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Abstract: Emotion recognition, as an important part of human-computer interaction, is of great
research significance and has already played a role in the fields of artificial intelligence, healthcare,
and distance education. In recent times, there has been a growing trend in using deep learning
techniques for EEG emotion recognition. These methods have shown higher accuracy in recognizing
emotions when compared with traditional machine learning methods. However, most of the current
EEG emotion recognition performs multi-category single-label prediction, and is a binary classification
problem based on the dimensional model. This simplifies the fact that human emotions are mixed and
complex. In order to adapt to real-world applications, fine-grained emotion recognition is necessary.
We propose a new method for building emotion classification labels using linguistic resource and
density-based spatial clustering of applications with noise (DBSCAN). Additionally, we integrate the
frequency domain and spatial features of emotional EEG signals and feed these features into a serial
network that combines a convolutional neural network (CNN) and a long short-term memory (LSTM)
recurrent neural network (RNN) for EEG emotion feature learning and classification. We conduct
emotion classification experiments on the DEAP dataset, and the results show that our method
has an average emotion classification accuracy of 92.98% per subject, validating the effectiveness of
the improvements we have made to our emotion classification method. Our method for emotion
classification holds potential for future use in the domain of affective computing, such as mental
health care, education, social media, and so on. By constructing an automatic emotion analysis system
using our method to enable the machine to understand the emotional implications conveyed by the
subjects’ EEG signals, it can provide healthcare professionals with valuable information for effective
treatment outcomes.

Keywords: brain-computer interface; CNN; DBSCAN; emotion recognition; EEG

1. Introduction

Emotion, as a cognitive domain in psychology, represents an individual’s attitude
toward an objective object and the corresponding neural behavioral responses within the
human brain. This phenomenon is both perceptible and measurable. Initially, research on
emotions primarily focused on psychology, neurology, and physiology. However, the con-
cept of affective computing marked a pivotal shift, initiating research and development in
emotion recognition within the field of artificial intelligence. In recent years, an increasing
amount of research has focused on enhancing brain-computer interfaces (BCIs) by utilizing
information about the user’s emotional state from EEG, which is referred to as affective
brain-computer interfaces [1]. This approach aims to provide machines with the capability
to perceive, understand, and regulate emotions. Affective BCIs have applications in various
fields, including human-computer interaction [2], mental health care, and driving fatigue

Electronics 2023, 12, 4717. https://doi.org/10.3390/electronics12234717 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12234717
https://doi.org/10.3390/electronics12234717
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1834-5424
https://orcid.org/0000-0001-6575-1954
https://doi.org/10.3390/electronics12234717
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12234717?type=check_update&version=1


Electronics 2023, 12, 4717 2 of 14

detection [3]. To establish emotional interaction between humans and computers, the key
issue is how to identify human emotional states from EEG signals.

Representation of emotions is usually divided into two perspectives: the discrete
perspective and the dimensional perspective. The discrete perspective analyzes emotions
in such a way that each particular emotion (e.g., fear, sad, happy, etc.) is mapped to its
unique environmental, physiological, and behavioral parameters [4]. From a dimensional
perspective, human emotions are represented in relation to several basic dimensions.
The two-dimensional representation model of emotion was first proposed by Russell [5],
with valence indicating the pleasantness of the emotion, ranging from negative to positive,
and arousal indicating the intensity of the emotion. Figure 1 depicts emotional valence
arousal two-dimensional space model.
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Figure 1. Emotional valence arousal two-dimensional space model.

