and paraphrasing. ROUGE-L, another unitless
metric ranging from 0 to 1, quantifies the overlap of the longest common subsequence.
CIDEr, typically ranging from 0 to 10 or higher, evaluates the consensus between human
captions and generated descriptions. Lastly, SPICE, ranging from 0 to 1, assesses semantic
propositional content. It is important to note that in the academic literature, and to facil-
itate more intuitive understanding, authors often multiply these values by 100, thereby
converting them to a percentage, and present them as two-digit numbers. This practice
aligns the results with a common convention that many readers will be familiar with.

4.2. Standard Image Captioning

To validate the performance of our model, extensive experiments were conducted
on the MS COCO and Flickr30k datasets, and the experimental results are presented in
Table 1. Initially, we evaluated models employing fully supervised techniques, including
BUTD [36], UniVLP [37], and Clip-Cap [38]. As anticipated, these models leveraged addi-
tional supervised training on image–text pairs, thereby demanding greater computational
resources and training time, consequently exhibiting slightly superior performance com-
pared to our approach. Nevertheless, in comparison to unsupervised methods such as
MAGIC [5], ZeroCap [4], and CapDec [7], our method yielded higher scores on the BLEU-4
(B@4) [31], METEOR (M) [32], ROUGE-L (R-L) [33], and CIDEr [34] metrics. These findings
illustrate the superiority of our approach over other unsupervised techniques, highlight-
ing its enhanced capability in the context of image captioning tasks. Figure 3 illustrates
a visual comparison between our proposed method and three other zero-shot methods.
The comparison clearly demonstrates that our approach enables more accurate and vivid
descriptions of the main content in the images. Let us examine each example in detail.
In Figure 3a, ZeroCap correctly identifies the prominent object “cyclist” but introduces
the non-existent object “stop sign,” resulting in an erroneous description. Additionally,
MAGIC focuses on describing the “street crossing sign” but deviates from the empha-
sis presented in the original image and contains grammatical errors. On the other hand,
CapDec describes a bicycle leaning against the roadside, which does exist in the top-right
corner of the image. However, the CapDec model excessively focuses on details while
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neglecting the overall overview of the image. In contrast, our model accurately captures the
image theme of a group of people riding bicycles and precisely expresses the environmental
context and human actions depicted in the image. Furthermore, considering Figure 3c,d, it
is evident that both the ZeroCap and MAGIC models exhibit varying degrees of errors in
their descriptions. Although CapDec provides a relatively accurate description of the image
content, it fails to identify that Figure 3c is a photograph and misclassifies Figure 2d as a
photograph. In contrast, our model accurately recognizes the people and scenes depicted
in Figure 3c and correctly identifies it as a photograph. These visual comparisons further
illustrate the superiority of our proposed method in image captioning tasks. Our model
not only improves description accuracy and diversity but also excels in recognizing image
content and providing contextually appropriate descriptions.

Table 1. Image captioning results on MS COCO and Flickr30k.The best result is bold.

Model
MS COCO Flickr30k

B@1 B@4 M R-L CIDEr B@1 B@4 M R-L CIDEr

Fully Supervised Approaches

BUTD 77.2 36.2 27.0 56.4 113.5 - 27.3 21.7 - 56.6
UniVLP - 36.5 28.4 - 116.9 - 30.1 23.0 - 67.4
ClipCap 74.7 33.5 27.5 - 113.1 - 21.7 22.1 47.3 53.5

Weakly or Unsupervised Approachs

ZeroCap 49.8 7.0 15.4 31.8 34.5 44.7 5.4 11.8 27.3 16.8
MAGIC 56.8 12.9 17.4 39.9 49.3 44.5 6.4 13.1 31.6 20.4
CapDec 69.2 26.4 25.1 51.8 91.8 55.5 17.7 20.0 43.9 39.1
SCFM 69.0 27.3 25.8 52.7 94.3 55.2 17.9 20.2 44.5 41.2

Figure 3. Examples of standard image captioning.
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4.3. Cross-Domain Image Captioning

To further evaluate the generation capability of our model, we conducted cross-
domain experiments. Cross-domain experiments involve training the language model
on one dataset (e.g., MS COCO) and testing our model on another target dataset (e.g.,
Flickr30k). The experimental results are presented in Table 2. We trained MAGIC, CapDec,
and our model on the MS COCO dataset and tested them on the Flickr30k dataset. The
results demonstrate that our model outperforms the other models in terms of captioning
performance. Additionally, we trained our model on the Flickr30k dataset and tested it on
the MS COCO dataset. The results indicate that our model possesses strong generalization
capability and robustness, as it achieves competitive performance even when applied
to a different dataset. These experimental findings further validate the robustness and
generalization ability of our model, highlighting its excellent performance across different
datasets. The results of the cross-domain experiments demonstrate the wide applicability
of our model and reinforce its reliability and practicality in various real-world scenarios.