Currently, the use of machine learning to recognize emotional states through EEG has
been extensively studied. Theoretical methods based on machine learning can generally be
effectively used for emotion classification. However, these methods often rely on manually
extracted features as inputs, which is not only time-consuming and labor-intensive but also
susceptible to information loss. In addition, EEG signals are susceptible to noise interfer-
ence during data acquisition, have low signal-to-noise ratios, and exhibit asymmetry and
instability over time. These characteristics pose a challenge for traditional machine learning
methods that rely relatively on manual feature extraction and prior knowledge. As a result,
deep learning algorithms have been applied to EEG emotion recognition, allowing for the
automatic learning of high-level features from the data. These methods not only have high
recognition accuracy, but also propose new solutions in feature extraction. In this paper,
we first extract frequency domain features from emotional EEG signals within frequency
bands that have strong ties to emotions. These features are then organized into a three-
dimensional structure, accounting for the spatial relationships between electrodes. CNN
is employed to learn frequency information and the correlation between electrodes from
three-dimensional input structure, while LSTM is used to learn temporal information from
CNN outputs, aiming to improve the accuracy of emotion recognition based on EEG data.

Commonly open datasets for affective computing based on EEG include DEAP [6],
SEED [7], DREAMER, and so on. DEAP and SEED are the two most widely used EEG-
emotion databases. Currently, Most of the studies using the DEAP dataset are conducted



Electronics 2023, 12, 4717 3 of 14

with binary classification based on the valence-arousal two-dimensional spatial model.
This simplification overlooks the complexity of human emotions. To address this issue,
we propose a new method for building emotion classification labels. Our method aims
to perform more fine-grained and practical emotion recognition and analysis to achieve
more accurate emotional computation intelligence. First, we use the linguistic resource
WordNet-Affect [8] to select labels resembling emotional descriptions. Then, we use the
extended Affective Norms for English Words database [9] to embed these labels into an
affective arousal space. Finally, introduce how to use DBSCAN clustering to map labels
from EEG trials to specific emotions.

In summary, The main contributions of this paper are as follows:

(1) We propose a new method for building emotion classification labels. In contrast to
other research works, instead of only using EEG signal data and two emotion labels
for binary classification, our method use linguistic resource and DBSCAN clustering
can achieve finer-grained emotion recognition, and the method can recognize six
categories of emotions.

(2) We organize the three-dimensional feature structure of emotional EEG signals and
combine the proposed new method of building emotion classification labels with the
hybrid deep learning model CNN and LSTM. The advantage of the model is that it can
learn frequency band, spatial and temporal features in the three-dimensional feature
structure. Experimental results show that we achieve state-of-the-art performance on
the DEAP dataset.

The paper is structured as follows: In Section 2, we provide an overview of related
studies. Section 3 presents our proposed framework for emotion classification and details
our research approach. Section 4 is an experimental description, and finally, in Section 5,
we summarize the paper with our conclusions.

2. Related Work

Research on emotion recognition using EEG signals involves several key steps, includ-
ing EEG signal acquisition, preprocessing, emotion related feature extraction, and emotion
recognition modeling. Among these steps, the latter two re considered critical technical
stages in this research field. We provide a review of the related work in these areas, and ad-
ditionally, we review the basis for emotion classification when constructing recognition
systems in emotional quantification models.

2.1. Emotion Related Feature Extraction

The feature extraction stage aims to extract valuable information from EEG signals for
further analysis. Typically, EEG feature extraction techniques are based on the frequency
domain, time domain, and time-frequency domain. The time-domain features are the
most intuitive and easy to obtain, mainly including event related potential (ERP), signal
statistics, higher order crossings (HOC), fractal dimension (FD), and so on. Time-domain
feature computation directly utilizes the preprocessed time-series data, which is considered
high-performing, however, it lacks the ability to capture frequency information in the signal.
Consequently, researchers have incorporated frequency domain analysis. By utilizing the
fast Fourier transform (FFT), features can be extracted from the frequency domain, a process
that decomposes the original EEG signal into multiple frequency bands associated with
emotional states. For example, Pleasant emotions are associated with an increase in the
frontal midline (Fm) theta frequency band power in the brain [10].During experiences of
anger, there were specific enhancements in power within the beta-2, beta-3, and gamma
frequency bands in the frontopolar (Fp1, Fp2) electrodes on both sides of the brain [11].
After the original signal is transformed into the frequency domain, EEG features are
then computed from it. One of the widely used features is obtained from the power
spectrum of the EEG signals [12]. Zheng et al. conduct a systematic evaluation of six
popular features and electrode combinations, including power spectral density (PSD),
differential entropy (DE), differential asymmetry (DASM), rational asymmetry (RASM),
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asymmetry (ASM), and differential cumulative (DCAU), and find that methods utilizing
the DE feature outperform others [13]. The scope of the Fourier transform encompasses
the entire time domain, making it unable to determine the corresponding moments in
time for various frequency components of non-stationary signals. Therefore, the concept
of time-frequency domain was introduced. The typical approach involves dividing the
signal into multiple time windows, each containing approximately stationary sub-signals,
and then transforming them into the frequency domain to obtain a set of frequency-domain
features. This can be accomplished using techniques like short-time Fourier transform
(STFT) and discrete wavelet transform (DWT) [14].

2.2. Emotion Recognition Modeling

Similarly, various classification methods have been proposed for the classification
of emotional EEG data. These methods include machine learning and ensemble learn-
ing, which have demonstrated good classification performance in emotion recognition,
such as Bayesian [15], SVM [16], Random forest [17], etc. With the continuous develop-
ment of high-performance computing technologies, deep learning has achieved significant
breakthroughs in fields such as computer vision and multimedia learning, this trend has
also extended to the field of EEG emotion recognition. Compared to traditional methods,
deep learning demonstrates more powerful automatic feature learning and generalization
capabilities. Deep belief network (DBN), CNN and RNN are the most commonly used
deep learning techniques for emotion recognition tasks, followed by multilayer percep-
tron neural network (MLPNN) [18]. CNN stands out among various network algorithms
due to its outstanding capability in extracting features through convolutional kernels, it
possesses a significant advantage in efficiently handling the generation of relevant graph
features from EEG data. Russo [19] use topographic maps (TOPO-FM) and holograms
(HOLO-FM) based on EEG signal features as representations, employing a CNN to mine
feature information, and then fed the fused features into a SVM classifier. Through ex-
periments on four public datasets, the research results show that the proposed method
can improve the accuracy of emotion recognition. Chen et al. [20] present a convolutional
neural network approach for learning and classifying EEG emotion features. Their ap-
proach is based on time and frequency domain features and includes models like CVCNN,
GSCNN, and GSLTCNN. The best-performing method achieved accuracy rates of 84.02%
for valence and 88.51% for arousal dimensions. Another more effective approach is to
utilize RNN to effectively capture the temporal correlations and dynamic changes in EEG
time-series signals. Sharma et al. [21] use nonlinear higher-order statistics and LSTM to
automatically classify emotionally labeled EEG signals. The accuracy is estimated using
a 10-fold cross-validation approach, the accuracy for the four-class emotion classification
task is 82.01%, which is an improvement of 6.8% compared to the traditional SVM classifier.
Li et al. [22] employ BILSTM to learn temporal features and incorporate an attention mech-
anism into the network framework. There is also research combining CNN and RNN to
create a C-RNN model for emotion recognition, achieving an average accuracy of 84.44%
on the SEED database [23].

2.3. Emotion Classification Basis

Most studies typically focus on designing features and optimizing algorithms for EEG
signals to achieve accurate recognition but often overlook the complexity of emotions. This
trend is particularly common in experiments conducted using the publicly available DEAP
dataset, where researchers primarily concentrate on the valence and arousal dimensions
and uses threshold division to conduct binary classification experiments. Similarly, ex-
periments on the SEED dataset tend to categorize emotions simply as positive, neutral,
and negative. A few studies involve assigning specific emotion category labels to samples
and conducting fine-grained emotion classification. Hasan et al. [24] propose an 8-class
emotion classification method, although they conduct a finer division of the emotional
space, they do not explain the correspondence between the 8 ranges obtained after thresh-
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old division of valence and arousal and specific emotions. Moise et al. [25] utilize the
correspondence between the VAD model provided by Russell and Mehrabian and the
discrete emotion model. They perform interval division on the dimensions of valence,
arousal, and dominance, allowing for the classification of six basic emotions. To overcome
this limitation, we expand the recognition task into the field of multi-label learning and
introduce a six-category technique capable of recognizing six different emotions, including
joy, liking, fear, sadness, dislike, and despair.