Table 2. Cross-domain evaluation. X ==>Y means source domain ==>target domain. The best result
is bold.

Model Flickr30k ==>MS COCO MS COCO ==>Flickr30

B@1 B@4 M R-L CIDEr B@1 B@4 M R-L CIDEr

MAGIC 41.4 5.2 12.5 30.7 18.3 46.4 6.2 12.2 31.3 17.5
CapDec 43.3 9.2 16.3 36.7 27.3 60.2 17.3 18.6 42.7 35.7
SCFM 43.0 9.3 17.0 37.1 28.5 59.6 17.5 19.9 43.6 38.0

4.4. Stylized Image Captioning

To validate the model’s performance in terms of descriptive ability, we conducted styl-
ized image captioning experiments. Stylized image captioning aims to generate sentences
that accurately describe images while incorporating specific styles. Collecting image–text
pairs with different language styles is a challenging task. However, collecting text with
different styles is relatively straightforward. Our model only requires text data with dif-
ferent styles to achieve stylized image descriptions. In the experiment, we utilized the
FlickrStyle10K [29] and SentiCap [30] datasets and present the experimental results in
Figure 4. Through stylized image captioning experiments, we can visually observe the
performance of our model in generating image descriptions with specific styles. The
figure displays examples of images with different styles and the corresponding stylized
descriptions generated by our model. The results demonstrate that our model can generate
image descriptions that conform to the corresponding style requirements based on different
style text data. This further validates the model’s capabilities in semantic understanding
and language generation. Through the stylized image captioning experiments, we verify
the flexibility and adaptability of our model, showcasing its strong performance in han-
dling image captioning tasks with diverse styles. This provides broader prospects for the
application of our method in various scenarios.

4.5. Ablation Experiments

To investigate the impact of various factors on the generation of image captions, we
conducted a series of ablation experiments, the results of which are detailed in Table 3.
Firstly, we introduced the text semantic enhancement network to the baseline model while
keeping other components unchanged. We observed improvements in performance across
all metrics, including a significant increase from 68.1% to 68.6% in BLEU-1 and from
26.4% to 27.3% in BLEU-4. This signifies that the model acquires a more comprehensive
understanding of the image by leveraging multiple semantic perspectives, resulting in the
generation of richer and more expressive descriptive sentences.
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Figure 4. Examples of stylized image captioning.

Table 3. Ablation experiments.The best result is bold.

Method B@1 B@4 M R-L CIDEr

Baseline 68.1 26.4 25.1 51.0 90.9
+TSE-Net 68.6 27.3 25.3 51.6 92.3

+contrast learning 68.4 26.8 25.0 51.5 91.9
+EVSD 68.8 26.9 25.7 52.1 93.7
SCFM 69.0 27.3 25.8 52.7 94.3

Subsequently, the introduction of contrast learning resulted in consistent improve-
ments, such as an increase from 68.1% to 68.4% in BLEU-1 and from 26.4% to 26.8% in
BLEU-4. This illustrates the efficacy of contrast learning in fine-tuning semantic repre-
sentations. The experimental results revealed consistent score improvements across all
evaluation metrics compared to the baseline model. Furthermore, we explored the adop-
tion of an image enhancement decoding strategy, replacing the conventional maximum
probability decoding strategy in the baseline model. The experimental findings indicated a
substantial 2.9% improvement in the CIDEr metric (from 90.9% to 93.7%) when utilizing
the image enhancement decoding strategy. This demonstrates the efficacy of the strategy in
enhancing the precision of generated textual descriptions, enabling the model to produce
more accurate and contextually aligned sentences that effectively depict the content of
the image. To investigate the synergistic effects of these approaches, we performed com-
prehensive improvements on each component of the baseline model. The experimental
results exhibited significant advancements across all evaluation metrics. In comparison to
the baseline model, we observed a remarkable 3.2% increase in the BLEU-4 metric (from
26.4% to 27.3%) and a notable 3.6% (from 90.9% to 94.3%) improvement in the CIDEr
metric. These outcomes provide further evidence of the complementary advantages and
collaborative effects of the proposed strategies.