3. Method
3.1. EEG Emotion Recognition Pipeline

The general flow of our work is shown in Figure 2. The project is divided into four
modules. First, the raw signal is collected from the standard 10–20 system [26], then prepro-
cessed, and the EEG trials are segmented without overlapping, with each segment assigned
the label of the original trial. The second module is build emotion classification labels, we
cluster the raw trial labels using DBSCAN and combine them with the linguistic resource
WordNet-Affect to map the sentiment dimension model to the discrete model. The third
module is feature extraction, this module involves performing band decomposition on
each segment, extracting DE features from these segments, and organizing these features
into three-dimensional structures. The features are then fed into the final module, which is
the classification stage. It includes CNN and RNN structures with LSTM units to further
learn the spatial and temporal information and utilizes a softmax classifier for emotion
recognition. Finally, the output consists of classified discrete emotions.

Data Acquisition Pre-processing

Emotion

Classifier

Build emotion

classification 

labels

Feature 

Extraction

Liking

Joy

Fear

Sadness

Dislike

Despair

Classified Emotion

Figure 2. Workflow of the proposed method for emotion recognition.

3.2. Pre-Processing

The raw signal is downsampled to a sampling rate of 128 Hz. Since eye movements are
the main source of noise, eye artifacts are removed using blind source separation algorithms.
A bandpass filter is applied to remove noise smaller than 4 Hz or larger than 45 Hz. EEG
data is averaged to the common reference. Additionally, the data is segmented into 60-s
trials, with the first three seconds as a pre-trial baseline signal that needs to be removed.
Furthermore, for the purpose of increasing the amount of training data, we segment the
EEG signal into 2-s time windows without overlapping.

3.3. Build Emotion Classification Labels

In a two-dimensional emotion recognition system, human emotions are recognized
using only primary data and two emotion labels (valence and arousal). By setting 5 as
the threshold for emotion classes, label values are categorized into two groups: one class
includes values from 1 to 4.99, and the other class includes values from 5 to 8.99. The result
of the classification is four composite emotion states: HAHV, HALV, LALV, and LAHV,
as shown in Figure 3, with multiple real-life emotions are present in each state. Therefore,
this binary classification does not accurately recognize real-life emotions because it only
uses four emotion states.
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Figure 3. The distribution on the arousal-valence plane for the four compound emotional states.

In order to map EEG trials label to specific emotion words, we first utilize the lin-
guistic resource WordNet-Affect to select labels that resemble emotional descriptions.
WordNet-Affect is developed from WordNet by selecting and tagging a subset of synonyms
representing the meaning of emotions. Strapparava and Valitutti [8] assign one or more
emotion labels (a-labels), which help to express the meaning of an emotion accurately,
to multiple WordNet synonym sets. For example, affective concepts representing emotional
states are personalized by synonyms tagged with the a-label EMOTION. These labels are
hierarchically organized, and within the synonyms tagged with EMOTION, 32 groups of
emotion words representing emotional states are further specified. Table 1 provides the
emotion categories within EMOTION.

Table 1. Categories in a-label EMOTION.

EMOTION(a-label) Category

positive joy, love, affection, liking, enthusiasm, gratitude, self-pride, levity, calm-
ness, fearlessness, positive-expectation, positive-fear, positive-hope

negative negative-fear, sadness, general-dislike, ingratitude, shame, compassion,
humility, despair, anxiety, daze

neutral apathy, neutral-unconcern

ambiguous thing, gravity, surprise, ambiguous-agitation, ambiguous-fear, pensive-
ness, ambiguous-expectation

Then, we utilize the dataset published by Warriner et al. [9]. This dataset contains
nearly 14,000 English words with their embedding in valence-arousal plane. We use it to
embed the previously selected labels into the valence-arousal plane. However, we noticed
that there is a certain degree of overlap in the distribution of these 32 groups of emotional
words on the valence-arousal plane, which may be due to the high correlation between some
emotion categories. Therefore, we combined the distribution of emotional words and the
six basic emotions identified by Paul Ekman [27], namely anger, disgust, fear, joy, sadness,
and surprise. From these 32 groups of words, we select six groups of emotion words
that best matched the basic emotions and are more clearly distributed in the data. These
words are “joy”, “liking”, “fear”, “sadness”, “disliking”, and “despair”, “fear” and “dislike”
correspond to the original categories “negative-fear” and “general-dislike”, respectively.
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We project the combination of the two dimensional representations of valence and
arousal onto the affective concepts representing emotional states by the following steps:

Step 1: Calculate the cluster centers of the six groups of emotion words we selected
representing emotional states. These six groups of emotionwords naturally form clusters.
By applying the concept of determining cluster centers from the K-means algorithm, we
find the cluster centers for all associated points by taking the average coordinates of all
data points within each of the six clusters.

Step 2: Cluster the labels of EEG trials and calculate the corresponding cluster cen-
ters. Due to the complex distribution of label data and an uncertain number of clusters,
the DBSCAN algorithm is effective in discovering clusters with irregular shapes and can
adapt to complex data distributions. Therefore, we have chosen the DBSCAN algorithm
for label clustering.

Step 3: Calculate the similarity between the cluster center of each EEG trials label
cluster and the center of the cluster of emotion words representing emotional states. This
way, we can determine which emotion the EEG trials label most closely matches. Therefore,
for a given point in the EEG trials label data, we can always find the emotion point that is
closest to it.

3.4. Feature Extraction and Emotion Classifier

As shown in Figure 4, the pre-processed EEG data needs to be operated with band
decomposition and the calculation of frequency domain feature, these features are then
organized into a 3D structure and fed into the deep learning model.

Compute DE

Band Extraction

Emotion Classfier

CNN

LSTM

CNN

LSTM

CNN

LSTM

3D feature organization

Figure 4. Framework of feature extraction and deep neural network for emotion classification.

3.4.1. Feature Organization

For each EEG segment, we decompose it into four frequency bands including θ (4–8 Hz),
α (8–14 Hz), β (14–31 Hz) and γ (31–45 Hz), by employing a Butterworth filter. And the DE
features are extracted from each frequency band with a 0.5 s window.
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Differential entropy is a generalized form of Shannon’s information entropy over
continuous variables, which is defined as:

DE = −
∫ b

a
p(x) log(p(x))dx (1)

p(x) denotes the probability density function of continuous information, [a, b] denotes the
interval over which the information takes values. For a specific length of a segment that
approximately obeys the Gauss distribution N(µ, σ2

i ) of EEG, its differential entropy is:

DE = −
∫ +∞

−∞

1√
2πσ2

i

e
− (x−µ)2

2σ2
i log

 1√
2πσ2

i

e
− (x−µ)2

2σ2
i

dx =
1
2

log
(

2πeσ2
i

)
(2)

In order to maintain the information concealed in the electrode layout, we organize
the DE features into 2D maps. The International 10–20 System has 62 electrodes, and we
convert the system planes into compact 2D maps (height of 8, width of 9). Since the data
we use are obtained from 32 electrode acquisitions, the unused electrode positions in the
2D maps will be populated with zeros. Finally, these planes for all bands are stacked into a
3D EEG cube.