In conclusion, our proposed text semantic enhancement network and image enhance-
ment decoding strategy present considerable advantages in the task of image captioning.
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By leveraging the text semantic enhancement network, contrastive learning, and image
enhancement decoding strategy in concert, our model exhibits enhanced capability in
generating more expressive, precise, and contextually coherent descriptive sentences. Thus,
our approach offers a robust and effective methodology for addressing the complexities
associated with image captioning and similar challenging tasks.

4.6. Heatmap Analysis

To provide a more intuitive demonstration of the impact of the text semantic enhance-
ment network and the contrastive learning training method employed during the training
phase, we generated heatmaps that depict the differences between the textual feature vec-
tors obtained by the baseline model and the SCFM model, as illustrated in Figure 5. These
heatmaps utilize a color mapping scheme to represent the similarity or correlation between
features. Upon examining the heatmaps of the baseline model’s features, as illustrated
in Figure 5a, we observed a relatively high degree of similarity among different features,
indicating some overlap in capturing semantic information relevant to the image captioning
task. However, such overlap may lead to generated descriptions lacking diversity and
richness. In contrast, the heatmaps of the features obtained after applying our model
exhibited significantly increased differences among the various features, as illustrated in
Figure 5b. This suggests that the text semantic enhancement network successfully extracted
unique information pertaining to visual and linguistic features that are relevant to the
image captioning task, thereby enabling the generation of more diverse and expressive
descriptions. By enhancing the differences among features, our approach comprehensively
captures the semantic relationships between images and text, resulting in improved quality
and diversity of generated descriptions. Through the comparison of these two sets of
feature heatmaps, the efficacy of the text semantic enhancement network in enriching
feature representations can be visually observed. Overall, the heatmaps provide visual
evidence of the positive impact of the text semantic enhancement network and contrastive
learning on the image captioning process. The differences in the heatmaps highlight the
ability of our model to capture distinct and relevant information, leading to more diverse
and expressive image captions. This analysis further supports the effectiveness of our
approach in enhancing the generation of descriptive sentences that accurately correspond
to the content of the images.

(a) (b)

Figure 5. Heatmap of textual feature vectors using (a) the baseline model, showing high similarity and
potential overlap in semantic information and textual feature vectors, and using (b) the SCFM model,
highlighting increased differentiation and successful extraction of diverse visual and linguistic features.

5. Result and Discussion

In the realm of weakly or unsupervised image captioning methods, the comparison
of our semantic-enhanced cross-modal fusion model (SCFM) with other contemporary
models offers crucial insights. The comparison is grounded in experiments conducted
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on the MS COCO and Flickr30k datasets, utilizing standard metrics such as BLEU-1,
BLEU-4, METEOR, ROUGE-L, and CIDEr (Table 1). ZeroCap’s utilization of zero-shot
techniques renders a performance that is appreciably surpassed by SCFM, evidenced by
B@1 and CIDEr scores of 49.8 and 34.5 against SCFM’s 69.0 and 94.3, respectively, on MS
COCO. The marked enhancement accentuates the potency of our model’s semantic and
decoding strategies. The performance of MAGIC, another weakly supervised model, is
somewhat superior to ZeroCap but still falls behind SCFM. With B@1 and CIDEr scores of
56.8 and 49.3, it underscores SCFM’s advanced capabilities in both granular and overall
performance measures. Comparatively, CapDec exhibits a competitive approach, with B@1
and CIDEr scores of 69.2 and 91.8 on MS COCO. Nonetheless, SCFM slightly surpasses
CapDec in key domains, with B@4 and CIDEr scores of 27.3 and 94.3 versus 26.4 and
91.8, respectively, cementing the relative strength of our approach. An examination of
SCFM through ablation studies further elucidates the individual impacts of its components
(Table 3). The introduction of the TSE-Net led to an elevation in B@1 and CIDEr to 68.6 and
92.3. The implementation of contrast learning yielded a nuanced performance shift, while
the incorporation of EVSD boosted B@1 and CIDEr to 68.8 and 93.7. The full SCFM model
combined these incremental enhancements, solidifying the B@1 at 69.0 and CIDEr at 94.3.