3.4.2. Continuous Convolutional Netural Network

The core of the convolutional neural network is the convolutional layer, which through
forward propagation enables different convolutional kernels to operate with the input fea-
ture maps, thus outputting different feature maps. The convolution formula is as follows:

Yn =
M

∑
i=1

[(
Wi

n ∗ xi

)
+ bn

]
(3)

xi denotes the input feature map, Wi
n is the nth convolution kernel on channel i, bn is the bias

and Yn is the nth output feature map, M denotes the constant of the total number of channels.
The main role of the pooling layer is downsampling, which further reduces the number

of parameters by removing some unimportant samples. Since the size of the 2D graph
organized by DE features is very small, it is best to retain all the information. Therefore,
we do not add pooling layer after all the convolutional layers. In convolutional neural
networks, each layer uses an activation function to nonlinearly represent the output of the
previous layer, and commonly used activation functions include TanHyperbolic function,
Relu function, sigmoid function, and softmax function. For each convolutional layer, we use
the Relu function [28] for each convolutional layer due to its simplicity in implementation,
acceleration of computation and convergence, absence of saturation issues, and significant
reduction in gradient dissipation.

In this work, we use a CNN model consisting of four consecutive convolutional layers,
a maximum pooling layer, and a fully connected layer. Specifically, the first convolutional
layer has 64 feature maps and the kernel size is set to 5 × 5. The feature maps are doubled in
the next two convolutional layers, so that there are 128 and 256 feature maps in the second
and third layers, respectively, with a kernel size of 4 × 4. In order to fuse the feature maps of
the previous convolutional layers, a convolutional layer with 64 feature maps with a kernel
size of 1 × 1 is added. After 4 consecutive convolutional layers, a maximum pooling layer
with a size of 2 × 2 and a step size of 2 is added. Finally, the final features are converted to
one-dimensional vectors and connected to a fully connected layer.

3.4.3. LSTM Recurrent Neural Networks

In the DEAP experiment, the stimulus intensity varies during a one-minute duration.
It remains uncertain which specific moment during this period significantly influences the
final evaluation of the subjects, therefore, we need to model the contextual information
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of the temporal signals. LSTM can be a good solution to this problem due to its recursive
structure in time.

LSTM is an improved RNN combined with the “gate” mechanism [29], the specific
working mechanism is as follows:

The first gate is the forgetting gate, which determines how much of the previous
moment’s cell state Ct−1 is saved to the current moment’s cell state Ct. The hidden state
ht−1 from the previous moment and the input xt from the current moment are concatenated
into a new feature vector, which is multiplied by the weight parameter W f and fed into the
sigmoid activation function. The vector ft is used as a decision vector to determine how
much of the cell state Ct−1 from the previous moment has been added to the cell state Ct.
The computation of ft is shown as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(4)

The second gate is the input gate, which determines how much of the input xt of
the cell at the current moment is saved to the cell state Ct at the current moment. tanh
activation function determines the candidate information C̄t at the current moment, and the
decision vector It determines how much of the C̄t has been added to the cell state Ct by
performing an elementwise multiplication operation with the candidate information C̄t.The
calculations of It and C̄t are shown as follows, respectively:

It = σ(WI · [ht−1, xt] + bI) (5)

C̄t = tanh(Wc · [ht−1, xt] + bc) (6)

The cell state Ct at the current moment is calculated as shown as follows:

Ct = Ct−1 × ft + C̄t × It (7)

The last gate is the output gate, which determines how much of the current moment’s
cell state Ct is input to the cell’s hidden state ht. The decision vectors ot and ht are computed
as follows, respectively:

ot = σ(Wo · [ht−1, xt] + bo) (8)

ht = tanh(Ct)× ot (9)

The W and b terms are the weight parameters and bias terms corresponding to the
activation function respectively.