In the field of image captioning, our semantic-enhanced cross-modal fusion model
carves out its distinctive niche when juxtaposed with prominent methods such as ZeroCap,
MAGIC, and CapDec. While ZeroCap showcases innovation by combining CLIP with
GPT-2 for zero-shot captioning and pivoting to a novel data source, our approach delves
deeper, emphasizing a comprehensive strategy to address the modality gap and image–text
mismatches. This commitment to excellence is further evidenced as we not only forge
a closer image–text alignment but also overshadow ZeroCap’s key performance metrics,
underscoring our capability for a refined captioning control. Diverging from MAGIC’s
zero-shot approach, our model is grounded in a bespoke design that marries a cutting-edge
semantic enhancement network with a heightened decoding strategy. This amalgamation
not only propels innovation but also triumphs in crucial metrics such as BLEU-4, METEOR,
ROUGE-L, and CIDEr. Meanwhile, in comparison to CapDec, known for its decoding of
image embeddings supplemented by noise-injection as a bridge over the image–text domain
chasm, our methodology leans heavily on semantic fortification and methodical decoding.
This deliberate emphasis equips us with the tools to tackle age-old challenges, ranging from
inference bias to output degradation. By prioritizing the symbiotic relationship between
textual and visual information over mere noise injections, our approach marks a significant
leap in performance, reinforcing its unique stature in image captioning research.

6. Conclusions

This paper presents an image caption generation method based on image-enhanced
decoding, aiming to improve the quality and diversity of generated descriptions. Our
approach incorporates a text semantic enhancement network and contrastive learning
to enhance feature vectors. Furthermore, we utilize an image-enhanced decoding strat-
egy to strengthen the correlation between generated text and images. By adopting these
techniques, we have made significant advancements over traditional image caption genera-
tion models. To evaluate our proposed method, we conduct experiments on two widely
used datasets and employ multiple evaluation metrics. The experimental results clearly
demonstrate remarkable improvements in both the accuracy and diversity of generated
descriptions compared to baseline models. These findings validate the effectiveness of
our approach in generating more precise and varied captions. In addition, we perform
cross-domain experiments and style-based image caption experiments to assess the gener-
alization ability and adaptability of our model across different application scenarios. The
results of these experiments further confirm the versatility and scalability of our approach.
While our approach has demonstrated promising results, it is important to acknowledge
potential limitations and challenges. For example, the effectiveness of the text semantic
enhancement network and contrastive learning might vary across different image types and
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domains, necessitating fine-tuning for specific applications. There may also be computa-
tional challenges related to scaling the image-enhanced decoding strategy for large datasets.
Moreover, understanding and interpreting the complex interactions between image and
text features may remain an open problem, warranting further investigation. Future work
should also consider potential biases in the training data that could affect the model’s
generalizability across diverse contexts. By recognizing and addressing these challenges,
we hope to inspire future research to build upon and refine our proposed method.

Author Contributions: Conceptualization, N.X. and L.C.; methodology, N.X. and L.C.; software, L.C.
and L.L.; validation, N.X., L.C. and Z.G.; formal analysis, N.X. and L.C.; investigation, L.L.; resources,
N.X.; data curation, X.R.; writing—original draft preparation, L.C.; writing—review and editing, N.X.,
L.L. and Z.G.; visualization, X.R.; supervision, N.X.; project administration, N.X.; funding acquisition,
N.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by (a) the Natural Science Foundation of Chongqing Province of
China, grant number CSTB2022NSCQ-MSX0786; (b) China Postdoctoral Science Foundation (Certifi-
cate Number: 2023M733358); (c) Science and Technology Research Project of Chongqing Education
Commission, grant numbers KJQN202001118, KJQN202201109.