4. Experiment
4.1. Experiment Setup and Datasets

We implement CNN and LSTM using Keras and train them on NVIDIA Tesla P100-
PCIE-12GB GPUs. DBSCAN is implemented using scikit-learn. We use the DEAP dataset
as a source of brain signals. In the data collection experiments, physiological signals, such
as EEG, ECG, and EMG, induced by 32 subjects watching 40 music videos of about 1-min
duration with different emotional tendencies are detected and recorded. Their EEG signals
are collected using a 32-channel Biosemi ActiveTwo device, following the International
10–20 system. After 20 video trials, subjects are allowed to take a short break. Each trial last
63 s, comprising 60 s of video and a 3-s pretrial baseline. After each video trial, subjects use
the Self-assessment manikins [30] to self-assess their level of arousal, valence, dominance,
and familiarity using a continuous rating scale ranging from 1 to 9, determining whether
the corresponding emotion is correctly triggered. Rating values from low to high indicate
the indicators from negative to positive and from weak to strong respectively.
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4.2. EEG Label Processing Based on DBSCAN

Since the distribution of tags has no obvious clusters and is scattered, as shown in
Figure 5, predefining the number of clusters becomes challenging. DBSCAN can automat-
ically cluster the features and effectively recognize clusters with arbitrary shapes while
filtering out anomalies. Additionally, DBSCAN has relatively low time complexity. There-
fore, we use DBSCAN to cluster the labels of EEG trials. The main idea of DBSCAN is to
identify clusters based on the density of data points. For each observation in the clustering
process, the Eps neighborhood of a given radius must contain at least MinPts observations.
Clusters are then formed by transitively expanding core points. Points that have insufficient
neighboring points to reach the MinPts threshold are considered non-core and are still
assigned to a cluster. Data points that are neither core objects nor border points are not
assigned to any cluster.

1 2 3 4 5 6 7 8 9
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7

8

9

Ar
ou

sa
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Figure 5. Scatter plot of EEG label.

The parameters Eps and MinPts have a significant impact on the accuracy of emotion
mapping. Typically, the values for Eps and MinPts are determined based on the sorted
k-dist map [31]. Setting k equal to MinPts, for two-dimensional data, the clustering results
do not change significantly when k > 4. We set k to 2, 3, 4, and 5. Figure 6 shows the sorted
k-dist map.
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Figure 6. Sorted k-dist graph of EEG label.
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The determination of the Eps value is based on the location of the “valley” in the
sorted k-dist map. The “valley” refers to a specific threshold at which the curve of the plot
changes drastically, and the value of the vertical coordinate of this threshold is the Eps.
However, it is a challenging task to determine the appropriate “valley” location precisely
by visual inspection. Therefore, we must rely on reliable Eps selection methods, and for
this purpose, we adopted the algorithm described by Guang Yu et al. in [32] to determine
the “valley point”. The identified “valley points” are shown in Table 2.

Table 2. The Eps values corresponding to different k values.

k Eps

2 0.32
3 0.33
4 0.34
5 0.4

The results of the DBSCAN clustering visualization are shown in Figure 7, In the visu-
alization, core samples, which are denoted by large dots, and non-core samples, indicated
by small dots, are color-assigned to their respective clusters. The filtered-out noise points
are represented in black. The number of clusters generated through clustering diminishes
with the growth of the MinPts parameter.

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9
eps = 0.32, min_pts = 2, estimated number of clusters: 51

(a)

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9
eps = 0.33, min_pts = 3, estimated number of clusters: 41

(b)

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9
eps = 0.34, min_pts = 4, estimated number of clusters: 33

(c)

1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9
eps = 0.4, min_pts = 5, estimated number of clusters: 23

(d)

Figure 7. The EEG label clustering results under determined parameters, the use of different colors is
intended to highlight the distinction among various clusters. (a) Eps = 0.32, MinPts = 2. (b) Eps = 0.33,
MinPts = 3. (c) Eps = 0.34, MinPts = 4. (d) Eps = 0.4, MinPts = 5.

4.3. Emotion Classification Performance

We conduct 5-fold cross-validation using the data of each subject, representing their
mean classification accuracy and standard deviation as subject results, and then presenting
these results combined as the average for the entire study population (32 subjects). The out-
comes of the emotion classification model applied to the DEAP dataset are presented
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in Figure 8. Overall, the average accuracy for the 32 subjects is 92.98% with a standard
deviation of 1.77%, and 25 subjects demonstrate classification accuracies higher than 90% in
the experiment, with the exception of 2, 5, 11, 17, 19, 22, and 24. Among these, 14 subjects
achieve accuracy levels above 95%. However, it should be noted that the accuracy of subject
22 is 70.75%, which is significantly lower than the others. discrepancy may be attributed to
that subjects’ failure to provide accurate subjective feedback after the experiment.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
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Figure 8. Overall performance of the emotion classifier.

We also compare our model with different approaches that have applied the DEAP
dataset [17,19–21], which are described in Section 2. These related methods also involve
extracting features from time and space, combined with CNN or LSTM. As shown in
Table 3, the comparison demonstrates the efficiency of our model for a finer-grained
emotion classification task.

Table 3. Comparison with different approaches on DEAP dataset.

Authors Classification Methods Emotion Classification Basis Acc (%)

Pane et al. [17] RF happy, sad, angry, relaxed 75.6

Sharma et al. [21] LSTM HAHV, HALV, LAHV, LALV
2class/Arousal, 2class/Valence

4 classes: 82.01
Arousal: 85.21 Valence: 84.16

Russo [19] CNN+SVM 2class/Arousal, 2class/Valence Arousal: 77.7 Valence: 76.6

Chen et al. [20] CVCNN 2class/Arousal, 2class/Valence Arousal: 88.51 Valence: 84.02

Our method CNN+LSTM joy, liking, fear, sadness, dislike, despair 92.98

About 15% and 4% higher than the two methods that also use CNN models, re-
spectively. In emotion classification basis, in addition to the common binary arousal
classification and binary valence classification, Sharma et al. [21] also conducte the classifi-
cation of four composite emotional states. Although Pane et al. [17] classify four specific
categories of emotions from a discrete perspective, they essentially divide four compos-
ite emotions based on the valence-arousal plane by mapping each composite emotion to
happy, sad, angry, and relaxed. Our method performs more fine-grained emotion division,
the performance of our model surpassed the methods employed by Pane and Sharma.

5. Conclusions

In this research, we use a clustering approach in combination with the linguistic
resource WordNet-Affect in order to realize the mapping of the emotion dimension model
to a discrete model, thereby constructing emotion classification labels. We extract EEG
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frequency-domain features from different frequency bands and organize them into a three-
dimensional structure, combining them with electrode location information. These features
are then fed into a hybrid deep learning model of CNN and LSTM, enabling the recognition
of six distinct types of emotions.

We conduct an empirical study on the DEAP dataset using this method and obtain
satisfactory results. Specifically, our method achieves an average accuracy of 92.98% with a
standard deviation of 1.77% for each subject. Additionally, we review current EEG analysis
techniques for recognizing human emotions. Compared with similar studies, our method
provides an improved emotion classification basis, broader practical applications, and a
significant improvement in categorization accuracy. We propose that our research findings
hold significant implications for improving mental health diagnostics and understanding
human emotions. In order to translate our research into practical policy and application, we
recommend that policymakers explore ways to integrate our emotion classification model
into mental health assessments, enabling effective diagnosis and personalized treatment.

Due to the cumbersome collection of EEG data, the current scale of EEG emotion
databases is relatively small. Although we can perform segment-level emotion recognition
and use sliding windows to segment samples, these scales are insufficient for deep learning
methods that require a large number of samples for training. Problems that need to be
solved in the future include the impact of insufficient training data on the model, and a
more natural library of emotion-inducing materials needs to be established to support high-
quality data collection, thereby building a larger-scale EEG emotion database. In addition,
there is a high degree of correlation among some emotion categories represented by the
discrete emotion model, posing a certain challenge for discrete emotion recognition.
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