Data Availability Statement: The publicly available MS COCO, Flickr30k, FlickrStyle10K, and
SentiCap datasets were analyzed in this study. These datasets can be found here: MS COCO and
Flickr30k: https://www.kaggle.com/datasets/shtvkumar/karpathy-splits (accessed on 23 July 2022)
FlickrStyle10K: https://zhegan27.github.io/Papers/FlickrStyle_v0.9.zip (accessed on 26 July 2022)
SentiCap: https://www.kaggle.com/datasets/prathamsaraf1389/senticap (accessed on 26 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Karpathy, A.; Li, F.-F. Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 3128–3137.
2. Laina, I.; Rupprecht, C.; Navab, N. Towards unsupervised image captioning with shared multimodal embeddings. In Proceedings

of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 7414–7424.

3. Feng, Y.; Ma, L.; Liu, W.; Luo, J. Unsupervised image captioning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4125–4134.

4. Tewel, Y.; Shalev, Y.; Schwartz, I.; Wolf, L. Zero-shot image-to-text generation for visual-semantic arithmetic. arXiv 2021,
arXiv:2111.14447.

5. Lan, T.; Liu, Y.; Liu, F.; Yogatama, D.; Wang, Y.; Kong, L.; Collier, N. Language models can see: Plugging visual controls in text
generation. arXiv 2022, arXiv:2205.02655.

6. Liang, V.W.; Zhang, Y.; Kwon, Y.; Yeung, S.; Zou, J.Y. Mind the gap: Understanding the modality gap in multi-modal contrastive
representation learning. Adv. Neural Inf. Process. Syst. 2022, 35, 17612–17625.

7. Nukrai, D.; Mokady, R.; Globerson, A. Text-Only Training for Image Captioning using Noise-Injected CLIP. arXiv 2022,
arXiv:2211.00575.

8. Vinyals, O.; Toshev, A.; Bengio, S.; Erhan, D. Show and tell: A neural image caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3156–3164.

9. Mao, J.; Xu, W.; Yang, Y.; Wang, J.; Yuille, A.L. Explain images with multimodal recurrent neural networks. arXiv 2014,
arXiv:1410.1090.

10. Yu, Z.; Yu, J.; Cui, Y.; Tao, D.; Tian, Q. Deep modular co-attention networks for visual question answering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 6281–6290.

11. Huang, L.; Wang, W.; Chen, J.; Wei, X.-Y. Attention on attention for image captioning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4634–4643.

12. Pan, Y.; Yao, T.; Li, Y.; Mei, T. X-linear attention networks for image captioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10971–10980.

13. Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clar, J. Learning
transferable visual models from natural language supervision. In Proceedings of the 38th International Conference on Machine
Learning, Virtual, 18–24 July 2021; pp. 8748–8763.

14. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI
Blog 2019, 1, 9.

https://www.kaggle.com/datasets/shtvkumar/karpathy-splits
https://zhegan27.github.io/Papers/FlickrStyle_v0.9.zip
https://www.kaggle.com/datasets/prathamsaraf1389/senticap


Electronics 2023, 12, 3549 16 of 16

15. Jia, C.; Yang, Y.; Xia, Y.; Chen, Y.T.; Parekh, Z.; Pham, H.; Le, Q.; Sung, Y.-H.; Li, Z.; Duerig, T. Scaling up visual and vision-
language representation learning with noisy text supervision. In Proceedings of the 38th International Conference on Machine
Learning, Virtual, 18–24 July 2021; pp. 4904–4916.

16. Yang, J.; Li, C.; Zhang, P.; Xiao, B.; Liu, C.; Yuan, L.; Gao, J. Unified contrastive learning in image-text-label space. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 19163–19173.

17. Cherti, M.; Beaumont, R.; Wightman, R.; Wortsman, M.; Ilharco, G.; Gordon, C.; Schuhmann, C.; Schmidt, L.; Jitsev, J. Reproducible
scaling laws for contrastive language-image learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 2818–2829.

18. Fang, H.; Xiong, P.; Xu, L.; Chen, Y.; Clip2video: Mastering video-text retrieval via image clip. arXiv 2021, arXiv:2106.11097.
19. Gu, X.; Lin, T.-Y.; Kuo, W.; Cui, Y.; Open-vocabulary object detection via vision and language knowledge distillation. arXiv 2021,

arXiv:2104.13921.
20. Khandelwal, A.; Weihs, L.; Mottaghi, R.; Kembhavi, A. Simple but effective: Clip embeddings for embodied AI. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022;
pp. 14829–14838.

21. Luo, H.; Ji, L.; Zhong, M.; Chen, Y.; Lei, W.; Duan, N.; Li, T. CLIP4Clip: An empirical study of CLIP for end to end video clip
retrieval and captioning. Neurocomputing 2022 508, 293–304.

22. Portillo-Quintero, J.A.; Ortiz-Bayliss, J.C.; Terashima-Marín, H. A straightforward framework for video retrieval using clip. In
Proceedings of the MCPR 2021—Pattern Recognition: 13th Mexican Conference, Mexico City, Mexico, 23–26 June 2021; Springer:
New York, NY, USA, 2021; pp. 3–12. [CrossRef]

23. Shen, S.; Li, L.H.; Tan, H.; Bansal, M.; Rohrbach, A.; Chang, K.-W.; Yao, Z.; Keutzer, K. How much can clip benefit vision-and-
language tasks? arXiv 2021, arXiv:2107.06383.

24. Li, J.; Galley, M.; Brockett, C.; Gao, J.; Dolan, B. A diversity-promoting objective function for neural conversation models. arXiv
2015, arXiv:1510.03055.

25. Fan, A.; Lewis, M.; Dauphin, Y. Hierarchical neural story generation. arXiv 2018, arXiv:1805.04833.
26. Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; Choi, Y. The curious case of neural text degeneration. arXiv 2019, arXiv:1904.09751.
27. Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in

context. In Proceedings, Part V 13, Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014;
Springer: New York, NY, USA, 2014; pp. 740–755.

28. Plummer, B.A.; Wang, L.; Cervantes, C.M.; Caicedo, J.C.; Hockenmaier, J.; Lazebnik, S. Flickr30k entities: Collecting region-to-
phrase correspondences for richer image-to-sentence models. In Proceedings of the IEEE International Conference on Computer
Vision, Santiago, Chile, 7–13 December 2015; pp. 2641–2649.

29. Gan, C.; Gan, Z.; He, X.; Gao, J.; Deng, L. Stylenet: Generating attractive visual captions with styles. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3137–3146.

30. Mathews, A.; Xie, L.; He, X. Senticap: Generating image descriptions with sentiments. In Proceedings of the AAAI Conference on
Artificial Intelligence, Phoenix, AZ, USA 12–17 February 2016; Volume 30, p. 1.

31. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.-J. Bleu: A method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, Philadephia, PA, USA, 6–12 July 2002; pp. 311–318.

32. Denkowski, M.; Lavie, A. Meteor universal: Language specific translation evaluation for any target language. In Proceedings of
the Ninth Workshop on Statistical Machine Translation, Baltimore, MD, USA, 26–27 June 2014; pp. 376–380.

33. Lin, C.-Y.; Och, F.J. Automatic evaluation of machine translation quality using longest common subsequence and skip-bigram
statistics. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics (ACL-04), Barcelona,
Spain, 21–26 July 2004; pp. 605–612.

34. Vedantam, R.; Zitnick, C.L.; Parikh, D. Cider: Consensus-based image description evaluation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 4566–4575.

35. Anderson, P.; Fernando, B.; Johnson, M.; Gould, S. Spice: Semantic propositional image caption evaluation. In Proceedings, Part V
14, Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: New York,
NY, USA, 2016; pp. 382–398.

36. Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould, S.; Zhang, L. Bottom-up and top-down attention for image
captioning and visual question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 6077–6086.

37. Zhou, L.; Palangi, H.; Zhang, L.; Hu, H.; Corso, J.; Gao, J.; Unified vision-language pre-training for image captioning and
vqa. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 13041–13049.

38. Mokady, R.; Hertz, A.; Bermano, A.H. Clipcap: Clip prefix for image captioning. arXiv 2021, arXiv:2111.09734.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.neucom.2022.07.028

	Introduction
	Related Work
	Image Captioning
	Contrastive Models
	Text Generation

	Method
	Text Semantic Enhancement Network
	Contrast Learning to Optimize Feature Representations
	Enhanced Visual Selection Decoding

	Experiment and Analysis
	Experimental Setup
	Evaluation Benchmark
	Implementation Details
	Evaluation Metrics

	Standard Image Captioning
	Cross-Domain Image Captioning
	Stylized Image Captioning
	Ablation Experiments
	Heatmap Analysis

	Result and Discussion
	Conclusions
	References

